HARMONIC MAPS OF NONORIENTABLE SURFACES TO FOUR-DIMENSIONAL MANIFOLDS

Toru Ishinara*
(Received June 17, 1991, revised June 22, 1992)

Abstract

We construct explicit harmonic maps of the projective plane or a quotient space of a hyperelliptic Riemann surface into the unit 4-sphere.

1. Introduction. Harmonic maps of nonorientable surfaces are not studied so much (see, for example, [EeL1], [EeL3]). The existence problem of harmonic representatives in homotopy classes of maps of nonorientable surfaces was studied in [Ee12]. Equivariant minimal immersions of the projective plane into S^{n} or P^{n} are determined by Ejiri [Eg]. In the present paper, we will try to construct harmonic maps from nonorientable surfaces into 4-dimensional Riemannian manifolds. We deal with a nonorientable surface \mathscr{M} which is a quotient of a Riemann surface M by the equivalent relation $z \sim w$ if and only if $w=I(z)$, where I is an anti-holomorphic involution of M without fixed points. Especially, we will be concerned with the following nonorientable surfaces. We first identify the unit 2-sphere S^{2} with $\boldsymbol{C} \cup\{\infty\}$ and put $M=\boldsymbol{C} \cup\{\infty\}$. The map corresponding to the antipodal map is an involution of M given by $I(z)=-1 / \bar{z}$. The quotient space is the projective plane. Next, let T_{l-1} be a hyperelliptic Riemann surface given by

$$
\begin{equation*}
T_{l-1}=\left\{(z, w) \in(C \cup\{\infty\})^{2} ; w^{2}=\prod_{j=1}^{l}\left(d_{j}-z\right)\left(\bar{d}_{j}+z\right)\right\}, \tag{1.1}
\end{equation*}
$$

where $d_{i} \neq d_{j}$ for any $i \neq j$ and $d_{i} \neq-\bar{d}_{j}$ for any $i \neq j$. Let $I(z, w):=(-\bar{z},-\bar{w})$ for $(z, w) \in T_{l-1}$. Then it is an antiholomorphic involution without fixed points (see [11]). Let $P_{l}:=T_{l-1} /\{I\}$ be the quotient space of T_{l-1} by the equivalence relation given by I. Then P_{l} is a nonorientable surface of genus l. We may regard P_{1} as the projective plane and P_{2} as the Klein bottle. Now we return to the general setting. Let M be a Riemann surface with involution I and $\pi: M \rightarrow \mathscr{M}$ the natural projection of M to the quotient space. A map h of M into a Riemannian manifold N is factored as $h=h \cdot \pi$, where h is a map of \mathscr{M} into N, if and only if $h(I(p))=h(p)$ for each $p \in M$. Let g be a Riemannian metric compatible with the conformal structure of M. We give a natural Riemannian structure g on \mathscr{M} such that π is locally isometric. Evidently the assign-

[^0]ment $h \mapsto h$ is a bijective correspondence between the set of conformal harmonic maps $h: M \rightarrow N$ with $h \cdot I=h$ and the set of harmonic maps $h: \mathscr{M} \rightarrow N$. Hence instead of studying harmonic maps $h: \mathscr{M} \rightarrow N$, we investigate harmonic maps $h: M \rightarrow N$ with $h \cdot I=h$. This method was introduced by Meeks in [M] to study minimal immersions of nonorientable surfaces and developped in [Eg], [O], [I1], [I2].

Let N be a 4-dimensional oriented Riemannian manifold and S its twistor space with almost complex structures J_{1} and J_{2}. In Section 2, we introduce a natural involution I_{S} of S which is anti-holomorphic with respect to J_{1} and J_{2}. For harmonic maps $h: M \rightarrow N$, Eells and Salamon defined the twistor lifts $\tilde{h}: M \rightarrow S$ and gave the fundamental correspondence between them. In Section 2, using their results, we will show the following:

Theorem I. The assignment $h \mapsto \tilde{h}$ is a bijective correspondence between the set of nonconstant conformal harmonic maps $h: M \rightarrow N$ with $h \cdot I=h$ and the set of nonvertical J_{2}-holomorphic curves $\tilde{h}: M \rightarrow S$ with $\tilde{h} \cdot I=I_{S} \cdot \tilde{h}$.

Now, let N be the unit 4-sphere S^{4}. Then its twistor space is the complex projective 3-space $\boldsymbol{C} P^{3}=\left\{t\left[a_{1}, a_{2}, a_{3}, a_{4}\right]\right\}$ (for details, see Section 2 and [AHS], [B], [EeS], [S]). Bryant [B] proved that a conformal map $h: M \rightarrow S^{4}$ is isotropic and harmonic if and only if the twistor lift $\tilde{h}: M \rightarrow \boldsymbol{C P} P^{3}$ is holomorphic and horizontal. Moreover, he showed that for given meromorphic functions f and g on M with g nonconstant,

$$
\begin{equation*}
\tilde{h}(f, g)={ }^{t}\left[1,2 f-g \frac{d f}{d g}, g, \frac{d f}{d g}\right] \tag{1.2}
\end{equation*}
$$

is horizontal and holomorphic, and that any nonconstant horizontal holomorphic map $M \rightarrow \boldsymbol{C} P^{3}$ arises in this manner for unique meromorphic functions f and g on M or else is contained in a line in $\boldsymbol{C} P^{3}$. If we replace f in (1.2) by $f / 2$, we get the original formula of Bryant. In the sequel, we will call f and g the Bryant meromorphic functions for h. In Section 3, we will show:

Theorem II. A conformal isotropic harmonic map $h: M \rightarrow S^{4}$ has the property $h \cdot I=h$ if and only if Bryant meromorphic functions f and g for h satisfy

$$
\begin{align*}
& 2 f g^{*}-\left(g g^{*}+1\right) \frac{d f}{d g}=0 \tag{1.3}\\
& 4 f \cdot f^{*}+\left(1+g \cdot g^{*}\right)^{2}=0 \tag{1.4}
\end{align*}
$$

where we put $f^{*}=\overline{f \cdot I}$ and $g^{*}=\overline{g \cdot I}$.
In Section 4, we will construct harmonic maps h of S^{2} into S^{4} with $h \cdot I=h$. In fact we obtain:

Theorem III. Suppose f and g are the Bryant meromorphic functions corresponding to a harmonic map $h: S^{2} \rightarrow S^{4}$ with $h \cdot I=h$ and with $f \cdot f^{*}$ or $g \cdot g^{*}$ constant. Then
h gives a harmonic map h of the projective plane into S^{4}, if and only if f and g are of the form

$$
\begin{equation*}
f(z)=A k(z)^{m}, \quad g(z)=B k(z)^{n}, \quad k(z)=z^{\lambda} \frac{\prod_{i=1}^{\rho}\left(z-a_{i}\right)}{\prod_{i=1}^{\rho}\left(\bar{a}_{i} z+1\right)}, \tag{1.5}
\end{equation*}
$$

where both $\lambda+\rho$ and m are odd, $m \neq n, m \neq 2 n,(-1)^{n} m(2 n-m)>0$ and

$$
\begin{equation*}
|A|=\left|\frac{n}{2 n-m}\right|, \quad|B|^{2}=(-1)^{n} \frac{m}{2 n-m} \tag{1.6}
\end{equation*}
$$

When $\rho=0, \lambda=1, m=3, n=1, A=-1$ and $B=\sqrt{3}$, the formula (1.5) yields $f=-z^{3}$ and $g=\sqrt{3}$, which are the Bryant meromorphic functions corresponding to the Veronese surface in S^{4} (see [EeS, §9]). We cannot interpret the condition that $f \cdot f^{*}$ or $g \cdot g^{*}$ is constant. Neither can we determine the general Bryant meromorphic functions which satisfy the relations (1.3) and (1.4). We are concerned with harmonic maps of a non-orientable surface P_{l} into S^{4} in Section 5.

Theorem IV. Suppose f and g are the Bryant meromorpic functions corresponding to a harmonic map $h: T_{l-1} \rightarrow S^{4}$ with $h \cdot I=h$ and with $f \cdot f^{*}$ or $g \cdot g^{*}$ constant. Then h gives a harmonic map h of a nonorientable surface P_{l} into S^{4} if and only if there exists a meromorphic function k on T_{l-1} such that

$$
\begin{equation*}
f=A k^{m}, \quad g=B k^{n} \tag{1.7}
\end{equation*}
$$

where m and n are integers, m is odd, $(-1)^{n} m(2 n-m)>0$ and either (1) k is given by

$$
k=\frac{\prod_{i=1}^{\mu}\left(z-a_{i}\right) w}{\prod_{i=1}^{\mu}\left(z+\bar{a}_{i}\right) \prod_{j=1}^{l}\left(z-e_{j}\right)}, \quad e_{j}=d_{j}(1 \leqq j \leqq l) \quad \text { or } \quad e_{j}=-\bar{d}_{j}(1 \leqq j \leqq l)
$$

and $|A|=|m /(2 n-m)|,|B|^{2}=(-1)^{n} m /(2 n-m)$ or (2) k is given by

$$
k=\frac{\prod_{i=1}^{\mu}\left(z-a_{i}\right)\left(D \prod_{j=1}^{\delta}\left(z-c_{j}\right)+\prod_{i=1}^{v}\left(z-b_{i}\right) w\right)}{\prod_{i=1}^{\mu}\left(z+\bar{a}_{i}\right) \prod_{j=1}^{\lambda}\left(z-e_{j}\right)}
$$

with

$$
(-1)^{\delta}|D|^{2} \prod_{j=1}^{\delta}\left(z-c_{j}\right)^{2}-(-1)^{v} \prod_{j=1}^{v}\left(z-b_{j}\right)^{2}=(-1)^{\lambda} c \prod_{j=1}^{\lambda}\left(z-e_{j}\right)\left(z+\bar{e}_{j}\right),
$$

$$
\prod_{i=1}^{\delta}\left(z-c_{i}\right)=\prod_{i=1}^{\delta}\left(z+\bar{c}_{i}\right), \quad \prod_{i=1}^{v}\left(z-b_{i}\right)=\prod_{i=1}^{v}\left(z+\bar{b}_{i}\right), \quad \bar{D}=(-1)^{\delta+v} D,
$$

and $|A|^{2}=c^{-m}(n /(2 n-m))^{2},|B|^{2}=c^{-n} m /(2 n-m), c$ is a negative real number.
Here $a_{1}, \ldots, a_{\mu}, b_{1}, \ldots, b_{\delta}, c_{1}, \ldots, c_{\lambda}, e_{1}, \ldots, e_{l}$ are complex numbers and d_{1}, \ldots, d_{l} are as in the definition of P_{l} as the quotient of T_{l-1}.

Acknowledgment. The author would like to thank the referee for correcting many mistakes in the previous version of this paper and providing valuable comments.
2. An involution of a twistor space. Let M be a Riemann surface with an antiholomorphic involution I without fixed points. Let N be a 4-dimensional oriented Riemannian manifold with a Riemannian metric g. Let $\pi: S O(N) \rightarrow N$ be the $S O(4)$ principal bundle of oriented orthonormal frames over N, that is,

$$
S O(N)=\left\{\left(x, e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)\right), x \in N\right\} .
$$

Let $\pi_{2}: S \rightarrow N$ be the orthogonal twistor bundle over N, where
$S=\{(x, J), x \in N, J$ is an orientation compatible almost complex structure of $T_{x} N$ with $\left.g(J X, J Y)=g(X, Y), X, Y \in T_{X} N\right\}$.
We also consider the projection

$$
\pi_{1}: S O(N) \rightarrow S, \quad\left(x, e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)\right) \mapsto\left(x, J_{\mathrm{e}}\right),
$$

where $J_{e}\left(e_{1}\right)=e_{2}$ and $J_{e}\left(e_{3}\right)=e_{4}$. Let $\Theta=\left(\Theta^{\alpha}\right)$ be the R^{4}-valued canonical form on $S O(N)$. We have the structure equation,

$$
\begin{equation*}
d \Theta^{\alpha}=-\sum \Omega_{\beta}^{\alpha} \wedge \Theta^{\beta} \tag{2.1}
\end{equation*}
$$

where $\Omega=\left(\Omega_{\beta}^{\alpha}\right)$ is the Levi-Civita connection form on $S O(N)$.
Now we define an involution of S by

$$
I_{S}((x, J)):=(x, \bar{J}),
$$

where for $J\left(e_{1}\right)=e_{2}, J\left(e_{3}\right)=e_{4}, \bar{J}$ is defined by $\bar{J}\left(e_{1}\right)=-e_{2}, \bar{J}\left(e_{3}\right)=-e_{4}$. The map \tilde{I}_{s} of $S O(N)$ into itself given by

$$
\tilde{I}_{S}\left(\left(x, e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)\right)\right)=\left(x, e=\left(e_{1},-e_{2}, e_{3},-e_{4}\right)\right)
$$

is also an involution satisfying $\pi_{1} \cdot \tilde{I}_{\mathrm{S}}=I_{\mathrm{S}} \cdot \pi_{1}$. By definition, we get

$$
\begin{equation*}
\tilde{I}_{S}^{*}\left(\Theta^{1}\right)=\Theta^{1}, \quad \tilde{I}_{S}^{*}\left(\Theta^{2}\right)=-\Theta^{2}, \quad \tilde{I}_{S}^{*}\left(\Theta^{3}\right)=\Theta^{3}, \quad \tilde{I}_{S}^{*}\left(\Theta^{4}\right)=-\Theta^{4} . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) it follows that

$$
\begin{align*}
& \tilde{I}_{s}^{*}\left(\Omega_{2}^{1}\right)=-\Omega_{2}^{1}, \quad \tilde{I}_{s}^{*}\left(\Omega_{3}^{1}\right)=\Omega_{3}^{1}, \quad \tilde{I}_{s}^{*}\left(\Omega_{4}^{1}\right)=-\Omega_{4}^{1} \tag{2.3}\\
& \tilde{I}_{s}^{*}\left(\Omega_{3}^{2}\right)=-\Omega_{3}^{2}, \quad \tilde{I}_{s}^{*}\left(\Omega_{4}^{2}\right)=\Omega_{4}^{2}, \quad \tilde{I}_{s}^{*}\left(\Omega_{4}^{3}\right)=-\Omega_{4}^{3}
\end{align*}
$$

Put $\varepsilon_{1}=1$ and $\varepsilon_{2}=-1$. Let $e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be a local oriented orthonormal frame. For each j ($j=1$ or 2), we obtain the almost complex structure J_{j} on S by assuming that the 1 -forms on S which are pulled backs of

$$
\Theta^{1}+i \Theta^{2}, \quad \Theta^{3}+i \Theta^{4}, \quad \frac{1}{2}\left(\Omega_{3}^{1}-\Omega_{4}^{2}+\varepsilon_{j} i\left(\Omega_{3}^{2}+\Omega_{4}^{1}\right)\right)
$$

following by a local section of $\pi_{1}: S O(N) \rightarrow S$ give a local coframe of (1,0)-forms on S (see, [Y]). Using $\pi_{1} \cdot \tilde{I}_{S}=I_{S} \cdot \pi_{1}$, we obtain the following by (2.2) and (2.3):

Proposition 2.1. The involution I_{S} of S is anti-holomorphic with respect to J_{1} and to J_{2}.

Let $h: M \rightarrow N$ be a conformal harmonic map. Then h has at most isolated singular points. Hence we can find a Riemannian metric $d s_{M}^{2}$ on M such that $h^{*}\left(d s_{N}^{2}\right)=d s_{M}^{2}$ except at the singular points. Let $e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be a Darboux frame along h, that is, a local oriented orthonormal frame in N such that ($e_{1} \cdot h, e_{2} \cdot h$) is a local oriented orthonormal frame in ($M, d s_{M}^{2}$) and $e_{3} \cdot h, e_{4} \cdot h$ are normal to M. Hence we have

$$
\begin{equation*}
h^{*} e^{*} \Theta^{3}=0, \quad h^{*} e^{*} \Theta^{4}=0 \tag{2.4}
\end{equation*}
$$

We assume that the Darboux frame e is compatible with the almost complex structure. There is a local 1-form ϕ such that

$$
d s_{M}^{2}=\phi \bar{\phi} \quad \text { and } \quad \phi=h^{*} e^{*} \theta^{1}+i h^{*} e^{*} \Theta^{2}
$$

except at the singular points. The conformality of h implies that ϕ is a local (1,0)-form on M.

The twistor lift of h is a map $\tilde{h}: M \rightarrow S$ given by

$$
\tilde{h}((x, e))=\pi_{1}((x, e)),
$$

where $e=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is a Darboux frame along h.
Now we assume that the map f satisfies $h \cdot I=h$. Since we have $h *\left(d s_{N}^{2}\right)=d s_{M}^{2}$ at nonsingular points, the involution I is an isometry of $\left(M, d s_{M}^{2}\right)$ into itself and $I^{*}\left(\theta^{1}+i \theta^{2}\right)=\theta^{1}-i \theta^{2}$ holds. Hence we have

$$
\tilde{h}(I(x))=\pi_{1}\left(x,\left(e_{1},-e_{2}, e_{3},-e_{4}\right)\right)=I_{S} \tilde{h}(x) .
$$

Conversely, the relation $\tilde{h} \cdot I=I_{S} \cdot \tilde{h}$ evidently implies $h \cdot I=f$. By the fundamental theorem of Eells and Salamon [EeS], we obtain Theorem I.

It is also shown in [EeS] that a conformal map $h: M \rightarrow N$ is isotropic if and only if \tilde{h} is J_{1} holomorphic.
3. Harmonic maps into S^{4}. In the sequel, we assume that N is the unit 4 -sphere S^{4}. The correspondence $\left(x,\left(e_{1}, e_{2}, e_{3}, e_{4}\right)\right) \mapsto\left(x, e_{1}, e_{2}, e_{3}, e_{4}\right)$ determines an isomorphism $S O(N) \rightarrow S O(5)$. The unit sphere S^{4} is isomorphic to the quaternionic projective space $\boldsymbol{H} \boldsymbol{P}^{1}$. We have the following commutative diagram

where Φ^{*} is a double covering of $S p(2)$ to $S O(5), \Phi, \Phi_{*}$ are diffeomorphisms and the natural complex structure of $C P^{3}$ corresponds to the almost complex structure J_{1} of the twistor space S. For more details see, for example, [AHS], [EeS], [S].

We identify \boldsymbol{H}^{2} with \boldsymbol{C}^{4} by the correspondence $\left(z_{1}+j z_{2}, z_{3}+j z_{4}\right) \mapsto\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. For a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p(2)
$$

with $a=a_{1}+j a_{2}$ and $c=c_{1}+j c_{2}$, the projection π_{1}^{\prime} in the above diagram maps A to ${ }^{t}\left[a_{1}, a_{2}, c_{1}, c_{2}\right] \in \boldsymbol{C P} P^{3}$, where ${ }^{t}\left[a_{1}, a_{2}, c_{1}, c_{2}\right]$ is the complex line containing ${ }^{t}\left(a_{1}, a_{2}, c_{1}\right.$, c_{2}). We also have $\pi_{2}^{\prime} \pi_{1}^{\prime}(A)=^{t}[a, c] \in \boldsymbol{H} \boldsymbol{P}^{1}$.

Put $U:=C^{4} \cong \boldsymbol{H}^{2}$. Then U has a unitary base of the form $\left\{u^{1}, u^{2}=u^{1} j, u^{3}, u^{4}=u^{3} j\right\}$. Set

$$
\begin{aligned}
& v^{0}=u^{1} \wedge u^{2}+u^{3} \wedge u^{4}, \quad v^{1}=u^{1} \wedge u^{2}-u^{3} \wedge u^{4}, \quad v^{2}=u^{1} \wedge u^{3}+u^{2} \wedge u^{4} \\
& v^{3}=i\left(u^{1} \wedge u^{3}-u^{2} \wedge u^{4}\right), \quad v^{4}=u^{1} \wedge u^{4}-u^{2} \wedge u^{3}, \quad v^{5}=i\left(u^{1} \wedge u^{4}+u^{2} \wedge u^{3}\right) .
\end{aligned}
$$

Then one checks directly that $\left\{v^{0}, v^{1}, v^{2}, v^{3}, v^{4}, v^{5}\right\}$ is a unitary base of $\bigwedge^{2} U$ and v^{0} is invariant under $S p(2)$. Let $\bigwedge_{0}^{2} U$ be the subspace spanned by $\left\{v^{1}, v^{2}, v^{3}, v^{4}, v^{5}\right\}$. For $A \in S p(2)$, put

$$
\begin{equation*}
A v^{i}=\sum_{j=1}^{5} A_{i j} v_{j}, \quad j=1, \ldots, 5 \tag{3.1}
\end{equation*}
$$

Then $\left(A_{i j}\right) \in S O(5)$, and the homomorphism $\Phi^{*}: S p(2) \rightarrow S O(5)$ is given by $\Phi^{*}(A)=\left(A_{i j}\right)$. Since $\Phi_{*}\left(\pi_{2}^{\prime} \pi_{1}^{\prime}(A)\right)=\left(A_{1 j}\right) \in S^{4}$, we have

$$
\begin{gather*}
\Phi_{*}(t[a, c])={ }^{t}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \tag{3.2}\\
x_{1}=|a|^{2}-|c|^{2}, \quad x_{2}=2(a \bar{c})_{3}, \quad x_{3}=2(a \bar{c})_{4}, \quad x_{4}=2(a \bar{c})_{1}, \quad x_{5}=2(a \bar{c})_{2}
\end{gather*}
$$

where $|a|^{2}+|c|^{2}=1, \bar{c}=\bar{c}_{1}-j c_{2}$ and $a \bar{c}=(a \bar{c})_{1}+(a \bar{c})_{2} i+(a \bar{c})_{3} j+(a \bar{c})_{4} k$.
Since we have $\left(a_{1}+j a_{2}, c_{1}+j c_{2}\right) j=\left(-\bar{a}_{2}+j \bar{a}_{1},-\bar{c}_{2}+j \bar{c}_{1}\right)$, we define an involution I^{\prime} of $C P^{3}$ by

$$
\begin{equation*}
I^{\prime}\left(\left[a_{1}, a_{2}, c_{1}, c_{2}\right]\right):=\left[-\bar{a}_{2}, \bar{a}_{1},-\bar{c}_{2}, \bar{c}_{1}\right] . \tag{3.3}
\end{equation*}
$$

Then it corresponds to the involution I_{S} of S. In fact we can show:
Lemma 3.1. The involution I^{\prime} is anti-holomorphic with respect to the natural complex structure and satisfies $I_{S} \Phi=\Phi I^{\prime}$.

Proof. The anti-holomorphy of I^{\prime} is evident by the definition of I^{\prime}. Since $I^{\prime}\left(u^{1}\right)=$ $u^{2}, I^{\prime}\left(u^{2}\right)=-u^{1}, I^{\prime}\left(u^{3}\right)=u^{4}, I^{\prime}\left(u^{3}\right)=-u^{4}$, we get $I^{\prime}\left(v^{1}\right)=v^{1}, I^{\prime}\left(v^{2}\right)=v^{2}, I^{\prime}\left(v^{3}\right)=-v^{3}$, $I^{\prime}\left(v^{4}\right)=v^{4}, I^{\prime}\left(v^{5}\right)=-v^{5}$. This implies the equality $I_{S} \Phi=\Phi I^{\prime}$.
q.e.d.

The horizontal distribution H on $\boldsymbol{C} P^{3}$ is defined to be the othogonal complement to the fiber of $\pi_{2}^{\prime}: \boldsymbol{C} \boldsymbol{P}^{3} \rightarrow \boldsymbol{H} P^{1}$ with respect to the Fubini-Study metric. A map $\tilde{h}: M \rightarrow \boldsymbol{C} \boldsymbol{P}^{3}$ is said to be horizontal if it is tangent to H. A horizontal map \tilde{h} is J_{1}-holomorphic if and only if J_{2}-holomorphic. Hence a conformal map $h: M \rightarrow S^{4}$ is isotropic and harmonic if and only if the twistor lift $\tilde{h}: M \rightarrow C P^{3}$ is holomorphic and horizontal (cf. [B]). Using Bryant's formula (1.2) and Lemma 3.1 we see that f and g are the Bryant meromorphic functions corresponding to a harmonic map h with $h \cdot I=h$ if and only if f and g satisfy

$$
\begin{equation*}
g g^{*}+\frac{d f}{d g} \frac{d f^{*}}{d g^{*}}=0, \quad 2 f g^{*}-\left(g g^{*}+1\right) \frac{d f}{d g}=0 . \tag{3.4}
\end{equation*}
$$

From the second equation, we get

$$
2 f^{*} g-\left(g g^{*}+1\right) \frac{d f^{*}}{d g^{*}}=0
$$

Thus the conditions (3.4) are equivalent to (1.3) and (1.4), and we get Theorem II.
4. Harmonic maps of \boldsymbol{S}^{2} into \boldsymbol{S}^{4}. In this section, we will consider maps of S^{2} to S^{4}. We identify S^{2} with $C \cup\{\infty\}$ and consider its involution I as given in Section 1 . Let $h: S^{2} \rightarrow S^{4}$ be a full conformal isotropic harmonic map with $h \cdot I=h$. We look for the Bryant meromrphic functions f, g under the condition $g g^{*}$ constant. From (1.4), it follows that this conditon holds if and only if $f f^{*}$ is also constant, and in this case, we can put

$$
\begin{equation*}
f(z)=A z^{\alpha} \frac{\prod_{i=1}^{\mu}\left(z-a_{i}\right)}{\prod_{j=1}^{\mu}\left(\bar{a}_{j} z+1\right)}, \quad g(z)=B z^{\beta} \frac{\prod_{i=1}^{v}\left(z-b_{i}\right)}{\prod_{j=1}^{v}\left(\bar{b}_{j} z+1\right)}, \tag{4.1}
\end{equation*}
$$

where $a_{i} \neq 0, b_{j} \neq 0$. It may happen that $a_{i}=a_{j}$ for $i \neq j$. Then $f f^{*}=(-1)^{\alpha+\mu}|A|^{2}$ and $g g^{*}=(-1)^{\beta+v}|B|^{2}$. Since $4 f f^{*}+\left(1+g g^{*}\right)^{2}=0$, we see that $\alpha+\mu$ is odd and

$$
\begin{equation*}
4|A|^{2}=\left(1+(-1)^{\beta+v}|B|^{2}\right)^{2} . \tag{4.2}
\end{equation*}
$$

Since we have $g^{*}=(-1)^{\beta+v}|B|^{2} / g$, by (1.3) we get

$$
2(-1)^{\beta+v}|B|^{2} \frac{g^{\prime}}{g}=\left(1+(-1)^{\beta+v}|B|^{2}\right) \frac{f^{\prime}}{f}
$$

where $g^{\prime}=d g / d z, f^{\prime}=d f / d z$. Hence we obtain, for some constant C

$$
2(-1)^{\beta+v}|B|^{2} \log g=\left(1+(-1)^{\beta+v}|B|^{2}\right) \log f+C .
$$

Substituting (4.1) into the above equation and comparing functions $\log z$, $\log \left(z-a_{\mathrm{i}}\right), \log \left(\bar{a}_{j} z+1\right), \log \left(z-b_{k}\right)$ and $\log \left(\bar{b}_{l} z+1\right)$ of both sides of the equation, we find that there exists a meromorphic function

$$
k(z)=z^{\lambda} \frac{\prod_{i=1}^{\rho}\left(z-c_{i}\right)}{\prod_{j=1}^{\rho}\left(e_{j} z+1\right)}
$$

on C such that $f=A k(z)^{m}, g=B k(z)^{n}$, where $(2 n-m)(-1)^{n(\lambda+\rho)}|B|^{2}=m$. Since $\alpha+\mu=$ $m(\lambda+\rho)$ is odd, both m and $\lambda+\rho$ are odd. Thus, $2 n \neq m$ and $|B|^{2}=(-1)^{n} m /(2 n-m)$. From (4.2), it follows $|A|^{2}=(n /(2 n-m))^{2}$. Since $f f^{*}$ is constant, $k k^{*}$ is constant. Hence we may assume $e_{j}=\bar{c}_{j}$.

Now, we get the corresponding holomorphic map $\tilde{h}(f, g)$ of $C \cup\{\infty\}$ to S^{4} for the Bryant meromorphic functions given by (1.5) as follows:

$$
\begin{equation*}
\tilde{h}(f, g)={ }^{t}\left[n B,(2 n-m) A B k^{m}, n B^{2} k^{n}, n A k^{m-n}\right], \quad k=z^{\lambda} \frac{\prod_{i=1}^{\rho}\left(z-a_{i}\right)}{\prod_{j=1}^{\rho}\left(\bar{a}_{j} z+1\right)} \tag{4.3}
\end{equation*}
$$

If $m=n$, this is not full. Thus we obtain Theorem III.
Notice that the holomorphic curves given by (4.3) is contained in the quadric $m X_{1} X_{2}-(2 n-m) X_{3} X_{4}=0$ in $C P^{3}=\left\{t\left[X_{1}, X_{2}, X_{3}, X_{4}\right]\right\}$. Using (3.2), we obtain the corresponding conformal isotropic harmonic maps.

Theorem 4.1. Let $h: S^{2} \rightarrow S^{4}$ be given by $h(z)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$

$$
\begin{aligned}
& x_{1}=\frac{m n^{2}\left((-1)^{n}(2 n-m)\left(1+|k|^{2 m}\right)-m\left(|k|^{2 n}+|k|^{2 m-2 n}\right)\right)}{(2 n-m)^{2} t}, \\
& x_{2}+i x_{3}=\frac{2 n m\left((-1)^{n}|k|^{2 n}-1\right) A \bar{B} k^{m-n}}{t},
\end{aligned}
$$

$$
\begin{aligned}
& x_{4}+i x_{5}=\frac{2 m n^{2}\left((-1)^{n}|k|^{2 n}+|k|^{2 m}\right) \bar{B} k^{-n}}{(2 n-m) t}, \\
& k=z^{\lambda} \frac{\prod_{i=1}^{\rho}\left(z-a_{i}\right)}{\prod_{j=1}^{\rho}\left(\bar{a}_{j} z+1\right)} \\
& t=\frac{m n^{2}\left((-1)^{n}(2 n-m)\left(1+|k|^{2 m}\right)+m\left(|k|^{2 n}+|k|^{2 m-2 n}\right)\right)}{(2 n-m)^{2}},
\end{aligned}
$$

where $\lambda+\rho$ and m are odd, $m \neq 2 n, m \neq n,(-1)^{n} m(2 n-m)>0,|A|=|n /(2 n-m)|,|B|^{2}=$ $(-1)^{n} m /(2 n-m)$. Then h is a conformal isotropic harmonic map with $h \cdot I=h$. Hence h gives a harmonic map of P^{2} to S^{4}.

Unfortunately, in the present paper we cannot determine the general forms of Bryant meromorphic functions on S^{2}. There seem to exist a lot of Bryant meromorphic functions with $g g^{*}$ nonconstant. We here give only some examples. Put

$$
f=A z \frac{(z-a)^{2}}{(z-c)^{2}}, \quad g=B z^{\beta} \frac{(z-b)}{(z-c)},
$$

where

$$
a=x_{1} e, \quad b=x_{2} e, \quad c=x_{3} e, \quad|e|=1, \quad|B|=1 .
$$

Then if one of the following conditions (4.4) and (4.5) is satisfied, f and g are the Bryant meromorphic functions with $g g^{*}$ nonconstant.

$$
\begin{align*}
& \beta=1, \quad|A|=1+\sqrt{3}, \quad x_{1}=\sqrt{(7 \pm 3 \sqrt{3})} / 2, \quad x_{2}= \pm|A| x_{1}, \quad x_{3}=|A| x_{1} . \tag{4.4}\\
& \beta=-2, \quad|A|=(\pm 5+3 \sqrt{21}) / 41, \quad x_{1}=\sqrt{82} /(29 \pm \sqrt{21}), \tag{4.5}\\
& \quad x_{2}=-|A| x_{1} / 2, \quad x_{3}= \pm 5|A| x_{1} / 2 .
\end{align*}
$$

5. Harmonic maps of nonorientable surfaces of genus l into S^{4}. Let T_{l-1} be a hyperelliptic Riemann surface with an involution I as given in Section 1. Let f and g be the Bryant meromorphic functions given by

$$
f=\frac{P_{1}+Q_{1} w}{R_{1}}, \quad g=\frac{P_{2}+Q_{2} w}{R_{2}},
$$

where P_{i}, Q_{i}, R_{i} are polynomial functions of a variable z and have no common factor for each $i=1$ or 2 (see, for example, [SP, Chapter 10]). Moreover, we can set for $i=1,2$

$$
P_{i}=A_{i} \prod_{j=1}^{\mu_{i}}\left(z-a_{i j}\right), \quad Q_{i}=B_{i} \prod_{j=1}^{v_{i}}\left(z-b_{i j}\right), \quad R_{i}=\prod_{j=1}^{\lambda_{i}}\left(z-e_{i j}\right)
$$

We investigate which f and g satisfy the equations (1.3) and (1.4). It is very difficult to determine such f and g in general. Hence we impose the same condition as in Section 4, that is, $f f^{*}$ and $g g^{*}$ are constant. In this section, for a polynomial function $P(z)$ of a variable z, we put $P^{*}(z)=\overline{P(-\bar{z})}$. Put

$$
\begin{equation*}
f f^{*}=c_{1}, \quad g g^{*}=c_{2} \tag{5.1}
\end{equation*}
$$

where c_{1} and c_{2} are constants. These imply $P_{i}^{*} Q_{i}=P_{i} Q_{i}^{*}, i=1,2$ and

$$
\begin{equation*}
P_{i} P_{i}^{*}-Q_{i} Q_{i}^{*} w^{2}=c_{i} R_{i} R_{i}^{*}, \quad i=1,2 \tag{5.2}
\end{equation*}
$$

Now, from (1.3) and (5.1), we get $2 c_{2} d g / g=\left(1+c_{2}\right) d f / f$. Hence we obtain

$$
\begin{equation*}
2 c_{2} \log \left(\frac{P_{2}+Q_{2} w}{R_{2}}\right)=\left(1+c_{2}\right)\left(\log \left(\frac{P_{1}+Q_{1} w}{R_{1}}\right)+C\right) \tag{5.3}
\end{equation*}
$$

This implies that $Q_{1}=0$ if and only if $Q_{2}=0$.
Lemma 5.1. If f and g satisfy (5.1), c_{1} and c_{2} are real. Moreover, Q_{1} and Q_{2} do not vanish.

Proof. Relacing z by $-\bar{z}$ and taking the complex conjugates of both sides, from the equation (5.2), we get

$$
P_{i} P_{i}^{*}-Q_{i} Q_{i}^{*} w^{2}=\bar{c}_{i} R_{i} R_{i}^{*}, \quad i=1,2 .
$$

Hence c_{1} and c_{2} are real.
If Q_{1} vanishes, we have

$$
c_{1}=f f^{*}=(-1)^{\mu_{1}-\lambda_{1}}\left|A_{1}\right|^{\frac{\prod_{i=1}}{\mu_{1}}\left(z-a_{1 i}\right)\left(z+\bar{a}_{1 i}\right)} \frac{\prod_{j=1}^{\lambda_{1}}\left(z-e_{1 j}\right)\left(z+\bar{e}_{1 j}\right)}{} .
$$

Hence, we get $\mu_{1}=\lambda_{1}, \prod_{i=1}^{\mu_{1}}\left(z-a_{1 i}\right)=\prod_{i=1}^{\mu_{1}}\left(z+\bar{e}_{1 i}\right)$ and $\prod_{i=1}^{\mu_{1}}\left(z-e_{1 i}\right)=\prod_{i=1}^{\mu_{1}}\left(z+\bar{a}_{1 i}\right)$. Thus, we have $c_{1}=\left|A_{1}\right|^{2}$. Since c_{2} is real, this contradicts (1.4). q.e.d.

From (5.3), it follows that $P_{1}=0$ if and only if $P_{2}=0$. The equation (5.3) implies that the irreducible factors of the polynomial $P_{1}+Q_{1} \omega$ (resp. R_{1}) of variables z and ω (resp. a variable z) coincide with those of the polynomial $P_{2}+Q_{2} \omega$ (resp. R_{2}). Hence, there exists a meromorphic function

$$
k=\frac{P+Q w}{R}
$$

such that

$$
f=A k^{m}, \quad g=B k^{n}
$$

were $P=D \prod_{j=1}^{\mu}\left(z-a_{j}\right), Q=\prod_{j=1}^{v}\left(z-b_{j}\right)$ and $R=\prod_{j=1}^{\lambda}\left(z-e_{j}\right)$ have no common factor, and the integers m and n satisfy

$$
\begin{equation*}
2 c_{2} n=\left(1+c_{2}\right) m \tag{5.4}
\end{equation*}
$$

From (5.1), it follows that $k k^{*}$ is also constant. Hence we have

$$
\begin{equation*}
c_{1}=|A|^{2} c^{m}, \quad c_{2}=|B|^{2} c^{n}, \quad c=k k^{*} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{*} Q=P Q^{*}, \quad P P^{*}-Q Q^{*} w^{2}=c R R^{*} \tag{5.6}
\end{equation*}
$$

If $Q=0$, then $Q_{1}=Q_{2}=0$. Hence we have $Q \neq 0$. Since $c_{1}<0$, we see that $c<0$ and that m is odd. Hence $P=0$ if and only if $P_{1}=0$ and $P_{2}=0$.

We first assume $P=0$. Then, from (5.6), we get

$$
-(-1)^{v+l} \prod_{j=1}^{v}\left(z-b_{j}\right)\left(z+\bar{b}_{j}\right) \prod_{j=1}^{l}\left(z-d_{j}\right)\left(z+\bar{d}_{j}\right)=(-1)^{\lambda} c \prod_{j=1}^{\lambda}\left(z-e_{j}\right)\left(z+\bar{e}_{j}\right) .
$$

Hence, we have $\lambda=v+l$ and $c=-1$. We may put $e_{j}=-\bar{b}_{j}(1 \leqq j \leqq v)$, and $e_{j}=d_{j-v}$ $(v+1 \leqq j \leqq \lambda)$ or $e_{j}=-\bar{d}_{j-v}(v+1 \leqq j \leqq \lambda)$. Thus we can set

$$
k=\frac{\prod_{i=1}^{v}\left(z-b_{j}\right) w}{\prod_{i=1}^{v}\left(z+\bar{b}_{i}\right) \prod_{j=1}^{l}\left(z-e_{j}\right)}, \quad e_{j}=d_{j}(1 \leqq j \leqq l) \quad \text { or } \quad e_{j}=-\bar{d}_{j}(1 \leqq j \leqq l)
$$

Using (5.4), (5.5) and $4 c_{1}+\left(1+c_{2}\right)^{2}=0$, we obtain $|B|^{2}=(-1)^{n} m /(2 n-m)$ and $|A|=$ $|n /(2 n-m)|$.

Next, we assume that $P \neq 0$. From (5.6), it follows that

$$
\begin{gather*}
(-1)^{v} D \prod_{j=1}^{\mu}\left(z-a_{j}\right) \prod_{j=1}^{v}\left(z-\bar{b}_{j}\right)=(-1)^{\mu} \bar{D} \prod_{j=1}^{\mu}\left(z+\bar{a}_{j}\right) \prod_{j=1}^{v}\left(z-b_{j}\right) . \tag{5.7}\\
(-1)^{\mu}|D|^{2} \prod_{j=1}^{\mu}\left(z-a_{j}\right)\left(z+\bar{a}_{j}\right)-(-1)^{v} \prod_{j=1}^{v}\left(z-b_{j}\right)\left(z+\bar{b}_{j}\right)=(-1)^{\lambda} c \prod_{j=1}^{\lambda}\left(z-e_{j}\right)\left(z+\bar{e}_{j}\right) . \tag{5.8}
\end{gather*}
$$

From (5.7), it follows that D is real if $\mu+v$ is even and pure imaginary otherwise. Moreover, we can set

$$
P=D \prod^{\mu}\left(z-a_{i}\right), \quad Q=\prod_{i=\mu_{1}+1}^{\mu_{2}}\left(z-a_{i}\right) \prod_{j=1}^{v_{1}}\left(z-b_{j}\right), \quad R=\prod_{i=\mu_{1}+1}^{\mu_{2}}\left(z+\bar{a}_{i}\right) \prod_{j=1}^{\lambda_{1}}\left(z-e_{j}\right),
$$

where $\mu=\mu_{1}+\mu_{2}, v=v_{1}+\mu_{2}$ and $\lambda=\lambda_{1}+\mu_{2}$. Thus (5.8) gives

$$
(-1)^{\mu_{1}}|D|^{2} \prod_{j=1}^{\mu_{1}}\left(z-a_{j}\right)^{2}-(-1)^{v_{1}} \prod_{j=1}^{\nu_{1}}\left(z-b_{j}\right)^{2}=(-1)^{\lambda_{1}} c \prod_{j=1}^{\lambda_{1}}\left(z-e_{j}\right)\left(z+\bar{e}_{j}\right)
$$

$$
\prod_{1}^{\mu_{1}}\left(z-a_{i}\right)=\prod^{\mu_{1}}\left(z+\bar{a}_{i}\right), \quad \prod^{v_{1}}\left(z-b_{i}\right)=\prod_{1}^{v_{1}}\left(z+\bar{b}_{i}\right) .
$$

From (5.4) and (5.5), we get $|B|^{2}=c^{-n} m /(2 n-m)$ and $|A|^{2}=c^{-m}(n /(2 n-m))^{2}$. Summing up we obtain Theorem IV.

References

[AHS] M. F. Atiyah, N. J. Hithin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London. Ser. A 362 (1978), 425-461.
[B] R. L. Bryant, Conformal and minimal immersions of compact surfaces into the 4 -sphere, J. Differential Geom. 17 (1982), 455-473.
[EeL1] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
[EeL2] J. Eells and L. Lemaire, On the construction of harmonic and holomorphic maps between surfaces, Math. Ann. 252 (1980), 27-52.
[EeL3] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
[EeS] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into Fourmanifolds, Ann. Scuola Norm. Sup. Pisa (4) 12 (1985), 589-640.
[EeW] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), 217-263.
[Eg] N. EJIRI, Equivariant minimal immersions of S^{2} into $S^{2 m}(1)$, Trans. Amer. Math. Soc. 297 (1986), 105-124.
[I1] T. Ishihara, Complete Mobius strips minimally immersed in R^{3}, Proc. Amer. Math. Soc. 107 (1989), 803-806.
[I2] T. Ishihara, Complete non-orientable minimal surfaces, Trans. Amer. Math. Soc., to appear.
[M] W. Meeks, The classification of complete minimal surfaces in R^{3} with total curvature greater than -8π, Duke Math. J. 48 (1981), 523-535.
[O] M. E. Oliveira, Some new examples of nonorientable minimal surfaces, Proc. Amer. Math. Soc. 98 (1986), 629-635.
[S] S. Salamon, Topics in four-dimensional Riemannian geometry, Geometry Seminar Luigi Bianchi, Lecture Notes in Mathematics 1022, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1983.
[Sp] G. SpRinger, Introduction to Riemann surfaces, Addison-Wesley, Reading and Massachusetts, 1957.
[Y] K. Yang, Complete and compact minimal surfaces, Kluwer Academic Publlishers, Dordrecht, Boston and London, 1989.

Department of Mathematics

Faculty of Integral Arts and Sciences
Tokushima University
Tokushima 770
JAPAN

[^0]: * Partly supported by the Grants-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 58E20.

