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Abstract. We investigate the relationship between Matsushima’s obstruction and
the Futaki invariant for the existence of Einstein-Kéhler metrics on toric Fano fourfolds.
In particular, we determine all toric Fano fourfolds with vanishing Futaki invariant.
Moreover, we construct a non-trivial example of an Einstein-Kdhler toric Fano fourfold.

Introduction. Let Y be a Fano r-fold, which is by definition, an r-dimensional
compact connected non-singular projective algebraic variety, defined over C, with ample
anti-canonical line bundle. Then one can naturally ask whether Y admits an Einstein-
Kihler metric. As to such existence of Einstein-Kéahler metrics, two obstructions are
known (see Matsushima [9] and Futaki [4]). We here consider the following for toric
Fano r-folds (see Definiton 1.1).

ProBLEMS. (I,) Classify all toric Fano r-folds with vanishing Futaki invariant.

(II,) Foratoric Fano r-fold Y with vanishing Futaki invariant, is its automorphism
group Aut(Y) a reductive algebraic group?

(III,) Does a toric Fano r-fold with vanishing Futaki invariant always admit an
Einstein-Kéhler metric?

Note that if (III,) is true, then (II,) is also true (see Matsushima [9]). For r<3,
(I,) and (III,) were settled (see Mabuchi [7], Siu [14], Tian and Yau [15]).

By Batyrev’s recent classification of toric Fano fourfolds [2], it is now possible to
study the above problems for r=4. In this paper, we give a complete classification for
(I4), and answer the question (II,) (see Theorem 3.5). Moreover, we can solve (III,)
except in one case (see Theorem 4.1).

Thanks are due to Professor Toshiki Mabuchi for introducing the author to this
topic and giving helpful suggestions. The author wishes to thank Professor Victor V.
Batyrev who made available his new results on the classification of toric Fano fourfolds.
Special thanks are due also to the Japan Association for Mathematical Sciences which
made possible a series of seminars in 1991 with Professors Mabuchi and Batyrev.

1. Toric Fano manifolds. In this section, we recall some basic notions and facts

1991 Mathematics Subject Classification. Primary 53C25; Secondary 14M25, 32C10, 53C55.



298 Y. NAKAGAWA

concerning toric Fano manifolds (see [3], [6], [11] or [12] for more details).

Let Z,, and R, be the sets of non-negative integers and non-negative real num-
bers, respectively. Moreover let r be a positive integer, and T, :=(C*)" an r-dimensional
algebraic torus. We put N:=Z" and M:=Hom,(N, Z) (~Z'"). The natural pairing
{(, > MxN—-Z is extended to the bilinear form <, >: Mzgx Ng—R where
Mg:=M®zR(=R") and Ng:=N®zR(=R").

DerINITION 1.1.  An r-dimensional compact connected complex manifold X with
ample anti-canonical line bundle Ky! is called a toric Fano r-fold if T, acts bi-
holomorphically on X with an open dense orbit isomorphic to T,.

DErFINITION 1.2. A convex polytope P in Ny is called a Fano r-polytope if the
following conditions are satisfied:

(1) Pis an integral polytope, namely, the set ¥"(P) of vertices of P is contained
in N=2";

(2) The origin 0 is contained in the interior of P;

(3) P is a simplicial polytope, that is, each face (which is always assumed to be
closed) of P is a simplex;

(4) For an arbitrary codimension one face E of P, let a,, a,, ..., a, be its vertices.
Then {a,, a,, ..., a,} forms a Z-basis of N.

Let P be a Fano r-polytope in Ng. For each (k— 1)-dimensional face F of P, let
b, b,, ..., b, be its vertices, and we put

O'(F):=Rgob1 +R§0b2+ Tt +R§0bk N
Ap(k) :={0(F)|(k—1)-dimensional faces F of P},  k=1,2,...,r,
4p(0):=1{0},

Ap:= U Ap(k) .
k=0

Then o(F) is a strongly convex rational polyhedral cone in Ng (see [12; p. 1]) and 4,
is a fan of N (see [12; p. 2]). The following theorem is fundamental in the study of
toric Fano r-folds.

THEOREM 1.3 (see [12]). (a) For each Fano r-polytope P in Ny, there exists a
unique toric Fano r-fold Xp satisfying the following:

(1) To each ae Ap(k), 0<k<r, there corresponds a unigue (r — k)-dimensional

T,-orbit, denoted by O(0), such that Xp=J . ,, 0(9);

(2) For each € dp(k), 0Zk<r, the closure V(o) of O(c) in Xp is an irre-
ducible normal (r — k)-dimensional T,-invariant subvariety of Xp of the form V(c)=
U, <. O(1), where 6<t means that o is a face of © (see [12; p. 2]).

(b) Every toric Fano r-fold X is T,-equivariantly isomorphic to Xp for some Fano
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r-polytope P in Npg.

We recall results of Batyrev [2] which introduced primitive collections and primitive
relations in the classification of Fano r-polytopes.

DerINITION 1.4. For a Fano r-polytope P in Ng, a non-empty subset a=
{x1, x5, ..., X} of ¥"(P) is called a primitive collection, if the following conditions are
satisfied:

(1) For any proper subset {x;,, x;,, ..., X;,} £,

R oxi,+ Ry oxi,+ -+ Ry ox,€4p .
(2) Rgoxl‘*'Rgon‘{'"'+R20Xk¢AP.

Given a primitive collection a={x, x,, ..., X;}, we have a face F of P such that
X1 +x,+ - +x,€0(F)edp. For the vertices y,,¥,, ..., ¥, of F, there exist c;e Z,
such that

m

Xi+X2+ = Yy,
j=1

which is called a primitive relation.

The following classification of toric Fano fourfolds is crucial in our study of
Einstein-Kdhler metrics on such fourfolds.

THEOREM 1.5 (Batyrev [2]). The Fano r-polytopes can be classified only in terms
of the primitive collections and primitive relations. In particular, there exist exactly 123
mutually non-isomorphic toric Fano fourfolds.

REMARK 1.6 (cf. Batyrev [1], K. Watanabe and M. Watanabe [17]). There exist
exactly 5 isomorphism classes of toric Fano surfaces and exactly 18 isomorphism classes
of toric Fano threefolds.

2. Matsushima’s obstruction and the Futaki invariant. In this section, we review
the obstructions to the existence of Einstein-Kédhler metrics on Fano manifolds due to
Matsushima [9] and Futaki [4].

Throughout this section, we fix an r-dimensional compact connected complex
manifold Y with ample anti-canonical line bundle Ky ! and a Kéihler form w on Y
representing 2nc,(Y)g. Let Aut(Y) be the group of holomorphic automorphisms of Y,
and Aut°(Y) its identity component. By Ric(w), we denote the Ricci form corresponding
to . Since w and Ric(w) are in the same cohomology class 2mc,(Y)g, there exists a
real-valued C*-function f,, on Y such that

Ric(w) —w=./—100f,,,

where f, is unique up to additive constants.
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DerFNITION 2.1. o is called an Einstein-Kdhler form if Ric(w)=w.

The following theorem on automorphism groups is known as Matsushima’s
obstruction to the existence of Einstein-K&dhler forms.

THEOREM 2.2 (Matsushima [9]). Let X be a compact connected complex manifold.
If X admits an Einstein-Kdhler form, then Aut(X) is a reductive algebraic group.

For (Y, w) as above, let X(Y) be the Lie algebra of all holomorphic vector fields
on Y. Then X¥(Y) is just the Lie algebra associated to Aut(Y). We define the Futaki
invariant Fy: X(Y)—> R by

Fy(V):=(2nc (V) TYD ™! Re(J (Vfw)af> ,  VeX(Y),
Y

where Re(z) denotes the real part of z. Recall the following fundamental theorem:

THEOREM 2.3 (Futaki [4]). For Y as above, the following hold:

(a) Fy does not depend on the choice of w;

(b) Fy vanishes on the commutator subalgebra [X(Y), X(Y)] of X(Y);
(c) If Y admits an Einstein-Kdhler form, then Fy vanishes.

Let us consider the case where Y is a toric Fano manifold. Let P be a Fano
r-polytope in Ng and X, the toric Fano r-fold associated to P. We now put

{a, byy=1 for some b,e ¥ (P) and }
{a,b) <0 for all be ¥"(P) with b#£b,)

R(P):=R(P)n(—R(P)),
T _x(P):={aeMg|<a,by<1 for all be ¥'(P)} .

R(P):={aeM

The following results on the automorphism groups of toric Fano r-folds are impor-
tant in examining Matsushima’s obstruction for toric Fano r-folds.

THEOREM 2.4 (Demazure [3]). (a) Aut(Xp) is a reductive algebraic group if and
only if — R(P) coincides with R(P).

(b) Let G, be the unipotent radical of Aut°(Xp), and denote by G, be the reductive
algebraic group which has T, as a maximal algebraic torus and has R(P) as the root
system. Then

Aut’(Xp)=G< G, .

Mabuchi’s result on Futaki invariants [8; Theorem 0.1] asserts that Fy_ vanishes
on the Lie algebra of G,. In view of Theorems 2.3, (b) and 2.4, (b), we can interpret
Mabuchi [7; Corollary 5.5] as follows:

THEOREM 2.5. Let P be a Fano r-polytope in Ny, and let t, be the Lie algebra of
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T, (= Aut(Xp)). Then Fx_,=0 if and only if Fy,,

=0.
tr
The next formula of Mabuchi allows us to calculate Fxplt, explicitly.

THEOREM 2.6 (Mabuchi [7]). Let P be a Fano r-polytope in Ng. For T,=
{(ty, 13y ..., 1,)| ;€ C*}, choose a C-basis {1,0/0t;|i=1,2, ..., r} for t,. We put

j xdx, Adx, A - Adx,
2 _k(P)

b(P): = 1<i<r

’ =*=">

j dx, ndxy A Adx,
I-x(P)

where (X, X5, ..., X,) denotes the standard coordinate system for Mg=R". Then the
barycenter B(P):=(b,(P), b,(P), ..., b (P)) of Z_x(P) is of the form

B(P) = (Fx,(110/01,), Fx(120/013), ..., Fx,(1,0/01,)) .

3. Toric Fano fourfolds with vanishing Futaki invariant. In this section, we classify
all toric Fano fourfolds with vanishing Futaki invariant. From now on we let r=4. We
can calculate the Futaki invariant for 123 toric Fano fourfolds in the classification by
Batyrev (see Theorem 1.5), thanks to the formula of Mabuchi (see Theorem 2.6). (We
carried out our computation of the Futaki invariants by means of Mathematica on a
Macintosh computer.) We obtain exactly 11 toric Fano fourfolds with vanishing Futaki
invariants. The following 9 toric Fano fourfolds among them are elementary:

PYC), PYCO)xPYC)xP¥0),

PYC) X P(Op1xp1 ® Opiypi(1, — 1)),
(3.1 PY(C)xPY(C)xS;, PYC)xP*0),

PHC)xP¥C), PHC)xS;, S3xSs,

PY{(C)x PY{(C)x P (C)x P}(O),
where S5 is a smooth projective algebraic surface obtained from P2(C) by blowing up
three points [1:0:0],[0:1:0]and[0:0:1],and Op: . p:(1, — 1) denotes the holomorphic
line bundle p*0p:(1)®p%0p:(—1) over PY(C)xP'(C) with the projections
pi: PY(C)x PY(C)—»P!C), i=1, 2, to the i-th factor.

For P*(C) and lower dimensional toric Fano manifolds
PY(C), P¥C), S;, PXC), POpixp:®Opixpi(l, —1)),

which appear as factors in (3.1), the existence of an Einstein-Kéhler form is well-known.
In fact, the existence for S, is proved by Siu [14] (see also Tian and Yau [15], Nadel
[10]) and for P(Op1 x p1 ® Op: «p1(1, — 1)), it is proved by Sakane [13] (see also Mabuchi
[7]). Hence the 9 toric Fano fourfolds in (3.1) carry Einstein-Ké&hler forms, and therefore,
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the vanishing to their Futaki invariants are obvious.

The two remaining toric Fano fourfolds Xp , Xp, are non-trivial. Their Futaki
invariants turn out to vanish. The corresponding Fano 4-polytopes P,, P, are defined
as follows:

P, is the convex hull of ten vertices

e;:=(1,0,0,0), e:=—e;=(—1,0,0,0),
e,:=(0,1,0,0), e;:=—e,=(0, —1,0,0),
3.2 e;:=(0,0,1,0), eg:=—e3=(0,0,—1,0),
e,:=(0,0,0,1), eg:=—e,=(0,0,0, —1),

es:=(—1,—-1,—-1, =1), e0:=—es=(1,1,1,1),

and P, is the convex hull of ten vertices

e :=(1,0,0,0), es:=(1,—-1,0,0),
e5:=(0,1,0,0), e5:=(0,0,1,0),
3.3 e3:=(—1,1,0,0), ez:=(1,0, —1,0),
e, :=(—10,0,0), e5:=(0,0,0,1),
es:=(0,—-1,0,0), eo:=(—1,0,0, -1).

The Fano fourfolds X, and X}, are obtained by Batyrev as follows.

REMARK 3.4. (i) We consider the product W, :=P!(C)x P(C) x P}(C) x P1(C).
Let W, be the blowing up of W, at the two points xq:=([1:0], [1:0], [1:01, [1:0])
and x,:=([0:1], [0:1], [0:1], [0:1]), and define subsets C,, C,, ..., Cg of W, by

Ci:=PY(C)x {[1:0]} x{[1:01} x{[1:0]},
C,:=PY(C)x {[0:1]} x {[0:1]} x {[0:1]},
Cs:={[1:0]} x PY(C)x {[1:0]} x {[1:0]},
Cy:={[0:1]} x P(C)x {[0:1]} x {[0: 1]},
Cs:={[1:0]} x {[1:0]} x P(C)x {[1:0]},
Co:={[0:1]} x {[0:1]} x PL(C)x {[0:1]},
Cy:={[1:01} x {[1:0]} x {[1:0]} x P1(C),
Cg:={[0:1]} x {[0:1]} x {[0: 1]} x P1(C) .

Let C, be the strict transform in W, of C;, and let W, be the blowing up of W, along
these eight curves C,, C,, ..., Cs. Then each exceptional set E; over C; is isomorphic
to P!(C) x P*(C). We obtain X, from W, by contracting all E;, 1 <i<8, to the second
factor P?(C). Moreover, Xp, is a symmetric toric Fano variety in the sense of
Voskresenskii and Klyachko [16]. Note that, by Aut®(Xp,) = T, the toric Fano fourfold
Xp, cannot be a homogeneous space.
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(i) Consider the P?(C)-bundle W, :=P(E) over P!(C)x P'(C), where E is the
holomorphic vector bundle Opixpi @ Op1xp1 @ Op1xpi(1, —1) of rank three over
P(C) x P(C). W, over P}(C) x P'(C) has three natural sections corresponding to the
direct summands

{0} @ {0} @ Op1spu(1, - 1),
{0}®(0r1 xpt ('B{O} s
Opixpr @ {0} {0} .

We then obtain Xp, from W, by blowing up these three sections. Note that X, is a
fiber bundle over P!(C) x P!(C) with fiber S;.

For these two cases, we can examine the reductivity of the automorphism groups
by Theorem 2.4. We then obtain an affirmative answer to the question (IL,) as follows:

THEOREM 3.5. For a toric Fano r-fold X associated to a Fano r-polytope P in N,
1<r<4, the group Aut(Xy) is a reductive algebraic group, provided the Futaki invariant
Fy, of Xp vanishes.

ReEMARK 3.6. By Theorem 2.4, we can explicitly calculate automorphism groups
of toric Fano fourfolds and in particular, the converse of Theorem 3.5 is not true, since
24 isomorphism classes have reductive automorphism groups.

4. Existence of Einstein-Kihler forms on the toric Fano fourfold X, . In this
section, we shall prove the following theorem.

THEOREM 4.1.  The toric Fano fourfold Xp admits an Einstein-Kdhler form.

We now quote the following fact on the existence of Einstein-Kéhler forms, which
plays an important role in the proof of Theorem 4.1.

THEOREM 4.2 (Nadel [10]). Let X be an r-dimensional non-singular compact
connected complex manifold with ample anti-canonical line bundle. Let G be a compact
subgroup of Aut(X) and G€ its complexification. Assume that X admits no Einstein-Kdhler
forms. Then there exists a GC-invariant closed analytic subspace ZE X, called the
“multiplier ideal subscheme” of X, satisfying the following properties:

(1) dim(HY(Z, 0)=0, for i>0, and dim(H°(Z, 0,))=1;

(2) The complement X\ Z has vanishing logarithmic-geometric genus.

REMARK 4.3. Let Z 4 be the reduced analytic subspace of X associated to Z, and
put k:=dim¢ Z. As stated in Nadel [10], we obtain the following from (1) above in
Theorem 4.2:

43.1)  dim(HXZ 0, 07,,,)=0;

(4.3.2) If k=0, then Z is a single reduced point;

(4.3.3) If k=1, then Z,, is a tree of smooth rational curves.
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Before proving Theorem 4.1, we introduce some notation and prove a crucial
technical lemma (see Lemma 4.4 below). Let e;, e,, ..., e;, be the same as in (3.2), and
we now put

I:={(G,j, k,)e Z*| 1 Si<j<5<k<I=Z10, {i,j} n{k—5,1-5} =},

either 1§i<j§5<k§10,k—5¢{i,j}}
or 1Si<S5<j<k=10,i+5¢{j,k} }’

K, :={(,j)eZ*|1<i<j<5 or 6<i<j<10},

J:={(i,j, kye 23

K,:={(i,j)e Z*|1<i<5<j<10,i#j—5},

Oijkt  =Rzo€i+ Ryoe;+ R0+ R 06, G,j,k, el,
Tijik =R>o€i+ Ryoe;+ Ry o€, GjkeJd,
pij:=Rsoe;+ Ry e;, (G,j)ek,,
Nij:=Rsoe;i+Ryoe;,  (i,j)eK,,

g:=R;e;, i=1,2,...,10.

Then 4;,(4), 45,(3), 4p,(2) and 4, (1) consist of 30, 60, 40 and 10 strongly convex
rational polyhedral cones, respectively, and are of the form

AP.(4)= {ai,j,k,l| G J, k, 1)61} s
Ap,3)={ri ;x| G:js W) €T},

4p,)={p:;| G, j)eKi}u{n;
AP1(1)={8,~| i=1,2,...,10}.

G))ekK,},

To specify our compact subgroup G of Aut(Xjp ), we introduce the following matrices
in GL@4, Z):

0100 -1000 1000
1000 -1100 0001

A:= = =

! 0010”42 —1010"43 0010/
0001 -1 00 1 0100
0010 1 —=100 1000
0100 0 -1 00 0100

Ay:= = =

4 1000”45 0—110"‘16 0001]
0001 0 —1 01 0010



EINSTEIN-KAHLER TORIC FANO FOURFOLDS 305

0001 10 —10 100 —1
0100 01 —10 010 —1
=loo10l oo —10]° o011 -1/
1000 00 —1 1 000 —1
1000 -1 0 0 0
0010 0 —1 0 0
A“"0100’A11 0 0 -1 0
0001 0 0 0 -1

For each 1<i<11, let ¢, be the T,-equivariant automorphism of X, associated
to the automorphism ¢; of the fan 4p, induced by the matrix 4;e GL(4, Z) (see [12;
p. 19]). The elements ¢;, i=1, 2, ..., 10, generate the full permutation group on the
set {ey, 5, €3, €,, es}. Therefore in Aut(Xp ), the corresponding ¢,,,i=1,2,...,11,
generate a finite subgroup G, isomorphic to the product S5 x Z, of the symmetric
group S of degree S and the cyclic group Z, of order 2. Let G be the compact subgroup
of Aut(Xp,) generated by the 4-dimensional compact real torus U(1)* (= T,) and G,
where U(1):={teC||t|=1}. Using the same notation as in Section 1, Theorem 1.3
allows us to determine all G¢-invariant closed subvarieties of Xp,.

(i) The only zero-dimensional G“-invariant closed subvariety Z in Xp, is of the
form

E= U V(0ijk1)
(i,j,k,l)el
where each component V (o, ;) in E is a single reduced point. In particular, Z is a set
of 30 distinct points.
(i) The only one-dimensional GC-invariant closed subvariety I in X, p, is of the
form

r= U V(T -
(i,j,k)eJ

Note that each V(z; ;,) with (i, j, k) € J is isomorphic to P*(C). Moreover, for any two
distinct elements (i, j, k), (i',j’, k') eJ, we have #(V(z;; )n V(1 j4x))<1, where #S
denotes the cardinality of a set S. Therefore, I' is the union of sixty P*(C)’s and contains
cycles V(t3,4,6)UV(T3,4,7) UV (T34,10) V(T3,6,7) UV (T4,67) UV (156,7) of P}(C)’s, which
therefore do not form trees of P!(C)’s.

(iii) All two-dimensional GC-invariant closed subvarieties are ¥,, ¥, and ¥; in
Xp,, written in the form,

Y, = U V(Pi,j),

(i,j)eKy
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Y,= U V(’?i,j)a

(i,j)eK2
"P3= Tl U Tl .

Each component V(p; ;) in ¥, is isomorphic to P2%(C), and therefore, ¥, is a union of
twenty P%(C)’s. For any three distinct elements (i, j), (i’, '), (i”,j”) in K;, we have
$V(pi)nV(pr, p))<1 and #(V(p; ;)0 V(py, j) 0 V(ps, j))=0. Furthermore,

E= U Me)nV(pe,),

@H#A,T)

where the union is taken over all pairs of distinct elements (i, j), (i, j') in K;. On the
other hand, each V(; ;) with (i, j) € K, is isomorphic to S, and therefore, ¥, is the
union of twenty S3’s. Moreover, ¥, n ¥, =TI and in particular, dim (¥, n¥,)=1.

(iv) The only three-dimensional G -invariant closed subvariety @ in X, is of the
form

10
o= V).
i=1
Its complement X, \ @ in Xp, is nothing but T,=(C*)*.
We need the following lemma for the proof of Theorem 4.1.
LEMMA 4.4. HX(¥,, 0y)=C.
Proor. We put Oy, :={cedp,|V(6)= ¥,}. Then [y, is expressible as
Ow,=1{0: k1 I G,j, k,)el}u {Ti,j,k I (i,j, k)eJ}u {ﬂi,jl (,j)e K} .

For each ke [y,, we put (y,:={o€ D.,,2|a<r<}. We now consider Ishida’s fourth
complex of Z-modules for (]}, as in [5]:

(O 4)=<{0} — O T Ty ) — {0}) -
We first consider the case dimx=2. Let k=, ; for instance. In this case, we have
0%, ={n4.} and
CiQps; 4)={Ze1/\e3‘, for i=2;
{0}, otherwise ,
o1+7=0, 0<i<3,

where {e’, e2, e, e*} is the Z-basis for M dual to the standard Z-basis {e,, e,, €3, e}
for N. The cohomology groups of the complex C® ,C'([J¥;; 4) turn out to be

; . C, for i=2;
H(C®C(O%s )= .
{0},  otherwise.
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For an arbitrary ke [y, n 4p,(2) in general, the same calculation as above yields
HY(C®C (T 4)= {C for 172
z > {0},  otherwise.

We next consider the case dimk=3. Let k=1, 4 ; for instance. In this case, we have
%7 =1{"3,2, 4,7, T3.4,7; and

Ze' ned® Ze' ne?, for i=2;
C(Ogs; =1 Ze*, for i=3;
{0}, otherwise ,
{5'23'“@1 ned)=—e', op*(e' net)=—e',
0p47=0, for i#2.

The cohomology groups of the complex C® ,C'(O¥;*"; 4) turn out to be

Heo,cop={ T
z {0}, otherwise .

For an arbitrary k€ [y, n 4p,(3) in general, we similarly have
C, for i=2;

H(C®C(O%,; )= ,
{0},  otherwise.

Finally, we consider the case dimk=4. Let k=03 4 ¢ ; for instance. Ishida’s complex
C'(Og;*¢7; 4) is explicitly written as follows:

03,4,6,7 —
0% = {'73,6’ Na,6> M3,75 Ma,7> T3,4,75 T3,4,6> T3,6,7> T4,6,7> 03,4,6,7} 5

ZelneP@Zel ne* DZe  nePDZe? net, for i=2;
) Ze' ®Ze* D Zed @ Ze? for i=3;
Cl 0'3,4,6,7; 4 — ’ ?
(Ow; ) Z, for i=4;
{0}, for i=0,1,
et ned)=—e'—e?, 6345 7(e' net)=—el—e*,
dpeer(er ned)=—e?—e®, 034%7(e?Aet)=—e—e?,

dpeerlet) =1, 8Fere)=—1, dpeered)=1, opeer(e?)=1,
07>»+67=0, for i=0,1.

The cohomology groups of the complex C® ,C'(0%;**7; 4) turn out to be

for i=2;

otherwise .

‘(C@ C(Dd3467 4)) {C
’ {0}

For an arbitrary k€ (Jy,n 4p,(4) in general, we again have
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H{(C®C'(C% -4))~{C’ or =2
“ 2770}, otherwise .

Therefore, for any x € [y, of an arbitrary dimension, we obtain
C, for i=2;

H(C®C'(O%,; 4 s{
(C®C 0 D) {0},  otherwise.

Then by applying Ishida’s criterion [5; Theorem 5.10] (see also [12; p. 126]) to ¥,, we
see that ¥, is a Gorenstein variety with the dualizing sheaf isomorphic to Oy,. From
Serre-Grothendieck’s duality theorem, we conclude that

Hz(qlb (9'1’2) = HO(TZa (9‘1‘2) = C s
as required. [ ]
It is now possible to prove our main result.

PROOF OF THEOREM 4.1. Suppose, for contradictions, that X, admits no Einstein-
Kihler forms. Then Xp, has a multiplier ideal subscheme Z by Theorem 4.2. Since
Z is GCinvariant, Z,., is one of the six varieties =, I', ¥, ¥,, ¥,, ®. We first ob-
serve that Z,.4 cannot be =, since E is a set of thirty distinct points in contradicion to
(4.3.2). Secondly, Z,., cannot be I', since I’ is not a tree of P*(C)’s in contradiction to
(4.3.3). Thirdly, Z,, cannot be @, since (C*)*~X, \ @ has positive logarithmic-
geometric genus, contradicting Theorem 4.2, (2). Fourthly, we do not have Z,.,= ¥,
either, in view of Lemma 4.4 and (4.3.1).

We next consider the case Z, ,=¥;=¥,U¥,. Let Z':=¥,[ | ¥, be the disjoint
union of ¥, and ¥,, and let w: Z'—>Z,, be the natural projection. Then we have a
short exact sequence

(4'5) O - @Zred - w*@zr I fl :=(w*@Z')/@Zred -0 ’

where the support Supp(#;) of &, is just the one-dimensional variety I'=¥,n¥,.
From (4.5), we obtain a long exact sequence

(4.6) S HXZ,e4, 0,.) > HY(Z', 02) > H (Zye0, F1) >

Since dim(Supp(#,))=1, we have H?*(Z,.4, #)={0}. By (4.3.1), we also have
H*(Z, .4, 0g,.)={0}. Hence, H*(¥y, Oy ) ® H¥(¥,, Og,)~H*(Z', 0;)={0} by (4.6),
contradicting Lemma 4.4.

We finally consider the case Z,.,=¥,. Then Z is expressible in the form

Z= U I7(pi,j) s
(i, ))eKy

where 7(p; ;) is an analytic subspace of X, such that ¥(p; ;)ea=V(p;,;). Note that
7(p:.;), (i, j) € Ky, are all G°-congruent. Let
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z":= ] I7(/’.’,,’)
G.j)eKy
be the disjoint union of V(p; i) (,j)e Ky, and let @’ : Z"”—Z be the natural projection.
Then we have a short exact sequence

(4.7) 0_>@Z—)wl*(gzﬁ—)gz:=(w’*@zu)/@z—’0 .

Note that Supp(%,) is just Z consisting of thirty G°-congruent points. Moreover, %,
is G¢-invariant. Now by (4.7), we have

4.8) {0} » H°(Z, 0;) > HY(Z", 0;.) > HYZ, #,) > H'(Z, O) > - - .

Since all I7(p,.‘ ;s in Z” and all ¥(o,;4,)’s in & are G congruent, respectively, and
since &, is GC-invariant, there exist some p, g in Z, such that

dim(H(Z", 0,.))=20p and dim(H(Z, #,))=30q .

Since dim(H°(Z, 0;))=1 and dim(H'(Z, 0,))=0 by Theorem 4.2, (1), the long exact
sequence (4.8) above yields 20p — 1 =30g in contradiction. Thus, we can conclude that
Xp, admits an Einstein-Ké&hler form. |
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