CURVATURE PINCHING THEOREM FOR MINIMAL SURFACES WITH CONSTANT KAEHLER ANGLE IN COMPLEX PROJECTIVE SPACES, II

Takashi Ogata

(Received January 16, 1992, revised July 9, 1992)

Abstract

We consider minimal surfaces with constant Kaehler angle in complex projective spaces. By using J-invariant higher order osculating spaces and pinched Gaussian curvature, we give characterization theorems for these minimal surfaces.

This is a continuation of our paper [12]. For each integer p with $0 \leq p \leq n$, it is known that there exists a full isometric minimal immersion $\varphi_{n, p}: S^{2}\left(K_{n, p}\right) \rightarrow P^{n}(C)$ of a 2-dimensional sphere of constant Gaussian curvature $K_{n, p}=4 \rho /(n+2 p(n-p))$ into the complex projective n-space with the Fubini-Study metric of constant holomorphic sectional curvature 4ρ (cf. [1] and [2]). In [12], using J-invariant first order osculating spaces, we gave characterization theorems for immersions $\varphi_{n, p}$ for $p \leq 3$. The purpose of this paper is to generalize these to the case of $\varphi_{n, p}$ for $\dot{p} \geq 4$ (cf. Section 4). To study the problem, we use J-invariant higher order osculating spaces to find some scalars defined globally on M, and calculate their Laplacians (cf. Section 6). In this paper, we use the same terminology and notation as in [12] unless otherwise stated.
4. J-invariant higher order osculating spaces and the main theorems. Let X be a Kaehler manifold of complex dimension n of constant holomorphic sectional curvature 4ρ and $x: M \rightarrow X$ an isometric immersion of an oriented 2-dimensional Riemannian manifold M into X. Let $C(s)$ be a smooth curve in M through a point $p=C(0)$ of M with parameter s proportional to the arc length. We denote by $D^{k} C / d s^{k}$ the k-th covariant derivative along $C(s)$ in X. Let $T_{p}^{(k)}(C)$ be a subspace of $T_{p}(X)$ spanned by $\left\{D C / d s, J D C / d s, \ldots, D^{k} C / d s^{k}, J D^{k} C / d s^{k}\right\}$ at $s=0$, where J is the complex structure of $X . T_{p}^{(k)}$ is defined to be the subspace spanned by all $T_{p}^{(k)}(C)$ for curves C lying on M through p and is called the J-invariant k-th osculating space of M at p. We then have $T_{p}(M) \subset T_{p}^{(1)} \subset \cdots \subset T_{p}^{(m)} \subset T_{p}(X)$. Let $O_{p}^{(k+1)}$ be the orthogonal complement of $T_{p}^{(k)}$ in $T_{p}^{(k+1)}$ and N_{p}^{m} the orthogonal complement of $T_{p}^{(m)}$ in $T_{p}(X)$, so that we have $T_{p}^{(k+1)}=T_{p}^{(k)}+O_{p}^{(k+1)}$ and $T_{p}(X)=T_{p}^{(m)}+N_{p}^{m}$. We put $O_{p}^{1}=T_{p}^{(1)}$. Note that we have

[^0]$0 \leq \operatorname{dim}\left(O_{p}^{k}\right) \leq 4$ and, if $\operatorname{dim}\left(O_{p}^{k}\right)=0$ for some k, then we have $\operatorname{dim}\left(O_{p}^{r}\right)=0$ for all $r \geq k$.
A point $p \in M$ is called a J-regular point of order m if the J-invariant m-th osculating space $T_{p^{\prime}}^{(m)}$ exists in a neighbourhood U of p and if each $O_{p^{\prime}}^{k}$ is of dimension 4 for any $p^{\prime} \in U$ and $k=1,2, \ldots, m$. We denote $O^{k}=\bigcup_{p \in M} O_{p}^{k}$. We say that $x(M)$ is a J-regular manifold if each O^{k} is of constant rank on M for any k. Note that $\operatorname{rank}\left(O^{1}\right)=4$ if and only if x is neither holomorphic nor anti-holomorphic.

Let $p \in M$ be a J-regular point of order m. Then we have an orthogonal decomposition of $T_{p}(X)$ such that $T_{p}(X)=O_{p}^{1}+\cdots+O_{p}^{m}+N_{p}^{m}$. Now we define a J-canonical basis in O_{p}^{k} as follows: Let $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}$ be an orthonormal local frame of M and $\left\{\tilde{e}_{4 k-3}, \tilde{e}_{4 k-2}\right\}$ an orthonormal system of normal vector fields along M such that it belongs to O_{p}^{k} at $p(k \geq 2)$. We put $\cos (\alpha)=\left\langle J \tilde{e}_{1}, \tilde{e}_{2}\right\rangle$ and $\cos \left(\alpha_{k}\right)=\left\langle J \tilde{e}_{4 k-3}, \tilde{e}_{4 k-2}\right\rangle$. Then we have $\cos (\alpha) \neq \pm 1, \cos \left(\alpha_{k}\right) \neq \pm 1$. Hence we can define local normal vector fields $\tilde{e}_{4 k-1}, \tilde{e}_{4 k}$ along M such that $\left\{\tilde{e}_{4 k-3}, \tilde{e}_{4 k-2}, \tilde{e}_{4 k-1}, \tilde{e}_{4 k}\right\}$ at p is an orthonormal basis of O_{p}^{k} in the following way:

$$
\begin{gathered}
\tilde{e}_{4 k-1}=-\cot \left(\alpha_{k}\right) \tilde{e}_{4 k-3}-\operatorname{cosec}\left(\alpha_{k}\right) J \tilde{e}_{4 k-2} \\
\tilde{e}_{4 k}=\operatorname{cosec}\left(\alpha_{k}\right) J \tilde{e}_{4 k-3}-\cot \left(\alpha_{k}\right) \tilde{e}_{4 k-2}
\end{gathered}
$$

By using them, we define local vector fields $e_{4 k-3}, e_{4 k-2}, e_{4 k-1}$ and $e_{4 k}, k=1,2, \ldots, m$, in a neighbourhood of p as follows:

$$
\begin{align*}
& e_{4 k-3}=\cos \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k-3}+\sin \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k-1} \\
& e_{4 k-2}=\cos \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k-2}+\sin \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k} \tag{4.1}\\
& e_{4 k-1}=\sin \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k-3}-\cos \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k-1} \\
& e_{4 k}=-\sin \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k-2}+\cos \left(\frac{\alpha_{k}}{2}\right) \tilde{e}_{4 k}
\end{align*}
$$

where $\alpha_{1}=\alpha$. Then $\left\{e_{4 k-3}, e_{4 k-2}, e_{4 k-1}, e_{4 k}\right\}$ at p is a J-canonical basis of O_{p}^{k}, that is, an orthonormal basis of O_{p}^{k} with $J e_{4 k-3}=e_{4 k-2}$ and $J e_{4 k-1}=e_{4 k}$. Let $\left\{e_{4 m+1}, \ldots, e_{n}\right\}$ be an orthonormal system of normal vector fields along M such that it is a J-canonical basis of N_{p}^{m} at p.

We denote the coframe fields dual to these frames by $\left\{\tilde{\theta}_{4 k-3}, \tilde{\theta}_{4 k-2}, \tilde{\theta}_{4 k-1}, \tilde{\theta}_{4 k}\right\}$, $\left\{\theta_{4 k-3}, \theta_{4 k-2}, \theta_{4 k-1}, \theta_{4 k}\right\}$ and $\left\{\theta_{4 m+1}, \ldots, \theta_{n}\right\}$, respectively. For $\alpha \geq 2 m+1$, we put $\tilde{e}_{2 \alpha-1}=e_{2 \alpha-1}$ and $\tilde{e}_{2 \alpha}=e_{2 \alpha}$, so that we have $\tilde{\theta}_{2 \alpha-1}=\theta_{2 \alpha-1}$ and $\tilde{\theta}_{2 \alpha}=\theta_{2 \alpha}$. If we put $\omega_{\alpha}=\theta_{2 \alpha-1}+i \theta_{2 \alpha}$ where $i^{2}=-1$, then $\left\{\omega_{\alpha}\right\}$ is a local field of unitary coframes on X and we have, by (4.1):

$$
\begin{align*}
& \tilde{\theta}_{4 k-3}+i \tilde{\theta}_{4 k-2}=\cos \left(\frac{\alpha_{k}}{2}\right) \omega_{2 k-1}+\sin \left(\frac{\alpha_{k}}{2}\right) \bar{\omega}_{2 k} \\
& \tilde{\theta}_{4 k-1}+i \tilde{\theta}_{4 k}=\sin \left(\frac{\alpha_{k}}{2}\right) \omega_{2 k-1}-\cos \left(\frac{\alpha_{k}}{2}\right) \bar{\omega}_{2 k}, \quad(k=1, \ldots, m), \tag{4.2}\\
& \tilde{\theta}_{2 \alpha-1}+i \tilde{\theta}_{2 \alpha}=\theta_{2 \alpha-1}+i \theta_{2 \alpha}=\omega_{\alpha}, \quad(\alpha=2 m+1, \ldots, n) .
\end{align*}
$$

Now we introduce inductively the higher order fundamental forms $\left\{h_{\lambda_{k} i_{1} \cdots i_{k}}\right\}$ of M in X. Let $\left\{\tilde{\theta}_{A B}\right\}$ be the Riemannian connection form of X with respect to the canonical 1 -form $\left\{\tilde{\theta}_{A}\right\}$, and $\left\{\omega_{\alpha \beta}\right\}$ the unitary connection form of X with respect to $\left\{\omega_{\alpha}\right\}$. We shall use the following ranges of indices:

$$
\begin{align*}
& 1 \leq A, B, \ldots \leq 2 n, \quad 1 \leq i, j, \ldots \leq 2, \quad 3 \leq \lambda_{0}, \mu_{0}, \ldots \leq 4, \\
& 4 k-3 \leq \lambda_{k}, \mu_{k}, \ldots \leq 4 k, \quad 4 k+1 \leq s_{k}, t_{k}, \ldots \leq 2 n \\
& 2 k+1 \leq \alpha_{k}, \beta_{k}, \ldots \leq n, \quad \text { for } \quad k=1,2, \ldots, m \tag{4.3}\\
& 4 m+1 \leq \alpha, \beta, \ldots \leq 2 n, \quad 2 m+1 \leq \lambda, \mu, \ldots \leq n .
\end{align*}
$$

We denote the restriction of forms on X to M by the same letters. We then have

$$
\begin{align*}
& \tilde{\theta}_{\lambda_{0}}=\tilde{\theta}_{\lambda_{k}}=0, \quad(k=2), \\
& \tilde{\theta}_{\lambda_{k} \lambda_{l+2}}=0, \quad k=1,2, \ldots, m-2 ; \quad l=k, \ldots, m-2, \tag{4.4}\\
& \tilde{\theta}_{\lambda_{k} \alpha}=0, \quad k=1, \ldots, m-1 .
\end{align*}
$$

By the exterior differentiation of (4.4) and the Riemannian structure equations, we get

$$
\begin{align*}
& \sum_{i} \tilde{\theta}_{i} \wedge \tilde{\theta}_{i \lambda_{0}}=\sum_{i} \tilde{\theta}_{i} \wedge \tilde{\theta}_{i \lambda_{2}}=0 \\
& \sum_{\lambda_{k+1}} \tilde{\theta}_{\lambda_{k} \lambda_{k+1}} \wedge \tilde{\theta}_{\lambda_{k+1} \lambda_{k+2}}=0, \quad(k=2, \ldots, m-2) \tag{4.5}\\
& \sum_{\lambda_{m}} \tilde{\theta}_{\lambda_{m-1} \lambda_{m}} \wedge \tilde{\theta}_{\lambda_{m} \alpha}=0
\end{align*}
$$

From these we get inductively the quantities $h_{\lambda_{k} i_{1} \cdots i_{k}}$ in the following way:

$$
\begin{align*}
& \tilde{\theta}_{i \lambda_{0}}=\sum_{j} h_{\lambda_{0} i j} \tilde{\theta}_{j}, \quad \tilde{\theta}_{i \lambda_{2}}=\sum_{j} h_{\lambda_{2} i j} \tilde{\theta}_{j}, \\
& \sum_{\lambda_{k}} h_{\lambda_{k} i_{1} \cdots i_{k}} \tilde{\theta}_{\lambda_{k} \lambda_{k+1}}=\sum_{i_{k+1}} h_{\lambda_{k+1} i_{1} \cdots i_{k} i_{k+1}} \tilde{\theta}_{i_{k+1}}, \tag{4.6}\\
& \sum_{\lambda_{m}} h_{\lambda_{m} i_{1} \cdots i_{m}} \tilde{\theta}_{\lambda_{m} \alpha}=\sum_{i_{m+1}} h_{\alpha i_{1} \cdots i_{m+1}} \tilde{\theta}_{i_{m+1}} .
\end{align*}
$$

Then they have the following properties:
(1) $h_{\lambda_{k} i_{1} \cdots i_{k}}$ are symmetric in the set of indices $i_{1}, i_{2}, \ldots, i_{k}$,
(2) $\sum_{i} h_{\lambda_{k} i \cdots i \cdots i \cdots i_{k}}=0$,

$$
\begin{equation*}
\left\langle\tilde{e}_{\lambda_{k}}, D^{k} x\right\rangle=\sum h_{\lambda_{k} i_{1} \cdots i_{k}} \tilde{\theta}_{i_{1}} \cdots \tilde{\theta}_{i_{k}} \tag{4.7}
\end{equation*}
$$

The vector-valued symmetric k-form $\sum h_{\lambda_{k} i_{1} \cdots i_{k}} \tilde{\theta}_{i_{1}} \cdots \tilde{\theta}_{i_{k}} \tilde{e}_{\lambda_{k}}$ is called the k-th fundamental form of M in X.

We introduce the following notation for brevity: $1[k]=1 \cdots 1$ (k times) and put $V_{1}^{(k)}=\sum_{\lambda_{k}} h_{\lambda_{k} 1[k-1] 1} \tilde{e}_{\lambda_{k}}, V_{2}^{(k)}=\sum_{\lambda_{k}} h_{\lambda_{k} 1[k-1] 2} \tilde{e}_{\lambda_{k}}$, which are elements of O_{p}^{k} at p for $k=2,3, \ldots, m$. Define also $V_{1}^{(m+1)}=\sum_{\alpha} h_{\alpha 1[m] 1} \tilde{e}_{\alpha}$ and $V_{2}^{(m+1)}=\sum_{\alpha} h_{\alpha 1[m] 2} \tilde{e}_{\alpha}$, which are called the $(m+1)$-th normal vectors at a J-regular point of order m.

Now we can state the main theorems in this paper.
Theorem 4.1. Let X be a Kaehler manifold of complex dimension n of positive constant holomorphic sectional curvature 4ρ and M a complete connected Riemannian 2-manifold. Let $x: M \rightarrow X$ be a full isometric minimal immersion with constant Kaehler angle α, which is neither holomorphic, anti-holomorphic nor totally real. Suppose there exists an integer m such that each point of M is J-regular of order $(m+1)$ and that the Gaussian curvature K of M satisfies $K \geq 2\{1-(2 m+3) \cos (\alpha)\} \rho /(m+1)(m+2)>0$ on M. Then K is constant on M. Moreover, x is locally congruent to $\varphi_{n, m+1}$.

Theorem 4.2. Let $x: M \rightarrow X$ be as in Theorem 4.1, and $s=[n / 2-1]-1$ ([a] means the integer part of a). Further assume that M is a J-regular manifold. If K satisfies $K \geq 2\{1-(2 s+3) \cos (\alpha)\} \rho /(s+1)(s+2) \geq 0$, then K is constant on M so that x is locally congruent to either $\varphi_{n, 1}, \ldots, \varphi_{n, s}$ or $\varphi_{n, s+1}$.

This generalizes Theorem 3.10 in [12].
5. A J-regular point of order m. In this section, adopting the normalized k-th normal vectors as a basis of each O_{p}^{k} for $k=2, \ldots, m$, we calculate the ($m+1$)-th fundamental forms and the ($m+1$)-th normal vectors in terms of some complex-valued smooth functions defined locally on M and study their properties. In [12], we have treated the case $m=2$. Let M be a complete connected 2-dimensional Riemannian manifold such that the Gaussian curvature K of M satisfies $K \geq \delta>0$ for some positive number δ and $x: M \rightarrow X$ an isometric minimal immersion with constant Kaehler angle α. We assume that every point p of M is J-regular of order $m(\geq 3)$ and that the k-th normal vectors $V_{1}^{(k)}$ and $V_{2}^{(k)}$ are perpendicular to each other and of the same non-zero length for $k=3, \ldots, m$. Normalizing these vectors, we adopt them as a basis of O_{p}^{k}, so that we have $\tilde{e}_{4 k-3}=V_{1}^{(k)} /\left\|V_{1}^{(k)}\right\|, \tilde{e}_{4 k-2}=V_{2}^{(k)} /\left\|V_{2}^{(k)}\right\|$ and $\cos \left(\alpha_{k}\right)=\left\langle J \tilde{e}_{4 k-3}, \tilde{e}_{4 k-2}\right\rangle \neq \pm 1$ on M. Then with respect to these frames we assume

$$
\begin{align*}
& h_{4 k-3,1[k-1] 1}=-h_{4 k-2,1[k-1] 2}, \tag{5.1}\\
& h_{4 k-3,1[k-1] 2}=h_{4 k-2,1[k-1] 1}=h_{t k, 1[k-1] 1}=h_{t_{k}, 1[k-1] 2}=0, \quad\left(t_{k} \geq 4 k-1\right) .
\end{align*}
$$

We put

$$
\begin{align*}
& c_{2 k-1,2[k-2]}=-\cos \left(\frac{\alpha_{k}}{2}\right) h_{4 k-3,1[k-1] 1} \\
& a_{2 k, 1[k-2]}=-\sin \left(\frac{\alpha_{k}}{2}\right) h_{4 k-3,1[k-1] 1}, \tag{5.2}\\
& c_{2 k, 2[k-2]}=a_{2 k-1,1[k-2]}=c_{\lambda_{k}, 2[k-2]}=a_{\lambda_{k}, 1[k-2]}=0, \quad\left(\lambda_{k} \geq 2 k+1\right),
\end{align*}
$$

where $c_{2 k-1,2[k-1]}$ and others are real-valued smooth functions locally defined on M. We assume that they satisfy the following:

$$
\begin{aligned}
& c_{2 k-3,2[k-3]} \omega_{2 k-1,2 k-3}=-c_{2 k-1,2[k-2]} \bar{\phi}, \\
& a_{2 k-2,1[k-3]} \omega_{2 k, 2 k-2}=-a_{2 k, 1[k-2]} \phi, \\
& \omega_{2 k, 2 k-3}=\omega_{2 k-1,2 k-2}=\omega_{\lambda_{k}, 2 k-3}=\omega_{\lambda_{k}, 2 k-2}=0 \quad\left(\lambda_{k} \geq 2 k+1\right), \\
& d c_{2 k-1,2[k-2]}+i k c_{2 k-1,2[k-2]} \tilde{\theta}_{12}-c_{2 k-1,2[k-2]} \omega_{2 k-1,2 k-1}=c_{2 k-1,2[k-1]} \bar{\phi}, \\
& d a_{2 k, 1[k-2]}-i k a_{2 k, 1[k-2]} \tilde{\theta}_{12}-a_{2 k, 1[k-2]} \omega_{2 k, 2 k}=a_{2 k, 1[k-1]} \phi, \\
& c_{2 k-1,2[k-2]} \omega_{2 k, 2 k-1}=-c_{2 k, 2[k-1]} \bar{\phi}, \\
& a_{2 k, 1[k-2]} \omega_{2 k-1,2 k}=-a_{2 k-1,1[k-1]} \phi, \\
& c_{2 k-1,2[k-2]} \omega_{\lambda_{k}, 2 k-1}=-c_{\lambda_{k}, 2[k-1]} \bar{\phi}, \\
& a_{2 k, 1[k-2]} \omega_{\lambda_{k}, 2 k}=-a_{\lambda_{k}, 1[k-1]} \phi, \quad\left(\lambda_{k} \geq 2 k+1\right), \quad \text { for } \quad k=3, \ldots, m .
\end{aligned}
$$

By (5.3), we have

$$
\begin{gather*}
\Delta\left(c_{2 k-1,2[k-2]}\right)^{2}=2 k K\left(c_{2 k-1,2[k-2]}\right)^{2}+4\left\{c_{2 k-1,2[k-1]}^{2}+c_{2 k+1,2[k-1]}^{2}\right\} \\
+4 \rho c_{2 k-1,2[k-2]}^{2} \cos (\alpha)-4\left(c_{2 k-1,2[k-2]}\right)^{4} /\left(c_{2 k-3,2[k-3]}\right)^{2}, \\
\text { for } k=3, \ldots, m-1, \\
\begin{array}{c}
\Delta\left(c_{2 m-1,2[m-2]}\right)^{2}=2 m K\left(c_{2 m-1,2[m-2]}\right)^{2}+4 \sum_{\lambda \geq 2 m-1}\left|c_{\lambda, 2[m-1]}\right|^{2} \\
+4 \rho\left(c_{2 m-1,2[m-2]}\right)^{2} \cos (\alpha)-4\left(c_{2 m-1,2[m-2]}\right)^{4} /\left(c_{2 m-3,2[m-3]}\right)^{2}, \\
\Delta\left(a_{2 m, 1[m-2]}\right)^{2}=2 m K\left(a_{2 m, 1[m-2]}\right)^{2}+4 \sum_{\lambda \geq 2 m-1}\left|a_{\lambda, 1[m-1]}\right|^{2} \\
-4 \rho\left(a_{2 m, 1[m-2]}\right)^{2} \cos (\alpha)-4\left(a_{2 m, 1[m-2]}\right)^{4} /\left(a_{2 m-2,1[m-3]}\right)^{2} .
\end{array} \tag{5.4}
\end{gather*}
$$

Now, we calculate the $(m+1)$-th fundamental forms and the $(m+1)$-th normal
vectors. Using the third equality in (4.6) and (5.1), we have, for $\lambda \geq 2 m+1$,

$$
\begin{align*}
& h_{4 m-3,1[m]} \tilde{\theta}_{4 m-3,2 \lambda-1}=h_{2 \lambda-1,1[m] 1} \tilde{\theta}_{1}+h_{2 \lambda-1,1[m] 2} \tilde{\theta}_{2}, \\
& h_{4 m-3,1[m]} \tilde{\theta}_{4 m-3,2 \lambda}=h_{2 \lambda, 1[m] 1} \tilde{\theta}_{1}+h_{2 \lambda, 1[m] 2} \tilde{\theta}_{2} . \tag{5.5}
\end{align*}
$$

By taking the exterior derivatives of (4.2) and using the structure equation of X, we get, for $k=1,2, \ldots, m$:

$$
\begin{align*}
& \tilde{\theta}_{4 k-3,2 \lambda-1}+i \tilde{\theta}_{4 k-2,2 \lambda-1}=\cos \left(\frac{\alpha_{k}}{2}\right) \omega_{2 k-1, \lambda}+\sin \left(\frac{\alpha_{k}}{2}\right) \bar{\omega}_{2 k, \lambda}, \\
& \tilde{\theta}_{4 k-3,2 \lambda}+i \tilde{\theta}_{4 k-2,2 \lambda}=i\left\{\cos \left(\frac{\alpha_{k}}{2}\right) \omega_{2 k-1, \lambda}-\sin \left(\frac{\alpha_{k}}{2}\right) \bar{\omega}_{2 k, \lambda}\right\}, \\
& \tilde{\theta}_{4 k-1,2 \lambda-1}+i \tilde{\theta}_{4 k, 2 \lambda-1}=\sin \left(\frac{\alpha_{k}}{2}\right) \omega_{2 k-1, \lambda}+\cos \left(\frac{\alpha_{k}}{2}\right) \bar{\omega}_{2 k, \lambda}, \tag{5.6}\\
& \tilde{\theta}_{4 k-1,2 \lambda}+i \tilde{\theta}_{4 k, 2 \lambda}=i\left\{\sin \left(\frac{\alpha_{k}}{2}\right) \omega_{2 k-1, \lambda}+\cos \left(\frac{\alpha_{k}}{2}\right) \bar{\omega}_{2 k, \lambda}\right\} .
\end{align*}
$$

Substituting (5.1), (5.2), the eighth and the ninth equalities in (5.3) and (5.6) into (5.5), we have

$$
\begin{align*}
& h_{2 \lambda-1,1[m] 1}=-\frac{1}{2}\left(a_{\lambda, 1[m-1]}+\bar{a}_{\lambda, 1[m-1]}+c_{\lambda, 2[m-1]}+\bar{c}_{\lambda, 2[m-1]}\right), \\
& h_{2 \lambda-1,1[m] 2}=-\frac{i}{2}\left(a_{\lambda, 1[m-1]}-\bar{a}_{\lambda, 1[m-1]}-c_{\lambda, 2[m-1]}+\bar{c}_{\lambda, 2[m-1]}\right), \\
& h_{2 \lambda, 1[m] 1}=\frac{i}{2}\left(a_{\lambda, 1[m-1]}-\bar{a}_{\lambda, 1[m-1]}+c_{\lambda, 2[m-1]}-\bar{c}_{\lambda, 2[m-1]}\right), \tag{5.7}\\
& h_{2 \lambda, 1[m] 2}=-\frac{1}{2}\left(a_{\lambda, 1[m-1]}+\bar{a}_{\lambda, 1[m-1]}-c_{\lambda, 2[m-1]}-\bar{c}_{\lambda, 2[m-1]}\right) .
\end{align*}
$$

By taking the exterior derivatives of the sixth through the ninth equalities in (5.3), we have

$$
\begin{gathered}
d c_{2 m, 2[m-1]}+(m+1) i c_{2 m, 2[m-1]} \tilde{\theta}_{12}-c_{2 m, 2[m-1]} \omega_{2 m, 2 m}=c_{2 m, 2[m]} \bar{\phi}, \\
\\
d c_{\lambda, 2[m-1]}+(m+1) i c_{\lambda, 2[m-1]} \tilde{\theta}_{12}-\sum_{\mu} c_{\mu, 2[m-1]} \omega_{\lambda \mu}=c_{\lambda, 2[m-1] 1} \phi+c_{\lambda, 2[m]} \bar{\phi} \\
\text { with } \quad c_{\lambda, 2[m-1] 1}=-a_{\lambda, 1[m-1]} c_{2 m, 2[m-1]} / a_{2 m, 1[m-2]}, \\
\text { (5.8) } \quad d a_{2 m-1,1[m-1]}-(m+1) i a_{2 m-1,1[m-1]} \tilde{\theta}_{12}-a_{2 m-1,1[m-1]} \omega_{2 m-1,2 m-1}=a_{2 m-1,1[m]} \phi,
\end{gathered}
$$

$$
\begin{gathered}
d a_{\lambda, 1[m-1]}-(m+1) i a_{\lambda, 1[m-1]} \tilde{\theta}_{12}-\sum_{\mu} a_{\mu, 1[m-1]} \omega_{\lambda \mu}=a_{\lambda, 1[m]} \phi+a_{\lambda, 1[m-1] 2} \bar{\phi} \\
\text { with } \quad a_{\lambda, 1[m-1] 2}=-c_{\lambda, 2[m-1]} a_{2 m-1,1[m-1]} / c_{2 m-1,2[m-2]},
\end{gathered}
$$

where $c_{2 m, 2[m]}, c_{\lambda, 2[m]}, a_{2 m-1,1[m]}$ and $a_{\lambda, 1[m]}$ are complex-valued smooth functions defined locally on M.

Proposition 5.1. Let M be a complete connected 2-dimensional Riemannian manifold such that the Gaussian curvature K of M satisfies $K \geq \delta>0$ for some positive number δ. Let $x: M \rightarrow X$ be an isometric minimal immersion with constant Kaehler angle α, which is neither holomorphic, anti-holomorphic nor totally real. We assume that each point of M is J-regular of order m, and all formulas in Section 5 are valid on M. Then we have $\left|c_{2 m, 2[m-1]}\right|^{2}=0$.

Proof. Using the first equality in (5.8), we have

$$
\begin{aligned}
& d\left|c_{2 m, 2[m-1]}\right|^{2}=c_{2 m, 2[m-1]} \bar{c}_{2 m, 2[m]} \phi+\bar{c}_{2 m, 2[m-1]} c_{2 m, 2[m]} \bar{\phi}, \\
& \Delta\left|c_{2 m, 2[m-1]}\right|^{2}=2(m+1) K\left|c_{2 m, 2[m-1]}\right|^{2}+4\left|c_{2 m, 2[m]}\right|^{2} \\
& \quad+4\left|c_{2 m, 2[m-1]}\right|^{2}\left\{a _ { 2 m , 1 [m - 2] } ^ { 2 } \left|a_{2 m-2,1[m-3]}^{2}-\left|c_{2 m, 2[m-1]}\right|^{2} / c_{2 m-1,2[m-2]}^{2}\right.\right. \\
& \left.\quad-\sum_{\mu \geq 2 m+1}\left|a_{\mu, 1[m-1]}\right|^{2} / a_{2 m, 1[m-2]}^{2}+\rho \cos (\alpha)\right\} .
\end{aligned}
$$

Combining the third equality in (5.4) with the above equality, we have

$$
\begin{aligned}
& \Delta\left(a_{2 m, 1[m-2]}^{2}\left|c_{2 m, 2[m-1]}\right|^{2}\right)=2(2 m+1) K a_{2 m, 1[m-2]}^{2}\left|c_{2 m, 2[m-1]}\right|^{2} \\
& \quad+4\left|a_{2 m, 1[m-2]} c_{2 m, 2[m]}+a_{2 m, 1[m-1]} c_{2 m, 2[m-1]}\right|^{2} .
\end{aligned}
$$

By assumption, we see that M is compact and $a_{2 m, 1[m-2]} \neq 0$ on M. Hence, using the above equality, we have $c_{2 m, 2[m-1]}=0$.
q.e.d.

The $(m+1)$-th normal vectors $V_{1}^{(m+1)}$ and $V_{2}^{(m+1)}$ of N_{p}^{m} at p are given as follows: For $\lambda \geq 2 m+1$

$$
\begin{aligned}
& V_{1}^{(m+1)}=\sum_{\lambda}\left(h_{2 \lambda-1,1[m] 1} e_{2 \lambda-1}+h_{2 \lambda, 1[m] 1} e_{2 \lambda}\right), \\
& V_{2}^{(m+1)}=\sum_{\lambda}\left(h_{2 \lambda-1,1[m] 2} e_{2 \lambda-1}+h_{2 \lambda, 1[m] 2} e_{2 \lambda}\right) .
\end{aligned}
$$

We put $\Omega_{(m+1)}=\left\{p \in M ; V_{1}^{(m+1)}(p)=0\right.$ or $\left.V_{2}^{(m+1)}(p)=0\right\}$ and $\cos \left(\alpha_{m+1}\right)=\left\langle J V_{1}^{(m+1)} /\right.$ $\left.\left\|J V_{1}^{(m+1)}\right\|, V_{2}^{(m+1)} /\left\|V_{2}^{(m+1)}\right\|\right\rangle$. Then, using (5.7), we have $\sum_{\lambda}\left(a_{\lambda, 1[m-1]}-c_{\lambda, 2[m-1]}\right)^{2}=$ 0 or $\sum_{\lambda}\left(a_{\lambda, 1[m-1]}+c_{\lambda, 2[m-1]}\right)^{2}=0$ at $p \in \Omega_{(m+1)}$ and $\cos \left(\alpha_{m+1}\right)=\sum_{\lambda}\left\{\left|a_{\lambda, 1[m-1]}\right|^{2}-\right.$ $\left.\left|c_{\lambda, 2[m-1]}\right|^{2}\right\} /\left\{\left|a_{\lambda, 1[m-1]}\right|^{2}+\left|c_{\lambda, 2[m-1]}\right|^{2}\right\}$. Also, using the third equality in (4.7), we see that $O_{p}^{(m+1)}$ is spanned by $V_{1}^{(m+1)}, V_{2}^{(m+1)}, J V_{1}^{(m+1)}$ and $J V_{2}^{(m+1)}$ at p. Hence, if we
assume that each point of M is J-regular of order $(m+1)$, then $\Omega_{(m+1)}=\varnothing$ and $\cos \left(\alpha_{(m+1)}\right) \neq 0, \pm 1$.

Next we define $H_{2 \lambda-1}^{(m+1)}$ and $H_{2 \lambda}^{(m+1)}$ by

$$
V_{1}^{(m+1)}+i V_{2}^{(m+1)}=\sum_{\lambda}\left(H_{2 \lambda-1}^{(m+1)} e_{2 \lambda-1}+H_{2 \lambda}^{(m+1)} e_{2 \lambda}\right)
$$

and we put

$$
H^{(m+1)}=\sum_{\lambda}\left\{\left(H_{2 \lambda-1}^{(m+1)}\right)^{2}+\left(H_{2 \lambda}^{(m+1)}\right)^{2}\right\} .
$$

Using (5.7), we have $H^{(m+1)}=4 \sum_{\lambda} \bar{a}_{\lambda, 1[m-1]} c_{\lambda, 2[m-1]}$. Note that $\left|H^{(m+1)}\right|^{2}$ is a globally defined smooth function on M. The geometric meaning of $\left|H^{(m+1)}\right|^{2}$ follows from the identity $\left|H^{(m+1)}\right|^{2}=\left(\left\|V_{1}^{(m+1)}\right\|^{2}-\left\|V_{2}^{(m+1)}\right\|^{2}\right)^{2}+4\left\langle V_{1}^{(m+1)}, V_{2}^{(m+1)}\right\rangle^{2}$.

Proposition 5.2. In addition to the assumption in Proposition 5.1, we assume that each point of M is J-regular of order $(m+1)$. Then we have $H^{(m+1)}=0$ on M.

Proof. Using Proposition 5.1 and (5.8), we have

$$
\begin{align*}
& d H^{(m+1)}+2(m+1) i H^{(m+1)} \tilde{\theta}_{12}=4 \sum_{\lambda \geq 2 m+1}\left(\bar{a}_{\lambda, 1[m]} c_{\lambda, 2[m-1]}+\bar{a}_{\lambda, 1[m-1]} c_{\lambda, 2[m]}\right) \bar{\phi}, \\
& \Delta\left|H^{(m+1)}\right|^{2}=2\left\{2(m+1) K\left|H^{(m+1)}\right|^{2}+2\left|\sum_{\lambda}\left(\bar{a}_{\lambda, 1[m]} c_{\lambda, 2[m-1]}+\bar{a}_{\lambda, 1[m-1]} c_{\lambda, 2[m]}\right)\right|^{2}\right\}, \tag{5.9}
\end{align*}
$$

from which we have $H^{(m+1)}=0$. q.e.d.

Lemma 5.3.

$$
\begin{aligned}
\Delta\left(\sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right)= & 2(m+1) K\left(\sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right)+4 \sum_{\lambda}\left|c_{\lambda, 2[m]}\right|^{2} \\
& -4\left(\sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right)^{2} \mid c_{2 m-1,2[m-1]}^{2}+4 \rho \cos (\alpha)\left(\sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right) . \\
\Delta\left(\sum_{\lambda}\left|a_{\lambda, 1[m-1]}\right|^{2}\right)= & 2(m+1) K\left(\sum_{\lambda}\left|a_{\lambda, 1[m-1]}\right|^{2}\right)+4 \sum_{\lambda}\left|a_{\lambda, 1[m]}\right|^{2} \\
& -4\left(\sum_{\lambda}\left|a_{\lambda, 1[m-1]}\right|^{2}\right)^{2} \mid a_{2 m, 1[m-1]}^{2}-4 \rho \cos (\alpha)\left(\sum_{\lambda}\left|a_{\lambda, 1[m-1]}\right|^{2}\right)
\end{aligned}
$$

Proof. Using Proposition 5.1 and the second equality in (5.8), we have

$$
d\left(\sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right)=\sum_{\lambda}\left\{c_{\lambda, 2[m-1]} \bar{c}_{\lambda, 2[m]} \phi+\bar{c}_{\lambda, 2[m-1]} c_{\lambda, 2[m]} \bar{\phi}\right\},
$$

which implies

$$
\begin{aligned}
d^{c}\left(\sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right)= & i \sum_{\lambda}\left\{-c_{\lambda, 2[m-1]} \bar{c}_{\lambda, 2[m]} \phi+\bar{c}_{\lambda, 2[m-1]} c_{\lambda, 2[m]} \bar{\phi}\right\} \\
= & i \sum_{\lambda}\left\{-c_{\lambda, 2[m-1]} d \bar{c}_{\lambda, 2[m-1]}+\bar{c}_{\lambda, 2[m-1]} d c_{\lambda, 2[m-1]}\right. \\
& \left.+2 i(m+1)\left|c_{\lambda, 2[m-1]}\right|^{2} \tilde{\theta}_{12}-2 \bar{c}_{\lambda, 2[m-1]} c_{\mu, 2[m-1]} \omega_{\lambda \mu}\right\}
\end{aligned}
$$

By a direct calculation of $d d^{c}\left(\sum\left|c_{\lambda, 2[m-1]}\right|^{2}\right)$ we get the first formula of Lemma 5.3. In a similar way, by the fourth equality in (5.8), we can prove the formula for $\Delta\left(\sum\left|a_{\lambda, 1[m-1]}\right|^{2}\right)$.
q.e.d.
6. Proofs of Theorems. We assume that $p \in M$ is a J-regular point of order $(m+1)$. By Proposition 5.2, we have that $V_{1}^{(m+1)}$ and $V_{2}^{(m+1)}$ are perpendicular to each other and of the same length. Normalizing these vectors we adopt them as a basis of $O_{p^{\prime}}^{(m+1)}$ in a neighbourhood of p, so that we have $\tilde{e}_{4 m+1}=V_{1}^{(m+1)} /\left\|V_{1}^{(m+1)}\right\|$ and $\tilde{e}_{4 m+2}=V_{2}^{(m+1)} /\left\|V_{2}^{(m+1)}\right\|$ and $\cos \left(\alpha_{m+1}\right)=\left\langle J \tilde{e}_{4 m+1}, \tilde{e}_{4 m+2}\right\rangle \neq \pm 1$. With respect to these new frames, we have

$$
\begin{align*}
& h_{4 m+1,1[m] 1}=-h_{4 m+2,1[m] 2}(\neq 0), \tag{6.1}\\
& h_{4 m+1,1[m] 2}=h_{4 m+2,1[m] 1}=h_{\lambda, 1[m] 1}=h_{\lambda, 1[m] 2}=0, \quad(\lambda \geq 4 m+3)
\end{align*}
$$

Substituting (6.1) into (5.5), we have

$$
\begin{align*}
& h_{4 m-3,1[m]}\left(\tilde{\theta}_{4 m-3,4 m+1}+i \tilde{\theta}_{4 m-2,4 m+1}\right)=h_{4 m+1,1[m] 1} \phi, \\
& h_{4 m-3,1[m]}\left(\tilde{\theta}_{4 m-3,4 m+2}+i \tilde{\theta}_{4 m-2,4 m+2}\right)=-h_{4 m+2,1[m] 2} \phi, \\
& h_{4 m-3,1[m]}\left(\tilde{\theta}_{4 m-3,4 m+3}+i \tilde{\theta}_{4 m-2,4 m+3}\right)=0, \\
& h_{4 m-3,1[m]}\left(\tilde{\theta}_{4 m-3,4 m+4}+i \tilde{\theta}_{4 m-2,4 m+4}\right)=0, \tag{6.2}\\
& h_{4 m-3,1[m]}\left(\tilde{\theta}_{4 m-3,2 \alpha-1}+i \tilde{\theta}_{4 m-2,2 \alpha-1}\right)=0, \\
& h_{4 m-3,1[m]}\left(\tilde{\theta}_{4 m-3,2 \alpha}+i \tilde{\theta}_{4 m-2,2 \alpha}\right)=0, \quad(\alpha \geq 2 m+3) .
\end{align*}
$$

On the other hand, by taking the exterior derivatives of (4.2) for $k=1,2, \ldots,(m+1)$ and using the structure equations for X, we have, for $k, l=1,2, \ldots,(m+1)$,

$$
\begin{aligned}
& \tilde{\theta}_{4 k-3,4 l-3}+i \tilde{\theta}_{4 k-2,4 l-3} \\
& =\cos \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l-1}+\cos \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l} \\
& \quad+\sin \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l-1}+\sin \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l},
\end{aligned}
$$

$$
\begin{align*}
& \tilde{\theta}_{4 k-3,4 l-2}+i \tilde{\theta}_{4 k-2,4 l-2} \\
& =i\left\{\cos \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l-1}-\cos \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l}\right. \\
& \left.\quad-\sin \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l-1}+\sin \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l}\right\}, \\
& \tilde{\theta}_{4 k-3,4 l-1}+i \tilde{\theta}_{4 k-2,4 l-1} \tag{6.3}\\
& =\cos \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l-1}-\cos \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l} \\
& \quad+\sin \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l-1}-\sin \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l}, \\
& \tilde{\theta}_{4 k-3,4 l}+i \tilde{\theta}_{4 k-2,4 l} \\
& = \\
& \quad i\left\{\cos \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l-1}+\cos \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \omega_{2 k-1,2 l}\right. \\
& \left.\quad-\sin \left(\frac{\alpha_{k}}{2}\right) \sin \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l-1}-\sin \left(\frac{\alpha_{k}}{2}\right) \cos \left(\frac{\alpha_{l}}{2}\right) \bar{\omega}_{2 k, 2 l}\right\} .
\end{align*}
$$

In the first and second equalities in (2.2) and the eighth and ninth equalities in (5.3) we put $k=m$. Then we have $h_{4 m-3,1[m]}=-\sec \left(\alpha_{m} / 2\right) c_{2 m-1,2[m-2]}=-\operatorname{cosec}\left(\alpha_{m} / 2\right) a_{2 m, 1[m-2]}$, $c_{2 m-1,2[m-2]} \omega_{2 m-1, \lambda}=\bar{c}_{\lambda, 2[m-1]} \phi$ and $a_{2 m, 1[m-2]} \omega_{2 m, \lambda}=\bar{a}_{\lambda, 1[m-1]} \bar{\phi}$ for $\lambda \geq 2 m+1$, respectively. Substituting these equalities and (6.3) into (6.2), we get

$$
\begin{aligned}
& \cos \left(\frac{\alpha_{m+1}}{2}\right)\left(\bar{c}_{2 m+1,2[m-1]}+a_{2 m+1,1[m-1]}\right) \\
& \quad+\sin \left(\frac{\alpha_{m+1}}{2}\right)\left(\bar{c}_{2 m+2,2[m-1]}+a_{2 m+2,1[m-1]}\right)=-h_{4 m+1,1[m] 1}, \\
& \cos \left(\frac{\alpha_{m+1}}{2}\right)\left(\bar{c}_{2 m+1,2[m-1]}-a_{2 m+1,1[m-1]}\right) \\
& \quad-\sin \left(\frac{\alpha_{m+1}}{2}\right)\left(\bar{c}_{2 m+2,2[m-1]}-a_{2 m+2,1[m-1]}\right)=h_{4 m+2,1[m] 2}
\end{aligned}
$$

(6.4)

$$
\begin{aligned}
& -\sin \left(\frac{\alpha_{m+1}}{2}\right)\left(\bar{c}_{2 m+1,2[m-1]}+a_{2 m+1,1[m-1]}\right) \\
& \quad+\cos \left(\frac{\alpha_{m+1}}{2}\right)\left(\bar{c}_{2 m+1,2[m-1]}+a_{2 m+2,1[m-1]}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \sin \left(\frac{\alpha_{m+1}}{2}\right)\left(-\bar{c}_{2 m+1,2[m-1]}+a_{2 m+1,1[m-1]}\right) \\
& \quad+\cos \left(\frac{\alpha_{m+1}}{2}\right)\left(-\bar{c}_{2 m+2,2[m-1]}+a_{2 m+2,1[m-1]}\right)=0, \\
& \bar{c}_{\lambda, 2[m-1]}-a_{\lambda, 1[m-1]}=0, \\
& \bar{c}_{\lambda, 2[m-1]}+a_{\lambda, 1[m-1]}=0
\end{aligned}
$$

Solving the above equations, we have

$$
\begin{aligned}
& \bar{c}_{2 m+1,2[m-1]}=\cot \left(\frac{\alpha_{m+1}}{2}\right) a_{2 m+2,1[m-1]}, \\
& a_{2 m+1,1[m-1]}=\cot \left(\frac{\alpha_{m+1}}{2}\right) \bar{c}_{2 m+2,2[m-1]}, \\
& \bar{c}_{\lambda, 2[m-1]}=a_{\lambda, 1[m-1]}=0 .
\end{aligned}
$$

Moreover, since $H^{(m+1)}=0$, we see that $c_{2 m+1,2[m-1]}$ is real-valued and $c_{2 m+2,2[m-1]}=0$. Summarizing these results, we have

$$
\begin{align*}
& h_{4 m+1,1[m] 1}=-h_{4 m+3,1[m] 2}=-\sec \left(\frac{\alpha_{m+1}}{2}\right) c_{2 m+1,2[m-1]}, \\
& h_{4 m+1,1[m] 2}=h_{4 m+2,1[m] 1}=h_{t, 1[m] 1}=h_{t, 1[m] 2}=0, \quad(t \geq 4 m+3), \tag{6.5}\\
& c_{2 m+1,2[m-1]}=\cot \left(\frac{\alpha_{m+1}}{2}\right) a_{2 m+1,1[m-1]}, \\
& c_{2 m+2,2[m-1]}=a_{2 m+1,1[m-1]}=c_{\lambda, 2[m-1]}=a_{\lambda, 1[m-1]}=0, \quad(\lambda \geq 2 m+3) .
\end{align*}
$$

Now substituting (6.5) into the eighth and ninth equalities in (5.3), we have

$$
\begin{align*}
& c_{2 m-1,2[m-2]} \omega_{2 m+1,2 m-1}=-c_{2 m+1,2[m-1]} \bar{\phi}, \\
& a_{2 m, 1[m-2]} \omega_{2 m+2,2 m}=-a_{2 m+2,1[m-1]} \phi, \tag{6.6}\\
& \omega_{2 m+2,2 m-1}=\omega_{2 m+1,2 m}=\omega_{\alpha, 2 m-1}=\omega_{\alpha, 2 m}=0, \quad(\alpha \geq 2 m+3) .
\end{align*}
$$

Moreover, by (5.8), we have

$$
\begin{align*}
& d c_{2 m+1,2[m-1]}+i(m+1) c_{2 m+1,2[m-1]} \tilde{\theta}_{12}-c_{2 m+1,2[m-1]} \omega_{2 m+1,2 m+1}=c_{2 m+1,2[m]} \bar{\phi}, \\
& d a_{2 m+2,1[m-1]}-i(m+1) a_{2 m+2,1[m-1]} \tilde{\theta}_{12}-a_{2 m+2,1[m-1]} \omega_{2 m+2,2 m+2}=a_{2 m+2,1[m]} \phi, \\
& c_{2 m+1,2[m-1]} \omega_{2 m+2,2 m+1}=-c_{2 m+2,2[m]} \bar{\phi}, \tag{6.7}\\
& a_{2 m+2,1[m-1]} \omega_{2 m+1,2 m+2}=-a_{2 m+1,1[m]} \phi,
\end{align*}
$$

$$
\begin{aligned}
& c_{2 m+1,2[m-1]} \omega_{\lambda, 2 m+1}=-c_{\lambda, 2[m]} \bar{\phi}, \\
& a_{2 m+2,1[m-1]} \omega_{\lambda, 2 m+2}=-a_{\lambda, 1[m]} \phi, \quad(\lambda \geq 2 m+3) .
\end{aligned}
$$

Hence, (6.5), (6.6), (6.7) and Lemma 5.3 show that (5.2), (5.3) and (5.4) are valid for $k=(m+1)$.

We define smooth functions on M by

$$
\begin{equation*}
\mathscr{C}_{k}^{2}=c_{3}^{2} c_{5,2}^{2} \cdots c_{2 k-1,2[k-2]}^{2}, \quad k=2,3, \ldots, m . \tag{6.8}
\end{equation*}
$$

Note that these functions are scalar invariants of x, which can be seen in a way similar to that in [12, p. 372]. Using (5.2) and (5.3), we get $d \mathscr{C}_{k}^{2}=\mathscr{C}_{k}\left(A_{k} \phi+\bar{A}_{k} \bar{\phi}\right)$, where A_{k} satisfies $\bar{A}_{k}=\mathscr{C}_{k-1} c_{2 k-1,2[k-1]}+\bar{A}_{k-1} c_{2 k-1,2[k-2]}$ for $k=3, \ldots, m$ and $\bar{A}_{2}=c_{3,2}$. Hence, using (5.4) and Lemma 5.3, we have:

Lemma 6.1.

$$
\begin{align*}
\Delta \mathscr{C}_{m}^{2}= & 2 \mathscr{C}_{m}^{2}\{m(m+1) K / 2-\rho+(2 m+1) \rho \cos (\alpha)\} \tag{6.9}\\
& +4\left|A_{m}\right|^{2}+4 \mathscr{C}_{m-1}^{2} \sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2},
\end{align*}
$$

$$
\begin{align*}
\Delta\left(\mathscr{C}_{m}^{2} \sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\right)= & 2 \mathscr{C}_{m}^{2} \sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}\{(m+1)(m+2) K / 2 \tag{6.10}\\
& -\rho+(2 m+3) \rho \cos (\alpha)\}+4 \sum_{\lambda}\left|\mathscr{C}_{m} c_{\lambda, 2[m]}+\bar{A}_{m} c_{\lambda, 2[m-1]}\right|^{2}
\end{align*}
$$

Note that (6.10) coinsides with (3.8) in [12] for $m=2$.
Now we give the proofs of the main theorems.
Proof of Theorem 4.1. By (6.10) and the assumption, $\mathscr{C}_{m}^{2} \sum_{\lambda}\left|c_{\lambda, 2[m-1]}\right|^{2}$ is a non-zero subharmonic function on a compact manifold M, which is constant on M. This shows that $K=2\{1-(2 m+3) \cos (\alpha)\} \rho /(m+1)(m+2)$. Hence, by Ohnita's theorem [10], we get Theorem 4.1.
q.e.d.

Corollary 6.2. Let $x: M \rightarrow X$ be as in Theorem 4.1. If M is a J-regular manifold and the Gaussian curvature K satisfies $2\{1-(2 m+1) \cos (\alpha)\} / m(m+1)>K \geq 2\{1-(2 m+$ 3) $\cos (\alpha)\} \rho /(m+1)(m+2) \geq 0$ on M, then we have $K=2\{1-(2 m+3) \cos (\alpha)\} \rho /(m+$ 1) $(m+2)$.

Proof. By the J-regularity of M and the assumption, we have $\sum\left|c_{\lambda, 2[m-1]}\right|^{2} \neq 0$ on M. Hence, each point of M is J-regular of order $(m+1)$. By Theorem 4.1, we are done.
q.e.d.

Proof of Theorem 4.2. We may assume that each point of M is J-regular of order s. If $\sum\left|c_{\lambda, 2[s-1]}\right|^{2} \neq 0$ at a point p of M, then we get $\sum\left|c_{\lambda, 2[s-1]}\right|^{2} \neq 0$ on M. Hence, each point of M is J-regular of order $(s+1)$. By Theorem 4.1, we see that x is locally
congruent to $\varphi_{n, s+1}$. If $\sum\left|c_{\lambda, 2[s-1]}\right|^{2}=0$ on M, then, by (6.9), we see that x is locally congruent to $\varphi_{n, s}$.
q.e.d.

REFERENCES

(continuation of those in [12])
[11] T. Ogata, U. Simon's conjecture on minimal surfaces in a sphere, Bull. Yamagata Univ. 11 (1987), 345-350.
[12] T. Ogata, Curvature pinching theorem for minimal surfaces with constant Kaehler angle in complex projective spaces, Tôhoku Math. J. 43 (1991), 361-374.

Department of Mathematics

Faculty of General Education
Yamagata University
Yamagata 990
Japan

[^0]: Partly supported by the Grants-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 53A10; Secondary 49Q05, 53C42, 53C55.

