GROUPS GRADED BY FINITE ROOT SYSTEMS ${ }^{1}$

Zhiyong Shi

(Received December 9, 1991, revised March 30, 1992)

Abstract

A Steinberg group $\operatorname{St}(\Delta, R)$ is defined by the data of a ring R and a root system Δ. This paper aims to study the relationship between the group-theoretic structure of a Steinberg group and the associated ring. We introduce graded groups which are groups satisfying some axioms that are basic properties of $\operatorname{St}(\Delta, R)$, and then show that these properties suffice to determine the structures of graded groups, by constructing a ring out of a graded group. Also the central extensions of graded groups are studied.

Introduction. In this paper, the groups graded by finite root systems Δ, or Δ-graded groups, are introduced. These are analogues of Lie algebras graded by finite root systems which are studied by Berman and Moody [1]. The background is the structures of Steinberg groups and Chevalley groups. The connection among 4 -graded groups, Steinberg groups and central extensions can be seen throughout the article.

Assume that our rings are always associative and with the identity element denoted by 1 . For each $l \geq 1$, all $(l+1) \times(l+1)$ invertible matrices over R form the general linear group $G L_{l+1}(R)$. Let $E_{i j}$ be the (i, j) matrix unit of $G L_{l+1}(R)$. Then the elementary group $E_{l+1}(R)$, the subgroup of $G L_{l+1}(R)$ generated by $I+r E_{i j}$ for $r \in R$ and $i \neq j$, models the definition of the Steinberg group $\operatorname{St}\left(A_{l}, R\right)$, where A_{l} is a type of root systems. Both $\operatorname{St}\left(A_{l}, R\right)$ and E_{l+1} can be assigned a grading by the root system of Type A_{l} in terms of the group commutators. Now the question is: without given a ring in advance, would the graded property will determine the structure of such a group? This motivates our definition for a Δ-graded group (cf. Definition (2.1)), where we assume that the root system Δ is always one of the types $A_{l}, l \geq 3, D_{l}, l \geq 4$ and $E_{l}, l=6,7,8$, unless otherwise stated. We have:
(2.3) Theorem. Let G be a group graded by Δ. Then there is an associative ring R with 1 , such that G is a homomorphic image of the Steinberg group $\operatorname{St}(\Delta, R)$. Moreover, R is commutative if Δ is of Type D_{l} or E_{l}.

Note that here all associative rings fit in here. For the proof, the critical point is to define the ring R out of such a group. The main theme of the proof is set in [1] on the Lie algebra level.

Then for each Δ-graded group, we may attach a ring R. A Δ-homomorphism of Δ-graded groups is naturally understood to be a group homomorphism which preserves

[^0]the Δ-grading. So in the category of Δ-graded groups, the morphisms involved are Δ-homomorphisms.

Considering the central extensions of groups, we have:
(3.2) Theorem. Let Δ be of Type $A_{l}, l \geq 4, E_{l}, l=6,7,8$ or $D_{l}, l \geq 5$. Any covering (U, ψ) of a Δ-graded group G is also Δ-graded and ψ is a Δ-homomorphism. Moreover, there is a surjective homomorphism Ψ from $\operatorname{St}(\Delta, R)$ onto U such that

is commutative, where R is the ring attached to G.
(3.3) Theorem. Let Δ be of Type $A_{l}, l \geq 4 ; D_{l}, l \geq 5$; or $E_{l}, l=6,7,8$. Let G and G^{\prime} be perfect and G-graded. If there is a group which is a covering for both G and G^{\prime}, then G^{\prime} is also 4 -graded in such a way that G and G^{\prime} are 4 -homomorphic images of the same Steinberg group $\operatorname{St}(\Delta, R)$.

The paper is organized as follows. In $\S 1$, we present some preliminary notation and define a set \mathfrak{S} whose elements act as a model for graded groups. Then we show that for any element $(\dot{G}, \dot{\phi}) \in \mathbb{S}$, the Weyl group of Δ is a subquotient group \dot{G}. In $\S 2$, we define groups graded by finite root systems and prove Theorem (2.3). We show Theorems (3.2) and (3.3) in §3.

Conventions. In a group G, write $a^{b}:=b a b^{-1}$ and the commutator $(a, b):=$ $a b a^{-1} b^{-1}$, and denote by Int b the conjugation by b, i.e. Int $b . a:=a^{b}$. Write $H<G$ if H is a subgroup of $G .\langle\cdots\rangle$ means a (sub)group generated by \cdots.

The following formulas on commutators will be used later on.
(0.1) $\quad(a, b)=(b, a)^{-1}$
(0.2) $\quad(a b, c)=(b, c)^{a}(a, c)$

$$
(a, b c)=(a, b)(a, c)^{b}
$$

(0.3) $\quad(a b, c d)=(b, c)^{a}(b, d)^{a c}(a, c)(a, d)^{c}$
(0.4) $\quad\left(a^{c},(b, c)\right)\left(c^{b},(a, b)\right)\left(b^{a},(c, a)\right)=1$
(0.5) $\quad(a,(b, c))=((a, b), c), \quad$ if $(a, c)=1,((a, b),(b, c))=1$, and $((b, c), c)=1$.

Acknowledgement. The author wishes to express his gratitude to his supervisor Professor Robert V. Moody for directing him to the problem, for his insightful guidance, and for his continuous support. Special thanks go to Professor S. Berman, the co-author of the preprint [1], and to Professor A. Pianzola, the co-author of the book [6]. Also comments made by Professor V. Deodhar are very much appreciated.

1. Preliminaries. In $\S 1$ and $\S 2$, we assume that Δ is a finite indecomposable
simply-laced root system of rank $l \geq 3$, i.e. Δ is of Type $A_{l}, l \geq 3, D_{l}, l \geq 4, E_{6}, E_{7}$, or E_{8}. Let Q be the root lattice spanned by Δ. The Weyl group invariant bilinear form on Q, so normalized that $(\alpha \mid \alpha)=2$ for all $\alpha \in \Delta$, will be denoted by $(\cdot \mid \cdot)$. This form is positive definite. If $\alpha, \beta \in \Delta$, then $(\alpha \mid \beta)$ takes the values $\pm 2, \pm 1$ and 0 , respectively, if and only if $\alpha= \pm \beta, \alpha \mp \beta \in \Delta$ and $\alpha \pm \beta \notin \Delta \cup\{0\}$, respectively. For each root $\alpha \in \Delta$, the reflection in α is the linear map $r_{\alpha}: \lambda \mapsto \lambda-(\lambda \mid \alpha) \alpha$ on Q. Then the Weyl group, denoted by W, is generated by all the reflections r_{α}. In particular, W is generated by all the simple reflections $r_{\alpha_{i}}$ where $\Pi:=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ is a base for the root system Δ.

Let \mathfrak{g} be the simple Lie algebra over the complex field \boldsymbol{C} associated with Δ and \mathfrak{h} a Cartan subalgebra of \mathfrak{g}. Then

$$
\mathfrak{g}=\underset{\alpha \in Q}{\oplus} \mathfrak{g}^{\alpha}
$$

where $\mathfrak{g}^{\alpha}=\left\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x\right.$, for all $\left.h \in \mathfrak{h}=\mathfrak{g}^{0}\right\}$ and $\mathfrak{g}^{\alpha} \neq(0)$ if and only if $\alpha \in \Delta \cup\{0\}$.
Let $\left\{E_{\alpha}, H_{i}: \alpha \in \Delta, i=1, \ldots, l\right\}$ be a Chevalley basis of g (see [8, §1]). If $\alpha, \beta, \alpha+\beta \in \Delta$, then $\left[E_{\alpha}, E_{\beta}\right]=c_{\alpha, \beta} E_{\alpha+\beta}$ for some $c_{\alpha, \beta} \in\{ \pm 1\}$. From the skew-symmetry of the Lie bracket $[\cdot \cdot \cdot]$ and the application of the canonical anti-involution of \mathfrak{g}, we have formulas

$$
\begin{gather*}
c_{\alpha, \beta}=-c_{\beta, a} \tag{1.1}\\
c_{\alpha, \beta}=-c_{-\alpha,-\beta} . \tag{1.2}
\end{gather*}
$$

We will see and use more formulas about $c_{\alpha, \beta}$'s later on. We fix a choice of a Chevalley basis throughout this paper. In the case $\Delta=A_{l}$, a Chevalley basis is chosen as in the following example.
(1.3) Example. The description of the root system Δ of Type A_{l} is

$$
\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i, j \leq l+1\right\},
$$

where $\left\{\varepsilon_{1}, \ldots, \varepsilon_{l+1}\right\}$ is an orthonormal basis of \boldsymbol{R}^{l+1}. Let $\Pi=\left\{\alpha_{i}: i=1, \ldots, l\right\}$ be a base for Δ with $\alpha_{i}:=\varepsilon_{i}-\varepsilon_{i+1}$. The Weyl group is the symmetric group S_{l+1}. The corresponding simple Lie algebra \mathfrak{g} is $\mathfrak{s l}_{i+1}(C)$. The set $\left\{E_{i j}, i \neq j ; H_{i}=E_{i i}-E_{i+1, i+1}\right.$, $i=1, \ldots, l\}$ is a Chevalley basis of $\mathfrak{s l}_{l+1}(C)$ where $E_{i j}$ are the standard matrix units.

Now we give Definition (1.4) and Lemma (1.5) which are taken from [1].
(1.4) Definition. An ordered pair $(\beta, \gamma) \in \Delta \times \Delta$ is an A_{2}-pair if $(\beta \mid \gamma)=-1$. Thus (β, γ) is an A_{2}-pair if and only if it is a base for an A_{2} subroot system of Δ. Two A_{2}-pairs $(\beta, \gamma),\left(\beta^{\prime}, \gamma^{\prime}\right)$ are equivalent, and written $(\beta, \gamma) \sim\left(\beta^{\prime}, \gamma^{\prime}\right)$, if there is an element w of the Weyl group W of Δ such that $\beta^{\prime}=w \beta, \gamma^{\prime}=w \gamma$. The equivalence class of (β, γ) is denoted by $[(\beta, \gamma)]$. Also an ordered triple (α, β, γ) is called an A_{3}-triple, if $\{\alpha, \beta, \gamma\}$ forms a base of an A_{3} root system such that $(\alpha \mid \beta)=(\beta \mid \gamma)=-1$, and $(\alpha \mid \gamma)=0$. We define an ordered quadruple $(\alpha, \beta, \gamma, \delta)$ to be A_{4}-quadruple in a similar way.
(1.5) Lemma. (i) If Δ is of Type D_{l} or E_{l} then there is only one equivalence class of A_{2}-pairs.
(ii) If Δ is of Type A_{l} there are exactly two equivalence classes of A_{2}-pairs, which are (cf. Example (1.3))

$$
\begin{aligned}
& {\left[\left(\alpha_{1}, \alpha_{2}\right)\right]=\left\{\left(\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{j}-\varepsilon_{k}\right) \mid i, j, k \text { distinct }\right\},} \\
& {\left[\left(\alpha_{2}, \alpha_{1}\right)\right]=\left\{\left(\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{k}-\varepsilon_{i}\right) \mid i, j, k \text { distinct }\right\} .}
\end{aligned}
$$

We call $\left[\left(\alpha_{1}, \alpha_{2}\right)\right]$ the class of positive A_{2}-pairs. Furthermore if (β, γ) is an A_{2}-pair then

$$
(\beta, \gamma) \sim(-\gamma,-\beta), \quad(\beta, \gamma) \nsim(\gamma, \beta) .
$$

(iii) In all cases if (β, γ) and (γ, δ) are A_{2}-pairs with $(\beta \mid \delta)=0$ then

$$
(\beta, \gamma) \sim(\gamma, \delta) \sim(\beta, \gamma+\delta) \sim(\beta+\gamma, \delta)
$$

The unique equivalence class of A_{2}-pair for Δ of Types D_{l}, E_{l} are said to be positive.
(1.6) Definition. Assume R is an associative ring with the identity 1 . In the cases where the root system Δ is of Type D_{l} or E_{l}, R is further assumed to be commutative. The Steinberg group is the abstract group with the following presentation:
generators: $\quad \hat{x}_{\alpha}(r) ; \alpha \in \Delta, r \in R$.
relations:
(R1) $\quad \hat{x}_{\alpha}(r) \hat{x}_{\alpha}(s)=\hat{x}_{\alpha}(r+s)$,
(R2) $\left(\hat{x}_{\alpha}(r), \hat{x}_{\beta}(s)\right)= \begin{cases}1, & \text { if } \alpha+\beta \notin \Delta \cup\{0\}, \\ \hat{x}_{\alpha+\beta}\left(c_{\alpha, \beta} r s\right), & \text { if }(\alpha, \beta) \text { is a positive } A_{2} \text {-pair, }\end{cases}$ where $c_{\alpha, \beta}$ is given by a fixed Chevalley basis.
(1.7) Remarks. (i) The above definition is the same as that in [4], [5], [7], or [8].
(ii) Although $c_{\alpha, \beta}$ depends on the choice of a Chevalley basis, the Steinberg groups do not (up to isomorphism).

For $\alpha \in \Delta$ and $u \in R^{\times}$(the units group of R), let

$$
\hat{n}_{\alpha}(u):=\hat{x}_{\alpha}(u) \hat{x}_{-\alpha}\left(-u^{-1}\right) \hat{x}_{\alpha}(u), \quad \hat{h}_{\alpha}(u):=\hat{n}_{\alpha}(u) \hat{n}_{\alpha}(-1) .
$$

Then from [4], [5], [7] and [8], we have
(R3) $\hat{n}_{\alpha}(u) \hat{x}_{\beta}(r) \hat{n}_{\alpha}(u)^{-1}=\hat{x}_{r_{\alpha} \beta}\left(\eta u^{-(\beta \mid \alpha)} r\right)$,
(R4) $\hat{n}_{\alpha}(u) \hat{n}_{\beta}(v) \hat{n}_{\alpha}(u)^{-1}=\hat{n}_{r_{\alpha} \beta}\left(\eta u^{-(\beta \mid \alpha)} v\right) ; n_{\alpha}(u)=n_{-\alpha}\left(-u^{-1}\right)$,
(R5) $\hat{n}_{\alpha}(u) \hat{h}_{\beta}(v) \hat{n}_{\alpha}(u)^{-1}=\hat{h}_{r_{\alpha} \beta}\left(\eta u^{-(\beta \mid \alpha)} v\right) \hat{h}_{r_{\alpha} \beta}\left(\eta u^{-(\beta \mid \alpha)}\right)^{-1}$,
(R6) $\hat{h}_{\alpha}(u) \hat{x}_{\beta}(r) \hat{h}_{\alpha}(u)^{-1}=\hat{x}_{\beta}\left(u^{(\beta \mid \alpha)} r\right)$,
(R7) $\quad \hat{h}_{\alpha}(u) \hat{n}_{\beta}(v) \hat{h}_{\alpha}(u)^{-1}=\hat{n}_{\beta}\left(u^{(\beta \mid \alpha)} v\right) ; \hat{h}_{\alpha}(u)^{-1}=\hat{h}_{-\alpha}(u)$,
(R8) $\hat{h}_{\alpha}(u) \hat{h}_{\beta}(v) \hat{h}_{\alpha}(u)^{-1}=\hat{h}_{\beta}\left(u^{(\beta \mid \alpha)} v\right) \hat{h}_{\beta}\left(u^{(\beta \mid \alpha)}\right)^{-1}$,
where $u, v \in R^{\times} ; r \in R$ and the elements in R appearing commute with each other, and
where $\alpha, \beta \in \Delta$ and $\eta=\eta(\alpha, \beta)$ is such that

$$
\eta(\alpha, \beta)= \begin{cases}c_{\alpha, \pm \beta}, & \text { if } \quad(\alpha \mid \beta)=\mp 1 \\ -1, & \text { if } \quad(\alpha \mid \beta)= \pm 2 \\ 1, & \text { if } \quad(\alpha \mid \beta)=0\end{cases}
$$

The following are important subgroups of $\operatorname{St}(\Delta, R)$.

$$
\begin{aligned}
\hat{N} & :=\left\langle\hat{n}_{\alpha}(u) \mid u \in R^{\times}, \alpha \in \Delta\right\rangle \\
\hat{H} & :=\left\langle\hat{h}_{\alpha}(u) \mid u \in R^{\times}, \alpha \in \Delta\right\rangle \\
\chi^{\alpha} & :=\left\langle\hat{x}_{\alpha}(r) \mid r \in R\right\rangle \\
\chi^{ \pm} & :=\chi^{ \pm}\left(\Delta_{+}\right):=\left\langle\chi^{\alpha} \mid \alpha \in \Delta_{ \pm}\right\rangle \quad \text { for a positive system } \Delta_{+} .
\end{aligned}
$$

Let \boldsymbol{K} be any commutative ring. We consider the $\operatorname{Steinberg} \operatorname{group} \operatorname{St}(\Delta, \boldsymbol{K})$ in the rest of this section.

Take a pair (G, ϕ) where ϕ is a surjective homomorphism from $\operatorname{St}(\Delta, \boldsymbol{K})$ onto a group G and $\left.\phi\right|_{\chi^{+}}$is one-to-one for some positive system Δ_{+}. Let $\mathfrak{S}=\mathbb{S}(\Delta, K)$ be the collection of all such pairs.

For $(G, \phi) \in \mathfrak{G}$, denote $\phi\left(\hat{x}_{\alpha}(a)\right), \phi\left(\hat{n}_{\alpha}(u)\right), \phi\left(\hat{h}_{\alpha}(u)\right), \phi(\hat{N}), \phi(\hat{H})$ by $x_{\alpha}(a), n_{\alpha}(u), h_{\alpha}(u)$, N, H, respectively. Denote $G^{\alpha}=\phi\left(\chi^{\alpha}\right), G^{ \pm}=\phi\left(\chi^{ \pm}\right)$. From (R3) and (R6), we have

$$
\begin{gather*}
n_{\alpha}(u) G^{\beta} n_{\alpha}(u)^{-1}=G^{r_{\alpha} \beta} . \tag{1.8}\\
h_{\alpha}(u) G^{\beta} h_{\alpha}(u)^{-1}=G^{\beta} . \tag{1.9}
\end{gather*}
$$

(1.10) Lemma. Let $(G, \phi) \in \mathbb{\Im}$. The restriction of ϕ to $\tilde{\chi}^{+}:=\chi^{+}\left(\tilde{\Lambda}_{+}\right)$relative to any positive system $\tilde{\Delta}_{+}$is one-to-one.

Proof. By definition, there is a positive system Δ_{+}of Δ such that ϕ is one-to-one on χ^{+}which corresponds to Δ_{+}. Suppose $\tilde{\Delta}_{+}$is another positive system of Δ. We need to show that ϕ is one-to-one on $\tilde{\chi}^{+}$which corresponds to $\tilde{\Delta}_{+}$. Recall that there is an element $w \in W$, such that $w\left(\Delta_{+}\right)=\tilde{\Delta}_{+}$(cf. [3]). Take a preimage $\hat{n} \in \hat{N}$ of w. Then $\hat{n} \hat{x} \hat{n}^{-1} \in \tilde{\chi}^{+}$, for any $\hat{x} \in \chi^{+}$. Now the lemma follows from the fact that $\phi(\hat{x})=1$ if and only if $\phi\left(\hat{n} \hat{x} \hat{n}^{-1}\right)=1$.

Recall that in the Steinberg group $\operatorname{St}(\Delta, R), \chi^{+}:=\chi^{+}\left(\Delta_{+}\right)$has a unique decomposition $\chi^{+}=\prod_{\alpha \in \Delta_{+}} \chi^{\alpha}$, for an arbitrarily chosen linear order on Δ_{+}and each χ^{α} is isomorphic to the additive group ($R,+$) (cf. [4] and [8]). Then in the case $R=\boldsymbol{K}$, these facts can be passed onto G^{+}for $(G, \phi) \in \mathbb{S}$. Since the Weyl group W of Δ is a Coxeter group, the map

$$
\begin{equation*}
r_{\alpha} \mapsto \hat{n}_{\alpha}(u) \hat{H} \tag{1.11}
\end{equation*}
$$

defines a homomorphism from W onto \hat{N} / \hat{H}. Moreover this is an isomorphism. By means of it we will identify these two groups.
(1.12) Lemma. Let $(G, \phi) \in \mathbb{G}$. If $\alpha \neq \beta$, then $G^{\alpha} \cap G^{\beta}=1$.

Proof. Choose a positive system Δ_{+}for Δ for which α is simple. If $\beta \in \Delta_{+}$, then we are done by Lemma (1.10). If $\beta \in \Delta_{-} \backslash\{-\alpha\}$, then α, β are in the positive system $r_{\alpha}\left(-\Delta_{+}\right)$and we are done too. It remains to show $G^{\alpha} \cap G^{-\alpha}=1$. Since χ^{α} is isomorphic to the additive group $(R,+)$, we have $x_{\alpha}(r)=1$ if and only if $r=0$. Suppose $x_{\alpha}(r)=x_{-\alpha}(s)$. Take $\gamma \in \Delta$ with $(\alpha \mid \gamma)=-1$. Then $1=\left(x_{-\alpha}(s), x_{\gamma}(1)\right)=\left(x_{\alpha}(r), x_{\gamma}(1)\right)=x_{\alpha+\gamma}\left(c_{\alpha, \gamma} r\right)$ by (R2), and hence $r=0$, and so $s=0$.
(1.13) Lemma. Let $(G, \phi) \in \subseteq$, and we keep the above notation. Then $H \triangleleft N$, and N / H is isomorphic to the Weyl group W.

Proof. Since $\hat{H} \triangleleft \hat{N}$, we have $H \triangleleft N$. There is a homomorphism $\psi: \hat{N} / \hat{H} \rightarrow N / H$ which factors through the composite map $\hat{N} \xrightarrow{中} N \rightarrow N / H$. Clearly, ψ is surjective and $\psi\left(\hat{n}_{\alpha}(r) \hat{H}\right)=n_{\alpha}(r) H$. View ψ as the map from W onto N / H. Suppose $\psi(w)=\overline{1}=H$ for $w \in W$. Express $w=r_{\beta_{1}} r_{\beta_{2}} \cdots r_{\beta_{k}}$ as a product of reflections. Then $\psi\left(\hat{n}_{\beta_{1}}(1) \hat{n}_{\beta_{2}}(1) \cdots\right.$ $\left.\hat{n}_{\beta_{k}}(1) \hat{H}\right)=\overline{1}$. So, $h:=n_{\beta_{1}}(1) n_{\beta_{2}}(1) \cdots n_{\beta_{k}}(1) \in H$. And by (1.9) and (1.8),

$$
G^{\alpha}=h G^{\alpha} h^{-1}=n_{\beta_{1}}(1) n_{\beta_{2}}(1) \cdots n_{\beta_{k}}(1) G^{\alpha}\left(n_{\beta_{1}}(1) n_{\beta_{2}}(1) \cdots n_{\beta_{k}}(1)\right)^{-1}=G^{w \alpha} .
$$

So $G^{w \alpha}=G^{\alpha}$, for each $\alpha \in \Delta$. Then $w \alpha=\alpha$ by the above lemma. Then $w=1$, hence ψ is an injection and an isomorphism.

In the Steinberg group $\operatorname{St}(\Delta, \boldsymbol{K})$, let

$$
\begin{gather*}
\hat{N}_{0}:=\left\langle\hat{n}_{\alpha}(1) \mid \alpha \in \Delta\right\rangle, \tag{1.14}\\
\hat{H}_{0}:=\left\langle\hat{h}_{\alpha}(-1) \mid \alpha \in \Delta\right\rangle . \tag{1.15}
\end{gather*}
$$

(1.16) Lemma. Let $(G, \phi) \in \mathbb{S}$ and $N_{0}:=\phi\left(\hat{N}_{0}\right), H_{0}:=\phi\left(\hat{H}_{0}\right)$. Then $\hat{N}_{0} / \hat{H}_{0} \cong$ $N_{0} / H_{0} \cong W$.

Proof. $\quad \hat{H}_{0}$ and H_{0} are normal subgroups of \hat{N}_{0} and N_{0}, respectively, by (R5). As in (1.11), $r_{\alpha} \mapsto \hat{n}_{\alpha}(u) \hat{H}_{0} \mapsto n_{\alpha}(u) H_{0}$ defines a homomorphism from W onto N_{0} / H_{0}. It is an isomorphism by the same proof as that of Lemma (1.13).

(1.17) Corollary. $\hat{H}_{0}=\hat{N}_{0} \cap \hat{H}$.

Proof. By the second isomorphism theorem of groups, we have

$$
\hat{N}_{0} /\left(\hat{N}_{0} \cap \hat{H}\right) \cong \hat{N}_{0} \hat{H} / \hat{H}=\hat{N} / \hat{H} \cong W \cong \hat{N}_{0} / \hat{H}_{0}
$$

Since $\hat{H}_{0} \subseteq \hat{N}_{0} \cap \hat{H}$, we have $\hat{H}_{0}=\hat{N}_{0} \cap \hat{H}$.
2. Groups graded by finite root systems. Let \boldsymbol{K} be a commutative ring. We maintain all previous notation and terminology for $\mathfrak{S}=\mathfrak{S}(\Delta, K)$ and elements in \mathfrak{S} (usually with overdots).
(2.1) Definition. A group G is said to be graded by a (finite) root system Δ (of Type $A_{l}, l \geq 3 ; D_{l}, l \geq 4$; or E_{6}, E_{7}, E_{8}) or Δ-graded if there are subgroups G^{α}, for all $\alpha \in \Delta$ and an element $(\dot{G}, \dot{\phi}) \in \mathbb{S}$ such that
(Gr1) $G=\left\langle G^{\alpha} \mid \alpha \in \Delta\right\rangle$,
(Gr2) $\dot{G}^{\alpha} \subseteq G^{\alpha}$, for $\alpha \in \Delta$,
(Gr3) $\quad\left(G^{\alpha}, G^{\beta}\right) \subseteq \begin{cases}\{1\}, & \text { if } \alpha+\beta \notin \Delta \cup\{0\}, \\ G^{\alpha+\beta}, & \text { if } \alpha+\beta \in \Delta,\end{cases}$
(Gr4) $G^{\alpha} \cap G^{\beta}=\{1\}$ if $\alpha \neq \beta$,
(Gr5) $n_{\alpha}(1) G^{\beta} n_{\alpha}(1)^{-1}=G^{r_{\alpha} \beta}$, for $\alpha, \beta \in \Delta$ with $(\alpha \mid \beta)=-1$, where $n_{\alpha}(1)=\dot{\phi}\left(\hat{n}_{\alpha}(1)\right) \in \dot{G}$.
(2.2) Example. Let R be an associative ring with the identity 1 . When the root system Δ is of Type D_{l} or E_{l}, assume further that R is commutative. Then $\operatorname{St}(\Delta, R)$ and the Chevalley group are Δ-graded.

Our main result (see the restatement at the end of this section) is:
(2.3) Theorem. Let G be a group graded by Δ. Then there is an associative ring R with 1 , containing K as a subring, such that G is a homomorphic image of the Steinberg group $\operatorname{St}(\Delta, R)$. Moreover, R is commutative if Δ is of Type D_{l} or E_{l}.

An outline of the proof is as follows. Fix a root $\alpha \in \Delta$. Then G^{α} is abelian. Let $R=G^{\alpha}$, so R has an additive structure. For $r \in R$, write $x_{\alpha}(r)$ to be the corresponding element in G^{α}. Elements $x_{\beta}(r)$ for other roots β, can be defined since G^{α} and G^{β} are isomorphic as abelian groups. The multiplication in R comes from the commutator relations (R 2) and (Gr 3). Such process will make $\left\{x_{\beta}(r), \beta \in \Delta, r \in R\right\}$ satisfy the relations (R1) and (R2). Then (Gr1) makes sure that G is a homomorphic image of $\operatorname{St}(\Delta, R)$.

For each root $\alpha \in \Delta$, take a set A^{α} having the same cardinality as G^{α}. Fix a bijective map $\log _{\alpha}$ from G^{α} onto A^{α}. By (Gr 3), G^{α} is abelian, thus A^{α} carries an additive abelian group structure by making $\log _{\alpha}$ into an isomorphism. So, for $x, y \in G^{\alpha}, 0:=\log _{\alpha} 1$, $\log _{\alpha} x+\log _{\alpha} y:=\log _{\alpha} x y$. Let

$$
1_{\alpha}:=\log _{\alpha} x_{\alpha}(1),
$$

where $x_{\alpha}(1)=\dot{\phi}\left(\hat{x}_{\alpha}(1)\right) \in \dot{G}^{\alpha}$.
Set $\dot{N}_{0}=\dot{\phi}\left(\hat{N}_{0}\right), \dot{H}_{0}=\dot{\phi}\left(\hat{H}_{0}\right)$ (see (1.13) and (1.14)). By Lemma (1.16), the map $n_{\alpha}(u) \dot{H}_{0} \mapsto r_{\alpha}$, gives an isomorphism from $\dot{N}_{0} / \dot{H}_{0}$ onto W. Let π be the composite map from $\dot{N}_{0} \rightarrow \dot{N}_{0} / \dot{H}_{0} \rightarrow W$.
(2.4) Lemma. Let $\alpha, \beta \in \Delta$. Then
(i) $G^{\alpha+\beta}=\left(G^{\alpha}, G^{\beta}\right)$, if $(\alpha \mid \beta)=-1$.
(ii) $n G^{\beta} n^{-1}=G^{w \beta}$, where $n \in \dot{N}_{0}$ with $\pi(n)=w \in W$.
(iii) $h_{\alpha}(-1) x h_{\alpha}(-1)^{-1}=x^{(-1)^{(\alpha \mid \beta)}}$ for $x \in G^{\beta}$.

Proof. In this proof, $(\mathrm{Gr} 3)$ is widely used. Suppose $(\alpha \mid \beta)=-1$, i.e. $\alpha+\beta \in \Delta$
and $x \in G^{\beta}$. Since $n_{\alpha}(1)=n_{-\alpha}(-1)=x_{-\alpha}(-1) x_{\alpha}(1) x_{-\alpha}(-1)$, so by (Gr3),

$$
x^{n_{\alpha}(1)}=x^{n-\alpha(-1)}=x\left(x_{-\alpha}(-1),\left(x_{\alpha}(1), x\right)\right)\left(x_{\alpha}(1), x\right) .
$$

The right hand side belongs to $G_{\alpha+\beta}$ by (Gr5). By (Gr4),

$$
\begin{gather*}
x\left(x_{-\alpha}(-1),\left(x_{\alpha}(1), x\right)\right)=1, \tag{2.5}\\
x^{n_{\alpha}(1)}=\left(x_{\alpha}(1), x\right) . \tag{2.6}
\end{gather*}
$$

(2.5) implies $x \in\left(G^{\alpha+\beta}, G^{-\alpha}\right)$. This proves (i).

Similarly, we have $x^{n_{\alpha}(-1)}=x^{n-\alpha(1)}=x\left(x_{-\alpha}(1),\left(x_{\alpha}(-1), x\right)\right)\left(x_{\alpha}(-1), x\right)$. Applying (Gr3) to this equality, we get

$$
\begin{gather*}
x\left(x_{-\alpha}(1),\left(x_{\alpha}(-1), x\right)\right)=1, \\
x^{n_{\alpha}(-1)}=\left(x_{\alpha}(-1), x\right) . \tag{2.6'}
\end{gather*}
$$

So $n_{\alpha}(-1) G^{\beta} n_{\alpha}(1) \subset G^{\alpha+\beta}$. Putting this together with (Gr5), we get $n_{\alpha}(\varepsilon) G^{\beta} n_{\alpha}(-\varepsilon)=G^{r_{\alpha} \beta}$ for all $\alpha, \beta \in \Delta$ with $(\alpha \mid \beta)= \pm 1$ and $\varepsilon= \pm 1$. Hence to show (ii), it suffices to show $n_{\beta}(\varepsilon) G^{\beta} n_{\beta}(-\varepsilon)=G^{-\beta}$ for $\varepsilon= \pm 1$. By (i), $G^{\beta}=\left(G^{\alpha+\beta}, G^{-\alpha}\right)$ for some $\alpha \in \Delta$. Then applying the conjugation with respect to $n_{\beta}(\varepsilon)$ we get the result.
(iii) holds if $(\alpha \mid \beta)=0$. Suppose $(\alpha \mid \beta)=-1$ and $x \in G^{\beta}$. So by (2.6') and (2.5') $x^{h_{\alpha}(-1)}=x^{n_{\alpha}(-1) n_{\alpha}(-1)}=\left(x_{\alpha}(-1), x\right)^{n_{\alpha}(-1)}=\left(x_{-\alpha}(1), x^{n_{\alpha}(-1)}\right)=\left(x_{-\alpha}(1),\left(x_{\alpha}(-1), x\right)\right)=x^{-1}$. Since $n_{\alpha}(\varepsilon)=n_{-\alpha}(-\varepsilon)$ by (R4) and $h_{\alpha}(\varepsilon)=h_{-\alpha}(\varepsilon)^{-1}$ by (R7) for $\varepsilon= \pm 1$, (iii) holds for $(\alpha \mid \beta)= \pm 1$. Finally it suffices to prove $x^{h_{\beta}(-1)}=x$ for $x \in G^{\beta}$. Take $\alpha \in \Delta$ such that $\alpha+\beta \in \Delta$. Then by (2.5) and the above step, we have

$$
\begin{aligned}
x^{h_{\beta}(-1)} & =\left(\left(x_{\alpha}(1), x\right), x_{-\alpha}(-1)\right)^{h_{\beta}(-1)}=\left(\left(x_{\alpha}(1), x\right)^{-1}, x_{-\alpha}(-1)^{-1}\right) \\
& =\left(\left(x_{\alpha}(1), x\right), x_{-\alpha}(-1)\right)=x,
\end{aligned}
$$

where the second last equality follows from the identity $(y, z)=\left(y^{-1}, z^{-1}\right)$ for $y \in G^{\gamma}$ and $z \in G^{\delta}$ with $(\gamma \mid \delta)=-1$.

For any $\alpha \in \Delta$, let W^{α} be the stabilizer of α in W and $\dot{N}_{0}^{\alpha}:=\pi^{-1}\left(W^{\alpha}\right)$. Then $W^{\alpha}=\left\langle r_{\beta} \mid \beta \in \Delta,(\beta \mid \alpha)=0\right\rangle$ and

$$
\begin{equation*}
\dot{N}_{0}^{\alpha}=\left\langle n_{\beta}(1) \mid \beta \in \Delta,(\beta \mid \alpha)=0\right\rangle \cdot \dot{H}_{0} . \tag{2.7}
\end{equation*}
$$

Take $n \in \dot{N}_{0}$. If $n=\prod_{i=1}^{k} n_{\beta_{i}}\left(\varepsilon_{i}\right)$ and $w=\pi(n), \varepsilon_{i}= \pm 1$, then from (R3) we have

$$
\begin{equation*}
n x_{\alpha}(1) n^{-1}=\operatorname{Int} n \cdot x_{\alpha}(1)=x_{w \alpha}(\varepsilon) \quad \text { for some } \quad \varepsilon=\varepsilon(n, \alpha) \in\{ \pm 1\} . \tag{2.8}
\end{equation*}
$$

Since $x_{\beta}(r)=1$ in \dot{G} for $r \in \boldsymbol{K}$ implies $r=0, \varepsilon$ is uniquely determined by n and α.
For any $\alpha, \beta \in \Delta$, choose an element $n \in \dot{N}_{0}$ such that $\pi(n) \alpha=\beta$. Assume that ε is uniquely given by n and α according to (2.8). Define

$$
\begin{equation*}
\lambda_{\beta, \alpha}:=\varepsilon^{-1} \log _{\beta} \cdot \text { Int } n \cdot \log _{\alpha}^{-1} . \tag{2.9}
\end{equation*}
$$

Then by Lemma (2.4ii), $\lambda_{\beta, \alpha}$ is an isomorphism from A^{α} onto A^{β} such that the diagram

commutes.
(2.11) Lemma. For any $\alpha, \beta \in \Delta$, there is a unique isomorphism $\lambda_{\beta, \alpha}$ from A^{α} to A^{β}, given by (2.9). In other words, $\lambda_{\beta, \alpha}$ is independent of the choice of $n \in \dot{N}_{0}$.

Proof. Let $n^{\prime} \in \dot{N}_{0}$ be another element with $\pi\left(n^{\prime}\right) \alpha=\beta$, and ε^{\prime} be determined by n^{\prime} as in (2.8). Note that $\pi\left(n^{-1} n^{\prime}\right) \alpha=\alpha$, and hence $\pi\left(n^{-1} n^{\prime}\right) \in W^{\alpha}$. So, $n^{-1} n^{\prime} \in \dot{N}_{0}^{\alpha}$. Hence by (2.7) there are $n^{\prime \prime} \in\left\langle n_{\gamma}(1) \mid \gamma \in \Delta,(\gamma \mid \alpha)=0\right\rangle$ and $h \in \dot{H}_{0}$ such that $n^{-1} n^{\prime}=n^{\prime \prime} h$. By Lemma (2.4ii), there is $c \in\{ \pm 1\}$, satisfying Int $h . x=x^{c}$ for any $x \in G^{\alpha}$. Note that Int $n^{\prime \prime}=1$ on G^{α}, since $n^{\prime \prime}$ commutes with G^{α} by (Gr3). Thus for any $r \in A^{\alpha}$,

$$
\begin{aligned}
\lambda_{\beta, \alpha}^{\prime}(r): & =\varepsilon^{\prime-1} \log _{\beta} \cdot \text { Int } n^{\prime} \cdot \log _{\alpha}^{-1}(r)=\varepsilon^{\prime-1} \log _{\beta} \cdot \text { Int } n \cdot \text { Int } n^{\prime \prime} \cdot \text { Int } h \cdot \log _{\alpha}^{-1}(r) \\
& =\varepsilon^{\prime-1} \log _{\beta} \cdot \text { Int } n \cdot\left(\log _{\alpha}^{-1}(r)\right)^{c}=\varepsilon^{\prime-1} \varepsilon c \lambda_{\beta, \alpha}(r) .
\end{aligned}
$$

Now $\lambda_{\beta, \alpha}^{\prime}\left(1_{\alpha}\right)=\varepsilon^{\prime-1} \log _{\beta}$. Int $n^{\prime} \cdot x_{\alpha}(1)=\log _{\beta} \cdot x_{\beta}(1)=1_{\beta}$. Also $\lambda_{\beta, \alpha}\left(1_{\alpha}\right)=1_{\beta}$. Thus $\varepsilon^{\prime-1} \varepsilon c=1$, and hence $\lambda_{\beta, \alpha}^{\prime}=\lambda_{\beta, \alpha}$.

Note that the $\operatorname{sign} \varepsilon^{-1}$ in (2.9) is also uniquely determined by the fact $\lambda_{\beta, \alpha}\left(1_{\alpha}\right)=1_{\beta}$. The following corollary is a direct consequence of the above lemma.
(2.12) Corollary.
(i) $\lambda_{\alpha, \beta}=\lambda_{\beta, \alpha}^{-1}$,
(ii) $\lambda_{\gamma, \beta} \lambda_{\beta, \alpha}=\lambda_{\gamma, \alpha}$,
(iii) $\lambda_{\alpha, \alpha}=$ Id.

Proof. The maps on both sides of all three equalities are of the form as in (2.9) with possible different signs. The result follows from the application on 1_{α}.

Now let us fix a root $\alpha \in \Delta$. Let $R:=A^{\alpha}$. Since for each $\beta \in \Delta$, the map $t \mapsto x_{\beta}(t) \in$ $\dot{G}^{\beta} \subseteq G^{\beta}$ is an injection from $(\boldsymbol{K},+)$ into G^{β}, the map t_{β} defined by $t \mapsto x_{\beta}(t) \mapsto \log _{\beta} x_{\beta}(t)$ is an injection from $\left(\boldsymbol{K},+\right.$) into A^{β}. We identify \boldsymbol{K} with its image inside A^{β} via l_{β}. Then

$$
\begin{equation*}
\left.\lambda_{\beta, \alpha}\right|_{\boldsymbol{K}}=\mathrm{Id} \tag{2.13}
\end{equation*}
$$

In fact, for any $t \in \boldsymbol{K}$,

$$
t \mapsto l_{\alpha}(t)=\log _{\alpha} x_{\alpha}(t) \stackrel{\lambda_{\beta, \alpha}}{\longleftrightarrow} \varepsilon^{-1} \log _{\beta} \text {. Int } n \cdot x_{\alpha}(t)=\varepsilon^{-1} \log _{\beta} x_{\beta}(\varepsilon t)=l_{\beta}(t) \longleftrightarrow t,
$$

since $n x_{\alpha}(t) n^{-1}=x_{\beta}(\varepsilon t)$, where $n \in \dot{N}_{0}$ is so chosen that $\pi(n) \alpha=\beta$ and ε is determined by n in (2.8).

For any $r \in R$, let (for the fixed root α)

$$
\begin{equation*}
x_{\alpha}(r):=\log _{\alpha}^{-1} r \tag{2.14}
\end{equation*}
$$

and for any root β,

$$
\begin{equation*}
x_{\beta}(r):=\log _{\beta}^{-1}\left(\lambda_{\beta, \alpha}(r)\right) . \tag{2.15}
\end{equation*}
$$

Since $\lambda_{\alpha, \alpha}=\mathrm{Id}$, the definition of $x_{\beta}(r)$ is consistent with the cases where $\beta=\alpha$ and $r \in \boldsymbol{K}$. Then

$$
\begin{aligned}
x_{\beta}(r+s) & =\log _{\beta}^{-1}\left(\lambda_{\beta, \alpha}(r+s)\right)=\log _{\beta}^{-1}\left(\lambda_{\beta, \alpha}(r)+\lambda_{\beta, \alpha}(s)\right) \\
& =\log _{\beta}^{-1}\left(\lambda_{\beta, \alpha}(r)\right) \cdot \log _{\beta}^{-1}\left(\lambda_{\beta, \alpha}(s)\right)=x_{\beta}(r) x_{\beta}(s),
\end{aligned}
$$

that is,

$$
\begin{equation*}
x_{\beta}(r+s)=x_{\beta}(r) x_{\beta}(s) . \tag{2.16}
\end{equation*}
$$

Consequently $x_{\beta}(-r)=x_{\beta}(r)^{-1}$.
We are ready to define a multiplication for R. For any given A_{2}-pair (β, γ), define a multiplication $m_{(\beta, \gamma)}: R \times R \rightarrow R$ on R by

$$
\begin{equation*}
\left(x_{\beta}(r), x_{\gamma}(s)\right)=x_{\beta+\gamma}\left(c_{\beta, \gamma} m_{(\beta, \gamma)}(r, s)\right) . \tag{2.17}
\end{equation*}
$$

This definition is motivated by (R2). Note that $m_{(\beta, \gamma)}$ restricted to $\boldsymbol{K} \times \boldsymbol{K}$ is the usual multiplication in \boldsymbol{K}.
(2.18) Lemma. Let (β, γ) be an A_{2}-pair. Take $n \in \dot{N}_{0}$ so that $\pi(\beta)=\gamma$. Let $\varepsilon=\varepsilon(n, \beta)$ be determined by n as in (2.8). Then for $r \in R$,

$$
n x_{\beta}(r) n^{-1}=x_{\gamma}(\varepsilon r) .
$$

Proof. Note both $x_{\gamma}(\varepsilon r)$ and $n x_{\beta}(r) n^{-1}$ are in G^{γ} by (R3). Then we have

$$
\begin{aligned}
n x_{\beta}(r) n^{-1} & =\operatorname{Int} n \cdot \log _{\beta}^{-1} \cdot \lambda_{\beta, \alpha}(r) & & \text { from (2.15) } \\
& =\log _{\gamma}^{-1} \cdot \varepsilon \lambda_{\gamma, \beta} \cdot \lambda_{\beta, \alpha}(r) & & \text { from (2.9) } \\
& =\log _{\gamma}^{-1} \cdot \varepsilon \lambda_{\gamma, \alpha}(r) & & \text { from (2.12) } \\
& =\log _{\gamma}^{-1} \cdot \lambda_{\gamma, \alpha}(\varepsilon r) & & \\
& =x_{\gamma}(\varepsilon r) & & \text { from (2.15). }
\end{aligned}
$$

(2.19) Lemma. Let (β, γ) be an A_{2}-pair. Then $m_{(\beta, \gamma)}$ is biadditive, i.e. for $r, s, t \in R$ and $m:=m_{(\beta, \gamma)}$, we have $m(r+s, t)=m(r, t)+m(s, t)$ and $m(r, s+t)=m(r, s)+m(r, t)$.

Proof. From (2.17), (2.16) and (Gr3), we have

$$
\begin{aligned}
x_{\beta+\gamma}\left(c_{\beta, \gamma} m(r+s, t)\right) & =\left(x_{\beta}(r+s), x_{\gamma}(t)\right)=\left(x_{\beta}(r) x_{\beta}(s), x_{\gamma}(t)\right) \\
& =x_{\beta}(r)\left(x_{\beta}(s), x_{\gamma}(t)\right) x_{\beta}(r)^{-1}\left(x_{\beta}(r), x_{\gamma}(t)\right) \quad \text { by }(0.2) \\
& =x_{\beta}(r) x_{\beta+\gamma}\left(c_{\beta, \gamma} m(s, t)\right) x_{\beta}(r)^{-1} x_{\beta+\gamma}\left(c_{\beta, \gamma} m(r, t)\right) \\
& =x_{\beta+\gamma}\left(c_{\beta, \gamma} m(r, t)+c_{\beta, \gamma} m(s, t)\right) .
\end{aligned}
$$

So $m(r+s, t)=m(r, t)+m(s, t)$ and similarly $m(r, s+t)=m(r, s)+m(r, t)$.
(2.20) Lemma. If (β, γ) and $\left(\beta^{\prime}, \gamma^{\prime}\right)$ are equivalent A_{2}-pairs of Δ, then $m_{(\beta, \gamma)}=m_{\left(\beta^{\prime}, \gamma^{\prime}\right)}$.

Proof. Put $m=m_{(\beta, \gamma)}$ and $m^{\prime}=m_{\left(\beta^{\prime}, \gamma^{\prime}\right)}$. Choose $n \in \dot{N}_{0}$ so that $\pi(n)=w \in W$ and $w \beta=\beta^{\prime}, w \gamma=\gamma^{\prime}$. Suppose that

$$
\text { Int } n \cdot x_{\beta}(1)=x_{\beta^{\prime}}(a), \quad \text { Int } n \cdot x_{\gamma}(1)=x_{\gamma^{\prime}}(b), \quad \text { Int } n \cdot x_{\beta+\gamma}(1)=x_{\beta^{\prime}+\gamma^{\prime}}(c),
$$

where $a=\varepsilon(n, \beta), b=\varepsilon(n, \gamma), c=\varepsilon(n, \beta+\gamma) \in\{ \pm 1\}$ (cf. (2.8)). Let $\varepsilon_{1}=c_{\beta, \gamma}, \varepsilon_{2}=c_{\beta^{\prime}, \gamma^{\prime}}$. Then by calculating the equality $\operatorname{Int} n \cdot\left(x_{\beta}(1), x_{\gamma}(1)\right)=\left(\operatorname{Int} n \cdot x_{\beta}(1)\right.$, Int $\left.n \cdot x_{\gamma}(1)\right)$, we have $x_{\beta^{\prime}+\gamma^{\prime}}\left(\varepsilon_{1} c\right)=x_{\beta^{\prime}+\gamma^{\prime}}\left(a b \varepsilon_{2}\right)$. Hence

$$
\begin{equation*}
\varepsilon_{2}=\varepsilon_{1} c a^{-1} b^{-1} . \tag{2.21}
\end{equation*}
$$

Then

$$
\begin{aligned}
x_{\beta^{\prime}+\gamma^{\prime}}\left(\varepsilon_{2} m^{\prime}(r, s)\right) & =\left(x_{\beta^{\prime}}(r), x_{\gamma^{\prime}}(s)\right) \quad \text { by the definition of } m^{\prime} \\
& =\left(\log _{\beta^{\prime}}^{-1} \cdot \lambda_{\beta^{\prime}, \alpha}(r), \log _{\gamma^{\prime}}^{-1} \cdot \lambda_{\gamma^{\prime}, \alpha}(s)\right) \quad \text { by }(2.15) \\
& =\left(\log _{\beta^{\prime}}^{-1} \cdot \lambda_{\beta^{\prime}, \beta} \cdot \lambda_{\beta, \alpha}(r), \log _{\gamma^{\prime}}^{-1} \lambda_{\gamma^{\prime}, \gamma^{\prime}} \lambda_{\gamma, \alpha}(s)\right) \quad \text { by }(2.12) \\
& =\left(\operatorname{Int} n \cdot \log _{\beta}^{-1}\left(a^{-1} \lambda_{\beta, \alpha}(r)\right), \operatorname{Int} n \cdot \log _{\gamma}^{-1}\left(b^{-1} \lambda_{\gamma, \alpha}(r)\right)\right) \quad \text { by }(2.9) \\
& =\left(\operatorname{Int} n \cdot x_{\beta}\left(a^{-1} r\right), \operatorname{Int} n \cdot x_{\gamma}\left(b^{-1} s\right)\right) \quad \text { by }(2.15) \\
& =\operatorname{Int} n \cdot\left(x_{\beta}\left(a^{-1} r\right), x_{\gamma}\left(b^{-1} s\right)\right) \\
& =\operatorname{Int} n \cdot x_{\beta+\gamma}\left(c_{\beta, \gamma} m\left(a^{-1} r, b^{-1} s\right)\right) \quad \text { by }(2.17) \\
& =x_{\beta^{\prime}+\gamma^{\prime}}\left(c \varepsilon_{1} a^{-1} b^{-1} m(r, s)\right) \quad \text { by }(2.19) \text { and }(2.18) \\
& =x_{\beta^{\prime}+\gamma^{\prime}}\left(\varepsilon_{2} m(r, s)\right) \quad \text { by }(2.21) .
\end{aligned}
$$

Then $m^{\prime}(r, s)=m(r, s)$ and $m_{(\beta, \gamma)}=m_{\left(\beta^{\prime}, \gamma^{\prime}\right)}$.
(2.22) Lemma. Let (β, γ) be an A_{2}-pair. Then (γ, β) defines the opposite multiplication of $m_{(\beta, \gamma)}$. In particular, if Δ is of Type D_{l} or E_{l}, then $m_{(\beta, \gamma)}$ is commutative.

Proof. Let $m=m_{(\beta, \gamma)}$ and $m^{\prime}=m_{(\gamma, \beta)}$. For $r, s \in R$,

$$
\begin{aligned}
x_{\beta+\gamma}\left(c_{\beta, \gamma} m(r, s)\right) & =\left(x_{\beta}(r), x_{\gamma}(s)\right)=\left(x_{\gamma}(s), x_{\beta}(r)\right)^{-1} \\
& =x_{\beta+\gamma}\left(-c_{\gamma, \beta} m^{\prime}(s, r)\right)=x_{\beta+\gamma}\left(c_{\beta, \gamma} m^{\prime}(s, r)\right),
\end{aligned}
$$

where we note $-c_{\gamma, \beta}=c_{\beta, \gamma}$ from (1.1). Then $m(r, s)=m^{\prime}(s, r)$. When Δ is of Type D_{l} or E_{l}, there is only one equivalence class of A_{2}-pairs by Lemma (1.5), hence $m_{(\beta, \gamma)}$ is commutative.
(2.23) Lemma. Let (β, γ) be an A_{2}-pair. With respect to the multiplication $m=m_{(\beta, \gamma)}, R$ is associative and with the unit element $1=1_{\alpha}$.

Proof. Associativity. Since rank $\Delta=l \geq 3$, there is a root δ such that (γ, δ) is an A_{2}-pair and $(\beta \mid \delta)=0$. By Lemma (2.20) and Lemma (1.4), $m=m_{(\beta, \gamma)}=m_{(\beta+\gamma, \delta)}=m_{(\gamma, \delta)}=$ $m_{(\beta, \gamma+\delta)}$. Applying the commutator relation (0.5) to $a=x_{\beta}(r), b=x_{\gamma}(s), c=x_{\delta}(t), r, s, t \in R$ and (Gr3), we have

$$
\begin{aligned}
\left(\left(x_{\beta}(r), x_{\gamma}(s)\right), x_{\delta}(t)\right) & =\left(x_{\beta}(r),\left(x_{\gamma}(s), x_{\delta}(t)\right)\right) ; \\
\left(x_{\beta+\gamma}\left(c_{\beta, \gamma} m(r, s)\right), x_{\delta}(t)\right) & =\left(x_{\beta}(r), x_{\gamma+\delta}\left(c_{\gamma, \delta} m(s, t)\right)\right) ; \\
x_{\beta+\gamma+\delta}\left(c_{\beta+\gamma, \delta}\left(c_{\beta, \gamma} m(r, s), t\right)\right) & =x_{\beta+\gamma+\delta}\left(c_{\beta, \gamma+\delta} m\left(r, c_{\gamma, \delta} m(s, t)\right)\right) .
\end{aligned}
$$

By calculating the identity $\left[\left[E_{\beta}, E_{\gamma}\right], E_{\delta}\right]=\left[E_{\beta},\left[E_{\gamma}, E_{\delta}\right]\right]$ (see the definition of Chevalley bases), we get $c_{\beta, \gamma} c_{\beta+\gamma, \delta}=c_{\beta, \gamma+\delta} c_{\gamma, \delta}$. Also m is biadditive by Lemma (2.19). Thus $m(m(r, s), t)=m(r, m(s, t))$, that is, m is associative.

Identity. We show $1=1_{\alpha} \in \boldsymbol{K}$ is the unit element of R. Take an element $w \in W$ such that $w \beta=\alpha$ (the fixed root). Let $\delta=w \gamma$. Then $m=m_{(\beta, \gamma)}=m_{(\alpha, \delta)}$ and

$$
\begin{aligned}
x_{\alpha+\delta}\left(c_{\alpha, \delta} r\right) & =n_{\alpha}(1) x_{\delta}(r) n_{\alpha}(-1) \quad \text { by Lemma (2.18) } \\
& =x_{\alpha}(1) x_{-\alpha}(-1) x_{\alpha}(1) x_{\delta}(r) x_{\alpha}(-1) x_{-\alpha}(1) x_{\alpha}(-1) \\
& =x_{\alpha}(1) x_{-\alpha}(-1) x_{\alpha+\delta}\left(c_{\alpha, \delta} m(1, r)\right) x_{\delta}(r) x_{-\alpha}(1) x_{\alpha}(-1) \quad \text { by the definition of } m \\
& =x_{\alpha}(1)\left(x_{-\alpha}(-1), x_{\alpha+\delta}\left(c_{\alpha, \delta} m(1, r)\right)\right) x_{\alpha+\delta}\left(c_{\alpha, \delta} m(1, r)\right) x_{\delta}(r) x_{\alpha}(-1) \quad \text { by }(\mathrm{Gr} 3) \\
& =x_{\alpha}(1) x_{\delta}\left(-c_{-\alpha, \alpha+\delta}\left(c_{\alpha, \delta} m(1, m(1, r))\right)\right) x_{\alpha+\delta}\left(c_{\alpha, \delta} m(1, r)\right) x_{\delta}(r) x_{\alpha}(-1) .
\end{aligned}
$$

Now by (Gr3), $\left(G^{\alpha}, G^{\alpha+\delta}\right)=\left(G^{\delta}, G^{\alpha+\delta}\right)=1$, thus bringing the conjugation with respect to $x_{\alpha}(1)$ to the left hand side the last equality, we get

$$
x_{\delta}\left(r-c_{-\alpha, \alpha+\delta}\left(c_{\alpha, \delta} m(1, m(1, r))\right)\right)=x_{\alpha+\delta}\left(c_{\alpha, \delta} r-c_{\alpha, \delta} m(1, r)\right) .
$$

So $r=m(1, r)$ by (Gr4). By considering $x_{\alpha+\delta}\left(c_{\delta, \alpha} r\right)=n_{\delta}(1) x_{\alpha}(r) n_{\delta}(-1)$ and using $m_{(\alpha, \delta)}(r, s)=m_{(\delta, \alpha)}(s, r)$, we get $r=m_{(\delta, \alpha)}(1, r)=m(r, 1)$. This proves that 1 is the unit element of R with respect to the multiplication m.

Now we can conclude Theorem (2.3). Here is its restatement.
(2.3) Theorem. Let G be a group graded by a finite root system Δ (of Type A_{l}, $l \geq 3, D_{l}, l \geq 4$ or $\left.E_{6}, E_{7}, E_{8}\right)$ relative to an element $(\dot{G}, \dot{\phi}) \in \mathfrak{S}=\mathfrak{S}(\Delta, \boldsymbol{K})$, where K is a commutative ring. Fix any root $\alpha \in \Delta$ and let $R=G^{\alpha}$ as an abelian group. Relative to a Chevalley basis $\left\{E_{\beta}\right\}_{\beta \in \Delta} \cup\left\{H_{i}\right\}_{i=1}^{l}$ define the maps $\lambda_{\beta, \alpha}: G^{\alpha} \rightarrow G^{\beta}$ of (2.9) and the elements
$x_{\beta}(r), \beta \in \Delta, r \in R$ of (2.15). Any positive A_{2}-pair (β, γ) define the multiplication in R by (2.17). Then R is an associative ring with 1 , containing \boldsymbol{K} as a subring, and the generators $x_{\beta}(r)$'s satisfy the relations (R 1$)$ and (R2) ((2.16) and (2.17)). In particular, G is a homomorphic image of the Steinberg group $\operatorname{St}(\Delta, R)$. In addition, R is commutative if Δ is of Type D_{l} or E_{l}.
(2.24) Remark. If we start with $\boldsymbol{K}=\boldsymbol{Z} / n \boldsymbol{Z}$, then any ring could possibly appear here. The chosen R is independent of the choice of the root α up to isomorphism, since $\lambda_{\beta, \alpha}$'s are ring isomorphisms.
3. Central extensions of Δ-graded groups. In this section we study central extensions of Δ-graded groups. Let us recall some notion about central extensions of groups (cf. [8]). A surjective group homomorphism ϕ from U onto G is a central extension of G if the kernel is contained in the center of U. A central extension (ϕ, U) of a group G is called a covering of G if U is perfect, that is, $(U, U)=U$. A central extension (ϕ, U) of a group G is said to be universal if it covers all other central extensions of G, i.e. if ($\phi^{\prime}, G^{\prime \prime}$) is any central extension of G, then there is a homomorphism $\bar{\phi}$ from U into G^{\prime} such that $\phi=\phi^{\prime} \bar{\phi}$. Any perfect group has a universal central extension which is unique up to isomorphism. Two perfect groups are said to be centrally isogenous if they have the same (isomorphic) universal central extension. We will use the previous notation unless otherwise specified.

Let G be a group graded by Δ (of Type $A_{l}, l \geq 3, D_{l}, l \geq 4$, or E_{6}, E_{7}, E_{8}) with $(\dot{G}, \dot{\phi}) \in \mathbb{S}=\mathfrak{S}(\Delta, \boldsymbol{K})$. Then there is an associative ring R such that G is a homomorphic image of $\operatorname{St}(\Delta, R) . R$ is chosen for a fixed root with its multiplication defined by any fixed positive A_{2}-pair. We will simply write $r s$ instead of $m(r, s)$ for $r, s \in R$. Now we give the following definition and the main result Theorem (3.2) of this section.
(3.1) Definition. Let K be a commutative ring. Suppose G_{1} and G_{2} are Δ graded groups relative to $\left(\dot{G}_{1}, \dot{\phi}_{1}\right)$ and $\left(\dot{G}_{2}, \dot{\phi}_{2}\right) \in \mathbb{G}(\Delta, K)$, respectively. A group homomorphism σ from G_{1} to G_{2} is a Δ-homomorphism if $\sigma \dot{\phi}_{1}=\dot{\phi}_{2}$.
(3.2) Theorem. Let Δ be of Type $A_{l}, l \geq 4, E_{l}, l=6,7,8$ or $D_{l}, l \geq 5$. Any covering (U, ψ) of a Δ-graded group G is also Δ-graded and ψ is a Δ-homomorphism. Moreover there is a surjective homomorphism Ψ from $\operatorname{St}(\Delta, R)$ onto U such that

where R is chosen as above for G.

Our proof will be constructive and the relations (R1) and (R2) play a major role in the proof. Note that G has a set of generators $\left\{x_{\alpha}(r) \mid \alpha \in \Delta, r \in R\right\}$ which satisfies (R1) and (R2). We will define a set of generators $\left\{\bar{x}_{\alpha}(r) \mid \alpha \in \Delta, r \in R\right\}$ in U which satisfies the relations (R1) and (R2). Then U is a homomorphic image of $\operatorname{St}(\Delta, R)$. The idea of this proof is based on showing that $\operatorname{St}(R) \rightarrow E(R)$ (the elementary group in the Chevalley group) is a universal central extension (cf. [5], [8], [7]). Technically, [7] has been very helpful. Before going to the proof, we state a consequence. Again we give the proof later.
(3.3) Theorem. Let Δ be of Type $A_{l}, l \geq 4 ; D_{l}, l \geq 5$; or $E_{l}, l=6,7,8$. Let G and G^{\prime} be perfect, and G 4-graded. If there is a group which iss a covering for both G and G^{\prime}, then G^{\prime} is also Δ-graded in such a way that G and G^{\prime} are Δ-homomorphic images of the same Steinberg group $\operatorname{St}(\Delta, R)$. In particular, if G and G^{\prime} are centrally isogenous and G is Δ-graded, then G^{\prime} is also Δ-graded.

The proof of Theorem (3.2) will be given later as a consequence of a series of preliminary results.

Let (U, ψ) be a covering of a Δ-graded group G and C the kernel of the central extension $\psi: U \rightarrow G$. First note that G is perfect. Indeed, for any $\alpha \in \Delta$, there is an A_{2}-pair (β, γ) such that $\beta+\gamma=\alpha$. Since $x_{\alpha}(r)=\left(x_{\beta}(1), x_{\gamma}\left(c_{\beta, \gamma} r\right)\right)$, we have $G^{\alpha}=\left(G^{\beta}, G^{\gamma}\right)$. So $G^{\alpha} \subseteq(G, G)$. By (Gr1), we have $G=(G, G)$. The perfectness makes sure the existence of a covering.

The following standard lemma, sometimes called the central trick, is technically important. It will be used repeatedly.
(3.4) Lemma (the central trick). Let $p: H_{1} \rightarrow H_{2}$ be a central extension of a group H_{2}. If $x_{1}, x_{2}, y_{1}, y_{2} \in H_{1}$ so that $p x_{1}=p x_{2}, p y_{1}=p y_{2}$, then $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.

For any $\alpha \in \Delta$, let

$$
\begin{equation*}
\tilde{U}^{\alpha}=\psi^{-1}\left(G^{\alpha}\right), \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G(\alpha):=\left\langle G^{\beta} \mid \beta \in \Delta,(\beta \mid \alpha) \geqslant 0\right\rangle<G . \tag{3.6}
\end{equation*}
$$

Then $G(\alpha)$ is contained in the centralizer of G^{α}.
(3.7) Lemma. (i) When Δ is of Type $A_{l}, l \geq 4$, or $E_{l}, l \geq 6,7,8$ for any two roots α, β with $(\alpha \mid \beta)=0$, there are $\gamma, \delta \in \Delta$ such that $(\alpha, \gamma, \beta, \delta)$ is an A_{4}-quadruple.
(ii) In $D_{l}, l \geq 5$, for any two A_{2}-pairs (β, γ) and $\left(\beta^{\prime}, \gamma^{\prime}\right)$, there exists a third A_{2}-pair ($\beta^{\prime \prime}, \gamma^{\prime \prime}$) such that $\left\{\beta, \gamma, \beta^{\prime}, \gamma^{\prime}\right\}$ and $\left\{\beta^{\prime}, \gamma^{\prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right\}$ are contained in some (possibly different) A_{l-1}-subroot systems of D_{l}.

Proof. Examine the explicit constructions of these root systems in [2].
(3.8) Lemma. Assume that Δ is of Type $A_{l}, l \geq 4$, or $E_{l}, l=6,7,8$. Let $\alpha, \beta \in \Delta$
with $(\alpha \mid \beta) \geq 0, \alpha \neq \beta$. Then $G^{\beta} \subseteq(G(\alpha), G(\alpha))$.
Proof. We discuss two cases $(\alpha \mid \beta)=1$ and $(\alpha \mid \beta)=0$. In the first case, take a root γ such that $(\alpha,-\beta, \gamma)$ is an A_{3}-triple. Without loss of generality, we may assume $\alpha=\varepsilon_{1}-\varepsilon_{2},-\beta=\varepsilon_{2}-\varepsilon_{3}, \gamma=\varepsilon_{3}-\varepsilon_{4}$ (cf. Example (1.1)). Then for some $c \in\{ \pm 1\}$,

$$
x_{\beta}(r)=\left(x_{\varepsilon_{3}-\varepsilon_{4}}(c r), x_{\varepsilon_{4}-\varepsilon_{2}}(1)\right) \in(G(\alpha), G(\alpha)),
$$

since $\left(\varepsilon_{1}-\varepsilon_{2} \mid \varepsilon_{3}-\varepsilon_{4}\right)=0$ and $\left(\varepsilon_{1}-\varepsilon_{2} \mid \varepsilon_{4}-\varepsilon_{2}\right)=1$ are nonnegative. In the second case when $(\alpha \mid \beta)=0$, we may take two roots γ, δ such that $(\alpha, \gamma, \beta, \delta)$ is an A_{2}-quadruple by Lemma (3.7). Without loss of generality again, we may assume $\alpha=\varepsilon_{1}-\varepsilon_{2}, \gamma=\varepsilon_{2}-\varepsilon_{3}$, $\beta=\varepsilon_{3}-\varepsilon_{4}$ and $\delta=\varepsilon_{4}-\varepsilon_{5}$. Since $\left(\varepsilon_{1}-\varepsilon_{2} \mid \varepsilon_{3}-\varepsilon_{5}\right)=0$ and $\left(\varepsilon_{1}-\varepsilon_{2} \mid \varepsilon_{5}-\varepsilon_{4}\right)=0$ are nonnegative, then for some $c \in\{ \pm 1\}$,

$$
x_{\beta}(r)=\left(x_{\varepsilon_{3}-\varepsilon_{5}}(c r), x_{\varepsilon_{5}-\varepsilon_{4}}(1)\right) \in(G(\alpha), G(\alpha)) .
$$

So the result follows.
(3.9) Lemma. Assume that Δ is of Type $A_{l}, l \geq 4$, or $E_{l}, l=6,7,8$. Let $\alpha, \beta \in \Delta$ and $\alpha \neq \beta$. If $\left(G^{\alpha}, G^{\beta}\right)=1$, then $\left(\tilde{U}^{\alpha}, \tilde{U}^{\beta}\right)=1(c f$. (3.5)).

Proof. $\quad\left(G^{\alpha}, G^{\beta}\right)=1$ implies $(\alpha \mid \beta) \geq 0$. Then $G^{\beta} \subseteq G(\alpha)$. Let \tilde{x}, \tilde{y} be arbitrary preimages of $x \in G^{\alpha}$ and $y \in G(\alpha)$, respectively. Then by Lemma (3.4), ($\left.\tilde{x}, \tilde{y}\right)$ depends only on x, y. Furthermore, (\tilde{x}, \tilde{y}) is in C since $(\psi(\tilde{x}, \tilde{y}))=(x, y)=1$. Define a map λ_{x} from $G(\alpha)$ to C by $\lambda_{x}(y):=(\tilde{x}, \tilde{y})$, where \tilde{y} is any preimage of y. Since C is central, we see from (0.2) that λ_{x} is a group homomorphism and hence $\lambda_{x}\{(G(\alpha), G(\alpha))\}=1$. But $G^{\beta} \subseteq(G(\alpha), G(\alpha))$, so $\lambda_{x}\left(G^{\beta}\right)=1$. Thus $\left(\tilde{x}, \tilde{U}^{\beta}\right)=1$. Since \tilde{x} is arbitrary, we have $\left(\tilde{U}^{\alpha}, \tilde{U}^{\beta}\right)=1$.

For the generators $x_{\alpha}(r), r \in R, \alpha \in \Delta$, let $y_{\alpha}(r) \in U$ be any preimage of $x_{\alpha}(r)$. For $\alpha \in \Delta$, choose any two roots β, γ with $\alpha=\beta+\gamma$. Define

$$
\begin{equation*}
\bar{x}_{\alpha}(r):=\left(y_{\beta}\left(c_{\beta, \gamma} r\right), y_{\gamma}(1)\right) . \tag{3.10}
\end{equation*}
$$

So by the central trick

$$
\begin{equation*}
\bar{x}_{\alpha}(r)=\left(\bar{x}_{\beta}\left(c_{\beta, \gamma} r\right), \bar{x}_{\gamma}(1)\right) . \tag{3.11}
\end{equation*}
$$

Let $U^{\alpha}=\left\{\bar{x}_{\alpha}(r) \mid r \in R\right\}$.
(3.12) Lemma. Let Δ be of Type $A_{i}, l \geq 4, E_{l}, l=6,7,8$ or $D_{l}, l \geq 5$. Then $\bar{x}_{\alpha}(r)$ is independent of the choice and the order of β, γ.

Proof For A_{l} OR E_{l}. Independence of the choice. Suppose $\alpha=\beta^{\prime}+\gamma^{\prime}$ is another such representation of α with $\{\beta, \gamma\} \neq\left\{\beta^{\prime}, \gamma^{\prime}\right\}$ (set-theoretically). $1=(\alpha \mid \beta)=\left(\beta^{\prime}+\gamma^{\prime} \mid \beta\right)=$ $\left(\beta^{\prime} \mid \beta\right)+\left(\gamma^{\prime} \mid \beta\right)$. So, either $\left(\beta^{\prime} \mid \beta\right)=1,\left(\gamma^{\prime} \mid \beta\right)=0$, or $\left(\beta^{\prime} \mid \beta\right)=0,\left(\gamma^{\prime} \mid \beta\right)=1$. We study these cases separately.

Case 1: $\quad\left(\beta^{\prime} \mid \beta\right)=1,\left(\gamma^{\prime} \mid \beta\right)=0$. We may and will apply the commutator formula
(0.5) with $a=y_{\beta}(\varepsilon r), b=y_{\beta^{\prime}-\beta}\left(\eta \varepsilon \varepsilon^{\prime}\right), c=y_{\gamma^{\prime}}(1)$ where $\varepsilon=c_{\beta, \gamma}, \varepsilon^{\prime}=c_{\beta^{\prime}, \gamma^{\prime}}, \eta=c_{\beta, \beta^{\prime}-\beta}$, because we have $\left(\beta \mid \gamma^{\prime}\right)=0,\left(\beta^{\prime} \mid \beta^{\prime}-\beta+\gamma\right)=0,\left(\gamma^{\prime} \mid \beta^{\prime}-\beta+\gamma\right)=0$ and Lemma (3.9). So

$$
\begin{aligned}
\left(y_{\beta^{\prime}}\left(\varepsilon^{\prime} r\right), y_{\gamma^{\prime}}(1)\right) & =\left(\left(y_{\beta}(\varepsilon r), y_{\beta^{\prime}-\beta}\left(\eta \varepsilon \varepsilon^{\prime}\right)\right), y_{y^{\prime}}(1)\right) \\
& =\left(y_{\beta}(\varepsilon r),\left(y_{\beta^{\prime}-\beta}\left(\eta \varepsilon \varepsilon^{\prime}\right), y_{y^{\prime}}(1)\right)\right)=\left(y_{\beta}(\varepsilon r), y_{\gamma}\left(\eta \eta^{\prime} \varepsilon \varepsilon^{\prime}\right)\right),
\end{aligned}
$$

where $\eta^{\prime}=c_{\gamma-\gamma^{\prime}, \gamma^{\prime}}$, and the central trick has been applied. Now the following calculation yields that $\eta \eta^{\prime} \varepsilon \varepsilon^{\prime}=1: c_{\beta^{\prime}, \gamma^{\prime}} c_{\beta, \beta^{\prime}-\beta} E_{\beta^{\prime}+\gamma^{\prime}}=\left[\left[E_{\beta}, E_{\beta^{\prime}-\beta}\right], E_{\gamma^{\prime}}\right]=\left[E_{\beta},\left[E_{\beta^{\prime}-\beta}, E_{\gamma^{\prime}}\right]\right]=$ $c_{\beta, \gamma} c_{\gamma-\gamma^{\prime}, \gamma^{\prime}} E_{\beta+\gamma}$. So, $\bar{x}_{\alpha}(r)$ is independent of the choice of β, γ in this case.

Case 2: $\quad\left(\beta^{\prime} \mid \beta\right)=0,\left(\gamma^{\prime} \mid \beta\right)=1$. By using Lemma (3.9), and then (0.5) and the central trick, we have for any $r \in R$,

$$
\begin{aligned}
\left(y_{\beta^{\prime}}\left(\varepsilon^{\prime} r\right), y_{\gamma^{\prime}}(1)\right) & =\left(\left(y_{\gamma}(-1), y_{\beta^{\prime}-\gamma}\left(-\eta \varepsilon^{\prime} r\right)\right), y_{\gamma^{\prime}}(1)\right)=\left(y_{\gamma}(-1),\left(y_{\beta^{\prime}-\gamma}\left(-\eta \varepsilon^{\prime} r\right), y_{\gamma^{\prime}}(1)\right)\right) \\
& =\left(y_{\gamma}(-1), y_{\beta}\left(-\eta \eta^{\prime} \varepsilon^{\prime} r\right)\right)=\left(y_{\gamma}(1)^{-1}, y_{\beta}\left(\eta \eta^{\prime} \varepsilon^{\prime} r\right)^{-1}\right)=\left(y_{\beta}\left(\eta \eta^{\prime} \varepsilon^{\prime} r\right), y_{\gamma}(1)\right),
\end{aligned}
$$

where $\varepsilon=c_{\beta, \gamma}, \varepsilon^{\prime}=c_{\beta^{\prime}, \gamma^{\prime}}, \eta=c_{\gamma, \beta^{\prime}-\gamma}, \eta^{\prime}=c_{\beta,-\gamma^{\prime}, \gamma^{\prime}}$. Also the Jacobi identity,

$$
\left[\left[E_{\gamma},\left[E_{\beta^{\prime}-\gamma}\right], E_{\gamma^{\prime}}\right]=\left[E_{\gamma},\left[E_{\beta^{\prime}-\gamma}, E_{\gamma^{\prime}}\right]\right]\right.
$$

and (1.1) imply $\varepsilon=-\varepsilon^{\prime} \eta \eta^{\prime}$. Then it follows that $\bar{x}_{\alpha}(r)$ is independent of the choice of β, γ.
We still have to show that $\bar{x}_{\alpha}(r)$ is independent of the order of β, γ. By examining Example (1.1), we see that in an $A_{l}, l \geq 3$, there are at least two distinct representations $\alpha=\beta+\gamma=\beta^{\prime}+\gamma^{\prime}$. We chose such a pair $\left\{\beta^{\prime}, \gamma^{\prime}\right\}$ not equal to $\{\beta, \gamma\}$ as sets. Then by the independence of choice,

$$
\bar{x}_{\alpha}(r)=\left(y_{\beta}\left(c_{\beta, r} r\right), y_{\gamma}(1)\right)=\left(y_{\beta^{\prime}}\left(c_{\beta^{\prime}, \gamma^{\prime}} r\right), y_{\gamma^{\prime}}(1)\right)=\left(y_{\gamma}\left(c_{\gamma, \beta} r\right), y_{\beta}(1)\right) .
$$

This shows that $\bar{x}_{\alpha}(r)$ is independent of the order of β, γ.
Proof for D_{l}. For $l \geq 5, \Delta=D_{l}$ contains two subroot systems of Type A_{l-1} $(l-1 \geq 4)$, whose union contains a base for Δ and whose intersection is an $A_{l-2^{-}}$ subroot system of Δ.

With this observation, we see from Lemma (3.7) that given two representations $\alpha=\beta^{\prime}+\gamma^{\prime}=\beta+\gamma$, we may always find a third distinct representation of $\alpha=\beta^{\prime \prime}+\gamma^{\prime \prime}$ such that $\left\{\beta, \gamma, \beta^{\prime \prime}, \gamma^{\prime \prime}\right\}$ and $\left\{\beta^{\prime}, \gamma^{\prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right\}$ each lie in an A_{l-1}-subroot system $(l-1) \geq 4$) of Δ. Then we can apply the result for $A_{l-1}(l-1 \leq 4)$, and get

$$
\bar{x}_{\alpha}(r)=\left(y_{\beta}\left(c_{\beta, \gamma} r\right), y_{\gamma}(1)\right)=\left(y_{\beta^{\prime \prime}}\left(c_{\beta^{\prime \prime}, \gamma^{\prime \prime}} r\right), y_{\gamma^{\prime \prime}}(1)\right)=\left(y_{\beta^{\prime}}\left(c_{\beta^{\prime}, \gamma^{\prime}} r\right), y_{\gamma^{\prime}}(1)\right)
$$

(3.13) Lemma. Let Δ be of Type $A_{l}, l \geq 4, E_{l}, l=6,7,8$ or $D_{l}, l \geq 5$. The generators $\bar{x}_{\alpha}(r), r \in R, \alpha \in \Delta$ satisfy the relations $(\mathrm{R} 1)$ and (R 2).

Proof for A_{l} OR E_{l}. Let $\alpha=\beta+\gamma, \alpha, \beta, \gamma \in \Delta$. We use the notation defined in (3.10). Then for $\varepsilon=c_{\beta, \gamma}$,

$$
\begin{aligned}
\bar{x}_{\alpha}(r+s) & =\left(y_{\beta}\left(c_{\beta, \gamma}(r+s)\right), y_{\gamma}(1)\right)=\left(y_{\beta}\left(c_{\beta, \gamma} r\right) y_{\beta}\left(c_{\beta, \gamma} s\right), y_{\gamma}(1)\right) \quad \text { by the central trick } \\
& =y_{\beta}\left(c_{\beta, \gamma} r\right)\left(y_{\beta}\left(c_{\beta, \gamma} s\right), y_{\gamma}(1)\right) y_{\beta}\left(c_{\beta, \gamma} r\right)^{-1}\left(y_{\beta}\left(c_{\beta, \gamma} r\right), y_{\gamma}(1)\right) \quad \text { by }(0.2) \\
& =\left(y_{\beta}\left(c_{\beta, \gamma} s\right), y_{\gamma}(1)\right)\left(y_{\beta}\left(c_{\beta, \gamma} r\right), y_{\gamma}(1)\right)=\bar{x}_{\alpha}(s) \bar{x}_{\alpha}(r)=\bar{x}_{\alpha}(r) \bar{x}_{\alpha}(s) .
\end{aligned}
$$

So (R1) holds for $\bar{x}_{\alpha}(r)$'s.
If $(\alpha \mid \delta) \geq 0$, then by Lemmas (3.8) and (3.9) and the central trick we have $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=1$.

Now we assume $(\alpha \mid \delta)=-1$ and (α, δ) is a positive A_{2}-pair. It remains to show

$$
\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=\bar{x}_{\alpha+\delta}\left(c_{\alpha, \delta} r s\right) .
$$

Case 1: $\quad \Delta=A_{l}$. We need to show $\left(\bar{x}_{i j}(r), \bar{x}_{j k}(s)\right)=\bar{x}_{i k}(r s)$ for i, j, k distinct, where $\bar{x}_{i j}(r):=\bar{x}_{\varepsilon_{i}-\varepsilon_{j}}(r)$, etc. (cf. Lemma (1.5)).

Take m not equal to i, j, k. Then applications of the central trick and (0.5) (see (3.11) as well) yield

$$
\begin{aligned}
\left(\bar{x}_{i j}(r), \bar{x}_{j k}(s)\right) & =\left(\bar{x}_{i j}(r),\left(\bar{x}_{j m}(s), \bar{x}_{m k}(1)\right)\right)=\left(\left(\bar{x}_{i j}(r), \bar{x}_{j m}(s)\right), \bar{x}_{m k}(1)\right)=\left(\bar{x}_{i m}(r s), \bar{x}_{m k}(1)\right) \\
& =\left(y_{i m}(r s), y_{m k}(1)\right)=\bar{x}_{i k}(r s)
\end{aligned}
$$

Case 2: $\Delta=E_{l}$. There is only one class of positive A_{2}-pairs. Choose $\beta^{\prime} \in \Delta$ so that $\left(\alpha, \delta, \beta^{\prime}\right)$ is an A_{3}-triple. Then $\beta:=\delta+\beta^{\prime}$ satisfies $(\beta \mid \delta)=1$ and $(\beta \mid \alpha)=-1$. Hence $\gamma:=\delta-\beta, \alpha+\beta \in \Delta$. Thus

$$
\begin{aligned}
\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right) & =\left(\bar{x}_{\alpha}(r),\left(\bar{x}_{\beta}(\varepsilon s), \bar{x}_{\gamma}(1)\right)\right)=\left(\left(\bar{x}_{\alpha}(r), \bar{x}_{\beta}(\varepsilon s)\right), \bar{x}_{\gamma}(1)\right) \\
& =\left(\bar{x}_{\alpha+\beta}\left(\varepsilon^{\prime} \varepsilon r s\right), \bar{x}_{\gamma}(1)\right)=\bar{x}_{\alpha+\beta+\gamma}\left(\eta \varepsilon \varepsilon^{\prime} r s\right)
\end{aligned}
$$

where $\varepsilon=c_{\beta, \gamma}, \varepsilon^{\prime}=c_{\alpha, \beta}, \eta=c_{\alpha+\beta, \gamma}$. As before, we have $\eta \varepsilon \varepsilon^{\prime}=c_{\alpha, \delta}$. So (R2) is satisfied by $\bar{x}_{\alpha}(r)$'s.

Proof For D_{l}. We will need an A_{4}-quadruple (cf. Lemma (3.7)). That is why we assume $l \geq 5$. The relation (R1) follows from the same proof as that for A_{l} and E_{l}. For (R2), suppose $\alpha, \delta \in \Delta, r, s \in R$.

If $(\alpha \mid \delta)=2$, i.e. $\alpha=\delta$, then $\left(\bar{x}_{\alpha}(r), \bar{x}_{\alpha}(s)\right)=1$ from (R1).
If $(\alpha \mid \delta)=1$. Lemmas (3.8) and (3.9) hold for α, δ by replacing α, β there. Using $\left(G^{\alpha}, G^{\delta}\right)=1$, we have $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=1$.

If $(\alpha \mid \delta)=-1$, we know that $\{\alpha, \delta\}$ can be imbedded into a subroot system of Type A_{l-1}. Then $\left(\bar{x}_{\alpha}(r), \bar{x}_{\alpha}(s)\right)=\bar{x}_{\alpha+\delta}\left(c_{\alpha, \delta} r s\right)$.

Finally, assume $(\alpha \mid \delta)=0$. We will use the explicit construction for the root system $\Delta=D_{l}$, that is,

$$
\Delta=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i \neq j \leq l\right\}
$$

where $\left\{\varepsilon_{i}\right\}$ is the standard basis of \boldsymbol{R}^{l} (cf. [2]).

Recall that Δ has only one W-orbit of roots. Without loss of generality, assume $\alpha=\varepsilon_{1}-\varepsilon_{2}$. Then δ is one of the following roots.

$$
\left\{ \pm\left(\varepsilon_{1}+\varepsilon_{2}\right), \pm \varepsilon_{i} \pm \varepsilon_{j}, 3 \leq i \neq j \leq l\right\}
$$

We claim that if $\delta \in\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, 3 \leq i \neq j \leq l\right\}$, there exist two roots $\beta, \gamma \in \Delta$ such that $(\alpha, \beta, \delta, \gamma)$ is an A_{4}-quadruple. Indeed, if $\delta=\varepsilon_{i}+\varepsilon_{j}$, take $\beta=\varepsilon_{2}-\varepsilon_{i}, \gamma=\varepsilon_{k}-\varepsilon_{j}$; if $\delta=\varepsilon_{i}-\varepsilon_{j}$, take $\beta=\varepsilon_{2}-\varepsilon_{i}, \gamma=\varepsilon_{j}-\varepsilon_{k}$; if $\delta=-\varepsilon_{i}+\varepsilon_{j}$, take $\beta=\varepsilon_{2}+\varepsilon_{i}, \gamma=-\varepsilon_{j}+\varepsilon_{k}$; if $\delta=-\varepsilon_{i}-\varepsilon_{j}$, take $\beta=\varepsilon_{2}+\varepsilon_{i}, \gamma=\varepsilon_{j}+\varepsilon_{k}$ where $3 \leq i, j, k \leq l$ and i, j, k are distinct. Also it is clear from the point of view of the Weyl group, since $W=S_{l} \bowtie 2^{l-1}$ where S_{l} is the symmetric group on l letters and 2^{l-1} consists of an even number of sign changes. Then applying the result on $A_{l}(l \geq 4)$, we get $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=1$ for $\delta \in\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, 3 \leq i \neq j \leq l\right\}\left(\alpha=\varepsilon_{1}-\varepsilon_{2}\right)$.

It remains to show $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=1$ for $\delta= \pm\left(\varepsilon_{1}+\varepsilon_{2}\right)\left(\alpha=\varepsilon_{1}-\varepsilon_{2}\right)$. Applying the conjugation with respect to $\bar{n}_{\delta}(1)$ and the central trick, we need only to prove $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=1$ for $\delta=\varepsilon_{1}+\varepsilon_{2}$.

Let $\beta=-\varepsilon_{1}+\varepsilon_{3}$. Then (α, β, δ) is an A_{3}-triple. Note that $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)$ is central since $\psi\left(U^{\alpha}, U^{\delta}\right)=\left(G^{\alpha}, G^{\delta}\right)=1$. Then

$$
\begin{aligned}
& \left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)^{\bar{x}_{\beta}(1)}=\left(\left(\bar{x}_{\beta}(1), \bar{x}_{\alpha}(r)\right) \bar{x}_{\alpha}(r),\left(\bar{x}_{\beta}(1), \bar{x}_{\delta}(r)\right) \bar{x}_{\delta}(s)\right) \\
& =\left(\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right) \bar{x}_{\alpha}(r), \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right) \bar{x}_{\delta}(s)\right) \\
& =\left(\bar{x}_{\alpha}(r), \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right)\right)^{\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right) \cdot\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)^{\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right) \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right) \cdot} \cdot\left(\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right), \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right)\right)} \\
& \quad \cdot\left(\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right), \bar{x}_{\delta}(s)\right)^{\bar{x}_{\beta+\delta}\left(c_{\beta, \delta \delta} s\right)} \quad \text { by }(0.3) \\
& =\bar{x}_{\alpha+\beta+\delta}\left(c_{\alpha, \beta+\delta} c_{\beta, \delta} r s\right) \cdot\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right) \cdot\left(\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right), \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right)\right) \cdot \bar{x}_{\alpha+\beta+\delta}\left(c_{\alpha, \beta+\delta} c_{\beta, \delta} r s\right) .
\end{aligned}
$$

Note that the middle two terms of the last expression are central. Again by calculating the Jacobi identity, $\left[\left[E_{\beta}, E_{\alpha}\right], E_{\delta}\right]=-\left[E_{\alpha},\left[E_{\beta}, E_{\delta}\right]\right]$, we have $c_{\alpha, \beta+\delta} c_{\beta, \delta}=-c_{\alpha, \beta+\delta} c_{\beta, \delta}$. Then $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)\left(\bar{x}_{\beta+\alpha}\left(c_{\beta, r} r\right), \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right)\right)$, and $\left(\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} r\right), \bar{x}_{\beta+\delta}\left(c_{\beta, \delta} s\right)\right)=$ 1. Since r, s are arbitrary, we have $\left(\bar{x}_{\beta+\alpha}(r), \bar{x}_{\beta+\delta}(s)\right)=1$ for all $r, s \in R$. Now applying the conjugation by $\bar{n}_{\beta}(1)$ and the central trick, we have $\left(\bar{x}_{\alpha}(r), \bar{x}_{\delta}(s)\right)=1$ for all $r, s \in R$.
(3.14) Lemma. $U=\left\langle U^{\alpha} \mid \alpha \in \Delta\right\rangle$. Hence (Gr1) holds for U.

Proof. Let $U^{\prime}:=\left\langle U^{\alpha} \mid \alpha \in \Delta\right\rangle$ and C be the kernel of ψ from U onto G. Since $\psi\left(U^{\prime}\right)=G$, then $U=U^{\prime} C$, then $U=(U, U)=\left(U^{\prime} C, U^{\prime} C\right)=\left(U^{\prime}, U^{\prime}\right)=U^{\prime}$, where the last equality follows from the relations (R1) and (R2) for $\bar{x}_{\alpha}(r)$'s.

Proof of Theorem (3.2). Up to now, we have constructed a surjective homomorphism Ψ from $\operatorname{St}(\Delta, R)$ onto U by sending $\hat{x}_{\alpha}(r)$ to $\bar{x}_{\alpha}(r)$. Let \dot{U} be the subgroup generated by $\left\{\bar{x}_{\alpha}(r) \mid \alpha \in \Delta, r \in \boldsymbol{K}\right\}$ and $\dot{U}^{\alpha}=\left\{\bar{x}_{\alpha}(r) \mid r \in \boldsymbol{K}\right\}$ for each $\alpha \in \Delta$. We show $\dot{U} \in \mathbb{S}$.

Clearly, $\hat{x}_{\alpha}(r) \rightarrow \bar{x}_{\alpha}(r)$ defines a surjective homomorphism, denoted by $\dot{\phi}_{u}$, from $\operatorname{St}(\Delta, \boldsymbol{K})$ onto \dot{U}. So the diagram commutes.

Since $\dot{\boldsymbol{G}} \in \mathfrak{G}$, so $\dot{\phi}$, restricted to $\chi^{+}=\chi^{+}(\boldsymbol{K})$ relative to a positive system Δ_{+}of Δ, is an isomorphism. The commutative diagram implies $\dot{\phi}_{u}$ restricted to χ^{+}, is an isomorphism as well. This implies $\left(\dot{U}, \dot{\phi}_{u}\right) \in \mathbb{S}$.

It remains to verify the axioms (Gr1) through (Gr5). (Gr1) follows from Lemma (3.14). (Gr2) is clear by the definition of \dot{U}^{α}. (Gr3) follows from Lemma (3.13). (Gr4) holds for U, since it holds for $\operatorname{St}(\Delta, R)$ and G. (Gr5) is from the relation (R3). It is clear from the construction that ψ is a Δ-homomorphism.

Proof of Theorem (3.3). Let R be the associative ring relative to G, Let ψ (resp. ψ^{\prime}): $U \rightarrow G$ (resp. G^{\prime}) be the universal central extension of G (resp. G^{\prime}). By Theorem (3.2), U is graded by Δ. Moreover, the set of the generators $\left[x_{\alpha}(r) \mid \alpha \in \Delta, r \in R\right\}$ in G can be lifted to a set of generators $\left\{\bar{x}_{\alpha}(r) \mid \alpha \in \Delta, r \in R\right\}$ in U which satisfies the relations (R1) and (R2). Denote the element in $\subseteq=S(\Delta, K)$ relative to G (resp. U) by $(\dot{G}, \dot{\phi})\left(\right.$ resp. $\left(\dot{U}, \dot{\phi}_{u}\right)$). The meanings of $U^{\alpha}, U^{ \pm}$(relative to a positive system of Δ), $\bar{n}_{\alpha}(u)$, $\bar{h}_{\alpha}(u), \dot{U}^{\alpha}, \dot{U}^{ \pm}$, etc. are defined as before in an obvious manner. Pass these objects to G^{\prime} by the central extension homomorphism ψ^{\prime}, for example, $G^{\prime \alpha}:=\psi^{\prime}\left(U^{\alpha}\right), x_{\alpha}^{\prime}(r):=$ $\psi^{\prime}\left(\bar{x}_{\alpha}(r)\right), \dot{G}^{\prime}:=\psi^{\prime}(\dot{U}), \dot{G}^{\prime \pm}=\psi^{\prime}\left(\dot{U}^{ \pm}\right)$, etc. Then $\dot{\phi}^{\prime}:=\psi^{\prime} \dot{\phi}_{u}$ is a homomorphism from $\operatorname{St}(\Delta, \boldsymbol{K})$ onto \dot{G}^{\prime}. We will show that G^{\prime} is Δ-graded relative to $\left(\dot{G}^{\prime}, \dot{\phi}^{\prime}\right)$. It suffices to show that $\left(\dot{G}^{\prime}, \dot{\phi}^{\prime}\right) \in \mathfrak{S}=\mathfrak{S}(\Delta, \boldsymbol{K})$ and that the axiom (Gr 4) holds, since the other axioms are direct consequences of the relations (R1) and (R2) and the fact that ψ^{\prime} is a homomorphism.

To be clear, we describe the relations of above maps by the following commutative diagrams with the generators:

Now arbitrarily fix a positive system Δ_{+}of Δ. Then $\left.\dot{\phi}_{u}\right|_{\chi^{+}(\boldsymbol{K})}$ is injective since $\left(\dot{U}, \dot{\phi}_{u}\right) \in \subseteq$ by Theorem (3.2). Recall that the center of $\chi^{+}(\boldsymbol{K})$ is trivial ([4], [8]). Then the center of \dot{U}^{+}is trivial. Suppose $\hat{x} \in \chi^{+}(\boldsymbol{K}) \cap \operatorname{Ker}\left(\dot{\phi}^{\prime}\right)$. Then $\dot{\phi}_{u}(\hat{x}) \in \dot{U}^{+} \cap \operatorname{Ker} \psi^{\prime}$. Since $\operatorname{Ker} \psi^{\prime}$ is central by hypothesis. So $\dot{\phi}_{u}(\hat{x})=1$, and $\hat{x}=1$. So $\left.\dot{\phi}^{\prime}\right|_{\chi^{+}(\boldsymbol{K})}$ is injective. This proves $\left(\dot{G}^{\prime}, \dot{\phi}^{\prime}\right) \in \mathbb{G}$.

We show that $G^{\prime \alpha} \cap G^{\prime \beta}=1$, if $\alpha \neq \beta$. Let $x_{\alpha}^{\prime}(r)=x_{\beta}^{\prime}(s)$. Then $\bar{x}_{\alpha}(r)=\bar{x}_{\beta}(s) z$ for some
$z \in \operatorname{Ker} \psi^{\prime} \subseteq \operatorname{Center}(U)$. It suffices to show $r=s=0$. We need to consider four cases: $\alpha=-\beta ;(\alpha \mid \beta)=-1 ;(\alpha \mid \beta)=-1 ;$ and $(\alpha \mid \beta)=0$.

If $\alpha=-\beta$, take $\gamma \in \Delta$ so that $(\alpha \mid \gamma)=-1$. Then by (R2), $1=\left(\bar{x}_{-\alpha}(s) z, \bar{x}_{\gamma}(1)\right)=$ $\left(\bar{x}_{\alpha}(r), x_{\gamma}(1)\right)=x_{\alpha+\gamma}\left(c_{\alpha, \gamma} r\right)$. Thus $r=0$ and $s=0$.

If $(\alpha \mid \beta)=-1$, i.e. $\alpha+\beta \in \Delta$, then $1=\left(\bar{x}_{\alpha}(r), \bar{x}_{\alpha}(1)\right)=\left(\bar{x}_{\beta}(s) z, \bar{x}_{\alpha}(1)\right)=\bar{x}_{\beta+\alpha}\left(c_{\beta, \alpha} s\right)$. Hence $s=r=0$.

If $(\alpha \mid \beta)=1$, we take $\gamma \in \Delta$ so that $(\alpha,-\beta, \gamma)$ is an A_{3}-triple. Then $1=$ $\left(\bar{x}_{\alpha}(r), \bar{x}_{-\gamma}(1)\right)=\left(\bar{x}_{\beta}(s) z, \bar{x}_{-\gamma}(1)\right)=\bar{x}_{\beta-\gamma}\left(c_{\beta,-\gamma} s\right)$. So $s=0$ and $r=0$.

Finally if $(\alpha \mid \beta)=0$, then there exists a third root γ so that (α, γ, β) is an A_{3}-triple. Then

$$
\bar{x}_{\alpha+\gamma}\left(c_{\alpha, \gamma} r\right)=\left(\bar{x}_{\alpha}(r), \bar{x}_{\gamma}(1)\right)=\left(\bar{x}_{\beta}(s) z, \bar{x}_{\gamma}(1)\right)=\bar{x}_{\beta+\gamma}\left(c_{\beta, \gamma} s\right),
$$

but $(\alpha+\gamma \mid \beta+\gamma)=1$. Thus $r=s=0$ follows from the third case. So (Gr4) holds.

References

[1] S. Berman and R. V. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. (to appear).
[2] N. Bourbaki, Groupes et algèbres de Lie, Ch. IV, V, VI, Hermann, Paris, 1968.
[3] R. W. Carter, Simple Groups of Lie Type, Wiley, London, 1972.
[4] A. J. Hahn and O. T. O'Meara, The Classical Groups and K-theory, Springer-Verlag, Berlin Heidelberg, 1989.
[5] J. Milnor, Introduction to Algebraic K-theory, Ann. Math. Stud. 72, Princeton University Press, 1971.
[6] R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decomposition, J. Wiley, 1992.
[7] M. R. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004.
[8] R. Steinberg, Lectures on Chevalley Groups (notes by J. Faulkner and R. Wilson) Yale Univ. Lecture Notes, 1967.

Department of Mathematics

The University of Western Ontario
London, Ontario
Canada N6A 5B7

[^0]: ${ }^{1}$ This is a part of the author's Ph.D. thesis at the University of Alberta, Edmonton, Alberta, Canada. 1991 Mathematics Subject Classification. Primary 20F40; Secondary 20E34, 19C09, 20 F05.

