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Abstract. On a complex manifold of dimension more than two which admits a
holomorphic conformal structure, we define conformal Weyl forms, a kind of char-
acteristic forms, by means of the holomorphic conformal Weyl curvature tensor, and
prove a formula which relates these forms with Chern forms.

Our result is a conformal analogue in the holomorphic case of our previous result
[Kt] on projective connections, and gives a more precise description of a theorem of
Kobayashi-Ochiai [KO, Theorem 3.20] in the case of dimension more than two. At
present, we do not know whether a similar formula exists in the general case where the
manifold admits only differentiable conformal structures.

In Section 1, we shall give the definition of holomorphic conformal structures and
holomorphic conformal connections. In Section 2, we shall calculate the conformal
Weyl curvature tensor explicitly. The process of the calculation will be used in Section
3. In Section 3, we shall prove our main result (Theorem 3.2). I would like to express
my sincere gratitude to Professor Tadashi Nagano who suggested to me that there
would be a conformal analogue of my previous result [Kt, Theorem 3.1].

1. Holomorphic conformal structures. In this section, we shall give the defini-
tions of holomorphic conformal structures and holomorphic conformal connections
together with some preparations for later sections. Let X be a complex manifold of
dimension n>1. Take a locally finite open covering # ={U,} of X so that on each U,
there is a system of local coordinates z,=(z}, z2, ..., z7).

Put

-1
(paﬂzzaozﬂ

and denote by 7,4 the Jacobian matrix of ¢,z. On U,n Uy, we consider an n x n-matrix-
valued holomorphic 1-form

-1
Aup=Top ATyp

and a scalar-valued holomorphic 1-form
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1 1
Oup = Tracea,;= - dlogdett, .

We write g,, as
Oup=04p;dZ}
and define another n x n-matrix-valued holomorphic 1-form p,;=(piz) by
szpk =0 aﬂkdzi{ .

It is well-known and easy to check that the sets {a,s}, {0,4}, {pap} are 1-cocycles which
define elements of

H\(X, Q'(End(©))), H(X,QY), and H!(X,Q'(End(@))),

respectively.

We say that a complex manifold X of dimension »n>1 admits a holomorphic
conformal structure if the structure group of the tangent bundle reduces as a
holomorphic bundle to the conformal group CO(n, C). Let S=GL(n, C)/C* be the set
of non-singular symmetric matrices factored by the non-zero scalar matrices. We form

a holomorphic fibre bundle
Z= (U U, x S) / ~

on X with the typical fibre S by identifying (z,, s,) € U, x S with (z4, s5)€ Ug x S if and
only if z,=2z; and s;="7,45,T,5. Let m: Z—X be the natural projection. That X admits
a holomorphic conformal structure is equivalent to saying the 7= admits a holomorphic
section. A holomorphic section g of 7 is also called a holomorphic conformal structure
of X.

Now suppose that X admits a holomorphic conformal structure g. Then on each
U,, g is represented by a holomorphic symmetric (2, 0)-form '

9a=Yai jdzidza{
such that
) 9p=Ipads 0N U,nUp,
where f, is a nowhere vanishing holomorphic function defined on U,n U, and
2) det(g,;(x)) #0 for all xeU,.

Let F be the holomorphic line bundle on X formed by the 1-cocycle {f,;}. Then
{g,} can be regarded as an element of I'(X, ¥*(Q') ® F), where &#?*(Q") indicates
the second symmetric power of Q'. Note that two sections {g,} and {h,} in
I'(X, #*(Q") ® F) represent the same conformal structure if and only if on each U,
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there is a nowhere vanishing holomorphic function f, such that g,= f,4,. Put
Go=(9uij) »

where the (i, j)-component is given by g,,;;. By (1), we have

3 prs = SpaTaiiTaprTaps on U,nUy.

It follows easily from (2) and (3) that the first Chern class of X has a following
property.

ProrosiTION 1.1 (cf. [KO]). nc,[F]+2¢,(X)=0.
We put
pas=—Gg ! "PupGp 5
or
P:‘;{k == gt{rp;ﬂrgﬁsk s
where gj* is the (j, k)-component of G, . Then on U,n U;n U,, we have
PEH=Thy PasToy PRy -

This implies that the set {p}} defines a 1-cocycle in Z'(X, ' ® End ©). Now we
shall define a 1-cocyle {c,z} by

Caﬁ':aaﬂ—paﬁ_p:ﬂ_aaﬂl’

which is also an element of Z!(X, Q' ® End ). As we see by the following argument,
the cohomology class represented by {c,z} turns out to be zero.

By means of the representative {g,} of g, we can construct explicitly a 0-cochain
{c,} €Co%%, Q' ® End @) whose coboundary coincides with the 1-cocycle {c,4}, i.e.,

(C)) Cp=Cop+Tap Calup -
The 0-cochain {c,} is called a holomorphic conformal connection of X. We define the

/
Christoffel symbols {

} associated with the symmetric tensor g, on U, by
J)a

{ ! } =_1_glk(agaik+agajk__aguij).

i), 2 °\oz] oz oz

The conformal connection {c,} associated with the conformal structure {g,} is defined
by
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Cy= (quzi) s

I __ .l J
Coi = cau'jdza )

. l 6! (a 6} (a 1, a
Caij =Y 0 T T ) (T 90T .
i)y n lag), n lai), n ab ),

Then by a direct calculation, we have

LemMMaA 1.1.
®) ca{ij=0 s
(6) calzij= calzji s
(M Cp="Cap+Tag CaTap -

REMARK 1.1. In view of (7), we see easily that the cochain {c,} is determined by
g and is independent of the choice of {g,}.

2. Conformal Weyl curvature tensors. From this section, we assume that
n=dim X > 3. Using the notation in Section 1, we shall calculate the conformal Weyl
curvature tensor W, on each U, associated with a holomorphic conformal structure g.
In the proof of Proposition 3.1 in the next section, we shall make use of the following
tensor calculation, which is due to Thomas [T1], [T2]. Put

€ap=CpPapt PapCpt dPap~t Pap A Pap s

€xp=CpPas+ PapCpt+dpig+ s A P s
and
(®) Agp=e,p+eig+Pap A Pig+ Pis A Pap -
Then from (4) and (7), if follows that
) deg+cpneg=Tg5" (dey+cy A C)Tup—Ayg .
Put

F,=dc,+c,nc,.

Then the equation (9) is equivalent to
(10) Fy=14"F,1,5— 445 -

We denote the (j, k)-components of c¢,, F,, e, and 4,5 by ch, Fh, el and 4l
respectively. Put
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ak = akrdzr
Fi,=Fj,dz ndzS
egzﬂk = elgirsdzy A A2,
e:ﬂjk = e:gkrsdzlt} A dZ; )

Al g = Al gipsdzly A 25 .
Then we have

_Ochm Oc
(11) 2F = 62", —~ az,’;’ CoiCom = ChemClt »

. . 00 g1 i 00,4
2e] gim =0/ <6aﬂrc't;km aa,,, + Oopm0 .zpk) o, (Uaﬂrcfua pe , +0aﬁl‘7aﬂk>

2e:iktm = Cﬁrmgﬁsa aps9pik —

(12)

Cérlg Zsaaﬂsg[imk +g IJSraaﬂrg ﬁmsc;kl - g;iraaﬂrgﬁ lsc;km

0
6 ,,,(gﬁ Caprdpuc) — 2z ,(gp O aprdpmi) — gﬂ «pr aﬂmgﬂlk+gﬂ «prOapl9 pmi
By a direct calculation, we have
Lemma 2.1.

. 0 . . . ; .
67"' (gﬁrgmk) - E (gérgpmk) = gﬁrgﬁsz C;km - g,{'g ﬂsmcfm + 9;’9 ﬁkmcfist - gf{gﬂkl c;xm
B B

+ g;rgﬁkmclji'sl
By Lemma 2.1, (12) can be written as

. . dao, . 0
pr
2effum=94'9 ﬂmk<‘7 apsChrl— sl + 0opFapr | — 95 9pii OapsChrm— P
B

O-aﬂr
Am + aaﬂraaﬂm) .
Zp

- gi{gpktcﬁsm .

Put

Tapi
(13) 2eaﬁjk=aaﬁsc;jk—?-l—aaﬁaaﬂk N
B

Then we have

J — 5/ j
€apkim = of €afkm — 5rjneaﬂkl s

e:f{klm =g 5’9 Bmk€aprl — g[grgﬂtkeaﬁrm .
Note that pX A p., =0 (cf. (28)). By (8), it follows that

55
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(14) Al prim = O1€piom— e apia + 95’ pkmCaprt — 5 I pit €aprm — 010 pr G5 O apsG pim
+ 020 uprdp OapsIpic -

We set

(1 5) Aalikl = A:'ﬂklm ’

(16) Fﬂkl=FE’lﬂm’

an ¢ﬂ = g’;F BKl >

(18) ¢aﬂ = g;soaﬁro-aﬂs .

From (14),

(19) Aupir= — (M —2)eupi1— 1195 €aprs + (M — 1)gg11Pop -

On the other hand, contraction of (10) gives

(20) F, Bkl = F, arsT;ﬂkT;pt - Auﬂkl .
Hence we have

(n—2)eupi1+ Gprigp €aprs = Fori— FarsTapiTapt + (1 — 1)gprahap -
Multiplying the above equation by g}', we obtain
(21) 2(n—1)gpepu=Pp— B, fop+n(n—1)d,4 .
Substitution from (21) in (19) gives

n

-2
9pt(Pp— Do frp) + Tgﬂkl Dap -

A= —M—2)e 11—
Bkl ( )eapii 2n—1)

From this equality and (20), it follows that

r s n—2
Fou=FoToptap + (n—2)e,p + 9pi(Pp— Py fop) — Tgﬁkl Gap -

2(n—1)
Thus, since n>3, we have

1
2(n—1)(n—2)

When e, are eliminated from (14) by means of (22), ¢, turns out to cancel out.

Therefore from (10), we see that the quantities

1 1
(22)  eppu= o2 (Fgia— ForsTapiTap) — 9pl(Pp— Dy fop) + 5 9kt Dagp -
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) . 1 . . 1 )
Wéktm =F, éktm + ;‘_‘5 (6/F, Bkm — OnF, ﬂkl) + m gér(gpkmF pri— gpktF Brm)

1

+ m (5;{zgﬁkt - 6ljgﬂkm)¢ﬁ
satisfy
(23) Wl{klm = (T;BI)iiW;rstT;ﬁkt;ﬂlT;ﬂm .
Define an n x n-matrix-valued holomorphic 2-form W, by
24) Wy=(Wj), Wih=Whamdzs ndz]' .
Then (23) is written as
(25) W= W,

ie., {W,} is an element of I'(X, Q> ® End @), which is called the conformal Weyl
curvature tensor associated with the holomorphic conformal structure g. For the
modern discription of the conformal Weyl curvature tensor in terms of Cartan
connections, see Kobayashi [Kb, page 137].

REMARK 2.1. By Remark 1.1, {W,} is defined independently of the choice of
{g,} which represents g.

3. Conformal Weyl forms and their relations with Chern forms. Let X be a
complex manifold of dimension n>3 which admits a holomorphic conformal structure
g. Let #={U,} be an open covering of X and (z},z2,...,z") a system of local
coordinates on U,. The canonical line bundle Ky of X is represented by the 1-cocycle
{K.p}, K,p=(dett,p)~'eI'(U,n U, 0%). On each U,, there is a nowhere vanishing C*
positive-valued function 4, such that

hﬂ=|Kaﬂ|2ha on Uuﬂ Uﬂ .

Suppose that the conformal structure g is represented by a holomorphic symmetric
(2, 0)-form

ga= gaijdzal;dza{
on each U, with the relations
9= J3a9a on U,nU.

Using the metric ,, we put 6,;=(—1/n)(0 log h,/0z}) and define a C*-(1, 0)-form o,
by 0, =0,;dz]. Put p}, = 0,,dz] and define a n x n-matrix-valued C*-(1, 0)-form p, whose
(j, k)-component is pf;. Put p*=—G, *p,G,. Then we have
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= _ -1 — -1
Oup=05—04 Pap=Pp—Tap PuTap> Pap=PFTap PiTap-
Put
ay=Cy+ Pyt pr+0o,l.
Then we have easily
_ -1
aaﬂ - aﬂ - T.'aB aatdﬂ .

Thus 6={a,} gives an affine connection of the tangent bundle @. Let ¢ be an
indeterminate and 4 an »n x n matrix. Define polynomials ¢, ¢4, ..., ¢, by

t n
det(l———f A): Y. @A)
27i k=0
First, the Chern forms ¢,(0), k=0, 1, ..., n, associated with the affine connection 6 is
defined by
a@®=eR), k=0,1,....n,
where R={R,} is the curvature tensor
(26) R,=da,+a,na,

of the affine connection 6. Next, we shall define holomorphic 2k-forms %,(g9), k=
0,1,...,n, associated with the holomorphic conformal structure g by

€9) =W

where W, is the conformal Weyl curvature tensor defined by (24). In view of (25), the
%(g) are indeed defined on the whole X.

THEOREM 3.1. The holomorphic 2k-forms €,(g) are d-closed. The de Rham co-
homology classes [€,(9)], k=0, ..., n, are real and are independent of the choice of
the holomorphic conformal structure g.

This theorem follows as a corollary from the following main result.

THEOREM 3.2. Let X be a complex manifold of dimension n>3 which admits a
holomorphic conformal structure g on X. Then there exists a C *-affine connection 6 on
X which satisfies the equality

Y Gt =(1—a’®) Y. (1—ay**tc,6),
k=0 k=0

or equivalently,

n 1 n+2 n k
S ()= Z<1 J:a) 649).

k=0 1+2at «=o
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where a=(1/n)c,(0) and c,(0) (resp. €,(g)) is the k-th Chern forms associated with 6
(resp. conformal Weyl form associated with g).

DEerFINITION 3.1. The d-closed holomorphic 2k-form %,(g) is called the k-th con-
formal Weyl form associated with the holomorphic conformal structure g.

Note that we obtain the second equality of Theorem 3.2 by replacing ¢ of the first
equality by #/(1+ at). Now we shall prove Theorem 3.2.

LemMMa 3.1.
(27) CaNPa=dCy A py=Cy Ndp,=dc, ANdp,=0,
(28) Pz A Pa=dp3 A py=pz Adp,=dp3 Andp,=0.
PrOOF. Proof of (27):
cal;j N cijadz: AOydz)= GakcijadZ: Adz]=0.

The rest can be proved similarly.

Proof of (28):
P:‘ji A Pik = _gal;aaaadza?gabj A aakdza{= - (giaaaaaak)gabjdzz A dzuj =0.
The rest can be proved similarly. |

The following proposition is useful to simplify our calculation.

PROPOSITION 3.1. Let {g,} be any representative of g. Let o be any point on X.
Choosing a suitable system of local coordinates (z., ..., z%) on a neighborhood U, of o
with 0=(0, ..., 0), we have

(29) 9aif(0)=0yj, 1<i,j<n,
9a...

(30) Jaijy—0, 1<i,j k<n,
ozk

(1) Fyif0)=¢d;;, 1<i,j<n,

where ¢ is a certain constant.

ProoF. Choose any coordinate system z,=(z}, ..., z%) on U, with 0=(0, ..., 0).
Let g, be a representative of g on U,. Write g, in terms of z, as

9a=Yai jdzal;dza{ .

Since the nxn matrix (g,;) is non-singular and symmetric, there is a non-singular
constant matrix 4 =(A4}) such that

gaij(o)A;cAtj:‘;m .

Define a new system of local coordinates zz=(zj, ..., zj) by
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zi=Aizf.
Then we have
Gaijdzedz) =0y dzkdz) .
Thus, if (z}, ..., zj) is replaced by (z;, ..., zj), then the g,; satisfy (29). Suppose that

the g,; satisfy (29) with respect to a system of local coordinates (z;, ..., zy) with o=
(0, ..., 0). Define a new system of local coordinates (zj, ..., z5) by
Jj j 1 J kol
za=23—— Alzgzp ,

2

Akf,={ ,jl} ©).

Then g, is written in terms of (zg, ..., z) as

where

Gaij dza';dza{ = gaij(‘sri - Arikzg)((ssj - Asj,z,’,)dz;dzg .
Put
9prs= gaij(ari - Aszfy’)@sj - Asjlzﬁll) .
Then using (29), we obtain

agﬁrs (0) — agars

32
(32) 0zp oz,

(0)— A5 — 45, .

By

1 (0, 0Gatr 09 st )
Al =— + -
= ( 52! (0) ozt (0) o2 (0

and (32), we have easily

ag/flrs
0z

(0)=0.

Thus, if (z;,...,z]) is replaced by (z;, ..., z5), then the g,; satisfy (29) and (30).
Suppose that the g, satisfy (29) and (30) with respect to a system of local coordinates
(z2, ..., z)) with 0=(0, ..., 0). Define a new system of local coordinates (z, ..., z5) by

A
k1
Z3=12} 3y Ailimzg2g2g

where
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. n (oci,, ocl ., oc}
Aiym= < = (0)+ % (o) + kl( ))
n—2

[ ]
0z, 0z,

By (13), (15), (18) and (19), we have

00,4, 1
Gaﬂj(o) =0 s ¢aﬁ(0) =0 s aZ’l‘“ (0)= __;; Alljk s
B
1 n—2 0,
eaﬂjk(o) =E Alljk s Aaﬂjk(0)= - n Alljk_ 2}" Allmm s

where / and m are summed. Since

n ! dc} M _n de,
A,‘,-,,=n_2( 7O+ "‘()+ ”()) ’k(o),

we have

1 66«1]‘( ( )_ jk acamm (0) s

2 oz 2An—2) 0z!

Aaﬂjk(o) =

where / and m are summed. On the other hand, by (11) and (16), we have

1 ocl;
Fajk(0)=-7 %z J,k( ) -

Therefore it follows from (20) that

1 octm
5}-,‘ 1
2(n—2) 0z,

F B jk(o) =F, jk(o) —Ayp jk(o) = (o),

where / and m are summed. Thus (31) is satisfied for the system of local coordinates
(z, ..., z). Obviously (29) and (30) are also satisfied for this system of coordinates, it
is enough to replace (z,, ..., z;) by (z3, ..., zj). "

Let 0o be any fixed point on X. Suppose that oe U,. We fix a system of local
coordinates (z., ..., z¥) of Proposition 3.1, and omit the subscript « for simplicity. By
the definition of Christoffel symbols, (29) and (30), we have

33) c(0)=0.
Hence the curvature tensor (26) is given at o by

R=03cI+dp*+p* Ap*+dc+pAp*+dp+pAp.
Using Proposition 3.1, at 0 we obtain

34) R=0cI—'dp+'pA'p+dc—pA'p+dp+pArp.
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On the other hand, by (33), the conformal Weyl curvature tensor can be written as
W=dc+H+H*+J at o,
where
2 . . .
H=E(H;), Hi=Fdz' ndz*,

2 . o
H*=73(Hj*l) ,  H¥'=g"F,dz" A g;dz*,

29

J=——"___(JH, Ji=g.dZ*andz'.
(n_l)(n_z)( ]) .} gjk
Hence, using Proposition 3.1, we obtain
(35) W=dc+K at o,
where
. ) . .
K=K,  Ki=-"0-ds'nd!
n_

LEMMA 3.2. dci=—dc] at o.

PrOOF. By (29) and (30), we have

0 { [ }_ 1 im(azgjm *Gim azgjk>
S [ g + -—
ozt | jk 2 0z'0z*  0z'0z7 0z'oz™
=i< azgij azgki . azgjk>
2 \ozloz%  0z'0z7 0z'0z')

Hence we get ,
0 (a 1 « 0% 0 . a 1 d%g
s - aa.’ I im, = 5. aa-.
oz' { aj } 2 ;621621 oz! (g gﬂ‘{ am }) 2n sza:c'?z’(?z'
Therefore

50}1( 1 azgij 0291“' azgjk 5} azgaa 51£ a2gaa 5jk 62gaa
=— + - - L +
ozt 2 ( Lz 2

0z'0z% ' 9z'az1 8z'0z') 2m S 07'0z* 2n G oz'0z 2n G 07'er

_1 g5 0y a1 (ﬁzgm 52%)_ 1 Z(é 0*Gua s 329.,,,)
T2 0z'0z 2n §ozlez¢ 2 \ozlozd az'oz') 2 G\ *ozlezi  *azlazi)’

Hence we obtain
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1 (( 3%y azgjk> 1 ( &g Py )>
=— RS, 95, 29 ) \dz! A dz*
2 ((32’62’ 0z'0z!) n ; *0z0z7 T 9710z Zna

=—dcf .

LEMMA 3.3. ‘dpAdc=dcA K=0 at o.

ProoF. By Lemmas 3.1 and 3.2, (‘dp A dc)=dc A dp=0. The equality dc A K=0
follows from dcj,=dc}, and the equality

.2 ; .
(de A K)i= <b1 dzindci ndz* ndzt .
|
In view of the equations (34) and (35), we have by virtue of Lemmas 3.1 and 3.3 that
(36) - R—/1<1+—’—('d N )><1— ! dc)
27 27iA p=pnep 27iA
x<1+ ! A? ><I—L(d +pA ))
2min PPN 2 (TN )
where
A=1— L do,
27i
and
4 t t
37 I——— W=<I——dc)(1——K>.
27i 27i 27i
We set
1 O
a=—c;(0)=———.
n 2mi
LeMmA 3.4.

1
l—ar

det<I—L_ dp+pn p)) =
27i

Proor. The left hand side is equal to
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t n t q
det| I——— (dp+ = - J
< 2mi (dp p/\p)> Z( 2m’> ‘T‘detQ”

q=0

where J runs through all g-tuples {j,,/,, ..., /,} With j; <j,<:**<j, 1<j;<n, and
Q7 is the ¢ x g-principal minor corresponding to J. Then

;det 0= <(dak —0,0) A dz">q =(do—0o A 0)1=(00)?,

since do =0. Hence the left hand side of 3.4 is equal to

i(——t—ga>q=i(at)"= : .
q=0 4=0

21 1 —at
|
Lemma 3.5.
det<1+2—:”7 (dp—"'p A ‘p)>= oot
Proor. Taking the transpose of the matrix on the left hand side, we have
det(] + 2Lm (‘dp—"p A 'p)) = det(l —% dp+pn p)> .
Hence the lemma follows from Lemma 3.4. ||
Lemma 3.6.
det<I+; PA 'p>= 1.
27
Lemma 3.7.

det(I—L K) ~1.
2mi

The proofs of the two lemmas above are similar to that of Lemma 3.4.
By the four lemmas above, we have from (36) and (37) that

(1—a2s?) c,,(G)s"(l—as)""‘=det<I—L_ dc>,
k=0

2mi

where s=¢/4, and

(38) 3 @ (g)*= det(!— L dc) .
k=0 27i
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Combining these two equalities, we have Theorem 3.2. |
THEOREM 3.3. Let X be a complex manifold of dimension n>3 with a holomorphic

conformal structure g. Then

n
C0s1(9)=0, k=0,1,...,[_].

Proor. This follows immediately from Lemma 3.2 and (38). |
By Theorems 3.2 and 3.3, the conformal Weyl forms are, for example,
Cog)=1,
%1(9)=0,

- —n*+n-2
(gz(g)-——T cf(0)+c,(0),

“Dn=2 _
y(0)=" 3)(;’ ) 30)— "2 ¢, (0)cx(0)+ c5(0) =0,
n n
— 2— — — —
ug)= " 1)(’;n3 Sn+2) CT(0)+%&(9)02(9)— ”n3 1 O)c5(0)+ca(6) -

The following is a consequence of Theorem 3.2.

COROLLARY 3.1. The conformal Weyl forms are d-closed. The de Rham coho-
mology classes of the conformal Weyl forms are real cohomology classes and are
independent of the choice of holomorphic conformal structures.

For n> 3, the following corollary gives a refinement of [KO, Theorem (3.20)].

COROLLARY 3.2. If a compact complex manifold with dimension n>3 admits a
holomorphic conformal structure, then all k-th conformal Weyl forms with 2k >n vanish.
If, further, the manifold is of Kdhler then all k-th, k > 1, conformal Weyl classes are zero.

Proor. All k-th conformal Weyl forms are holomorphic 2k-forms. Therefore if
2k>n then the k-th conformal Weyl form vanishes. Since d-closed holomorphic
n-form represents a real de Rham cohomology class only if it represents a zero class,
we see that the n-th conformal Weyl class also vanishes. If the manifold is of Kdhler
then we can apply Hodge theory. Since the conformal Weyl forms are holomorphic,
they are harmonic. On the other hand, the conformal Weyl classes are real by
Corollary 3.1. Therefore they vanish by Hodge theory. [ |
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