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Abstract. Let $(A) be a symmetrizable generalized Kac-Moody algebra with ί) its
Cartan subalgebra and n_ the sum of all its negative root spaces. In this paper, we
prove the generalization of Kostant's homology formula under a certain condition on
the matrix A. This formula completely determines the ί)-module structure of the homology
of n_ in the irreducible highest weight g(Λ)-module L(Λ) with an arbitrary dominant
integral weight Λ.

Introduction. Let A = (aij)l<ij<n be a real nxn matrix satisfying the following

conditions:
(C1) either ai{ = 2 or au < 0;
(C2) ay < 0 if i φj, and atj e Z if au = 2;

(C3) dij = 0 implies ajt = 0.
Let $(A) be the generalized Kac-Moody algebra (GKM algebra), over the complex

number field C, associated to the above matrix A. When au = 2 for all /, A is nothing

but a generalized Cartan matrix and §(A) a Kac-Moody algebra. GKM algebras were
first introduced and studied by Borcherds [2], The present author studied them as

regular subalgebras or folding subalgebras of a Kac-Moody algebra (cf. [11], [12]).

Here, we present some homological feature of the class of GKM algebras.

We have the root space decomposition: §(A) = l) 0 £fezl gα, where ϊ) is the Cartan

subalgebra of g(/ί), A the root system of (g04), I)), and gα the root space attached to
aeΔ. Let A+ be the set of all positive roots, n = {ai}"=1c:fy* all simple roots, and

Π v ={α ί

v}"=1c=I) all simple coroots. Put n+ := Σα e / d + g±α. Then, n± are both sub-
algebras of §(A), and g(^) = n_ 0 ί) 0 n+.

For / with au = 2, we define the fundamental reflection rf on the dual space I)* of

f). Let IV be the Weyl group generated by r/s with au = 2. Now, for /leϊ)*, we denote
by L(λ) the irreducible highest weight g(/l)-module with highest weight λ, and by C(λ)

the irreducible (one-dimensional) ^-module with weight λ. Then, for each Λeί)* and

7'eZ>0, ///(n_, L(Λ)} (the y-th homology of n_ with coefficients in L(A)) and

7//(n + , L(A)) (the y-th cohomology of n+ with coefficients in L(Λ)) become I)-modules

in the standard way. Here, we remark that our cohomology Hj

c(n + , L(Λ)) of n+ is

slightly different from the usual Lie algebra cohomology Hj(n+, L(AJ), whereas the

homology #y(n_, L(A)} of n_ is the usual Lie algebra homology (see Section 2 for the
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definition of H{(n + , L(Λ))). In this paper, we determine the structure of Hj(n_, L(A)}
and HJ

c(n + , L(Λ)) as ίj-modules in the case where A is a dominant integral weight and
A is a symmetrizable real matrix satisfying (C2), (C3), and the following (Cl):

(C1) either ait = 2 or au = 0.
Actually, we have the following theorem.

THEOREM. Let A e fy* be dominant integral. Let if be the set of all sums of distinct

pairwise perpendicular elements from Πim\ = {tti<ΞΠ\aii<ϋ} and if (A) the set of all

elements of if perpendicular to A. Then, as ^-modules (y>0),

Σ® C(w(Λ + p-β)-p).
eW,t(w)=j-ht(β)

Here, p is a fixed element 0/1)* such that <p, α ί

v> = (l/2) αίί (!</<«), /(w) (we W) is
the length ofw, and, for βeϊf, ht(β) = m if β is a sum of m elements from 77im.

When an = 2 for every /, the set if (A) consists of only one element OGΪ)*, and so

the above theorem is "Kostant's homology and cohomology formula" for symmetrizable
Kac-Moody algebras, which was proved by Garland and Lepowsky in [3] and [7].
Note that when g(^4) is a finite-dimensional complex semi-simple Lie algebra, the above
formula is nothing but Kostant's classical result in [6].

We prove our theorem by imitating the method of Liu in [8] for Kac-Moody

algebras, which is essentially similar to those in Aribaud [1] and Garland-Lepowsky

[3].
This paper is organized as follows. In Section 1, we will review the theory of GKM

algebras, rewriting some parts of [4] for Kac-Moody algebras. In Section 2, we recall

the notion of homology and cohomology of Lie algebras n± with coefficients in L(A).
In Section 3, we explain briefly some results of Liu [8] for Kac-Moody algebras, which
is also true for GKM algebras with no modifications. In Section 4, we will establish

our main result stated above in the principle of Aribaud and Liu, using the celebrated

Weyl-Kac-Borcherds character formula. In Section 5, as an application of our main

theorem, we give a simple proof of a presentation by generators and relations of GKM
algebras, following the way of Mathieu [9].

I would like to express my heartfelt thanks to Professor Takeshi Hirai for his
constant encouragement. I am also grateful to Professor Olivier Mathieu for the valuable

discussions which made me aware of the importance of Kostant's formula. I would
also like to thank Professor Seok-Jin Kang for sending me some preprints.

1. Preliminaries for generalized Kac-Moody algebras. In this section, we fix
notation and recall fundamental results about generalized Kac-Moody algebras which
will be needed in the succeeding sections. For detailed accounts, see [2] and [4].

1.1 Generalized Kac-Moody algebras. Let n e Z>0, and A = OiV)i <f , j<„ be a real
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n x n matrix satisfying the conditions (Cl), (C2), and (C3) in the Introduction. Such a
matrix is called a GGCM. A realization of a GGCM A is a triple (ί), /7 = {αt }"=1,
/7 v ={αί

v}"=1), where ί) is a complex vector space, satisfying the following:
(Rl) 77 is a linearly independent subset of ί)* : = Homc(ί), C), and Π v is a linearly

independent subset of ί);
(R2) <αj , α£

v > = α^ (1 < ij<ή), where < , > denotes the duality pairing between
I) and ί)*;

(R3) dimc ί) = 2n — rank Λ .
We denote by §(A) the Lie algebra generated by the above vector space I) and 2n symbols
ei9fi (!</<«) under the following relations:

(Fl) Le^fj^δ^ (\<
(F2) [A,A']=0 (

[*,/,]=-<«,,*>/,

Let g(^) : = gG4)/r, where r is the largest proper ideal of §(A) intersecting I) trivially.
We call this Lie algebra g(^4) the generalized Kac-Moody algebra (GKM algebra for
short) associated to the GGCM A. The subalgebra ϊ) of g(^4) is called the Cartan
subalgebra. We call 77 = {αI }?=1 the simple root system and 77 v ={αί

v}?=1 the simple
coroot system. The elements ei9 f{ (1 <i<n) are called the Chevalley generators.

We have the root space decomposition of §(A} with respect to ί):

αeϊ)*\{0}

where gα : = {.x e g(^4) | [A, x] = <α, h)x for all A el)} (αeϊ)*). Note that gα. = C^, g_ α .=

C/ (!</<«), and mult α : = dimc gα is finite (αeί)*). An element αef)*\{0} is called
a root if g^lO}, and gα is called the root space attached to α. A root α is said to be

positive (resp. negative) if αeβ+ := Σ"=1^>oαi 0*esp. — αe2+). We denote by J
the root system of (g(^4), I)) and A+ (resp. z l_) the set of all positive (resp. negative)
roots. Then, we have A=A_vA+ (disjoint union), A _ = — A + . Therefore, we have

the triangular decomposition: g(^) = n_ φ fy ® n + , with n±:= Xα e J + g±α

Now, let 77re (resp. 77im) be the subset {^£771^ = 2 (resp. %<0)} of 77, and W
(c=GL(ϊ)*)) the Weyl group generated by the fundamental reflections rt defined by
α ίe77re: ri(λ) = λ-<^λ9 α^X (/let)*). And let C v : = {λeί)j| <A, αf v >>0 if ait = 2} be the
fundamental chamber, where l)R is a realization of ^ over the real number field R such
that fy = C®Rl)R. Then, we have the following as in the case of Kac-Moody algebras.

PROPOSITION 1 . 1 (cf. [4]). (a) For λ e C v , the group Wλ\ = {wεW\ w(λ) = λ} is
generated by rt's such thai r f e Wλ.

(b) Let X: = \J weW w(Cv) be the Tits cone. Then, Cv is a fundamental domain for

the action of W on X.

From now on, we take and fix an element peί)* such that <p, a^y =
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(1 < i<n). For we W, define Φw : = {α e A + \ w~ ̂ α) e A _}, and denote by /(w) the smallest
number m such that w = r ί lr/ 2 rίw (alV at 2, . . . , aίwe77re). Then, we have the following

as in the case of Kac-Moody algebras.

PROPOSITION 1.2 (cf. [4]). (a) The number of elements in Φw is equal to £(w)for

wεW.
(b) p-w(p) = Σα6φvvα, for we W.

1.2. Symmetrizable GKM algebras. A GGCM A = (aij)1^iJ^H is said to be

symmetrizable if there exist an invertible diagonal matrix /> = diag(ε1, ε2, . . . ,
 εn) anί*

a symmetric matrix B=(bij)1<iJ<n such that A = DB. In this case, we may assume

that ε f>0 (1 </<«) and that b^eR (1 <i,j<ri). In this subsection, we assume that the

GGCM A is symmetrizable, and take (and fix) the above decomposition of A. Let

(ί), Π = {αf}"= 1? Π
 v = {αf

v }"= J be a realization of A, and fix a subspace ί)" complementary
to ί)' : = £"= j Cα^v in ϊ). Define a symmetric bilinear form ( | •) on ί) by

(Bl) (α£

v I Λ) = <«*,*>£, (Aeί), !</<«),
(B2) (A'|/O = 0 (/z',/z"eί)").

Then, the bilinear form ( ) is non-degenerate on ί), so we have a linear isomorphism
v : ϊ)— >ί)* defined by <v(/ι), ft^ = (/* | h^) (h, h^ e ί)), and the induced bilinear form on ί)*,
which is denoted by the same symbol ( | ). Note that this induced bilinear form ( | )
on ί)* is W-in variant (cf. [4]).

As is well-known, we can extend this bilinear form ( | ) on f) to a non-degenerate

symmetric invariant bilinear form on the GKM algebra gC4). This bilinear form ( | )
on g(^4) (or I)*) is called a standard invariant bilinear form.

1.3. Highest weight modules over generalized Kac-Moody algebras. Let
be the GKM algebra associated to a GGCM A, and ί) the Cartan subalgebra of

We say an ί)-module V to be ί)-diagonalizable if V admits a weight space decomposition
F =Σf€ϊ>*Fλ where Vλ: = {υEV\h(v) = (λ,rι)v for all /zeϊ)} (Λeϊ)*). In this case, let
&(V): = {λel)*\Vλϊ {0}} denote the set of all weights of V.

For Aef)*, we set D(λ) : = (A- β \ βe Q+ = £?=1 Z>0αJ. Now, let 0 be the category

of all fy-diagonalizable modules V with finite-dimensional weight spaces, such that there

exist a finite number of elements λl9 λ2, . . . , Λ seϊ)* satisfying &(V)c: |J*=1I>(/li). Note
that any submodule and quotient module of a module from the category & are also in
0, and that a direct sum and a tensor product of a finite number of modules from (9
are again in 0.

For each /lei)*, there exists a unique irreducible highest weight module L(λ) with
highest weight λ, which is defined as a unique irreducible quotient of the Verma module

M(λ) : = U(Q(A)}/J(λ). Here, ί/(g(Λ)) is the universal enveloping algebra of g(v4), and

J(λ) is the left ideal of U(§(A)) generated by n+ u (h- </l, A>1 1 λeί)}.
An ί)-diagonalizable g(v4)-module V is said to be integrable if the Chevalley

generators ei and /f are locally nilpotent on Fwhen ati = 2. Note that, for any integrable



GENERALIZED KAC-MOODY ALGEBRAS 571

module V over the GKM algebra §(A\ dimc Vw(μ) = dimc Vμ (μef)*, we W), and that
L(A) is integrable if and only if <λ, αf

v > eZ>0 for every ί with % = 2, as in the case of
Kac-Moody algebras (cf. [4]). Now, we set P+ : = {λeί)*\ <λ, α ί

v>eZ>0 if an = 2, and
<λ, α f

v >>0 for all /}. Then, we have the following.

PROPOSITION 1.3 (cf. [4]). Let V be an integrable §(A)-module. Assume that there
exists a AeP+ such that 0*(V)<^D(Λ). Then, any weight λε£P(V) is W-equivalent to a
weight μ

Further, when the GGCM A is symmetrizable, we have the following.

PROPOSITION 1 .4 ([4]). Let §(A) be the GKM algebra associated to a symmetrizable
GGCM A,( I ) a standard invariant bilinear form on g(A). Let AeP+, andλ, μ e &(L(Λ)).
Then, (Λ\Λ) — (λ\μ)>§ and the equality holds if and only if λ = μ e W A.

1.4. Character formulas. Let g(^4) be a GKM algebra. In this subsection, we
introduce the formal character of modules from the category (9. First, we define a certain
algebra δ over C. The elements of $ are series of the form Y,λe^cλe(λ), where cλeC
and cλ = 0 for λ outside the union of a finite number of sets of the form D(μ) (μeί)*).
Then ^becomes a commutative associative algebra if we define its multiplication by
e(λ) e(μ) = e(λ + μ) (Λ,, μeί)*). The elements e(λ) are called formal exponentials. They
are linearly independent and are in one-to-one correspondence with the elements Aeί)*.

Second, we define the action of the Weyl group W on the elements of $. W acts
on the complex vector space δ of all (possibly infinite) linear combinations of formal
exponentials by: w(e(λ)) = e(w(λ)) (Aefy*, we W). δ contains $ as a subspace. Note that
δ itself is not stable under the action of W.

Now, let V be a module from 0 and let ^=Σf et)*^ be its weight space
decomposition. We define the formal character of V by ch V\= ZAei)*(dimc Vλ)e(λ) e δ.

From now on, we assume that the GGCM A is symmetrizable. Let tf be the set
of all sums of distinct pairwise perpendicular elements from /7ιm. Here, A, μ (eί)*) are
perpendicular means that (Λ,|μ) = 0, where ( | •) is a standard invariant bilinear form.
Note that {0} u 77im is contained in tf by definition. For each β e Sf, we put ε(β) = ( - l)m

if β is a sum of m elements from 77im. Then, we have the following character formula.

THEOREM 1.1 ([2] and [4]). Let Λ e P + , and let £f(Λ) be the set of all elements
of £f perpendicular to A. We put

(-β), R:= Π (l-^-α))™"",
αeΛ +

where mult α = dimc cjα (α e A +). Then,

e(p) R chL(A)= X (detwJ wίSJ.
\veW

COROLLARY 1.1 ([2] and [4]). We put S: = e(p) ^β^4β)e(-β). Then,
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e(p) Π (l-e(-α)Γ"toI=
αeJ + w e W

REMARK 1.1. In the original statement of Theorem 1.1 (resp. Corollary 1.1),
which is Theorem 11.13.3 (resp. Corollary 11.13.2) in [4], SΛ (resp. S) is defined to

be e(Λ + ρ) ^βe^(Λ^(β)e(β) (resp. e(ρ) Σβe<r&(β)e(β)). However, these are obviously
wrong, and the corrected version is given above.

2. Homology and cohomology of n+ with coefficients in L(λ). Let §(A) be the

GKM algebra associated to a GGCM A, L(λ) the irreducible highest weight g(^)-module
with highest weight /lei)*. Let g(Λ) = n_ 0 ί) 0 n+ be the triangular decomposition of

Q(A). In this section, we review the notion of homology of n_ and cohomology of n+

with coefficients in L(λ). We denote by y\n + the exterior algebra of n±, and by /\jn±

the space of the y-th homogeneous elements in /\n+ (y>0). So we have /\n± =

Σ£oΛ'«±
The vector space Cc

J(n + , L(Λ,)) of y-cochains is defined by C/(n+, L(λ)): =

Homc

c(/\jn+,L(λ)) (y>0). Here, for ϊ)-diagonalizable modules V= ]Γ®6^
 Vμ and

W= Στ® ϊ)* Wτ with finite-dimensional weight spaces, we put

: = {/eHomc(F, W)\ f(Vμ} = Q for all but finitely many weights

of V} .

Then, Homc(K, W) becomes an ^-module in the standard way (see [8]). The
coboundary operator dj: Q(n + , L(/l))-^Q+1(n+, L(λ)) is defined by

(dJf)(Xi Λ - Λ Xj Λ Xj+ J : = X (- l) ί + ίXi(f(xί Λ Λ Xt Λ Λ Xj+ J

where xl9 ...,xJ+1en+9 fε CJ

c(n + , L(λ)), and the symbol jc,- indicates a term to be
omitted. It is easy to verify (cf. [5] for example) that {C/(n + , L(/l)), dj}j> _ x is a cochain
complex, where C~ l(n+, L(λ)) : = {0}. The corresponding cohomology is called the y-th
cohomology of n+ with coefficients in L(λ), and is denoted by ///(n + ,L(λ)) (y>0).
Note that the coboundary operator dj : C/(n + , L(λ))-+Cj

c

 + l(n + , L(λJ) commutes with
the action of ί), so that #/(n + , L(λ)) is also an ^-module (y>0).

For the homology, we define the vector space Cy(n_, L(Λ,)) of y-chains to be
/\ Jn_ ®cL(λ), which is an ί)-module in the usual sense (y>0). The boundary operator

df. Cj(n-9 Uflb^Cj-άn-, L(λ)) is defined by

Σ (-l)Γ + ί ( [ Λ 9 Λ ] Λ > Ί Λ - - - ΛJ) r Λ ••• Λj), Λ - - -
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where yί9 . . . , J7 en_, veL(λ). The homology of this chain complex is the usual Lie

algebra homology with coefficients in L(A), which we denote by Hj(n_9L(λ)) O'>0)
(see [3]). As in the case of cohomology, the homology ///n_, L(λ)} is an ϊ)-module in
the standard way (j>0).

REMARK 2.1. The cohomology H3

C(\\ + , L(λ)) of n + defined in this section is slightly
different from the usual Lie algebra cohomology //J(n + , L(λ)), since we have employed

Homc(/y n+, L(λ)) instead of Homc(/\Jn + , L(λJ) as the space ofy-cochains (y>0) (see
[3] and [8]).

3. The results of Liu. In this section, we explain briefly the results of Liu [8]

about ί)-modules //7 (n_, L(λ)} and ///(n + , L(λ)) for Kac-Moody algebras, and present

the analogs for GKM algebras. His proof is applicable to GKM algebras with no
modifications. For details, see [8] and also the appendix of [3].

3.1. The duality theorem between homology and cohomology. Let g(^4) be the
GKM algebra associated to a GGCM A, L(λ) the irreducible highest weight g(^4)-module
with an arbitrary highest weight λe ί)*. Note that L(λ), /\sri- (y>0) are in the category
Θ. Since & is closed under the operation of taking tensor products and quotients,

(/V'n_)®cL(λ), and so #,(n_, L(λ)} (y>0) are also in the category (9. Therefore,
//y(n_, L(λ)) is a direct sum of its irreducible components C(μ)'s (μef)*) as ί)-modules,

and for each μeί)*, C(μ) occurs only finitely many times as irreducible components.

Here, C(μ) is the (one-dimensional) irreducible ί)-module with weight μeί)*.
Now, we have the following, due to Liu.

PROPOSITION 3.1 (cf. [8]). ///(n + , L(λ)) is isomorphic to //y(n_, L(λ)) as ^-modules

for any j (j>ϋ).

Owing to this proposition, it is enough for us to consider #/(n_, L(λJ) O'>0).

3.2. A necessity condition for weights of //, (n_, L(λ)). Here, we assume that

the GGCM A is symmetrizable. Let ( | •) be a standard invariant bilinear form. Then,

we have the following.

PROPOSITION 3.2 (cf. [8]). Every irreducible component of Hj(\\_, L(λ)) is of the

form C(μ) (μel)*), with (μ + ρ\μ + ρ) = (λ + p\λ + p).

REMARK 3.1. In the above proposition, the highest weight λ of L(λ) can be

arbitrary, not necessarily belonging to P+.

4. Kostant's formula for GKM algebras. In this section, we prove our Theorem,
which is "Kostant's formula" for GKM algebras.

4.1. Determination of weights of ///(n_, L(λ)). Let g(^) be the GKM algebra

associated to a symmetrizable GGCM A = (aij)l<ίJ<n and P+ = {λefy* \ </l, α f

v > eZ>0
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if an = 2, and <λ, oO^O for all ί}. Recall that pel)* is a fixed element such that
<p? α ί

v> = (l/2) βίί. (!</<«), ̂  is the set of all sums of distinct pairwise perpendicular
elements from 77im, and ^(λ) is the set of all elements of Sf perpendicular to A el)*.
Since Sf is a finite subset of f)*, we put ̂  = {j3, }<=1. Note that {0}u/7im is a subset

of y.
From now on, we assume that the GGCM A = (aίj)1<ij<n satisfies the following

condition (Cl):

(Cl) either au = 2 or % = 0 (!</<«)•

Since jS/e^ is a sum of simple imaginary roots, </?;, α f

v>eZ< 0 for / with au = 2 (by
(C2)), and (βpoc?y<0 for all /. So, by the condition (Cl), p-βjβP+ (1 </</), for
<p?αί

v> = 0 if % = 0. Therefore, from Theorem 1.1, we have character formulas for

L(p -βj)(l <j < /) as follows:

where ^ = Παej+ ί
1 -^(-α))multα and

weW

.multα

LEMMA 4.1. φ)

PROOF. First, by Corollary 1.1, we have

Π (l-K-α))multα= Σ

where S=e(p)- Σί-i^M-A)- Therefore, we get

e(2p) Π (l-e(-2α))multα= Σ (det
αeJ + wefΓ

where S: = e(2p) ^i=^(βί)e(-2βi\ since y x + ••• +yr = τeί)* implies 2^!+ - - - +
27Γ = 2τeI)*, for y^e J+ (1 <i<r). On the other hand, we have

Kp) Π
/ αeJ

Π (l-K-
_ x .^
~

Here, we note that (l-e(-a)Γl= Σk>oe(~k^ for αezl + .
Therefore, by Theorem 1.1, we have only to show the following:
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CLAIM. ΣwefΓ(det w) w(5)= Σ;=ιΣwe>r(det w) κ<Sp_^).

PROOF OF THE CLAIM. By Proposition 1.1 (cf. the proof of Proposition 4.2), we

have only to show that S= Σ'=ι Sp-.βj9 or

Σβ(A>(-2/y = Σ Σ ε(βi)e(-βi-βj).
k=l l<j<S l < i < < ? , ( β i \ β j ) = 0

Since (/?.| /?.) = 0 for all i (!</</) by (Cl), the above equality is nothing but

0= Σ s(βi)e(-βi-βj).
l<i*j<t,(βi\βj) = 0

Moreover, the right hand side is equal to

($) Σ ε(βi)e(-βί-βj).

Now, we assume that { 1 < / < n \ au < 0} = { 1 , 2, , m} (\<m<ή) for notational

simplicity. Then, ($) is equal to Σβcβe(~β)> where β runs through all elements of the
form

2K+ ••• + *ίp) + α Wι + " +α^g>

where (αjαίs) = 0 (l<r, s<p + ̂ f), \<ir^is<m (\<r-£s<p + q\ 0</?, \<q, and
p + q<m. Note that q^O and q must be even, since the sum in ($) is for \<iφj<t
such that ε(βj) ε ( β j ) = l . We calculate cβeZ for such β's and want to show that fy = 0

for all β. Actually, cβ is equal to (-l)p Σf^oί"1)'" |> where ^ = 2/ and ^ ίs

the binomial coefficient, because j8£ e 5̂  is a sum of distinct elements from /7im and

£(β.) = (- \}m ifβ. is a sum of m elements. Hence c, = (- l)p (l - l)2ί = 0 (note that ί^O

as seen above). Thus, the claim has been proved.

This completes the proof of Lemma 4.1. Π

From Lemma 4.1, it follows that, for every

Σ L(p-βj) ®CL(Λ).
1<J<S

Hence, from the above, we can deduce that

ι<j<t

and the multiplicities for μ and μ + p coincide with each other.

LEMMA 4.2. Let ΛeP+. If, for some i (/>0), μ is a weight 0/(/\ ln_) ®CL(Λ) and

satisfies (μ + p |μ + p) = (Λ + p | y l + p), then
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( 1 ) there exist aβ^^ with (A \ β, ) - 0 and a w e W, such that S(w) + ht(βj) = i and

(2) the multiplicity of μ in (/\ln_) ®CL(Λ) is equal to one.
Here, ht(βj) = m if βj is a sum of m distinct elements from /7im for βjE^ (1 <y</)

PROOF. From the above consideration, μ + p is a weight of (Σf<7 <^^(p —
βj))®cL(Λ) with the same multiplicity as μ in (/\n_) ®CL(/1). We remark that

^((Σf<, <^(p-^))®c£(Λ))^^
βj}®cL(A)).

Now, suppose that μ + pε0>(L(p-βj) ®CL(A)} for some 7' (1 <>j<ί). Since p-βj
and A are elements of P+9 L(p — βj), L(Λ), and so L(p-βj) ®CL(A) are integrable (see
Section 1). So, there exists a we W such that w(μ + p)eP+ r\0>(L(p-βj)®cL(Λ)) by

Proposition 1.3. We put w(μ + p) = Λ + p — βj — φ with φeQ + . Then, since ( | •) is
^-invariant, we have

(note that (p\βj) = 0 = (βj\βj) by (Cl)). Therefore, 2(Λ\βj) + (Λ + p-βj\φ) + (Λ + p-
βj—φ\φ) = 0. Now, since w(μ + p) = Λ + p — βj — φeP+ and φeg + , we have (Λ + p —
βj — φ\φ)>Q. Since /I, p — βjGP+, and φeβ + , we have (A + p — βj\ φ)>0. So,
μ|/ίJ ) = (̂  + p-/ί ι / |φ) = (̂  + p-^-φ|φ) = 0, since ΛeP+.

We would like to show that φ = Q. For this purpose, put φ= Σn

i=lkiah fcfeZ>0.
Note that (p \ α f) = (1/2) (αf | α£) > 0 for all αf e 77re, and that (̂  | φ) < 0 since ̂  is a sum
of elements from 77ίm. Hence, (/I + p - βj \ φ) = 0 implies that (Λ\φ) = (p\φ) = (βj \ φ) = 0.
Further, ̂  = 0 if o^e/I1"6. On the other hand, since w(μ + p) = Λ + p — βj — φ is a weight
of L(p — βj)®cL(A), we have Λ + p-βj-φ = (p — βj-φ1) + (Λ — φ2), where p — βj —
φ1G^>(L(p — β^) and Λ — φ2G^>(L(A")) with φί9 φ2eQ + . So, we have φ = φι + φ2- Since
(]87|φ) = (yl |φ) = 0,weget^|φι) = (Λ|φ 2) = O.Ήιen,(p-^|p-^
^^ = 0 since (p |oCj) = 0 if α^eTT1"1. Moreover, (yl|yl) — (yl|/l — φ2) = 0 Therefore, we
deduce from Proposition 1.4 that φι = φ2 = Q, hence φ = 0.

Thus, we get w(μ + p) = yl + p — βj. So, we have shown that μ = w(Λ + ρ — βj) — ρ
with w : = (w)~1. It is clear that the multiplicity of μ + p in L(p — βj) ®CL(A) is 1, since
this g(^)-module is integrable (see Section 1). Moreover, from the above argument, we
see that βj^^ is uniquely determined (see the proof of Proposition 4.2 below). Therefore,

the multiplicity of μ in (Λn-) ®c^(/Ό ^s l
Now, by Proposition 1.2, w(p) — ρ= — £αeφ α, where Φw = {oceA+ \ w~l(u)eA_}.

Therefore, μ = w(Λ + p-βj)-p = w(Λ)-w(βj)-(ΣΛeφ^oc). We express βj as βj = αiί +
- - - +αίm, where m = ht(βj), αikεΠim (\<k<m\ and /,.//, (\<r^t<rri). Remark that
w(αίk) e Δ + \ΦW (l<A:<m) and that w(yl)e^(L(yl)), since Λ and ^(L(/l)) are both
^-stable (see Section 1 and [4]). We take non-zero root vectors EkEQ-w(Λi } (1 <k<m\
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£αeg_α (αeΦw), and a non-zero weight vector veL(Λ)w(Λ). Then, 0^(E1 Λ ΛEm)Λ

^«) ® v e (Λ n-) ® c ̂ (/O ^s a weight vector of weight μ. Because μ is a weight

O®c^Λ)=Σ?*o((Λ*n-)®c£(^
by assumption, we deduce that m + #(ΦW) = /, where # (Φw) denotes the cardinality

of Φw. So, by Proposition 1.2, we have i^htOfyH^w)- D

By Proposition 3.2 and Lemma 4.2, we have the following.

PROPOSITION 4.1. Let ΛeP+. If C(μ) (μel)*) is an irreducible component of

(1) μ = w(Λ + p — βj) — p,for some βj€^ with ( Λ \ β j ) = Q, and some weW, such

(2) Ht(n_, L(A)) has only one copy of C(μ) in itself.

4.2. A sufficiency condition for weights of //Xn_, L(Λ)\ We assume that the
GGCM A is symmetrizable and satisfies the condition (Cl). Then we have the following
sufficiency condition for weights of 7/ f(n_,

PROPOSITION 4.2. Let ΛeP+ and fix /eZ>0. Then, for each βke£f with ( Λ \ β k ) =
0 and each we W such that /(w) H- ht(/?fc) = /, μ : = w(Λ + p — βk) — p is a weight of

PROOF. By Theorem 1 . 1 , we have

R e(p) chL(Λ)= Σ (detw) w(SΛ),
weW

where R= Π«s4+ (1 -e(-α))muU" and

Recall that the boundary operator df. (/\j ̂  n_) ®cL(yl)^(/\J~1n_) ®cL(yl) com-
mutes with the action of ί) 0>0). Then, by the Euler-Poincare formula (cf. [3]), we
have

= ( Σ (-ly chΛ'n- ) chL(Λ) = ( Π (l-e(-α))mult

\ J > 0 / \αeJ+

l<k<(,(A\βk) = 0

chL(Λ)
/

Σ (detw) w(SΛ)
weW

(det w) ε(βk)e(w(Λ + p-βk)-p)
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= Σ

Now, we show that w(Λ + p — βk) — p differs if w or βk differs. Suppose that

w1(Λ + p-βr)-ρ = w2(Λ + ρ-βt)-p for w l 9 w2eW, and j?r, βte^. Then, w2

 lw1(A +

p-βr) = Λ + p-βt. Since Λ + p-βr, Λ + p-βteCy, we get Λ + p-]8r = >l + p-β by
Proposition l.l(b). So, βr = βt. Therefore, we have w2

 lw±(A + ρ-βr} = A + ρ-βr. Then,

since <p, α f

v > = 1 and <jSk, α f

v ><0 for all i with 0^ = 2, it follows that w2'
ίw1 = l from

Proposition l.l(a). So, we have w1 = w2.
From the above argument and Proposition 4.1, the Proposition now follows. Π

From Propositions 3.1, 4.1, and 4.2, we get the following theorem, which is our

final goal.

THEOREM 4.1 (Kostant's formula). Let §(A) be the GKM algebra associated to a

symmetrίzable GGCM A satisfying (Cl). Let L(A) be the irreducible highest weight

§(A)-module with highest weight AeP+. Then,

as ^-modules (j> 0). Here, the sum is a direct sum ofinequivalent irreducible ^-modules.

COROLLARY 4.1 (Bott's formula). Under the same assumption as in Theorem 4.1,

we have

- * ({08, w) 6 y(A) x W\ ί(w) + ht(jS) = /}) < + oo .

REMARK 4.1. When A is a GCM (i.e., au = 2 for all /), ^(A) consists of only one

element Oeί)*. Hence, in this case, Theorem 4.1 is nothing but the well-known formula
of Kostant for Kac-Moody algebras (cf. [3] and [7]).

REMARK 4.2. In Theorem 4.1 and Corollary 4.1, the assumption that the GGCM

A satisfies (Cl) is essential, because the element pel)* must belong to P+, while

5. A presentation of GKM algebras. In this section, as an application of Theorem

4. 1 , we get a presentation by generators and relations of the GKM algebra §(A) associated
to a symmetrizable GGCM A satisfying (Cl). Though such a presentation is already
known for an arbitrary symmetrizable GGCM A ([4]), its proof is rather complicated.
Here, using Theorem 4.1, we give a simple cohomological proof by the method of
Mathieu [9].

Let g(^) be the Lie algebra defined in Section 1, and n+ (resp. it_) the subalgebra
of Q(A) generated by ei9 \<i<n (resp. //9 !</<«). Then, we know the following.
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PROPOSITION 5.1 ([4]). (a) g(^) = n _ Θ ϊ ) Θ n + .
(b) n+ (resp. n_) is freely generated by eh \<i<n (resp. fh 1 <i<ή).
(c) The map determined by e{\—> — fh f{\-+ — e{ (!</<«), h\-+ — h (/zef)), can be

uniquely extended to an involution ώ of the Lie algebra §(A).
(d) With respect to ϊ), we have the root space decomposition:

,αe<2+\{0} / W<2+\{0}

where §α: = {* e §(y4) | [/i, x] = <α, ft>x, /or α// Λef)} . Furthermore, §a^n± /or ±αe

(e) r = r _ θ t + (direct sum of ideals), with *± = Σ^f6 Q +(*πg± α). Moreover,

In order to determine r = r _ © r + , i t i s enough to consider r _ only, since the result
for r+ follows by the application of the involution ώ of §(^4). Then, as a special case
of Mathieu's general result [10, Chap. XVI, §4, Lemme 116], we have the following.

PROPOSITION 5.2. As ^-modules,

Now, we assume that the GGCM A = (aij)1<iJ<n is symmetrizable, and satisfies
(Cl). From Theorem 4.1, we have

(&) #2(n-,£(0))^ΣΦ Σθ C(w(p-β)-p)
βe^ weW/(w) = 2-ht(j3)

as ^-modules.
We see that the sum on the right hand side actually runs through the disjoint union

of:

For (aii + QLj, I)e5 l5 the corresponding weight w(p — β) — p is — (α + αj). For (α,-, ri)εS2

and (0,^)6 £3, it is — (̂ - + (1— α^α,.). Therefore, we can easily deduce from
Propositions 5.1 and 5.2 that the ideal r_ of n_ is generated by the following elements:

Hence, we have recovered the following theorem.

THEOREM 5.1 ([4]). LetA = (aij)ί<iJ<nbeasymmeίrizableGGCMsaίisfying(Cl).
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Then, the GKM algebra §(A) is isomorphic to the Lie algebra given by generators

ϊ)U {ei9 fi}ϊ=ι and the relations (F1)-(F3) and the following:

(ad^y-^^O, ( a d f i ) l - a i j f j = 0 if au = 2 and z/y;

[> ]̂ = 0, [/„/)] = 0 if ^ = ̂  = ̂ . = 0.

//ere, fλέ? ίπ>fe (I), /7 = {αί}?=1, 77v = {α;v}?=ι) w α realization of the GGCM Λ.
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