
Tόhoku Math. J.
45 (1993), 297-310

EINSTEIN-KAHLER TORIC FANO FOURFOLDS

Dedicated to Professor Hideki Ozeki on his sixtieth birthday

YASUHIRO NAKAGAWA

(Received February 6, 1992, revised July 8, 1992)

Abstract. We investigate the relationship between Matsushima's obstruction and
the Futaki invariant for the existence of Einstein-Kahler metrics on tone Fano fourfolds.
In particular, we determine all toric Fano fourfolds with vanishing Futaki invariant.
Moreover, we construct a non-trivial example of an Einstein-Kahler toric Fano fourfold.

Introduction. Let Y be a Fano r-fold, which is by definition, an r-dimensional
compact connected non-singular projective algebraic variety, defined over C, with ample
anti-canonical line bundle. Then one can naturally ask whether Y admits an Einstein-
Kahler metric. As to such existence of Einstein-Kahler metrics, two obstructions are
known (see Matsushima [9] and Futaki [4]). We here consider the following for toric
Fano r-folds (see Defmiton 1.1).

PROBLEMS. (Ir) Classify all toric Fano r-folds with vanishing Futaki invariant.
(IIr) For a toric Fano r-fold Y with vanishing Futaki invariant, is its automorphism

group Aut(F) a reductive algebraic group?
(IΠΓ) Does a toric Fano r-fold with vanishing Futaki invariant always admit an

Einstein-Kahler metric?

Note that if (IΠr) is true, then (Πr) is also true (see Matsushima [9]). For r ^ 3 ,
(Ir) and (IΠr) were settled (see Mabuchi [7], Siu [14], Tian and Yau [15]).

By Batyrev's recent classification of toric Fano fourfolds [2], it is now possible to
study the above problems for r = 4. In this paper, we give a complete classification for
(I4), and answer the question (II4) (see Theorem 3.5). Moreover, we can solve (IΠ4)
except in one case (see Theorem 4.1).

Thanks are due to Professor Toshiki Mabuchi for introducing the author to this
topic and giving helpful suggestions. The author wishes to thank Professor Victor V.
Batyrev who made available his new results on the classification of toric Fano fourfolds.
Special thanks are due also to the Japan Association for Mathematical Sciences which
made possible a series of seminars in 1991 with Professors Mabuchi and Batyrev.

1. Toric Fano manifolds. In this section, we recall some basic notions and facts
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concerning tone Fano manifolds (see [3], [6], [11] or [12] for more details).

Let Z ^ o and R^o be the sets of non-negative integers and non-negative real num-

bers, respectively. Moreover let r be a positive integer, and Tr: = (C*) r an r-dimensional

algebraic torus. We put N\ = Zr and M: = Homz(7V, Z) { = Zr). The natural pairing

< , >: M*x 7V-»Z is extended to the bilinear form < , >: MR xNR-+R where

R(^Rr) and NR: = N®zR(^Rr).

DEFINITION 1.1. An r-dimensional compact connected complex manifold X with

ample anti-canonical line bundle Kχl is called a toric Fano r-fold if Tr acts bi-

holomorphically on X with an open dense orbit isomorphic to Tr.

DEFINITION 1.2. A convex polytope P in NR is called a Fano r-polytope if the

following conditions are satisfied:

(1) P is an integral polytope, namely, the set i^(P) of vertices of P is contained

in N=Zr;

(2) The origin 0 is contained in the interior of P;

(3) P is a simplicial polytope, that is, each face (which is always assumed to be

closed) of P is a simplex;

(4) For an arbitrary codimension one face E of P, let al9 a2,..., ar be its vertices.

Then {aί9 a2,..., ar} forms a Z-basis of N.

Let P be a Fano r-polytope in NR. For each (k — l)-dimensional face F of P, let

bl9 b2, ., bk be its vertices, and we put

ΔP(k): = {σCF) | (k - l)-dimensional faces F of P} , £ = 1, 2 , . . . , r ,

ΔP:=[j ΔP(k).
fc = O

Then σ(F) is a strongly convex rational polyhedral cone in 7Vj| (see [12; p. 1]) and ΛP

is a /β« of TV (see [12; p. 2]). The following theorem is fundamental in the study of

toric Fano r-folds.

THEOREM 1.3 (see [12]). (a) For each Fano r-polytope P in NR, there exists a

unique toric Fano r-fold XP satisfying the following:

(1) To each σeΔP(k), O^k^r, there corresponds a unique {r — k)-dimensional

Tr-orbit, denoted by O(σ\ such that XP=\J σeΔp O(σ)\

(2) For each σeΔP(k), O^k^r, the closure V(σ) of O{σ) in XP is an irre-

ducible normal (r — k)-dimensional Tr-invariant subvariety of XP of the form V(σ) =

\Jσ<xO(τ), where σ^τ means that σ is a face of τ {see [12; p. 2]).

(b) Every toric Fano r-fold X is Tr-equίvariantly isomorphic to XP for some Fano
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r-polytope P in NR.

We recall results of Batyrev [2] which introduced primitive collections and primitive

relations in the classification of Fano r-polytopes.

DEFINITION 1.4. For a Fano r-polytope P in NR, a non-empty subset α =

{xί9 x2,..., Xk} of y{P) is called a primitive collection, if the following conditions are

satisfied:

(1) For any proper subset {xii9 xh,..., xit} p α ,

(2) R

Given a primitive collection cc = {x1,x2i ...,xk}, we have a face F of P such that

x x + x 2 + ' * * +xkeσ(F)eAP. For the vertices yl9y2, - - , J m of F, there exist

such that

which is called a primitive relation.

The following classification of toric Fano fourfolds is crucial in our study of

Einstein-Kahler metrics on such fourfolds.

THEOREM 1.5 (Batyrev [2]). The Fano r-polytopes can be classified only in terms

of the primitive collections and primitive relations. In particular, there exist exactly 123

mutually non-isomorphic toric Fano fourfolds.

REMARK 1.6 (cf. Batyrev [1], K. Watanabe and M. Watanabe [17]). There exist

exactly 5 isomorphism classes of toric Fano surfaces and exactly 18 isomorphism classes

of toric Fano threefolds.

2. Matsushima's obstruction and the Futaki invariant. In this section, we review

the obstructions to the existence of Einstein-Kahler metrics on Fano manifolds due to

Matsushima [9] and Futaki [4].

Throughout this section, we fix an r-dimensional compact connected complex

manifold Y with ample anti-canonical line bundle Ky * and a Kahler form ω on Y

representing 2πcx(Y)R. Let Aut(7) be the group of holomorphic automorphisms of Γ,

and Aut°(Ύ) its identity component. By Ric(ω), we denote the Ricci form corresponding

to ω. Since ω and Ric(ω) are in the same cohomology class 2πc 1(Γ)R, there exists a

real-valued C°°-function fω on Y such that

where fω is unique up to additive constants.
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DEFINITION 2.1. ω is called an Einstein-Kάhler form if Ric(ω) = ω.

The following theorem on automorphism groups is known as Matsushima's

obstruction to the existence of Einstein-Kahler forms.

THEOREM 2.2 (Matsushima [9]). Let X be a compact connected complex manifold.

If X admits an Einstein-Kάhler form, then Aut(Z) is a reductive algebraic group.

For (Y, ώ) as above, let X(Y) be the Lie algebra of all holomorphic vector fields

on Y. Then X(Y) is just the Lie algebra associated to Aut(F). We define the Futaki

invariant Fγ\ X(Y)^R by

α(VfJω'), VeX(Y),

where Re(z) denotes the real part of z. Recall the following fundamental theorem:

THEOREM 2.3 (Futaki [4]). For Y as above, the following hold:

(a) Fγ does not depend on the choice ofω;

(b) Fγ vanishes on the commutator subalgebra [X(Y), 3E(Γ)] ofX(Y);

(c) If Y admits an Einstein-Kahler form, then Fγ vanishes.

Let us consider the case where Y is a toric Fano manifold. Let P be a Fano

r-polytope in NR and XP the toric Fano r-fold associated to P. We now put

{a, bo} = \ for some b0 e Ψ~(P) and

(α, ft> ̂ 0 for all be i^(P) with bφb0)

Rs(P): = R(P)n(-R(P)),

Σ_K(P): = {a G MR \ {a, ί>> g 1 for all b e τT(P)} .

The following results on the automorphism groups of toric Fano r-folds are impor-

tant in examining Matsushima's obstruction for toric Fano r-folds.

THEOREM 2.4 (Demazure [3]). (a) Aut^p) is a reductive algebraic group if and

only if —R(P) coincides with R(P).

(b) Let Gu be the unipotent radical of Aut°(Λr

P), and denote by Gs be the reductive

algebraic group which has Tr as a maximal algebraic torus and has RS(P) as the root

system. Then

Axxt°(XP) = GsxGu.

Mabuchi's result on Futaki invariants [8; Theorem 0.1] asserts that FXp vanishes

on the Lie algebra of Gu. In view of Theorems 2.3, (b) and 2.4, (b), we can interpret

Mabuchi [7; Corollary 5.5] as follows:

THEOREM 2.5. Let P be a Fano r-polytope in NR, and let tr be the Lie algebra of
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Tr ( g Aut(*P)). Then FXp = 0 if and only if FXp\tr = 0.

The next formula of Mabuchi allows us to calculate FXp\tr explicitly.

THEOREM 2.6 (Mabuchi [7]). Let P be a Fano r-polytope in NR. For Tr =

{(tl912,..., tr) I tt G C*}, choose a C-basis {ίfi/dti \ i = 1, 2 , . . . , r) for t r. We put

1±
xidxί A dx2 Λ Λ dxr

dxx A dx2 A Λ dxr

JΣ-K{P)

where (xί9 x2, . . . , xr) denotes the standard coordinate system for MR^Rr. Then the

barycenter Ά(P): = (Jb1(P)9b2(P)9 . . . ,b Γ (P)) ofΣ_κ(P) is of the form

®(P) = (FXp(tίd/dti), FXp(t2d/dt2),..., FXp(trd/dtr)).

3. Toric Fano fourfolds with vanishing Futaki invariant. In this section, we classify

all toric Fano fourfolds with vanishing Futaki invariant. From now on we let r = 4. We

can calculate the Futaki invariant for 123 toric Fano fourfolds in the classification by

Batyrev (see Theorem 1.5), thanks to the formula of Mabuchi (see Theorem 2.6). (We

carried out our computation of the Futaki invariants by means of Mathematica on a

Macintosh computer.) We obtain exactly 11 toric Fano fourfolds with vanishing Futaki

invariants. The following 9 toric Fano fourfolds among them are elementary:

P\Q , P\C) x P\C) x P2(C),

(3.1) P\C) x P\C) x S3, P\C) x P3(C),

P\C) x P\C), P\C) x S3 , S3 x S3,

P\C) x P\C) x P\C) x P\C),

where S3 is a smooth projective algebraic surface obtained from P2(C) by blowing up

threeρoints[l .0:0],[0:1:0]and[0:0: l],and0pixj»i(l, -1) denotes the holomorphic

line bundle p*®Pi(l)®p2&Pi(-l) over P1(C)xP1(C) with the projections

Pi: P\C) x P^Q-tP^Q, i= 1, 2, to the i-th factor.

For P\C) and lower dimensional toric Fano manifolds

P\C), P2(C), S39 P\Q, W , « x F i θ f l , . χ F . ( l , - l ) ) ,

which appear as factors in (3.1), the existence of an Einstein-Kahler form is well-known.

In fact, the existence for S3 is proved by Siu [14] (see also Tian and Yau [15], Nadel

[10]) and for P((9pίχPι © ΘPι x P i( l, -1)), it is proved by Sakane [13] (see also Mabuchi

[7]). Hence the 9 toric Fano fourfolds in (3.1) carry Einstein-Kahler forms, and therefore,
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the vanishing to their Futaki invariants are obvious.
The two remaining toric Fano fourfolds XPι, XPl are non-trivial. Their Futaki

invariants turn out to vanish. The corresponding Fano 4-polytopes Pu P2 are defined
as follows:
/*! is the convex hull of ten vertices

β l : = (l, 0,0,0),

e2: = (0,1,0,0),

(3.2) <?3: = (0,0,1,0),

,: = -*!=(-!, 0,0,0),

eΊ:=-e2 =

e 4 : = (0, 0 , 0 , 1 ) ,

e 5 : = ( - l , - 1 , - 1 , - 1 ) :

and P2 is the convex hull of ten vertices

- 1 , 0 , 0 ) ,

0 , - 1 , 0 ) ,

0 , 0 , - 1 ) ,

l, 1, 1, 1),

(3.3)

e l : = (1,0, 0,0),

e'2: = (0,1,0,0),

«?'3: = ( - 1 , 1 , 0 , 0 ) ,

e 4 : = ( - l , 0 , 0 , 0 ) ,

e'5: = ( 0 , - 1 , 0 , 0 ) ,

e'6: = ( 1 , - 1 , 0 , 0 ) ,

β'7: = (0,0, 1,0),

e ' 8 : = ( l , 0 , - 1 , 0 ) ,

e ' l o : = ( - ! , 0,0, - 1 ) .

The Fano fourfolds XPi and XPl are obtained by Batyrev as follows.

REMARK 3.4. (i) We consider the product Wx :=P\C) x P\C) x P\C) x P\C).
Let W2 be the blowing up of Wx at the two points x0: = ([1:0], [ 1 : 0 ] , [ 1 : 0 ] , [1:0])
and xx : = ([0:1], [ 0 : 1 ] , [ 0 : 1 ] , [0:1]), and define subsets Cu C2,...,C8 of Wx by

C2

C3

C4

C6

CΊ

C 8 : =

Let C, be the strict transform in W2 of Cf, and let W3 be the blowing up of W2 along
these eight curves Cu €2,..., C8. Then each exceptional set Et over C, is isomoφhic
to Pι(C) x P\C). We obtain XPi from W3 by contracting all Eh 1 ̂ i £ 8 , to the second
factor P2(C). Moreover, XPi is a symmetric toric Fano variety in the sense of
Voskresenskii and Klyachko [16]. Note that, by A u t 0 ^ , ) = Γ4, the toric Fano fourfold
XPι cannot be a homogeneous space.
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(ii) Consider the P2(C)-bundle W4 : = P(E) over P\C) x P\C), where E is the

holomorphic vector bundle ΘPίXPi®ΘpiχPί®ΘPixpί(l, — 1) of rank three over

P\Q x P\C). W± over P\C) x P\C) has three natural sections corresponding to the

direct summands

* p i ( l , - 1 ) ,

We then obtain XPl from W4 by blowing up these three sections. Note that XPl is a

fiber bundle over P\C) x P\C) with fiber S3.

For these two cases, we can examine the reductivity of the automorphism groups

by Theorem 2.4. We then obtain an affirmative answer to the question (II4) as follows:

THEOREM 3.5. For a toric Fano r-fold XP associated to a Fano r-polytope P in NR,

1 :gr:g4, the group K\xi(XP) is a reductive algebraic group, provided the Futaki invariant

FXp of XP vanishes.

REMARK 3.6. By Theorem 2.4, we can explicitly calculate automorphism groups

of toric Fano fourfolds and in particular, the converse of Theorem 3.5 is not true, since

24 isomorphism classes have reductive automorphism groups.

4. Existence of Einstein-Kahler forms on the toric Fano fourfold XPl. In this

section, we shall prove the following theorem.

THEOREM 4.1. The toric Fano fourfold XPί admits an Einstein-Kahler form.

We now quote the following fact on the existence of Einstein-Kahler forms, which

plays an important role in the proof of Theorem 4.1.

THEOREM 4.2 (Nadel [10]). Let X be an r-dimensional non-singular compact

connected complex manifold with ample anti-canonical line bundle. Let G be a compact

subgroup ofAut(X) andGc its complexification. Assume that X admits no Einstein-Kahler

forms. Then there exists a Gc-invariant closed analytic subspace Z^X, called the

"multiplier ideal subscheme" of X, satisfying the following properties:

(1) dimc(/Γ(Z, 0Z)) = 09 for Ϊ > 0 , and dimc(H°(Z,Θz))=l;

(2) The complement X\Z has vanishing logarithmic-geometric genus.

REMARK 4.3. Let Z r e d be the reduced analytic subspace of A" associated to Z, and

put k: = dimcZ. As stated in Nadel [10], we obtain the following from (1) above in

Theorem 4.2:

(4.3.1) dim c (i/ f c (Z r e d ,^ Z r e d )) = 0;

(4.3.2) If k = 0, then Z is a single reduced point;

(4.3.3) If k= 1, then Z r e d is a tree of smooth rational curves.
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Before proving Theorem 4.1, we introduce some notation and prove a crucial

technical lemma (see Lemma 4.4 below). Let elt e2,..., e 1 0 be the same as in (3.2), and

we now put

/: =

K2 : =

Ei: = RzOei, i = l , 2 , . . . , 10.

Then J P ,(4), ΔPi(3), ΔPl(2) and /lp,(l) consist of 30, 60, 40 and 10 strongly convex

rational polyhedral cones, respectively, and are of the form

ΔPιQ) = {τiJik\(i,j,k)eJ},

ΔPi{2) = {ptJ I (i,j) eKJ u {ηtJ I (i,j) eK2} ,

To specify our compact subgroup G of Aut(XPl), we introduce the following matrices

in GL(4, Z):

/

\

/

4 =

\

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

°\ /
0

0 j 2

1 / V

°\ /
0

0

1/

, A5.

—

—

—

-

1

0

0

0

1

1

1

1

0

1

0

0

- 1

- 1

- 1

- 1

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

\ /

/ V
\ /

/
' Λβ''

\

1

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0\
1

0

0/

0^

0

1



EINSTEIN-KAHLER TORIC FANO FOURFOLDS 305

AΊ: =

/o
0

0

\ 1

/ I

0

0

\ 0

0
1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1\

0

0 8

/

(

(

o/ V(

°\
0

0

1 1

' 11*

/

1
3

3

3

/

\

0
1

0

0

- 1

0

0

0

- 1
- 1

1

- 1

0

- 1

0

0

0

0

0

1

\

/

0

0

- 1

0

9

0

0

0

1

\

/

/ 1

0

0

\ 0

0
1

0

0

0

0

1

0

- 1
- 1

- 1

- 1

For each 1 ̂ / ^ 11, let φiήι be the Γ4-equivariant automorphism of XPί associated

to the automorphism φt of the fan ΔPί induced by the matrix ^4f6GL(4, Z) (see [12;

p. 19]). The elements φb ί= 1,2,..., 10, generate the full permutation group on the

set {eue2,e3,e4,e5}. Therefore in Aut(XPί), the corresponding φί3|c, i '=l, 2 , . . . , 11,

generate a finite subgroup Gί isomorphic to the product S 5 x Z 2 of the symmetric

group 6 5 of degree 5 and the cyclic group Z 2 of order 2. Let G be the compact subgroup

of Aut(ZP l) generated by the 4-dimensional compact real torus £/(l)4 (<=Γ4) and Gu

where £/(l): = { ί e C | | ί | = l}. Using the same notation as in Section 1, Theorem 1.3

allows us to determine all Gc-invariant closed subvarieties of XPί.

(i) The only zero-dimensional Gc-invariant closed subvariety Ξ in XPχ is of the

form

3= U V

where each component K(σίfJ >JM) in Ξ is a single reduced point. In particular, Ξ is a set

of 30 distinct points.

(ii) The only one-dimensional Gc-invariant closed subvariety Γ in XPi is of the

form

r = , y . / ( T i i M ) •
Note that each V(τijk) with (i,j, k)eJ is isomorphic to /> 1(C) Moreover, for any two

distinct elements (i9j9k)9(ϊ9j
r

9k')eJ9 we have ^{V{τUjik)(\V{τvyk))^\, where %S

denotes the cardinality of a set S. Therefore, Γ is the union of sixty P1(C)'s and contains

cycles K(τ 3 i 4 f 6 )u K(τ 3 t 4 i 7 )u K(τ 3 f 4 f l 0 ) , K(τ 3 f 6 f 7)u K(τ 4 t 6 f 7)u K(τ 5 f 6 f 7) of P\C)% which

therefore do not form trees of P 1(C)'s.

(iii) All two-dimensional Gc-invariant closed subvarieties are Ψl9 Ψ2 and Ψ3 in

XPl, written in the form,

ϊΊ= U
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Ψl= U

Each component K(p; J in ψ1 is isomorphic to P2(C), and therefore, Ψx is a union of
twenty P2(C)'s. For any three distinct elements (i,j), (/',/), (/",/') in Λ ,̂ we have

υ ) n v(Pi;j))ύ 1 and #(K(pw)n K(pr>/)n F ( p r , r ) ) = 0. Furthermore,

S= U

where the union is taken over all pairs of distinct elements (ι,y), (/',/) in Kγ. On the
other hand, each V(ηitj) with (i,j)eK2 is isomorphic to S3, and therefore, Ψ2 is the
union of twenty S3's. Moreover, ΨίnΨ2 = Γ and in particular, dim^ΨΊ n Ψ2)= 1.

(iv) The only three-dimensional Gc-invariant closed sub variety Φ in XPί is of the
form

10

φ= U v^i)
i=ί

Its complement XPι\Φ in XPί is nothing but Γ4 = (C*)4.

We need the following lemma for the proof of Theorem 4.1.

LEMMA 4.4. H\Ψ2,ΘΨ2)^C.

PROOF. We put ΠΨl : = {σeAPί | K(σ)g Ψ2}. Then \JΨl is expressible as

\3ψ2

z= {Gij,k,ι\(Uj9 K /)e/}u{τif</ >k 1(1,./, k)eJ}\j{ηiJ\(iJ)eK2} .

For each ιceΠ«p2, we put Πψ2' = {σeΠψ2\σ<κ}. We now consider Ishida's fourth
complex of Z-modules for Πίp2 as in [5]:

C\D£2; 4) = ({0} — > C°(πκ

Ψ2; 4) - ^ • - i L C4(Πϊ,2; 4) — . {1

We first consider the case dim/c = 2. Let κ: = fj4>7 for instance. In this case, we have

ZexΛe3, for / = 2 ;

{0} , otherwise,

where {e1, e2, e3, e4} is the Z-basis for M dual to the standard Z-basis {eu e2, e3, e4}
for TV. The cohomology groups of the complex C®zC'(Π?/4

2

7; 4) turn out to be

C, for i = 2;

{0} , otherwise .
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For an arbitrary κe\3Ψ2nAPί(2) in general, the same calculation as above yields

C , for i = 2 ;

. {0} , otherwise .

We next consider the case dim/c = 3. Let κ = τ3AfΊ for instance. In this case, we have

Π\Ψ'2
4'7 = {η3J, ηu, τ3AtΊ} and

Ze1 Ae3@Ze1 Ae4 , for i = 2;

Ze1 , for Ϊ = 3 ;

{0} , otherwise,

>23'4>7(e1 Λe3) = — e1 , δ^ 3 ' 4 ' 7 ^ 1 Λ ^ 4 ) = — e1 ,

5j3.4,7 = o 5 for iV2.

The cohomology groups of the complex C ® Z C ' ( Π ^ 2

4 ' 7 ; 4) turn out to be

C , for i = 2 ;

. {0} , otherwise .

For an arbitrary KG Π«p2nzlFl(3) in general, we similarly have

C, for i = 2 ;

. {0} , otherwise .

Finally, we consider the case dimτc = 4. Let κ = σ3A6Ί for instance. Ishida's complex

C#(Π^3

2

4 '6 '7; 4) is explicitly written as follows:

Π«F2 4 ' 6 > 7 = {*73,6> 1l4,6 > ^3,7? ̂ 4,7? τ3,4,7? τ3,4,6» τ3,6,7? τ4,6,7? σ3,4,6,7/ J

Ze1 Ae3ΘZβ1 Λ e 4 ® Z e 2 Ae3®Ze2 Ae4 , for ί = 2

for i = 3 ;

Z , for i = 4 ;

{0}, for ί = 0 , l ,

= — e2 — e3 , ^53'4'6>7(^2 Λ e 4 ) = —^ 2 —^ 4 ,

for Ϊ = 0, 1 .

The cohomology groups of the complex C®ZC#(Π^3

2

> 4 '6 '7; 4) turn out to be

for ι = 2 ;

. {0}, otherwise .

For an arbitrary fee D«p2nzlp1(4) in general, we again have
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C, for i = 2;

. {0} , otherwise .

Therefore, for any KE Π«F2 of an arbitrary dimension, we obtain

C, for i = 2;

. {0} , otherwise .

Then by applying Ishida's criterion [5; Theorem 5.10] (see also [12; p. 126]) to Ψ2, we

see that Ψ2 is a Gorenstein variety with the dualizing sheaf isomorphic to ΘΨl. From

Serre-Grothendieck's duality theorem, we conclude that

as required. •

It is now possible to prove our main result.

PROOF OF THEOREM 4.1. Suppose, for contradictions, that XPl admits no Einstein-

Kahler forms. Then XPi has a multiplier ideal subscheme Z by Theorem 4.2. Since

Z is Gc-invariant, Z r e d is one of the six varieties S, Γ, Ψl9 Ψ2, Ψ3, Φ. We first ob-

serve that Z r e d cannot be Ξ, since Ξ is a set of thirty distinct points in contradicion to

(4.3.2). Secondly, Z r e d cannot be Γ, since Γ is not a tree of P1(C)'s in contradiction to

(4.3.3). Thirdly, Z r e d cannot be Φ, since (C*)*^XPί\Φ has positive logarithmic-

geometric genus, contradicting Theorem 4.2, (2). Fourthly, we do not have Zred=Ψ2

either, in view of Lemma 4.4 and (4.3.1).

We next consider the case Z r e d = Ψ3 = ψ± u Ψ2. Let Z': = Ψ1\JΨ2 be the disjoint

union of Ψx and Ψ2, and let m: Z'-+ZτtA be the natural projection. Then we have a

short exact sequence

(4.5) 0 -> ΘZrcd -> mJ9z. ^^,: = (™*&z')l®zrcd ^ 0 ,

where the support Supp(#Ί) of &t is just the one-dimensional variety Γ=Ψ1nΨ2.

From (4.5), we obtain a long exact sequence

(4.6) --'-+H2(Zred, ΘZrJ - , / / 2 ( Z \ (Pz,) - . // 2 (Z r e d , # i ) -> .

Since dimc(Supp(#1))= 1, we have H2(Zred, #i)^{0}. By (4.3.1), we also have

# 2 (Z r e d ,0z r e d ) = {O}. Hence, 7/ 2(^ l 5 (P y i )φJΪ 2 ( !P 2 , ΘΨJ*H2(Z',Θz.)*{0} by (4.6),

contradicting Lemma 4.4.

We finally consider the case Zτed=Ψ1. Then Z is expressible in the form

z= U

where V(pitJ) is an analytic subspace of XPί such that V{pUj\tά=V{pij). Note that

) , (i9j)eKl9 are all Gc-congruent. Let
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Z":= U

be the disjoint union of V(puj), (iJ)eKί9 and let wf: Z"-±Z be the natural projection.

Then we have a short exact sequence

(4.7) 0 -+ Θz -+ m'*Oz,, -+&2'. = (m'*(9z)/Θz -> 0 .

Note that Supp(^2) *s J u s t Ξ consisting of thirty Gc-congruent points. Moreover, #"2

is Gc-invariant. Now by (4.7), we have

(4.8) {0} -> H°(Z, Θz) - ff°(Z", 0z") -> ̂ ° ( ^ ^2) - ^ ( Z , » z) -> .

Since all V(pifjys in Z" and all K(σifJ fkf/)'s in Ξ are Gc-congruent, respectively, and

since 3F2 *
s Gc-invariant, there exist some p, q in Z ^ o such that

dimc(//°(Z//, 0Z-)) = 20/7 and dimc(^°(Z, 3F2)) = 30# .

Since dimc(H°(Z, Gz))=\ and dimc(//'1(Z, ^ z )) = 0 by Theorem4.2, (1), the long exact

sequence (4.8) above yields 20/?— 1 =30^ in contradiction. Thus, we can conclude that

XPι admits an Einstein-Kahler form. •
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