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GLOBAL UNIQUENESS FOR OVALOIDS IN EUCLIDEAN
AND AFFINE DIFFERENTIAL GEOMETRY
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Abstract. Ovaloids are uniquely determined by the connections induced from a
relative normalization, and the volume form of the relative metric. While the equiaffine
interpretations are new, the Euclidean specialization revisits results of Minkowski,
Liebmann and Cohn-Vossen.

1. Introduction. From Bonnet's theorem two surfaces x, x*: M-+E3 in Euclidean
3-sρace are equivalent modulo a Euclidean motion if the first and second fundamental
forms I, II coincide on M:

1 = 1*, Π = Π*.

If the Euclidean Gauss curvature K is non zero, one can state local analogues using
two of the three fundamental forms I, II, III of the surfaces.

There are a series of well-known global uniqueness results for ovaloids. In (1.1)-(1.3)
we recall three of them. We state the assumptions which imply the equivalence of x, x*
modulo Euclidean motions:

(1.1) MINKOWSKI 1903: III = 111*, K=K*.

(1.2) COHN-VOSSEN 1927: 1 = 1*. LIEBMANN proved in 1901 a
corresponding result about infinitesimal rigidity .

(1.3) GROVE: 11 = 11*, K=K*.

In [H et al] we collected different methods of proof for these results and generalizations
due to various authors; references are included there.

The equiaffine analogue to Bonnet's local theorem is Radon's existence and
uniqueness result, which similarly holds in relative differential geometry ([BLA, §60,
65]; [SCHI, Chap. IV, V, VIII]). Barthel proved a version of the fundamental theorem
emphazising the role of the induced first connection; this and some global uniqueness
results for relative connections are considered in [SI-1].
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It is the aim of this paper to continue our global investigations from [SI-1] and

to study the global role of the relative connections. These results illuminate in particular

the common background for some of the Euclidean results recalled in the beginning.

The final version of this paper was written in autumn 1990 at SUT. It is a pleasure

to thank JSPS and SUT for financing my stay in Japan, and my Japanese colleagues

at several universities for their great hospitality. I am indebted in particular to Prof. S.

Yamaguchi.

2. Global uniqueness for Riemannian metrics. We state a general uniqueness result

for two-dimensional Riemannian manifolds.

2.1. THEOREM. Let M be a closed 2-dimensional dίfferentίable manifold of genus

zero and let G, G$ be Riemannian metrics on M with the same Riemannian volume form

ω(G) = ω(G*). Let V be an affine connection without torsion on M. If G,G* satisfy

Codazzi equations with respect to V, which means in local coordinates

(i) V&J^JG* and (ii) V&j^jGl,

then G = G* on M.

PROOF. Define g: = G — G*. From (i) and (ii) g satisfies

(2.1.1) djgΆ - dk9ij = Γugrk - Γikgrj .

Define the symmetric (2.0)-tensor D by

where Gik and G*ik are the components of G~ι and (G*)" 1, respectively; D is positive

definite. We introduce isothermal coordinates for D [H et al, pp. 137-139]. As the

volume forms coincide, we get

(2.1.2) imπDg = Dikgik = Q,

and thus we have gxl = —g2i in isothermal coordinates of D. (2.1.2) implies det(gfi<7 )^0 .

Now (2.1.1) is a linear elliptic system in gίί9 g12

We use now the index method. The following is well-known [H et al, Chapter 2.2]:

Either the solutions of this system are identically zero, or the points peM with

gιi(p) = Q = gi2(p)are isolated and the net defined globally by the equation g(v, w) = 0 has

negative index in p. But the index sum of M must be positive from the Euler-Poincare

formula, so the only global solution is # = 0, that means G = G*.

2.2. PROBLEM. It would be of interest to solve the following open problem similar
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to (2.1): let M be defined as in (2.1), and let V, V* be two affine connections without

torsion; assume that a Riemannian metric g satisfies Codazzi equations with respect to

both connections:

= Vj9ik and

Under which additional conditions do the connections V, V* coincide?

In case that V, V* are Levi-Civita connections of Riemannian metrics G, G*,

respectively, and ω(G) = ω(G$), the answer is in the affirmative; see [S-W].

3. Relative geometry. To apply the foregoing results to relative geometry we

recall some basic definitions and summarize the notation. [SCHI] gives in Chapter 8

a classical introduction, [S-S-V] in Chapters 3-4 a modernized approach.

Let A be a real affine space of dimension n+ 1, n> 2; denote by V9 V* the associated

real vector space and its dual, and by < , >: V* x V-^R the canonical scalar product.

Let Det denote an arbitrary determinant form and Det* its dual, and V the canonical

flat connection on A, and V9 V*, respectively.

Consider a connected, orientable C^-differentiable manifold of dimension n and

a hypersurface immersion x: M-+A. With respect to a fixed origin OeAwe denote its

position vector by x again.

An arbitrary nowhere vanishing section X of the conormal bundle C(M) is called

a conormal field. Thus, for any tangent field v on M we have

We can interpret X as a differentiable mapping X: M-> V*. Following Nomizu we call

X centroaffine if X is an immersion and additionally, the field X itself is transversal

along the hypersurface X. Obviously there exists a centroaffine conormal field for x if

and only if any conormal field of x is centroaffine. We call the hypersurface

non-degenerate (or regular) if it admits a centroaffine conormal field. A pair {X, y) is

called a relative normalization if X is a conormal field, y: M-»Kis a transversal field

along JC, and

<X,y> = l, <X,dy(v)} = 0.

Regular hypersurfaces admit (infinitely many different) relative normalizations [S-S-V;

(3.6.1)].

For a nondegenerate hypersurface x, a relative normalization induces via the

structure equations of Gauss and Weingarten

(W) dy(v)=-dx(S(v)),

(G-l) Vvdx(w) = dx(1Vvw) + G(v, w)y,

(G-2) VvdX(w) = dX(2Vvw) - S(
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a so called relative geometry on M; here S is a linear operator, called the relative

Weingarten operator; *V, 2V are affine connections without torsion; G and S are sym-

metric bilinear forms, and (M, G) is a semi-Riemannian space; G is called the relative

metric. The difference tensor

C:= —(XV-2V)

defines the relative cubic form

(3.1) C(u,v,w): = G(C(u,v),w),

which is totally symmetric and satisfies

(3.2) 1 V G = - 2 C = - 2 V G

(see [S-S-V; Chapter 4.1-4.3]); that means in particular that G satisfies Codazzi

equations with respect to both connections. If V denotes the Levi-Civita connection of

G we have

(3.3) V + C = X V ; V - C = 2 V ; V = — (1V + 2V).

Note that the uniqueness part of the relative fundamental theorem implies that two

immersions x, x*: M^A are aίfinely equivalent if G = G* and XV= *V* (or G = G* and
2V = 2V*, respectively); see [S-S-V; (4.12.3)].

4. Global uniqueness of ovaloids in relative geometry.

4.1. THEOREM. Let x, x*: M->Λ 6e ovaloids in real affine 3-space with relative

normalizations {X,y} and {X*, y*}. Assume that on M the first connections and the

Riemannian volume forms of the relative metrics coincide:

1V=ίΨ9 ω(G) = ω(G*).

Then both triples {x, X, y} and {x*, X*, y*} are affinely equivalent.

PROOF. G, G* satisfy Codazzi equations with respect to V: = 1V=1Ψ (Section 3).

Theorem 2.1 gives G = G*, and the fundamental theorem of relative geometry (see

Section 3) gives the equivalence.

4.2. THEOREM. Let x, x* be ovaloids with relative normalizations and assume

Then {x, X, y} and {x*, X*9 y*} are affinely equivalent.

PROOF. G, G* satisfy also Codazzi equations with respect to V: = 2V =
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4.3. REMARK. We proved an analogue to (4.2) in any dimension in [SI-1, Theorem

4.3], but assumed additionally that the relative Weingarten operator of x has maximal

rank on M. As far as we know a higher dimensional analogue of (4.1) is not known.

The following is a geometric version of Theorem (4.2). One can state it for

hypersurfaces if one bears in mind the additional assumption in (4.3).

4.4. THEOREM. Let x, x* be ovaloids in real affine 3-space with relative

normalizations y, y*. Assume:

( i ) ω(G) = ω(G*);

(ii) the tangent planes dx( TpM) and dx*( TpM) are parallel at each psM\

(iii) the relative normals y9 y* are parallel at each p e M.

Then x, x* are affinely equivalent.

PROOF. We consider the mappings X, X*: M-*V* and y, y$: M->K From the

assumptions (ii)-(iii) there exist nowhere vanishing functions φ, φeC^iM) such that

on M\

X* = φX and y* = ψy.

From (X\ / > = 1 = (X, y} and <JT, dy} = 0 = <jr*f dy*} we get φφ = 1 and dψ = 0 on M.

G(v9 w) = {X, (Hess x)(v, w)>, where Hess denotes the vector valued Hessian of x, implies

G* = φG and ω(G*) = φn/2 ω(G). But then φ=l=ψ from (i). The assertion follows now

from X=X% (which implies 2V = 2V*) and ω(G) = ω(G*); apply Theorem 2.1.

5. Equiaffine uniqueness results.

5.1. THEOREM. Let x,x* be ovaloids in real affine 3-space with equiaffine nor-

malizations y9y*9 respectively; assume that the induced first connections coincide.

1 V = 1 V # .

Then {x, X9 y} and {x*, X*, y*} are affinely equivalent.

PROOF. Contraction of (3.2) and the apolarity of C, C* give the following relation

for the Christoffel symbols (see [LAU, p. 119] or [S-S-V; Sections 4.4.6-4.4.9]):

— di\ogdetG = rj

ij=
1Γj

ij=
1Γ*i

J

j=Γ*ij = —

so ω(G*) = cω(G) for a constant Q<ceR.

(i) c = l . Apply the relative result from (4.1); note that x, x* are equiaffinely

equivalent.

(ii) c Φ1. Define Xu: — cXand yn : = c~iy as another relative normalization of x.

The Tchebychev field of this normalization vanishes identically, so the normalization

is equiaffine. We calculate Gn = cG, 1Vtf l ί=1V. Now the assertion follows from
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5.2. REMARK. Nomizu and Opozda [N-O] independently gave a proof of (5.1)
under the additional assumption that rank(dy) = 2, using an equiaffine Herglotz integral
formula. A proof in dimension n>2 is unknown to us.

5.3. THEOREM. Let x, x*: M—>A3 be ovaloids with equiaffine normalization y,y%

respectively, assume that the second induced connections coincide on M:

2V = 2 V*.

Then {JC, X, y) and {x*, X*9 y*} are affinely equivalent.

PROOF. The volume forms of the equiaffine metrics coincide; this follows from

V - C = 2V = 2V* = V*-C

as in (5.1).

5.4. GEOMETRIC VERSION OF 5.3 (see [SI-2, Theorem 2.11]). Let x, x*: M^A3 be
ovaloids such that for peM

(i) the tangent planes dx(TpM) and dx*(TpM) are parallel;
(ii) the directions of the affine normals y(p) and y*(p) are parallel.

Then x, x* are affinely equivalent.

For the proof see (4.4). We would like to point out that (5.4) generalizes a well-known
characterization of the ellipsoid: An ovaloid with straight lines of gravity (Schwerelinien)
is an ellipsoid (see [BLA, p. 213]).

5.5. REMARK, (i) Kurose [K] recently proved an existence result related to the
uniqueness in (5.3).

(ii) In centroaffine geometry the corresponding uniqueness results are local; see
[si- i] .

6. The uniqueness results of Liebmann, Cohn-Vossen and Minkowski in Euclidean
geometry. The Euclidean interpretations of (4.1) show that Theorem 2.1 is the
Riemannian generalization of the results of Liebmann, Cohn-Vossen and Minkowski
which we recalled in the introduction. That (1.3) has in fact a weaker version for
connections was already stated in [SI-1, p. 136]. We list the result for completeness.

6.1. THEOREM. Let x, x*: M —>E3 be ovaloids in Euclidean 3-space with Euclidean
normalization. Assume that the Levi-Civita connections of the first fundamental forms I,
V coincide

Then x, x* are homothetic.
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PROOF. The Riemannian manifolds (Λf, I), (M, I*) are both irreducible. More-
over

V(I)I* = V(I*)I* = 0,

that means I* is parallel with respect to V(I), so there exists c>0 such that I* = cl.
Therefore the Euclidean Gauss-Kronecker curvatures satisfy cK* = K. -Both relations
imply that the volume elements of the second fundamental forms are related by
ω(Π*) = y/ c ω(II). Recall that the second fundamental form is the relative metric induced
by the Euclidean normalization. Apply now (4.1). It is obvious that the equiaffine
equivalence must be a homothety.

6.2. MINKOWSKI'S THEOREM FOR CONNECTIONS. Let x, x* be ovaloids in E3. Assume
that the Levi-Civita connections of the third fundamental forms III, III* and the volume
forms of the second forms II, II* coincide:

V(IΠ) = V(IΠ*), ω(II) = ω(Π*).

Then x, x* are equivalent modulo Euclidean motions.

That the above version is equivalent to Minkowski's result is obvious from the
following facts:

(i) (n - 1) III = Ric(III), where Ric(III) is the Ricci tensor of the connection V(IΠ);
III determines the unit normal field up to Euclidean motions.

(ii) III and ω(II) determine the Gauss-Kronecker curvature K.
Conversely, V(IΠ) and ω(Π) can be determined from the unit normal field μ and K
(given as functions of μ on the sphere).

The foregoing statements are true in any dimension n ^ 2.
It was already known to Blaschke that Minkowski's uniqueness result has an

equiaffine version (for details see [SI-1, §4]) which we generalized in (5.4).
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