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Abstract. We consider minimal surfaces with constant Kaehler angle in complex

projective spaces. By using /-invariant higher order osculating spaces and pinched

Gaussian curvature, we give characterization theorems for these minimal surfaces.

This is a continuation of our paper [12]. For each integer p with 0<p<n, it is

known that there exists a full isometric minimal immersion φnp: S2(Knp)^Pn(C) of a

2-dimensional sphere of constant Gaussian curvature Knp = 4p/(n + 2p(n—p)) into the

complex projective rt-space with the Fubini-Study metric of constant holomorphic

sectional curvature 4ρ (cf. [1] and [2]). In [12], using /-invariant first order osculating

spaces, we gave characterization theorems for immersions φnp for p<3. The purpose

of this paper is to generalize these to the case of φnp for p>4 (cf. Section 4). To study

the problem, we use /-invariant higher order osculating spaces to find some scalars

defined globally on M, and calculate their Laplacians (cf. Section 6). In this paper, we

use the same terminology and notation as in [12] unless otherwise stated.

4. /-invariant higher order osculating spaces and the main theorems. Let X be a

Kaehler manifold of complex dimension n of constant holomorphic sectional curvature

4p and x: M~>Z an isometric immersion of an oriented 2-dimensional Riemannian

manifold M into X. Let C(s) be a smooth curve in M through a point p = C(0) of

M with parameter s proportional to the arc length. We denote by DkC/dsk the fc-th

covariant derivative along C(s) in X. Let Tik)(C) be a subspace of Tp(X) spanned by

{DC/ds, JDC/ds,..., DkC/dsk, JDkC/dsk} at ^ = 0, where / is the complex structure of

X. T(k) is defined to be the subspace spanned by all Tik\C) for curves C lying on M

through p and is called the J-invaήant k-th osculating space of M at p. We then have

Γp(M)c= Γ ^ c cz Γ<,m)<= Tp(X). Let O(k+1) be the orthogonal complement of Tf in

Tik+1) and N™ the orthogonal complement of T™ in Tp(X), so that we have

)=:Γ(fc)_h0(fc + i) a n d τp(X)=T(£t) + N'S. We put Oι

p = T^\ Note that we have
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0<dim(<9£)<4 and, if dim(Ok

p) = 0 for some k, then we have dim(Or

p) = 0 for all r>k.

A point p e M is called a J-regular point of order m if the ./-invariant ra-th osculating

space T^] exists in a neighbourhood U of p and if each O\, is of dimension 4 for any

p'e U and k= 1, 2 , . . . , m. We denote 0 * = ( J p e M ^ P W e s a v t n a t x ( ^ ) i s a J~regular

manifold if each O k is of constant rank on M for any k. Note that rank(Ox) = 4 if and

only if x is neither holomorphic nor anti-holomorphic.

Let peM be a /-regular point of order m. Then we have an orthogonal

decomposition of Tp(X) such that Tp(X) = Ol + +0™ + N™. Now we define a

/-canonical basis in Ok

p as follows: Let {eί9 e2} be an orthonormal local frame of M

and {£4k_3, e4 k_2} an orthonormal system of normal vector fields along M such that

it belongs to Ok

p at p (k>2). We put cos(α) = </£ l 5 e2) and cos(αk) = </£ 4 k _ 3 , ^ 4 k - 2 >

Then we have cos(α) φ ± 1, cos(αk) # ± 1. Hence we can define local normal vector fields

£4fc_l9 e 4 k along M such that {£4k_3, β 4 k_ 2, β ^ . ^ e4k} at p is an orthonormal basis of

Ok

pin the following way:

£wk -1 = - cot(αk)£4k _ 3 - cosec(αk)/£4k _ 2 ,

^ 4 k = cosec(αk)/£4k _ 3 - cot(αk)£4k _ 2 .

By using them, we define local vector fields e 4 k _ 3 , e 4 k - 2 , e4.k_1 and e4 k, k= 1, 2 , . . . , m,

in a neighbourhood of/? as follows:

(4.1)

e4k-1=sm\~2

eArk= — sinί —

where oc1 — a. Then {e4k_3, e 4 k - 2 , e 4 k - i , e4k} at p is a /-canonical basis of Ok

p, that is,

an orthonormal basis of Ok

p with / e 4 k - 3 = e 4 k - 2 and Je4k-1 =e4k. Let {e 4 m + 1 , . . . , en}

be an orthonormal system of normal vector fields along M such that it is a /-canonical

basis of N™ at p.

We denote the coframe fields dual to these frames by {04k_3, 0 4 k - 2 , 04 f c-i, 0 4 J ,

{04k_3, 0 4 k _ 2 , 0 4 k _ 1 ? 04k} and {0 4 m + 1 , . . . , 0J , respectively. For α > 2 m + l , we put

^2α-i=^2α-i a n ( * ^2a = ei^ s o that we have 0 2 α - i = 0 2 α _ i and 02 α = 02α. If we put
ω α = 02α-1 + *02α where i2 = — 1, then {ωj is a local field of unitary coframes on X and

we have, by (4.1):
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Jω2 f c_1+sin( — \ώ2k,

(4.2) θ^., + iθ4k = sinUX^)ω2k-1 - c o s ί - y j ώ 2 k , (k= 1,..., m)

Now we introduce inductively the higher order fundamental forms {hλkiι...ik} of M
in X. Let {0^B} be the Riemannian connection form of X with respect to the canonical
1-form {ΘA}, and {ωaβ} the unitary connection form of A" with respect to {ωα}. We shall
use the following ranges of indices:

\<A,B,...<2n, \<i,j,...<2, 3<λ0, μ0,... <4 ,

4k-3<λk,μk9... <4k, 4k+l<sk, tk,... <2n ,
(4.3)

2 f c l < α k , j S k , . . . < « , for fc=l,2, . . . , / w ,

4 m + l < α , β,.. . <2«,

We denote the restriction of forms on X to M by the same letters. We then have

^o = ̂  = 0, (k=2),

( 4 4 ) £w, + 2 = °> * = l , 2 , . . . , m - 2 ; l=k,...,m-2,

θλkX = 0, k=l,...,m-l.

By the exterior differentiation of (4.4) and the Riemannian structure equations, we get

(4-5) Σ θλkλk+1

From these we get inductively the quantities hλkil...iu in the following way:

(4.6) Σ^Afcir ίAkA k + i = Σ
λ k ik +1

Σ Λ λ m i 1 im^λmα= Σ

Then they have the following properties:
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0 ) ^λkii ik a r e symmetric in the set of indices il9 i2,..., ik9

(4.7) (2)

The vector-valued symmetric &-form Σhλkiί.m.ijθil - f l i ^ is called the k-th fundamental

form of M in X

We introduce the following notation for brevity: l[fc] = 1 1 (fc times) and put
F ( ί ) = Σ λ k

A λ k i [ k - i ] i ^ k ? ^ 2 ) = Σλk

AAki[fc-i]2^k? which are elements of O\ at /> for

fc = 2,3,...,m. Define also ^ + 1 ) = Σ A I M A
 a n d ^ ^ Σ A i ί m ^ which are

called the (m + \)-th normal vectors at a /-regular point of order m.

Now we can state the main theorems in this paper.

THEOREM 4.1. Let X be a Kaehler manifold of complex dimension n of positive

constant holomorphic sectional curvature Ap and M a complete connected Riemannian

2-manifold. Let x: M^X be a full isometric minimal immersion with constant Kaehler

angle a, which is neither holomorphic, anti-holomorphic nor totally real. Suppose there

exists an integer m such that each point of M is J-regular of order (m+1) and that the

Gaussian curvature K of M satisfies K> 2{ 1 — (2m + 3) cos(α)}p/(m + \)(m + 2) > 0 on M.

Then K is constant on M. Moreover, x is locally congruent to φn,m+i

THEOREM 4.2. Let x: M->X be as in Theorem 4.1, and s = [n/2 — 1] — 1 ([>] means

the integer part of a). Further assume that M is a J-regular manifold. If K satisfies

Λ>2{l-(2s + 3)cos(α)}p/(s+l)(,s + 2)>0, then K is constant on M so that x is locally

congruent to either φnΛ,..., φ w , s or φΛtS+1.

This generalizes Theorem 3.10 in [12].

5. A /-regular point of order m. In this section, adopting the normalized A:-th

normal vectors as a basis of each Ok

p for k=2, ...,m, we calculate the (m+l)-th

fundamental forms and the (m + l)-th normal vectors in terms of some complex-valued

smooth functions defined locally on M and study their properties. In [12], we have

treated the case m = 2. Let M be a complete connected 2-dimensional Riemannian

manifold such that the Gaussian curvature K of M satisfies K>δ > 0 for some positive

number δ and x: M-» X an isometric minimal immersion with constant Kaehler angle

α. We assume that every point p of M is /-regular of order m (>3) and that the A:-th

normal vectors Vψ and Vψ are perpendicular to each other and of the same non-zero

length for k = 3,..., m. Normalizing these vectors, we adopt them as a basis of Ok

p, so

that we have e^k.3= KfVll *Tll, ^k_2=V^/\\ Vψ\\ and cos(αfc) = </e~4k_3, eAk-2>*± 1

on M. Then with respect to these frames we assume
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"4k-3,l[k-l]l = ~"4.k-2,l[k-l]2 •>

^4k-3,l[fc-l]2=^4fc-2,l[fc-l]l = ^ίk,l[fc~l]l = KuΛ[k- 1]2 = 0 > (tk>4k — 1) .

We put

/αΛ,
C2k-l,2[k-2]— ~ C O S l ~T~ )

. /α

(5.2) «2k,i[fc-2]= -sinI —
α

where c2k-i,2[k-i] a n ^ others are real-valued smooth functions locally defined on M.

We assume that they satisfy the following:

C2fc-3,2[fc-3]ω2Jfc-l,2fc-3= ~~ C2k- l,2[k-2]Φ »

a2k-2,l[k-3]O)2k,2k-2:= ~a2k,l[k-2]Φ »

3 = ωλk,2k-2=° (λk>2k+ϊ),

"~ C2fc- l ,2[ fc-2] ω 2fc- l,2fc- 1 = C 2 k - l ,2[k- 1 ] ^ »

(5.3) da2kΛ[k-2]-ika2kΛ[k^2]θ12-a2k,ί[k-2]Cθ2k,2k = a2kΛ[k-i]Φ ?

C2k - 1,2[fc - 2]ω2k,2k - 1 = " " C2k,2[k -1]Ψ>

fl2k,l[k-2]ω2k-l,2k= ~a2k- l , l[k- 1]Φ ?

C2k-l,2[k-2]ωλk,2k-l = ~Cλk,2[k~l]Φ J

^ 2 f c , i [ f c - 2 ] ω λ k , 2 k = - ^ k , i [ f c - i ] ( / ) ' ( 4 > 2 A : + 1 ) , f o r fc = 3 , . . . , / w .

By (5.3), we have

) = ^ M C 2 k l 2 [ k 2 ] ) "+" 4{^2k l2[k 1] + C2k+ l,2[k- 1]}

for k = 3,..., w — 1 ,

(5.4) 2 2 X 2

]

λ > 2 m - l

+ 4 p ( c 2 m _ 1 > 2 [ m _ 2 ] ) 2 c o s ( α ) - 4 ( c 2 m _ 1 > 2 [ m _ 2 ] ) 4 / ( c 2 m _ 3 > 2 [ m _ 3 ] ) 2 ,

A>2m-1

Now, we calculate the (m+l)-th fundamental forms and the (m + l)-th normal
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vectors. Using the third equality in (4.6) and (5.1), we have, for λ > 2m + 1 ,

^4m-3,l[m]^4m-3,2λ-l = ^2λ- l , l [m]l^ l + "2A- l,l[m]2^2 >

^4wi-3,l[m]^4m-3,2A==^2A,l[m]l^l + "2A,l[m]2"2

By taking the exterior derivatives of (4.2) and using the structure equation of X, we
get, for fc=l,2, ...,ra:

(5.6)

-yjω2k-ifλ + cosί ^ j ώ 2 M ,

Substituting (5.1), (5.2), the eighth and the ninth equalities in (5.3) and (5.6) into (5.5),
we have

1

2

" 2 A - l , l [ m ] 2 = ~~~ \aλ,l[m- ί]~ aλ,l[m- 1 ] ~ CA,2[m- 1] + ^A,2[m- 1]) J
2

(5.7)
i

(αA,l

(

By taking the exterior derivatives of the sixth through the ninth equalities in (5.3), we
have

^2m,2[m- 1]^12 ~ C2m,2[m-l]ω2m,2m = C2m,2[m]Φ >

Cλ,2[m-l]l= — aλ,l[m- l]C2m,2[m- l]/a2m,l[m-2] J

(5.8) ^2m-14[m-l]
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With tfλ,l[m-l]2= ~cλ,2[m-l]a2rn-l,l[m-l]/C2m-l,2[m-2] 9

where c 2 m , 2 [ m ] ,
 cA,2[m]? α2m- i,i[m] a n d flΛ,i[m]are complex-valued smooth functions defined

locally on M.

PROPOSITION 5.1. Let M be a complete connected 2-dίmensίonal Riemannian

manifold such that the Gaussian curvature K of M satisfies K>δ>0 for some positive

number δ. Let x\ M^X be an isometric minimal immersion with constant Kaehler angle

α, which is neither holomorphic, anti-holomorphic nor totally real. We assume that each

point of M is J-regular of order m, and all formulas in Section 5 are valid on M. Then

PROOF. Using the first equality in (5.8), we have

" l C 2 m , 2 [ m - l ] l = C2m,2[m- l]^2m,2[m]Φ + ^2m,2[m- l]C2m,2[m]Φ >

I2 = 2(m + 1 ) ^ | c |2 + 4| c |2
c 2 m > 2 [ m _ X] |

2 + 4 | c 2 m > 2 [ m ] |

C2m>2[m-1] I Λa2m,l[m-2]la2m-2,ί[m-3]~\ C2m,2[m-1] I lC2m- l,2[m-2]

μ>2m+l

Combining the third equality in (5.4) with the above equality, we have

, l [ m - 2]C2m,2[m] + fl2rn,l[m- l]C2m,2[m- 1] I

By assumption, we see that M is compact and « 2 m , i [ m - 2 ]/0 on M. Hence, using the

above equality, we have c2 m,2 [ m-i] = 0. q.e.d.

The (m + l)-th normal vectors V{™+1) and V2

m+ί) of Nf at p are given as follows:

Σ
λ

^2™ =Lj\'l2λ-l,l[m]2e2λ-l+'l2λ,l[m]2e2λ)
λ

We put Ω(m+1) = {peM;V<r+1\p)=0 or Vf+1\p) = 0} and ( m + 1 ) < /
μK<Γ+1)||, nm + 1>/|inm + 1 )ll> Then, using (5.7), we have ΣM,nm-x]-c,,Άm-nf =

0 or Σλ(aλΛim-ι] + cλ,2im-i])2 = 0 at peΩ(m+1) and c o s ( α m + 1 ) = X λ { | α > l j l [ m _ 1 , | 2 -

kΛ,2[m-i]l2}/{|αA,i[m-i]l2 + kA,2[m-i]l2} A 1 s o , using the third equality in (4.7), we see

that Of+1) is spanned by K(f+1>, K(

2

m+1), / F (

1

m + 1 > and / F (

2

m + 1 ) at p. Hence, if we
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assume that each point of M is /-regular of order (m+1), then Ωim+ί) = 0 and

( + 1 ) ) # 0 , ± 1 .

Next we define H2

m

λ

+_}? and H<&+1) by

and we put

Using (5.7), we have ^ ( m + 1 ) = 4X λ α λ , 1 [ m _ 1 ] c A > 2 [ m _ 1 ] . Note that |if ( m + 1 ) |2 is a globally

defined smooth function on M. The geometric meaning of \H(m+1)\2 follows from the

identity | 7 / ( m + 1 ) | 2 = ( | | F ( Γ + 1 ) | | 2 - | | F (

2

w + 1 ) | | 2 ) 2 + 4<F (

1

m + 1 ) , F (

2

m + 1 ) > 2 .

PROPOSITION 5.2. In addition to the assumption in Proposition 5.1, we assume that

each point of M is J-regular of order (m+1). Then we have Him+1) = 0 on M.

PROOF. Using Proposition 5.1 and (5.8), we have

λ>2m+l

(5-9)

f 2 2 J (Uλ,l[m]Cλ,2[m- 1] + ^A,l[m- l]Cλ,2[m])
λ

from which we have H(m+1) = 0. q.e.d.

LEMMA 5.3.

^

PROOF. Using Proposition 5.1 and the second equality in (5.8), we have

A

which implies
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= ^Lt { ~" Cλ,2[m- 1
A

+ 2i(m+l)\cλf2[m_1]\
2θ12-2cλt2[m_1]cμa[m_1]ωλμ} .

By a direct calculation of ώ/ c (Xk A f 2 [ m _i] | 2 ) we get the first formula of Lemma 5.3.

In a similar way, by the fourth equality in (5.8), we can prove the formula for

i[m-i]l2) q.e.d.

6. Proofs of Theorems. We assume that psM is a /-regular point of order

(m+ 1). By Proposition 5.2, we have that K(

1

W+1) and V2

m+1) are perpendicular to each

other and of the same length. Normalizing these vectors we adopt them as a basis of

Of+1) in a neighbourhood of p, so that we have £ 4 m + 1 = F (Γ+ 1 )/II^ (Γ+ 1 )II and

e^m+2=V2m+1)/\\ V2

m+ί)\\ and cos(αm + 1) = < / £ 4 m + 1 , eAm+2}¥>± 1. With respect to these

new frames, we have

(6.1)

Substituting (6.1) into (5.5), we have

(6.2)

^4m-2,2<x) = 0 , (a > 2m + 3) .

On the other hand, by taking the exterior derivatives of (4.2) for k= 1, 2 , . . . , (m +1)

and using the structure equations for X, we have, for £, /= 1, 2 , . . . , (ra+1),

= cosl — I c o s l — I ω 2 k _ 1 > 2 ί _ 1 + c o s l — I s i n l —

. / ock \ ( α, \ _ . / ock \ . / α, \ _
+ s i n v T y c o sv T r 2 " - 2 1 - 1 + s i n ( T y s m v T Jώ 2 J k ) 2 i '
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- 3,41 - 2 + *^4fc - 2,4/ - 2

) c o s ( y )ω2k-i f2i-i-cos( — Isinl-y Iω 2 k _ l t 2 ,

-sml — I c o s l y Iώ 2 k f 2 l _ 1 + sinl — I s m l —

(6.3)

( αfc \ / αi \ - / αfc \ f V>l\ -

Ύ ) s i n l Y )ω2k,2/-i-sin(— J c o s l y )ω2kf2I,

-yj cosί yjώ2ki2,- s i n (-y j s i n (
In the first and second equalities in (2.2) and the eighth and ninth equalities in (5.3)

we put k=m. Then we have h4m-3Λ[m]= -sec(αm/2)c 2 w_ 1 > 2 [ m_ 2 ]= -_cosec(αm/2)β2m>1[m_2],
C2m-l,2[m-2]^2m-l,λ = ^λ,2[m-l]Φ &nd « 2 m , 1 [ m - 2 ] ^ 2 m , A = άλΛ[m_ 1}φ for A > 2 m + 1 , Γβ-

spectively. Substituting these equalities and (6.3) into (6.2), we get

cosf w + 1

2

COSI m + 1 ) ( c 2 m + 1 2rm-ii — α 2 m + i ir«-ii)
λ 2 '

~ S i n (

(6.4) —M
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S m ( ~ ) ( ~ C2m+ l,2[m- 1] + a2m+ l,l[m- 1])

—f

Cλ,2[m-ί]~aλ,ί[m-l] — 0 5

^λ,2[m-l] + αλ,l[m-l] = 0

Solving the above equations, we have

C2m+l,2[m-l] = C O t ( " )a2m + 2,l

+ 2,2[m-l] J

Moreover, since H(m+1) = 0, we see that c2m+lt2[m-i] is real-valued and C2m+2,2[m-i]

Summarizing these results, we have
α m+l \

Γ lc2m+l,2[m-l] ?

(6.5)

j α 2m+l,= cot| m + 1

\ 2

C2m + 2,2[m-l] = α2m+l,l[m-l] = CA,2[m-l] = βλ,l[m-l] = 0 , (λ > 2m + 3) .

Now substituting (6.5) into the eighth and ninth equalities in (5.3), we have

C2m-l,2[m-2]ω2m+l,2rn-l = ~ C2m+ί,2[m-ί]Φ 5

Moreover, by (5.8), we have

m- 1]^12 " " C2m+ l,2[m- l ] ω 2 m + l,2m+ 1 = C2m+ ί,2[m]Φ

m- 1]^12 ~a2m + 2,l[m- l]ω2m + 2,2m+2 =a2rn + 2,l[m]Φ J

C2m+l,2[m-l]ω2m + 2,2rn+l = ~C2m + 2,2[m]Φ J

(6.7)
a2m + 2,l[m-l]ω2m+l,2rn + 2=z ~a2m+l,l[m]Φ ?



282 T.OGATA

C2m+ l,2[m- l]ωλ,2m+ 1 = ~Cλ,2[m]Φ 9

^2m + 2,l[m-l]^λ,2m + 2= ~aλΛ[m]φ , (λ > 2m + 3) .

Hence, (6.5), (6.6), (6.7) and Lemma 5.3 show that (5.2), (5.3) and (5.4) are valid for

We define smooth functions on M by

(6-8) Vi = clcl2-- c2

2k_iaik_2], k=2,3,...,m.

Note that these functions are scalar invariants of x, which can be seen in a way similar

to that in [12, p. 372]. Using (5.2) and (5.3), we get d%l = <$k(Akφ + Akφ), where Ak

satisfies Άk =
 c€k_ 1c2k-i,2[k-1] + A-i c2k-ι,2[k-2] f°Γ k = 39..., m and A2 = c3f2' Hence,

using (5.4) and Lemma 5.3, we have:

LEMMA 6.1.

(6.9) Δ^2

m = 2<β I {m(m + l)A/2 - p + (2m + l)p cos(α)}

(6.10) ^ ( ^ Σ k Λ , 2 [ m - 1 ] l 2 ) = 2 ^ ^ Σ \cλaim_1]\
2{(rn+\)(m

-p + (2m + 3)p eos(α)} + 4 X | ^ m c Λ , 2 [
A

Note that (6.10) coinsides with (3.8) in [12] for m = 2.

Now we give the proofs of the main theorems.

PROOF OF THEOREM 4.1. By (6.10) and the assumption, #mΣλlcA,2[m-i]l2 is a

non-zero subharmonic function on a compact manifold M, which is constant on M.

This shows that AΓ=2{1 -(2m + 3) cos(α)}ρ/(m + l)(m + 2). Hence, by Ohnita's theorem

[10], we get Theorem 4.1. q.e.d.

COROLLARY 6.2. Let x: M->X be as in Theorem 4.1. If M is a J-regular manifold

and the Gaussian curvature K satisfies 2{ 1 - (2m + 1) cos(α)}/m(m + 1) > K> 2{ 1 - (2m +

3)cos(α)}p/(w+l)(m + 2)>0 on M, then we have Λ>2{l-(2m + 3)cos(α)}p/(m +

PROOF. By the /-regularity of M and the assumption, we have £ | cλt2[m-u I2 # 0

on M. Hence, each point of M is /-regular of order (w +1). By Theorem 4.1, we are

done. q.e.d.

Proof of THEOREM 4.2. We may assume that each point of M is /-regular of order

s. If ΣkΛ,2[s-i]l 2^0 a t a point p of M, then we get ΣkΛ,2[s-i]l 2^0 on M. Hence,

each point of M is /-regular of order (s+1). By Theorem 4.1, we see that x is locally
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congruent to φntS+1. If J] I cλ,2[s-i] | 2 = 0 on M, then, by (6.9), we see that x is locally

congruent to φns. q.e.d.
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