SMOOTH $S L(n, \boldsymbol{H}), S p(n, \boldsymbol{C})$-ACTIONS ON $(4 n-1)$-MANIFOLDS

Tomoji Tomuro

(Received March 27, 1991, revised September 6, 1991)

Abstract

Smooth $S L(n, C)$-actions on $(2 n-1)$-manifolds were classified by Uchida [12], while smooth $S L(2, \boldsymbol{H})$-actions on 7-manifolds are discussed in Abe [1]. In this paper, the classification of smooth actions of $S L(n, \boldsymbol{H})$ and $S p(n, \boldsymbol{C})$ on simply connected closed $(4 n-1)$-manifolds is carried out for $n \geqq 3$.

1. Known results. Let G be a Lie group and K a compact subgroup. A smooth G-action Φ on a smooth manifold M naturally induces a K-action $\Phi \mid K$ on M. For a K-action Φ_{0} on M, if $\Phi \mid K=\Phi_{0}$ on M, then $\Phi\left(\right.$ resp. $\left.\Phi_{0}\right)$ is called the extension (resp. restriction) of $\Phi_{0}(\operatorname{resp} . \Phi)$. Let $G_{x}, K_{x}, G(x)$ and $K(x)$ denote the isotropy subgroups at x and the orbits through x with respect to Φ, Φ_{0}, where $\Phi \mid K=\Phi_{0}$. By definition,

$$
\begin{gather*}
K \cap G_{x}=K_{x} \quad \text { and } \quad G(x) \text { is } K \text {-invariant } . \tag{1.1}\\
\operatorname{dim} G-\operatorname{dim} G_{x}=\operatorname{dim} G(x) \leqq \operatorname{dim} M .
\end{gather*}
$$

Let H be the principal isotropy subgroup of the restricted K-action Φ_{0}. Then for any $x \in M$, we have

$$
\begin{equation*}
\left(G_{x}\right)>(H), \tag{1.3}
\end{equation*}
$$

where (A) denotes the conjugacy class of A in G, and $\left(A_{1}\right)<\left(A_{2}\right)$ if there exist $B_{1} \in\left(A_{1}\right)$ and $B_{2} \in\left(A_{2}\right)$ with $B_{1} \subset B_{2}$.
2. Classification of smooth $S p(n)$-actions on ($4 n-1$)-manifolds. The maximal compact subgroups of $S L(n, \boldsymbol{H})$ and $S p(n, \boldsymbol{C})$ are both $S p(n)$. Hence we first classify non-trivial smooth $S p(n)$-actions.

The following results are proved by a standard method.
Lemma 2.1 (cf. [5]). Assume $n \geqq 3$. Let K be a closed connected subgroup of $\operatorname{Sp}(n)$ such that $\operatorname{dim} \operatorname{Sp}(n) / K \leqq 4 n-1$. Then, up to inner automorphism of $S p(n)$, K coincides with one of

$$
S p(n-1), \quad U(1) \times S p(n-1), \quad S p(1) \times S p(n-1) \quad \text { and } \quad S p(n)
$$

embedded in the standard way.
Lemma 2.2. (1) Assume $n \geqq 3$. Then there exists no non-trivial representation
$S p(n) \rightarrow O(4 n-1)$, while there exists no non-trivial representation $S p(n-1) \rightarrow O(3)$. (2) By the identification $\boldsymbol{R}^{3}=\boldsymbol{H}_{0}$, the set of all pure quaternions, a non-trivial representation $S p(1) \rightarrow O(3)$ is equivalent to the adjoint representation Ad given by

$$
\begin{equation*}
\operatorname{Ad}(q)(h)=q h q^{-1} \quad \text { for } \quad q \in S p(1), \quad h \in \boldsymbol{H}_{0} \tag{2.3}
\end{equation*}
$$

Remark 2.4. By Lemma 2.2 (1), we see that any non-trivial $S p(n)$-action on a ($4 n-1$)-manifold has no fixed points, for $n \geqq 3$.

Using the above results, we obtain the following by standard methods (cf. [8]).
Theorem 2.5. Assume $n \geqq 3$. Let $\left(M, H, \Phi_{0}\right)$ be a triple consisting of a non-trivial smooth $S p(n)$-action Φ_{0} on a simply connected closed $(4 n-1)$-manifold M with the principal isotropy subgroup H. Then $\left(M, H, \Phi_{0}\right)$ is equivariantly diffeomorphic to one of the following triples:
(1) $\left(S^{4 n-1}, S p(n-1), \Phi_{1}\right), \Phi_{1}(k, z)=k z$.
(2) $\left(S^{4 n-1} \times{ }_{S_{p(1)}} S^{3}, U(1) \times S p(n-1), \Phi_{2}\right), \quad \Phi_{2}(k,[z, x])=[k z, x]$.
(3) $\quad\left(P_{n-1}(H) \times h S^{3}, S p(1) \times S p(n-1), \Phi_{3}\right), \Phi_{3}(k,([z], x))=([k z], x)$.

Remark 2.6. The $S p(1)$-action on S^{3} in Theorem 2.5 (2) is given by $\rho(q, u+v)=u+\operatorname{Ad}(q) v$, where S^{3} is a unit sphere of quaternions of modulus one, u is a real number and v is a pure quaternion, and $\operatorname{Ad}(q)$ is given in (2.3).
3. Certain subgroups of $S L(n, \boldsymbol{H})$ and $S p(n, C)$. Let us now consider the following subgroups of $S L(n, \boldsymbol{H})$:

$$
\begin{aligned}
& L_{S L}=\left\{\left(a_{i j}\right) \in S L(n, \boldsymbol{H}): a_{11}=1, a_{21}=a_{31}=\cdots=a_{n 1}=0\right\}, \\
& L_{S L}^{*}=\left\{\left(a_{i j}\right) \in S L(n, \boldsymbol{H}): a_{11}=1, a_{12}=a_{13}=\cdots=a_{1 n}=0\right\}, \\
& N_{S L}=\left\{\left(a_{i j}\right) \in S L(n, \boldsymbol{H}): a_{21}=a_{31}=\cdots=a_{n 1}=0\right\}, \\
& N_{S L}^{*}=\left\{\left(a_{i j}\right) \in S L(n, \boldsymbol{H}): a_{12}=a_{13}=\cdots=a_{1 n}=0\right\}, \\
& S p(n-1)=S p(n) \cap L_{S L}=S p(n) \cap L_{S L}^{*} .
\end{aligned}
$$

Proposition 3.1 (cf. [7, Lemma 2.1]). Assume $n \geqq 3$. Let P be a closed connected proper subgroup of $S L(n, \boldsymbol{H})$ such that

$$
\operatorname{dim} S L(n, \boldsymbol{H}) / P \leqq 4 n-1
$$

If P contains $S p(n-1)$, then either

$$
L_{S L} \subset P \subset N_{S L} \quad \text { or } \quad L_{S L}^{*} \subset P \subset N_{S L}^{*} .
$$

Next we consider the following subspaces of $\mathfrak{s p}(n, C)$:
$\left.\mathfrak{s p}(n, C)=\left\{\left[\begin{array}{cr}X & Z \\ Y & -{ }^{t} X\end{array}\right]: \begin{array}{l}{ }^{t} Y=Y,{ }^{t} Z=Z \\ X, Y, Z \in M_{n}(C)\end{array}\right\}, \quad \mathfrak{s p}(n)=\left\{\begin{array}{cc}X & -Y^{c} \\ Y & X^{c}\end{array}\right]: \begin{array}{l}t \\ Y=Y,{ }^{t} X+X^{c}=0 \\ X, Y \in M_{n}(C)\end{array}\right\}$,

$$
\begin{aligned}
& \mathfrak{h}=\left\{\left[\begin{array}{cc}
X & Y^{c} \\
Y-X
\end{array}\right]: \begin{array}{l}
t Y=Y,{ }^{t} X+X^{c}=0 \\
X, Y \in M_{n}(C)
\end{array}\right\}, \\
& \mathfrak{a}=\left\{\left[\begin{array}{rrrr}
0 & -{ }^{t} V & 0 & { }^{t} U \\
X & 0 & U & 0 \\
0 & { }^{t} Y & 0 & -{ }^{t} X \\
Y & 0 & V & 0
\end{array}\right]: X, Y, U, V \in C^{n-1}\right\}, \\
& \mathfrak{z}=\left\{\left[\begin{array}{rrrr}
x & 0 & z & 0 \\
0 & 0 & 0 & 0 \\
y & 0 & -x & 0 \\
0 & 0 & 0 & 0
\end{array}\right]: x, y, z \in \boldsymbol{C}\right\}, \\
& \mathrm{I}_{S p}=\left\{\left[\begin{array}{cccc}
0 & * & * & * \\
0 & X_{11} & * & X_{12} \\
0 & 0 & 0 & 0 \\
0 & X_{21} & * & X_{22}
\end{array}\right]: X_{i j} \in M_{n-1}(\boldsymbol{C})\right\} \text {, } \\
& \mathfrak{n}_{S p}=\left\{\left[\begin{array}{cccc}
* & * & * & * \\
0 & X_{11} & * & X_{12} \\
0 & 0 & * & 0 \\
0 & X_{21} & * & X_{22}
\end{array}\right]: X_{i j} \in M_{n-1}(\boldsymbol{C})\right\} \text {, } \\
& \mathfrak{a}(a+j b, c+j d)=\left\{\left[\begin{array}{cccc}
0 & * & 0 & * \\
X a-Y^{c} b & 0 & X c-Y^{c} d & 0 \\
0 & * & 0 & * \\
Y a+X^{c} b & 0 & Y c+X^{c} d & 0
\end{array}\right]: X, Y \in C^{n-1}\right\} \text {, } \\
& \text { for } a, b, c, d \in \boldsymbol{C} \text {, } \\
& \mathfrak{I}_{s_{p}}^{*}=\left\{X:{ }^{t} X \in \mathfrak{I}_{S_{p}}\right\}, \quad \mathfrak{n}_{S_{p}}^{*}=\left\{X:{ }^{t} X \in \mathfrak{n}_{S_{p}}\right\}, \quad \mathfrak{s p}(n-1)=\mathfrak{s p}(n) \cap \mathrm{I}_{s_{p}} .
\end{aligned}
$$

Here we denote by ${ }^{t} X$ and X^{c}, the transpose and the complex conjugate of a given matrix X, respectively.

Denote by $S p(n-1), L_{S_{p}}, L_{S_{p}}^{*}, N_{S_{p}}$ and $N_{S_{p}}^{*}$ the connected subgroups of $S p(n, C)$ corresponding to $\mathfrak{s p}(n-1), \mathrm{I}_{S_{p}}, \mathrm{I}_{S_{p}}^{*}, \mathfrak{n}_{S_{p}}$ and $\mathfrak{n}_{S_{p}}^{*}$, respectively. We obtain the following results:

Lemma 3.2. Each $\operatorname{Ad}(S p(n-1))$-invariant real proper subspace of \mathfrak{a} has the form $\mathfrak{a}(a+j b, c+j d)$ for some $a, b, c, d \in \boldsymbol{C}$.

Proposition 3.3 (cf. [8, Lemma 1.1]). Assume $n \geqq 3$. Let \mathfrak{p} be a proper subalgebra of $\mathfrak{s p}(n, C)$ such that $\operatorname{dim} \mathfrak{s p}(n, C) / \mathfrak{p} \leqq 4 n-1$. If \mathfrak{p} contains $\mathfrak{s p}(n-1)$, then for some complex numbers $(e, f) \neq(0,0)$, we have

$$
\begin{equation*}
\mathfrak{p}=\mathfrak{s p}(n-1, C) \oplus \mathfrak{a}(e, f) \oplus(\mathfrak{p} \cap \mathfrak{z}) . \tag{3.4}
\end{equation*}
$$

Corollary 3.5. Assume $n \geqq 3$. Let P be a closed connected subgroup of $\operatorname{Sp}(n, C)$ such that $\operatorname{dim} S p(n, C) / P \leqq 4 n-1$.
(1) If P contains $U(1) \times S p(n-1)$, then $L_{S_{p}} \subset P \subset N_{S_{p}}, L_{S_{p}}^{*} \subset P \subset N_{S_{p}}^{*}$ or $P=$ $S p(n, C)$.
(2) If P contains $S p(1) \times S p(n-1)$, then $P=S p(n, C)$.
4. Smooth actions of $S L(n, \boldsymbol{H})$ and $S p(n, C)$ on $(4 n-1)$-manifolds. Let G be either $S L(n, \boldsymbol{H})$ or $S p(n, \boldsymbol{C})$, and $K=S p(n)$. If G acts smoothly and non-trivially on a ($4 n-1$)-manifold M through Φ then the restricted K-action $\Phi \mid K$ is also non-trivial, since G is a simple Lie group. Hence, the K-action $\Phi \mid K$ on M is equivariantly diffeomorphic to one in Theorem 2.5 .

For a given G-action Φ, we can define a new G-action Φ^{*} by

$$
\begin{equation*}
\Phi^{*}(g, x)=\Phi\left(\left(g^{*}\right)^{-1}, x\right) \tag{4.1}
\end{equation*}
$$

In our cases, the restricted K-actions $\Phi^{*} \mid K$ and $\Phi \mid K$ coincide.
We now show the following result.
Theorem 4.2. Assume $n \geqq 3$. Then a triple (G, M, Φ) or $\left(G, M, \Phi^{*}\right)$ is equivariantly diffeomorphic to one of the triples given in Table 1.

Table 1

$S p(n)$-manifold	Φ for $G=S L(n, \boldsymbol{H})$	Φ for $G=S p(n, C)$				
$S^{4 n-1}$	$z \rightarrow\\|g z\\|^{-1-i r} g z$	$z \rightarrow\\|g z\\|^{-1-i r} g z$				
$S^{4 n-1} \times{ }_{S p(1)} S^{3}$	$(g,[z, x]) \rightarrow[g z /\\|g z\\|, \phi(\log \\|g z\\|, x)]$	not exist				
$P_{n-1}(H) \times h S^{3}$	$(g,([z], x)) \rightarrow([g z], \phi(\log (\\|g z\\| /\\|z\\|), x))$	not exist				

Exact notation is explained in the proof. The proof is separated into three parts, according to Theorem 2.5. Throughout this section, we assume $n \geqq 3$ and let $P^{*}=\left\{X:{ }^{t} X \in P\right\}$ for a subgroup P of G.
I. First we consider the case $M=S^{4 n-1}$ with the restricted $S p(N)$-action Φ_{0} given by $\Phi_{0}(k, z)=k z$. In this case, the G-action is also transitive. Thus the problem is reduced to finding a connected closed subgroup P of G satisfying

$$
\begin{equation*}
\operatorname{dim} G / P=4 n-1 \quad \text { and } \quad P \cap S p(n)=S p(n-1) \tag{4.3}
\end{equation*}
$$

Lemma 4.4. Let P be a connected closed subgroup of $\operatorname{SL}(n, \boldsymbol{H})$ satisfying (4.3). Then P is conjugate to

$$
P_{r}=\left\{\left[\begin{array}{cc}
\exp (t(1+i r)) & * \\
0 & *
\end{array}\right]: t \in \mathbf{R}\right\} \quad \text { or } \quad P_{r}^{*} \quad \text { for } \quad r \geqq 0 .
$$

Proof. By (4.3) and Proposition 3.1, we see that $P=P(q)$ or $P=P(q)^{*}$, where

$$
P(q)=\left\{\left[\begin{array}{cc}
\exp (t q) & * \\
0 & *
\end{array}\right]: t \in \boldsymbol{R}\right\}
$$

for a non-zero quaternion q. By the second condition of (4.3), we see that q has a non-zero real part. Then we may assume $q=1+h$, for some pure quaternion h. We see that $P(1+h)$ is conjugate to $P_{|h|^{\prime}}$
q.e.d.

Similarly, we can prove the following:
Lemma 4.5. Let P be a connected closed subgroup of $\operatorname{Sp}(n, C)$ satisfying (4.3). Then P is conjugate to

$$
P_{r}=\left\{\left[\begin{array}{cc}
\exp (t(1+i r)) & * \\
0 & *
\end{array}\right]: t \in \boldsymbol{R}\right\} \quad \text { for some } \quad r \in \boldsymbol{R} .
$$

On the other hand, an action of $G=S L(n, \boldsymbol{H})$ or $S p(n, C)$ on $S^{4 n-1}$ is defined by $\Phi(g, z)=\|g z\|^{-1-i r} g z$. We see that the isotropy subgroup of this action is conjugate to P_{r}.

Remark 4.6. As a matter of fact the actions obtained above are nothing but the twisted linear actions in [9], [10].
II. Next we consider the case $M=S^{4 n-1} \times{ }_{S p(1)} S^{3}$ with the restricted $S p(n)$-action Φ_{0} given by $\Phi_{0}(k,[z, x])=[k z, x]$. The $S p(1)$-action ρ on S^{3} is described precisely in Remark 2.6. In fact, the action ρ on S^{3} has a fixed point, and hence the $S p(n)$-action Φ_{0} on M has $S p(1) \times S p(n-1)$ as an isotropy subgroup. In particular, we see that the action Φ_{0} on M has no extended $S p(n, C)$-action by Corollary 3.5 (2). So we assume $G=S L(n, H)$.

Let ϕ be a smooth \boldsymbol{R}-action on S^{3} which commutes with the $S p(1)$-action ρ. Then we see that the \boldsymbol{R}-action ϕ defines a smooth $\operatorname{SL}(n, \boldsymbol{H})$-action Φ on M given by

$$
\begin{equation*}
\Phi(g,[z, x])=[g z /\|g z\|, \phi(\log \|g z\|, x)] . \tag{4.7}
\end{equation*}
$$

On the other hand, let an extended $S L(n, \boldsymbol{H})$-action Φ of Φ_{0} be given. Then we see that

$$
F(S p(n-1), M)=F\left(L_{S L}, M\right) \quad \text { or } \quad F(S p(n-1), M)=F\left(L_{S L}^{*}, M\right),
$$

where $F(P, M)$ denotes the fixed point set of the restricted action of Φ to P. Moreover, if $F(S p(n-1), M)=F\left(L_{S L}, M\right)$, then there exists a smooth R-action ϕ on S^{3} which commutes with the $S p(1)$-action ρ, and the action Φ on M satisfies the equation (4.7) (cf. [7, Section 3]). In addition, if $F(S p(n-1), M)=F\left(L_{S L}^{*}, M\right)$, then we see that $F(S p(n-1), M)=F\left(L_{S L}, M\right)$ for the action Φ^{*}.
III. Finally, we consider the case $M=P_{n-1}(\boldsymbol{H}) \times h S^{3}$ with the restricted $S p(n)$-action Φ_{0} given by $\Phi_{0}(k,([z], x))=([k z], x)$. As in the previous case, we see that the action Φ_{0} on M has no extended $S p(n, C)$-action. So we assume $G=S L(n, H)$.

Let ϕ be a smooth R-action on a homotopy 3 -sphere $h S^{3}$. Then we see that the \boldsymbol{R}-action ϕ defines a smooth $S L(n, \boldsymbol{H})$-action Φ on M given by

$$
\begin{equation*}
\Phi(g,[z, x])=([g z], \phi(\log (\|g z\| /\|z\|), x)) . \tag{4.8}
\end{equation*}
$$

On the other hand, let an extended $\operatorname{SL}(n, \boldsymbol{H})$-action Φ of Φ_{0} be given. Then we see that

$$
F(S p(n-1), M)=F\left(L_{S L}, M\right) \quad \text { or } \quad F(S p(n-1), M)=F\left(L_{S L}^{*}, M\right),
$$

and the set $F(S p(n-1), M)$ is naturally diffeomorphic to the homotopy 3 -sphere $h S^{3}$. Now we assume $F(S p(n-1), M)=F\left(L_{S L}, M\right)=h S^{3}$. Then the factor group $N_{S L} / L_{S L}$ acts on $h S^{3}$ via the action Φ, where $N_{S L} / L_{S L}$ is isomorphic to the group of all non-zero quaternions. Moreover, we see that the maximal compact subgroup of $N_{S L} / L_{S L}$ acts on $h S^{3}$ trivially. Then we get a smooth R-action ϕ on $h S^{3}$, and the action Φ on M satisfies the equation (4.8). In addition, if $F(S p(n-1), M)=F\left(L_{S L}^{*}, M\right)$, then we see that $F(S p(n-1), M)=F\left(L_{S L}, M\right)$ for the action Φ^{*}.

Combining these results, we obtain the proof of Theorem 4.2.
Remark 4.9. For $G=S L(2, H)$ and $M=S^{7}$ or $S^{7} \times{ }_{S_{p(1)}} S^{3}$, the same results are given in [1].
5. Smooth \boldsymbol{R}-actions on a 3 -sphere. Here we consider a smooth \boldsymbol{R}-action ϕ on S^{3} which commutes with the $S p(1)$-action ρ. Since $F\left(U(1), S^{3}\right)=S^{1}$ is invariant under the \boldsymbol{R}-action ϕ, an \boldsymbol{R}-action θ on S^{1} can be defined naturally. The \boldsymbol{R}-action θ on S^{1} satisfies the following conditions.
(5.1) θ commutes with the involution J on S^{1} defined by $J(x, y)=(x,-y)$.
(5.2) $\dot{\phi}(t, x+z)=\rho(q, \theta(t, x+i|z|))$, for some $q \in S p(1)$, such that $z=\operatorname{Ad}(q)(i|z|)$, where x is a real number and z is a pure quaternion.

Proposition 5.3. Let θ be a smooth \boldsymbol{R}-action on S^{1} satisfying (5.1). Then there exists a smooth \boldsymbol{R}-action ϕ on S^{3} satisfying the condition (5.2).

Proof. Since the restricted $U(1)$-action on S^{1} of ρ is trivial, we see that an abstract \boldsymbol{R}-action ϕ on S^{3} can be defined and commutes with the $S p(1)$-action ρ.

Finally, we show the smoothness of ϕ. Set

$$
\theta(t, x+i y)=f_{1}(t, x, y)+i f_{2}(t, x, y)
$$

Then we see that f_{1} is a smooth even function and f_{2} is a smooth odd function with respect to the variable y, by (5.1). On the other hand, for $z \neq 0$,

$$
\phi(t, x+z)=f_{1}(t, x,|z|)+(z /|z|) f_{2}(t, x,|z|) .
$$

Thus the smoothness of ϕ except at $z=0$ is clear. Since $f_{2}(t, x, y)$ is a smooth odd function, we see that $f_{2}(t, x, y) / y$ is a smooth even function with respect to the variable y. Hence $f_{1}(t, x,|z|)$ and $f_{2}(t, x,|z|) /|z|$ are both smooth at $z=0$ (cf. [2, (7.15)]). Thus the smoothness of ϕ at $z=0$ is shown.
q.e.d.

Example 5.4. For each non-zero real number r, we can define an \boldsymbol{R}-action θ^{r} on S^{1} by

$$
\theta^{r}(t, x \oplus i y)=\left(e^{r t} x \oplus i y\right) /\left\|e^{r t} x \oplus i y\right\|,
$$

which satisfies (5.1). The fixed points are $1 \oplus 0,-1 \oplus 0,0 \oplus i$ and $0 \oplus(-i)$. Let us denote S^{1} with the R-action θ^{r} by $S^{1}(r)$. The involutions J and J_{1}, defined by $J_{1}(x \oplus i y)=$ ($-x \oplus i y$), are \boldsymbol{R}-equivariant diffeomorphisms of $S^{1}(r)$. Moreover, the diffeomorphism h, defined by $h(x \oplus i y)=y \oplus i x$, is an R-equivariant diffeomorphism of $S^{1}(r)$ to $S^{1}(-r)$.

We see that there exists an R-equivariant homeomorphism of $S^{1}(r)$ to $S^{1}(s)$ for any non-zero real numbers r, s (cf. [11, Section 2]). Now we show the following.

Proposition 5.5. If $|r| \neq|s|$, then there is no \boldsymbol{R}-equivariant C^{1}-diffeomorphism between $S^{1}(r)$ and $S^{1}(s)$.

Proof. We may assume $r>0$ and $s>0$. Let f be an R-equivariant C^{1} diffeomorphism of $S^{1}(r)$ to $S^{1}(s)$. Then we may assume that $f\left(x_{0} \oplus i y_{0}\right)=x_{0} \oplus i y_{0}$, for $x_{0}=y_{0}=2^{-1 / 2}$, and $f(1 \oplus 0)=1 \oplus 0$ (cf. [11, Section 2]). We see that

$$
x^{\prime} \oplus i y^{\prime}=f(x \oplus i y)=f\left(\left(e^{r t} x_{0} \oplus i y_{0}\right) /\left\|e^{r t} x_{0} \oplus i y_{0}\right\|\right)=\left(e^{s t} x_{0} \oplus i y_{0}\right) /\left\|e^{s t} x_{0} \oplus i y_{0}\right\| .
$$

Then

$$
d x^{\prime} / d x=\left(d x^{\prime} / d t\right) /(d x / d t)=e^{2 r t} s\left(x_{0}^{2}+e^{-2 r t} y_{0}^{2}\right)^{3 / 2} / e^{2 s t} r\left(x_{0}^{2}+e^{-2 s t} y_{0}^{2}\right)^{3 / 2} .
$$

If $\lim _{t \rightarrow \infty}\left(d x^{\prime} / d t\right) /(d x / d t)$ exists, then we see $r \leqq s$. Similarly, we see $s \leqq r$. q.e.d.
Acknowledgement. The author wishes to express gratitude to Professor Fuichi Uchida of Yamagata University, who not only introduced the author to this subject but also gave helpful advice and encouragement. He also wishes to express gratitude to the referees for their helpful advice.

References

[1] T. Abe, On smooth $S L(2, \boldsymbol{H})$ actions on simply connected closed 7-manifolds, Master's thesis, Yamagata Univ. (in Japanese), 1990.
[2] T. AsOH, On smooth $S L(2, C)$ actions on 3-manifolds, Osaka J. Math. 24 (1987), 271-298.
[3] G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Math. 46, Academic Press, New York, London, 1972.
[4] T. Bröcker and T. том Dieck, Representations of compact Lie groups, Graduate Texts in Math. 98, Springer-Verlag, Berlin, Heiderberg, New York, 1985.
[5] A. Nakanishi and F. Uchida, Actions of symplectic groups on certain manifolds, Tôhoku Math. J. 36 (1984), 81-89.
[6] F. Uchida, Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan. J. Math. 3 (1977), 141-189.
[7] F. Uchida, Actions of special linear groups on a product manifold, Bull. of Yamagata Univ., Nat. Sci. 10 (1982), 227-233.
[8] F. Uchida, On the non-existence of smooth actions of complex symplectic group on cohomology quaternion projective spaces, Hokkaido Math. J. 12 (1983), 226-236.
[9] F. Uchida, Real analytic actions of complex symplectic groups and other classical Lie groups on spheres, J. Math. Soc. Japan 38 (1986), 661-677.
[10] F.Uchida, On a method to construct analytic actions of non-compact Lie groups on a sphere, Tôhoku Math. J. 39 (1987), 61-69.
[11] F. Uchida, Certain aspects of twisted linear actions II, Tôhoku Math. J. 41 (1989), 561-573.
[12] F. Uchida, Smooth $S L(n, C)$ actions on ($2 n-1$)-manifolds, Hokkaido Math. J., to appear.

SURI GIKEN Co., LTd.
4-1-9 Shinjuku, Shinjuku-ku
Токуo 160
Japan

