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INTEGRO-DIFFERENTIAL EQUATIONS AND DELAY
INTEGRAL INEQUALITIES

Xu Daovr?

(Received July 29, 1991, revised February 18, 1992)

Abstract. In this paper sufficient conditions for the boundedness, asymptotic
properties and exponential decay are first obtained for solutions of linear systems of
integral inequalities with infinite delay. Then nonlinear integro-differential equations are
reduced to delay integral inequalities by the variation of parameter formula, and some
criteria are given for asymptotic stability, uniformly asymptotic stability and exponential
asymptotic stability. The results obtained here are illustrated by examples which have
been particularly difficult to treat by means of the standard Lyapunov theory.

1. Introduction. This paper is concerned with asymptotic behavior and stability
of solutions of the integro-differential equation

) X(2) = A(0)x(t) + ft, x(r,()] + J Gt s, x(ry(s))ds

where A(t)is a continuous # X n matrix on [0, o0), r(t) <r,(t), r,(t) <t and r(t)> co as t—> 0.

In this discussion, R" denotes the n-dimensional Euclidean space, R* =[0, o) and
C[X, Y] the class of continuous mappings from the topological space X to the topologi-
cal space Y. C=C([a, 0], R"), in which a<t could be —oo. For ¢ € C we define
|6/l =SUPy<uzd ()|, Where |- | is a norm in R".

It is assumed that fe C[R* x C, R"] and Ge C[R* x Rx C, R"]. For any t,>0
and any ¢ € C, a solution of (1) is a function x: R— R" satisfying (1) for 1>1¢, and that
x(t)=¢(t) for —oo<t<t, Throughout this paper we always assume that (1) has a
continuous solution denoted by x(t, t,, ¢) or simply x(t) if no confusion should arise.

We refer the reader to [1] or [6] for the definitions of the terms we use on stability.
We always assume that f(t, 0)=G(t, s, 0)=0 in our discussion of stability.

If r(t)=t in (1), then (1) becomes a familiar integro-differential equation investigated
extensively by a number of authors (see Burton [1], Hara, Yoneyama and Itoh [6],
Kato [8] and Murakami [10] and their bibliographies). To avoid difficulty in
constructing the Lyapunov functional, Gopalsamy [5] dealt with the systems of the
type (1) with r (t)=t—r (r is a constant) and r,(t)=t using the inequality technique,
while Hara, Yoneyama and Itoh [6] dealt with the case with r,(t)=t and =0 using
the “variation of parameters” formula. Some ‘“‘easily verifiable” sufficient conditions
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were given by [5], [6] for the asymptotic stability (AS), uniform asymptotic stability
(USA) and exponential asymptotic stability (EAS) of the zero solution of (1). In this
paper the asymptotic properties of solutions of delay integral inequalities are first
discussed. Then, we obtain some generalizations of the results in [5], [6] based on the
inequalities. The criteria obtained are effective for the UAS and EAS of linear equations
with both unbounded coefficients and infinite delay. The results are illustrated by
examples which have been particularly difficult to treat by means of the standard
Lyapunov theory.

ACKNOWLEDGEMENT. The author would like to thank the referee for his careful
reading of this paper and making a number of helpful suggestions.

2. Delay integral inequalities.

DEFINITION 1. f{(t, s)e UC, means that f € C[R* x R, R*] and that for any given
o and any &£>0 there exist positive numbers B, T and A satisfying

2) J'f(t, s)yds<B, f'—Tf(t, sds<e, Vi>A.

Especially, fe UC, if f(t, s)=f(t—s) and [ f(u)du < oo.

THEOREM 1. Let y;€ C[R, R*] be a solution of the delay integral inequality

t

©)) yi)<h(t)+ é [aij(t)”yjt“s + J byj(t, u)l|yjullsdu

ay

+J‘ viit, u)f c;j(u, v)llyjullsdvdu:l+gi(t’ to)dito) »

4) y{)<ot)y, Vie(—o0,t,], i=1,...,m,

where a;j(t), hi(t)e C(R*, R"), gi(t, t))e C[R* x R*, R*], ¢;(t)e C[(— 0, to], R*], 15>
TeR*, —0<a<y;<0 (i=1,2,3), [lyjl;=sups<,<|yjW)|, s=r(t)<t and r(t)>o0 as
t—00. Assume that the following conditions are satisfied :

(H1) gt t))<b=b(ty) (Vi=to), hi(t)+gi(t, to)Pi(te)>0 as t—o0, byt u), cylt, u),
Y,;(t,u)e UC,, and there are constants ;>0 such that

t t u
®) aij(t)+f by;(t, u)du+f vii(t, u)f ¢;j(u, v)dvdu <m;; Vi>rt.
(H2) The spectral radius p(Il) of the matrix I1=(n;;) is less than one. Then

(i) yi(t)>0 as t—>o0.

(i) When h;(t)=0, for any N>0 there are constants é=0(ty)>0 and w;>0 such
that the solution y;(t) of (3) with the initial condition (4) satisfies

©6) yi(O)<w N, Vi>t,, VoeC, |ol,<9d.
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Furthermore, if b is independent of t,, so is 6 in (6); and if t—r(t)<r (r>0 constant) and
gi(t+ty, 15)—0 as t— o0 uniformly with respect to t,, then ||¢||, < yields that y,(t)—0
as t— oo uniformly, that is, for any ¢>0, there is a positive number T, independent of t,,
such that

(7) y,-(t)ge, Vt2t0+Ta ||¢||as§, tOZT‘

ProOF. (i) Applying [9, Theorem 9.16] and using p(IT)< 1, we can find positive
numbers w; such that

®) 4= Y ww;tn;<l.

ij

We first show that y;(¢) is bounded. From A;(t)+ g;(t, to)d:(to)—0, there is a T, >0 such
that w;h; () +wig;(t, to)di(te) <(1—4;)/2 for t>ty,+ T,. By the continuity of y;(t), there
exists N>max{1, w;||¢|l,} such that y,(t)<w; ' N for all te[a, t,+ T,;]. We now prove
that

9) yi(t)<w,~‘1N5mgx{wf1N}:Q, Vie[a, o).

Assume, on the contrary, there are ¢>1,+ T, and some i such that
(10) wiyild)=N, w;y;()<N, Vie(—o0,c], j=1,...,m.
By (3) and (10) we get

(11 w;yi(c) < whc)+ w; Z {a,-j(c)wj" 1N+[ bi(c, uw; INdu

Jj=1

+ J" Yii(c, w) J“ cij(u, )w; lNdvdu} +wgi(c)gi(to)

<NA+(1—4)2<NA;+N(1—4,)2<N,

which contradicts the equality in (10). So (9) is true.

Next we will show that for any ¢eC, lim,, _ yi(t, to, $)=0. For any ¢>0, let
B=¢min{w; }(1—4)/2 max,{w;}, 4=max;{4;}. From h(t)+g;(t, to)d{to)—>0 and b,
cij» Yij€ UC,, there exist positive numbers R and A4 = A(t,) > T, such that forall 1>17,+ 4

(12) hi() +g.(t, t0)¢i(t0)<§ ; ft Yi(t, w)du<R, qu ¢ij(u, )dv<R,

a3

t—A B t—A ﬂ t—A ﬁ
Q b;i(t, wydu<——, stwdu<s———, Q Gt v)dv<—— .
J y(t u)du 3m J;z lp’( ujdu 6Rm L; €iy(t; oMo 6Rm

ayg

Then from (9) and (12), we have
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t t—A4 t
(13) J\ bij(ta u)”yju”sdu:<f +I )bij(t’u)”yju”sdu
oy ay t—A

t—A t t
SQJ bj(t, “)d“'f'j byt u)"yju”sdusj by(t, u)“yju“sdu"'% ,

ay t—A t—A

(14) J ‘//u(t u)J‘ q u’ v)”ij” dudu—f '//U(t u)f U(“ U)”)’,.)“ dvd“

1 W(J f > cij(t, V)||yjolls dvdu
t—A

< l//ij(t, u) f ¢ij(u, v)Qdvdu + f vi;(t, u) f ¢;j(u, V)Qdvdu
a3 t—A as

a2

t u
+J ‘pij(t’ u)J' Cij(ua v)"ij"sdvdu
t—A u—A

t u
Sf l//ij(t’ u)f cij(u7 v)”.ij”sdvdu"_i ’
t—A u—A 3m

for t>1t,+2A4. By (3), (13), (14) and the first inequality in (12) it follows that

t

(15) yi(< '21 [aij(t)”}’jt“s"‘f by;(t, w)l|yjull sdu

t—A

+Jt ¥ii(t, “)I“ ¢ij(u, v)llyj.,llsdvdu]+ﬁ.
t—A u—A

From s=r(t)— oo (t—o00), there must be ¢, > ¢, such that

(16) A(t)=min{r(t), t— A} >1t,, Vix>t, .

In the same way, there exist ¢, <t,< ‘- <t, <t ., <-'- such that
a7 At)=>t,, Vix>t, .., k=1,2,....

From the boundedness of y;(t), we can let

(18) Mk =fﬂ?X{ sup {Wiy:((?)}} :

<0<
For a given k, if

19) M= mle{Jiﬂ; {wiyi(B)}} :
then by (15)
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(20) M <A _ 3+ p max {w;} .

If (19) is not true, by (15) there is a 7 >, such that

m

T
21 m=< mf‘lx{wi Z |:aij(t_)wj_ Mi-1 +f bij(i: uw; M- 26U
' j=1 [
n u
+ '//ij(t_, u) cij(u, v)w; M- 3dvdu:| + WEB} .

—A u—A

Noting that n,>n,,,=>0 for all k=0, 1, ..., we also see that

(22) M < Ay -3+ B max{w;} .

Let =B max;{w;}. From the definition of §,

23) BIl1 — A1<emin {w;}/2 <w;e/2
Thus,
(24) 'lskSA’h(k—l)'f‘/?

SA[A"3(I¢—2)+B—]+E

<Ane+(1+4+--+4HB
<A*no+B/[1—A1< A*no+wie/2 .

Since 4 <1, there is an integer p such that

AP <gmin {w;/2}/n, .
Thus
(25) N3p<WiE .
Taking T=3pA, we get
(26) sup {w;y;(0)}<w;e or yl(t)<e, Vizto+ T,

t3p<f<oo

which proves lim,_, ., y;(£)=0.
(ii) From (8) and A(t)=0, for any N>0 we may take

27 d=Nmin{(1—4,)/w;b,w;'}.

369
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When | ¢|,<J, (6) may be proved in a fashion completely analogous to that of (9).

Finally, we prove that (7) is true. Since g;(t, t,) is uniformly bounded, g;(t +¢,, £,)—0
as t—oo uniformly with respect ¢y, and since Q defined through (9) corresponding to
N in (6) is independent of ¢, we can find a positive number 4 >r (>¢—r(t)), independent
of t,, such that all the inequalities in (12) hold. Then #, in (17) can be given by

(28) te=to+kA, k=1,2,....

Using techniques similar to that before and taking T=3pA, independent of ¢,, we have
(29) yi<e, Vi>t,+T.

The proof of this theorem is complete.

REMARK 1. If (3) holds under the condition y;(t)<é for some J, then (6) is true
for any 0 < N< o min;{w;}, provided 4 is defined by (27).

THEOREM 2. Let y;eC[R, R™] (i=1,...,m) and

m

(30) SAGEDY {aij(t)”yjt“s—'_J Yii(t, wllyjullsdu

ji=1
+J éij(t, u)j Cij(u, U)”ij”sdl]du+bij”¢)”ae-6j(t_t0)} >

where a;e(—o0,0] (i=1,2,3), s=t—r,r, b;;>0,0;>0 are constants, a;t), y;(t, u),
&ij(t, w), {;(t, u) are continuous for — o0 <u<t<oo.
Suppose there are nonnegative numbers y;; and a positive number ¢ such that

t t u
(3D a,-j(t)+J Vit u)e"“_“’du—kf e, u)J~ Cij(u, )~V dvdu < p;; Vi>t,,

and the spectral radius of the matrix (u;;) satisfies

(32) plu)<1.

Then there is a constant A>0 and for every N>0 there exist positive numbers w; and
d<min{w; ' N} such that for i=1, ..., m,

(33) wiy(t)<Ne *™9=z(t),  Vixty, |l,<é.

Proor. From p(u;;)<1, for any given r there are w;>0 and sufficiently small
positive number A<min{a, J;} such that

(34 Y owwi e <1,
ji=1

For any given N> 0, there is a sufficiently small 6 >0 such that
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35 A4 =w; Z {w; e +b;;6/N}<1.

=1
If (33) is not the case, there is a number ¢> ¢, and some i such that

(36) wyi(e)=z(c), w;y;t)<zt), Vte(—o0,c], j=1,...,m
By (30), (36) and (33), when ||¢||,<J we have

(37) w ()< w; Z {aij(c)wj“1Ne-1(c—to)elr+f Vi, ww; 1N~ Mu=t0)pr g,

j=1

c u
+J &ijle, u)f (i, 0w ' Ne™ = "e dpdu + b;; [|¢||ae—6"("—'°)}
az a3
m c
< Ne~Hetoly, '21 {wj‘le”[a,-i(c)+f Wij(c, wer ™ du
j= s

+J &ile, u)f Cijlu, v)e‘““"’dudu]+bij6/N}

< NA,(A)e~Hemt) < Ne~He—t0) = 5(c) |

which is a contradiction. Theorem is now proved.

3. Stability of integro-differential equation. To derive conditions for the stability
of the systems with large dimensionality, let us assume that the system (1) can be
decomposed into m subsystems described by the equations

t

(33) %)= A;(Ox{0) + Fi(t, x(*)) + J Gi(t, s, x(r(s))ds ,

where x;e R™, 3" my=n, Fi(t, x(*))=Y.7_ ;.; Ai;(0)x;(8) + £i(¢, x(r, (1))
We make the following assumptions
A) {IF(t (NPT [B5POxsll s+ b © (1x:01)1 + g:(0)
| Gi(t, u, x(ra(u) | <372, [dP@)cPe, wlxulls+dPOcFE, ) (1xl)]
where b{(t), d¥(t)e C[R™, R*], c¥(t,u)e C[R* xR, R*] (k=1, 2), ° (v)/v—0 as v—-0.
Let @,(t,t,) be a fundamental matrix [7, p. 82] of the linear equation x;(t)=
-A;(t)x;(t) and assume that
(B) {m (6. WIdP@eUC,, |9t t0)|-0 (1-00)
| ®,(t, w) |bPwe UC,, c¥(t,u)eUC, (k=1,2).

THEOREM 3. Let the assumptions (A) and (B) hold and suppose there are non-
negative numbers 1 (k=1, 2) such that for any t>te R*
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39 J t | @,(t, u) |[[b{w)+ d¥(u) J“ c®(u, v)dv]du<n® .

If the spectral radius p(IT'V) of the matrix IV = (n{}’) is less than one, then the following
hold:

(i) °()=0and |, | D,(t, u)|g{u)du—0 (1—c0) imply that
(40) | x:(, 1o, §) |20,  VopeC.

In the following (ii) and (iii) we let g;(t)=0 so that x=0 is a solution of (38) and is
called the zero solution.

(ii) The zero solution is AS.

(iii) The zero solution is UAS if | @,(t + to, to) | =0 as t— o0 uniformly in t,>1€ R*
and there are r>0 and b>0 such that t—r(t)<r (for any t>1) and | ®,(t,u)|<b for
T<u<t<o.

(iv) Ifin (i) and (iii) ° (+)=0 and (A) holds for all x € R", the zero solution is globally
AS and globally UAS, respectively.

PrOOF. By the assumptions (A), (B) and the variation of parameters formula, we
have

(41) IX(t)I<f [ @it u)l{z [ xsulls+ b5w) ° (xl)]
J Z [d P el w, v)llxlls+dF e, v)°(||x,~,,lls)]dv}du

+f [ D;(t, u)|g;(w)du+| Di(t, to) || Pi(to) | -

Under the conditions of (i), in (5) n;;=={’ and p(n{}’)<1. So (i) holds by Theorem 1.
We now prove (ii), (iii). Since p(H“’) <1, there is a positive number £« 1 such that

42) oIV +5I1?) < 1

by the property that the spectral radius of a matrix vary continuously as the elements
of the matrix vary continuously.

For the above &, there exists >0 such that | x; |,<dé implies © (|| x;ll) <&l x|
By using (41) and g{(t)=0, we have

(43) [x:(t)|< Z I‘P(t u)I{[b“’(u)+8b‘2’(u)]|lxj..lls+f [diP )i}, v)

j=1 to a
+edPu)ePw, 0)]lIx;,lldv}du+| i, to) || Pito)|

as long as | x;(s)| < ¢ for all se(— o0, #].
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under the condition Ix (t)] <d. By means of (11) in Theorem 1 and Remark 1, for the
above §, there exists a positive number # <4 such that |x;(t)|<d (for any te R) as
l¢ll.<n. In (ii) we have the stability by taking an arbitrary small N in (6). In (iii) the
uniform stability is implied by (27) and the uniform boundedness of ®(t, t;), which
together with the other conditions assure that x;(t)—0 as t—oo uniformly by the last
conclusion of Theorem 1.

Under the assumptions of (iv), the d in (6) may be taken as 6 = N min; {(1 — 4;)/w;b,
w; '} (see (27)), where b is an upper bound of | @,(t, t,)|. Applying Theorem 1, we get
the global AS (or UAS) by taking an arbitrary large N so that the § may be arbitrarily
large. The proof is now complete.

COROLLARY 1. If the assumption (A) holds and (B) is replaced by
®) {ldﬁ (6, W) | <M exp{— [, a;(v)dv}, c¥(t, u)e UC,
b¥(t)<a®a,(r), d""(t)<b""ot @ (k=1,2),
where o,(4)>0 satisfies |;_ o (u)du Zoo in t>1, that is,
t
(44) j o;(wdu—oo as T- oo uniformly int>1,
t—T

and if the spectral radius p{Ma{+b{Pe)} <1, in which ¢ >[" (¢, s)ds for all
t>1eR*, then all the conclusions of Theorem 3 are true under the conditions except the
uniform boundedness of ®,(t, u) in (iii) (which is included in (B')).

Proor. From the assumption (B’),

45) J | D,(t, u) b (wdu< M, Jw exp{—J" (v)dv}a""oz,(u)du
<Ma® exp{ - Jt oci(v)dv} t <Ma¥,

to

which implies that | ®,(t, u)|b¥(u)e UC, by |;_,a(u)duz300 in t>1. Using the same
method, we can get

(46) J | (¢, u) |d(u)du< M b

and | &,(t, u)|d¥w)e UC,. Hence n® in (39) may be M@¥ +5%e®) and p(n{})<1.
Thus by Theorem 3 the proof is complete.

ExaMpLE 1. Consider the scalar equation

47) X()= — a(t)x(t)+ b(t)x(r(t)) + c(t) Jt k(t, s)x(s)ds ,
0
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where a(t)> 0, r(t) <t, b(¢), c(t) and k(t, s) are continuous functions and r(t)— oo as t— 0.
Let ¢, =max{z, 0}. Suppose [,_,a(wydu=3o0 in t>0, | b(t)| <ba(t), c(t) <ca(t) (a, c>0)
and

¢=T)4
(48) sup J | k(¢, s) |ds—0 as T—oo0,
t>0 0
t
(49) sup{b + CJ | k(t, s) lds} <l1.
t>0 0

Then by Corollary 1 the zero solution of (47) is globally AS. Furthermore, if ¢t —r(¢) is
bounded, the zero solution is globally UAS.

ReMARK 2. Example 1 is notable because a(t), b(t) and c(t) may be unbounded
and can vanish over the time interval sets with infinite measure; yet we conclude AS
(or UAS if t —r(z) is bounded). If b(t) =0, c(t)=1 and [, k(t, s)ds < ca(t) (c < 1), an analogue
of Theorem 8 (II) in [8] can be obtained by Corollary 1.

COROLLARY 2. Suppose that there exist numbers M;>0, 6,>0, b;;>0 and con-
tinuous functions c;{(v) such that

(50) ‘ ¢i(t, tO) | S Mie_ai(‘_m) E)
(51) | Fi(t, x()) | < 2 bylxplls+g:8),  g:€C(R*,RY),
(52) | Gilt, u, x(rw)| < 2 cjlt—wlxpls,  VxeR".
If
(53) p(nij)EPI:(bij'I' J"O cij(v)dU)Mi/éi:I <l,

0

then:
(i) All solutions of (38) approach zero as t— oo if g,(t) is bounded and jff g:(v)dv< 0.
(ii) The zero solution of (38) is globally UAS if g,(t)=0 and t—r(t)<r.

Proor. From the conditions (50), (51) and (52), the assumptions (A) and (B’) are
satisfied, and

b = 1 ®
(54) apy=—", bP=—, Eﬁ-}’=f ¢;j(vydv .
0; 0; 0
Hence by (53) p{M(@}+b{P¢{P)} <1 and (ii) holds by Corollary 1.
In the following we will show that under the assumptions of (i)
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t
(5% J | Di(t, u)|g:(u)du—0 .
to
Let g;(t)< A4, for any ¢>0 there is a constant 7>0 such that

t—T t—T M.
(56) f | D;(t, u) |dus‘[ M;e _‘5“'_“’dusT' e %T<¢g24
t to

0 i

and for t—T>»1, [!_,g;(v)dv<e/2M,. Thus

(57) J‘ | D2, u)Ig,-(u)du={ f et f }I@(L u) |giu)du

t—T t
SAJ | D:(t, u)|du+ M,-j g:(wdu<e .
t t—T

0

This proves that (55) holds and (i) is now proved.

ReEMARK 3. The spectral radius is bounded by all norms. In particular, taking
(a;)ll =max;> T  |a;l|, we have in (53)

(58) p(nf,-)s{ 1(bi,) + “( j ) c,-,-(v)dv)

Therefore, p(n;;) <1 if

(59) 1Bl + H( J ) c.-,-(v)dv)

which shows that Corollary 2 includes Theorem 2.1 of Gopalsamy [5] as a spe-
cial case when x;eR, A;(t)=a;, Fi(t, x(-))=Z}"=ljﬂa,.jxj(t—n,.j), Gi(t, s, x(r,(s)) =
;'n=1 k;;j(t —s)x;(s) with & s kij(s)|ds < oo (which is not necessary in Corollary 2).

}M,./é,. .

’<5i/Mi s

REMARK 4. When m=1 (i.e. x, € R"), F; =0, the condition (53) becomes

(60) chl (v)dv< ;;1 s

0 1
which is the condition (5.2) of Theorem 5.1 in Hara et al. [6].
To drive conditions for EAS, we now make the following assumptions:
(A/) {lF,(t, x(.))|SZT=1[bSJI)(t)“xjt“s+b§_)2)(t)o(“x_;t"s)] ’ s=t—r
|Gi(t, u, x(ra @) | <372 [ePE, Wllxgulls+ PO (xul ),
(B") | ®i(t, to)|<Me %" (M;>0, §;>0 are constants).

THEOREM 4. Suppose (A') and (B") hold. Suppose that there are nonnegative
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numbers BX, y& (k=1, 2) and a positive number ¢ such that

(61) f | @, u)lb""(u)e""‘“’dusﬁgf’ ,

(62) J | ®;;(t, u) |f c®(u, V)™ dvdu<y® | Vi>teR*.

Suppose further that the spectral radius

(63) p(B+7i)<1.

Then the zero solution of (38) is EAS. Furthermore, if °(||x;ll)=0 and (A") holds for all
x€ R", the zero solution is globally EAS.

PrROOF. By (63) there exists a sufficiently small positive number 5 such that
(64) PLBG +7()+8BF +r PN =pluy) <1
For the above § there exists a positive number & <& such that ||x,~,]|s<3- implies

ol xills) < 5] [Ix;lls- By the assumptions (A”), (B”), and imitating the proof of (43), we have

(65)  |x(D)|< Il Me™ 2710+ Z f | ®i(t, u)l{[b“’(u)wL517‘2’(u)]IIX.-.,Ils

f [e{ (u, v)+dcPu, U)]”xiv“sdv}du‘

Hence we can use Theorem 2 to prove that the zero solution of (38) is EAS.
When © (||x;|l)=0, (63) implies that there exist w;>0 and 4>0 such that

(66) Z wiwi B +y{Ple <1.

ji=
Thus for any 6 >0, there exists N(d)> 1 such that
(67) Y o ww i HBP +yPle +widM/N<1.
j=1
Letting p;;=f{}’+7{}’ and b;;=M,, (35) holds by (67). Following the remainder of the
proof of Theorem 2, the zero solution is globally EAS. The proof is now complete.
REMARK 5. Theorem 4 includes Theorem 6.1 of Hara et al. [6] as a special case

when m=1 (i.e. x,eR"), F; =0 and

“ )
(68) sup j et e Pdv< 0L

u20 Jo 1

It is difficult to check the following example by (68) and the Liapunov method.
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ExampLE 2. Let a>0, >0, «>0, b,c be constants, and consider the scalar
equation
t
(69) X(t)= —atx(t)+ btx(t — )+ ct f e~ x(s)ds .
Then (A’) and (B”) hold, | &(t, t,)|=exp{— [, avdv}<e = for 1,>1, and for any
positive number o <max{a, a}

t t t t
(70) j exp{f —avdv}lblue"'"“’dusf exp{—(a—o)f vdv}|b|udus 1] ,
to u to u a—ao

t t u
(M) f exp{j —awdw}]cluf e"“(“"”e""_”’dvdusL,
t0 u - (a—o)a—o)
(63) implies that there exists ¢ >0 such that
) 1] le|

a—o (a—o)a—o)
This is equivalent to

(73) 151 del oy,
a ao

Therefore if (73) holds, then by Theorem 4, the zero solution of (69) is globally EAS.

REMARK 6. It is worth noting that in Example 2 the coefficients at, bt and ct are
unbounded and the delay is infinite. Similar examples for UAS (or AS) were given by
Burton, Casal and Somolinos [2], Burton and Hatvani [3], Busenberg and Cook [4]
and Xu [12]. However, the EAS cannot be implied by the UAS even if the equations
with infinite delay are linear and autonomous (Murakami [10]).

ReEMARK 7. The methods obtained can be applied to the stability analysis of
neutral functional differential equations [11].
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