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Abstract. The author was the first to show the important role played by quadratic
differentials all of whose structure domains are ring domains manifesting in particular
their relation to module problems for multiple curve families and the related problems
for linear sums of modules of double-connected domains. The original method used
variational techniques. In this paper a treatment is given using directly the method of
the extremal metric.

1. The present author was the first to manifest, in the paper [3], the important
role played by quadratic differentials on a finite Riemann surface all of whose structure
domains are ring domains. The fundamental theorem in that paper relates the solutions
of two types of extremal problems with such quadratic differentials and was proved
using a variational method. It is now possible to give a simple direct proof using only
the concepts and techniques of the method of the extremal metric.

We begin by recalling some terminology which is primarily that found in [3] [4].
We confine our attention to finite Riemann surfaces, understood in the sense of [4].
(In present day terminology the word "oriented" is superfluous.) Such a surface is
determined topologically by its connectivity n (number of border components) and
genus g. By a free family of homotopy classes <#}, j= 1,..., L, on such a surface 0t
we mean a family of distinct free homotopy classes which can be represented by disjoint
Jordan curves Cj9 j= 1,..., L. It should be emphasized that this is unsensed homotopy,
i.e., a closed path and its inverse are to be equivalent. A proper doubly-connected
domain D can be mapped conformally on a circular ring r1<\w\<r2 (0<r 1 <r 2 <oo).
The curves in D corresponding to the concentric circles are called its level curves. The
positive quadratic differential induced on D by — dw2/(4π2w2) (which corresponds to
the extremal metric determining the module (l/2π)log(r2/r1) of D) will be called the
basic quadratic differential of D. A doubly-connected domain on $ will be said to be
associated with the homotopy class ^ if its level curves are in «^ . A family D} of disjoint
doubly-connected domains associated with jf?j,j=l,...,L, is called an admissible
family of domains. We allow certain domains to be missing and speak of them as
degenerate. The structure domains of a positive quadratic differential on a finite Riemann
surface are the domains obtained in the Basic Structure Theorem [4] [5].
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We define two types of extremal problems for a finite Riemann surface 0t and a

free family of homotopy classes Jf7, j= 1, . . . , L, on 0t.

Problem P(al9..., aL). Let aj9 j= 1, . . . , L, be non-negative numbers not all zero.

Let p(al9 ...,aL) denote the class of conformally invariant metrics p(z)\dz| on 0t with

p measurable, non-negative and such that for y7- rectifiable in 3tfp \yjp\dz\ exists and

satisfies

1p\dz\>aj9 7 = 1 , . . . , L .

Find the greatest lower bound M(au . . . , aL) of

p2dAzif.
for p\dz\ep(au ...,aL).

Problem &(aί9 ...,aL). Let aj9j=l9...9L9 be non-negative numbers not all zero.

For an admissible family of domains Dj of module Mp j= 1, . . . , L, find the least upper

bound of Y^= χ a]My

2. We will now state our fundamental theorem in the case of a finite Riemann

surface. Many extensions are possible, for example, allowing punctures in the surface,

homotopy classes of paths running from one border component to another or circle

domains with assigned centres in 0t (using reduced modules rather than modules). All

of these are readily reduced to the present case or proved in a completely analogous

manner as indicated in [3]. Indeed it is possible to reduce the proof to the case of a

closed surface but this proves not to be advantageous.

In what follows we will tacitly exclude the cases where 0t is a disc, a (proper)

doubly-connected domain or a closed surface of genus 1. In the first case the theorem

is vacuously true. In the second the theorem is trival. In the third everything is true

apart from some uniqueness statements which occurs because the torus is exceptional

for the Basic Structure Theorem. In this case the result of the theorem is long and well

known.

THEOREM F. Let 0t be a finite Riemann surface, Jfj , j= 1 , . . . , L, a free family of

homotopy classes on 0ί. Then the solution of problem P(aί,...,aL) is given by the

(essentially) unique extremal metric | Q(z)\1/2\dz\ where Q(z)dz2 is a regular positive

quadratic differential on M, all of whose structure domains are ring domains. Enumerating

these appropriately as Dj(a1,..., αL), j= 1 , . . . , L, they form an admissible family for the

Jίfj. if Dj(aί9..., aL) is not degenerate its level curves all have length a^ in the metric

I Q(z) | 1 / 21 dz \. If it is degenerate there is a geodesic in this metric belonging to Jtfj composed

of trajectory arcs joining zeros ofQ(z)dz2 plus end points and of length >a} in this metric.
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IfDj(aί9 . . . , a L ) has module Mj(al9 . . . , a L )

L

M(au . . . , aL) = £ ajMj(al9 ...9aL).

The solution of problem ί?(au...,aL) is given by the domains Dj(al9 . . . , aL),

j= 1, . . . , L, the least upper bound M(au ...,aL) being a maximum attained uniquely for

these domains.

It is convenient to separate out the uniqueness aspects of this theorem.

THEOREM U. Let 0t be a finite Riemann surface, <#}, j — 1, . . . , L, a free family of

homotopy classes on 0t. Let Q(z)dz2 be a regular positive quadratic differential on 0t all

of whose structure domains are ring domains such that suitably enumerated and allowing

for degenerate domains they form an admissible family D*, 7 = 1 , . . . , L,for the J^. Let

the module of D* be M*. Suppose that for a non-degenerate domain DJ all trajectories in

DJ have length a^ while for a degenerate DJ there is a geodesic in the Q-metric belonging

to Jfj composed of trajectories of Q(z)dz2 joining zeros plus their end points of length

a*. Then for ap non-negative numbers with aj<a* in the case of degenerate domains

I Q(z) 11/21 dz I provides the (essentially) unique solution of the problem P{au ..., aL) while

the domains Df,j=\,..., L, provide the unique solution of the problem 0*(au . . . , aL).

This result is proved in [3] without it being explicitly formulated. However the

proof there depends slightly on the viewpoint of that paper so we will give a brief sketch

of the proof. It uses only standard techniques of the method of the extremal metric.

The metric | Q(z)\1/2\dz\ is seen to be in p(al9..., aL) by [5; Lemma 4.6] and

ίί.\Q(z)\dA1=ΣajMf

If p(z)\dz\ep(a1,...,aL),

P

2(z)dAz>a]MJ .[[[
Thus I Q(z)\ll2\dz\ is an extremal metric and by a standard result essentially unique.

Now let Dj be an admissible family of domains with modules Mj for the

jtfj9j=\9...9 L. As above

ίί.|β(z)|^ z>α, 2M,.

Equality can occur only if each level curve λ of Dj (if non-degenerate) has length a} in

the Q-metric. Thus λ must be a geodesic. In any case there will be a geodesic y composed

of trajectories in the β-metric of length >ay If λ and y meet they must coincide by

uniqueness of geodesies. Otherwise there is a doubly-connected domain Δon0t bounded
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by λ and y. On λ, eiφQ(z)dz2>0 for real φ; on γ9 Q(z)dz2>0. If q(z)dz2 is the basic

quadratic differential for Δ, the quotient of Q(z)dz2 by q(z)dz2 (appropriately

understood) is regular on A, non-negative and bounded on y, of constant argument

and bounded on λ. Thus it must be a positive constant, A is a trajectory of Q(z)dz2 and

each non-degenerate Di lies in a structure domain of Q(z)dz2. For equality above the

Dj must coincide with the structure domains Df, 7 = 1,. . . , L.

The existence part of Theorem F is proved by induction, first for schlichtartig

surfaces (g = 0) by induction on the connectivity. Theorem F holds for a triply-connected

domain (« = 3, g = 0). This can be proved in a variety of ways. All the material is in [1]

although it is not formulated in terms of quadratic differentials. It can also be proved

as in [4; Lemma 3.7] although an auxiliary consideration showing that all values of

al9 a2, a3 are possible would be required. Probably the simplest and most direct method

is to proceed as in [2; §6]. This proof can be made more elementary by using the

continuity method rather than quasiconformal mappings and Teichmϋller space.

We can always assume that the free family of homotopy classes is maximal by

taking some of the a^ to be zero. (This maximal number is readily seen to be In — 3

when 0 = 0.) Then suppose that n>3 and Theorem F has been proved for connectivity

less than n. Among the classes J ^ there will be one such that when it is represented

by a Jordan curve and $ is severed along this curve each component has connectivity

> 3. We will choose the notation so that this is J&Ί. Consider the problem ^(au ...,aL).

By a normal families argument there is always an admissible family of domains Dj of

modules Mj9 7 = 1, . . . , L, for which £ L

= χ a
2Mj attains its maximal value. Suppose that

ax > 0 and Mx > 0 . We sever 0ί along a level curve c of Dx to obtain surfaces ffl{1\ 0t{τ)

each of connectivity <n. The given free family of homotopy classes induces such a

family on each of them, say &>\ 7 = 1 , . . . , L ( 1 ), and 3tff\ 7 = 1 , . . . , L ( 2 )(L ( 1 ) + L ( 2 ) =

L + l ) . We take Mf}1*, 3ff2) to be the classes induced by Jtf[. The original admissible

family of domains Dj gives admissible families for these, Dγ\ 7 = 1 , . . . , L ( 1 ), D/2\ j=

1,. . . , U2\ of modules Aff\ 7 = 1 , . . . , L ( 1 ), Mf\ 7 = 1 , . . . , U2\ Here Dψ and Dψ are

the domains into which Dx is severed by c so that M(^) + M(2) = M1. We renumber the

original η appropriately to be aγ\j= 1, . . . , L ( 1 ), af\ 7= 1,. . . , L(2\ {a

(l) = aψ = aι).

By induction Theorem F is valid for 0t{X) and ̂ ( 2 ) thus there are positive quadratic

differentials Q(ί)(z)dz2, Q(2){z)dz2 on these all of whose structure domains are

ring domains Dγ\a{^\ . . . , αjjl,) of modules Mf\a^\ . . . , a%), 7 = 1 , . . . , L(1\ and

Df\af\ . . . , αgi,) of modules Aίf\af\ . . . , αgi,), 7 = 1 , . . . , L(2\ In particular the

union of D^Xa^,..., αjjl)) and D(2)(a{2\ . . . , aftl)) is a doubly-connected domain D of

module M with M>M^\a^\ . . . , a ^ + Mψ{aψ,..., αgi,) (by Grόtzsch's Lemma,

with the proper understanding in case of degeneracy).

Now on the one hand

Li 1 ) L<2> L

Σ (aγψMγ\a\ι\ ..., α$,)+ Σ (af
j=2 j=2
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On the other hand by Theorem F for M{1\

Σ aJMj<Σ
J = 2 j=l

Thus the two sides must be equal. In particular D(k) and Dψ{a{k\ . . . , a%), k=\,2
coincide. If q(k)(z)dz2 is the basic quadratic differential for D{f\ Q{k)(z)dz2 induces the
quadratic differential a\q{k)(z)dz2 on D{k\ k—\,2. If q{z)dz2 is the basic quadratic
differential for D1 because of the above equality a\q{k){z)dz2 coincides with a\q{z)dz2

on Dψ, k = 1, 2, and thus the quadratic differentials Q{1)(z)dz2, Q(2)(z)dz2 are induced
by a single positive quadratic differential on $,. It is verified at once to satisfy the
conditions of Theorem F.

In particular the previous situation obtains for the problems P(l, 0,..., 0),
^ ( 1 , 0,..., 0). Let Q(z)dz2 be the quadratic differential assigned by Theorem F. In the
metric I J(z) 11/2| dz | the lengths of elements in 3tfp j=2,..., L, are bounded from zero.
Let apj=2, . . . ,L, be non-negative values not all zero. For X sufficiently large the
quadratic differential X2l(z)dz2 will provide the solution of the problems
P(X, a2,..., aL), 0*(X, a2,..., aL) as in Theorem F. Let A be the greatest lower bound
of (non-negative) numbers T such that for X> T the domain for jtf[ in the problem
&(X, a2, .., aL) is non-degenerate.

A normal families argument shows that there will be a sequence of values Xn\A
and corresponding positive quadratic differentials Qn(z)dz2 for the problems
P(Xn, a2,..., aL), ̂ (Xn, a2,..., aL) assigned by Theorem F converging uniformly on 0t
to a positive quadratic differential Q(z)dz2. Further the structure domains Dnj of module
MnJ will converge to domains Dj of module Mp j= 1,..., L, whose level sets (if Dj is
non-degenerate) are trajectories of Q(z)dz2. Moreover the elements of Jfx all have
length >A and those of Jfj all have length >ap 7 = 2,..., L, in the β-metric.

Suppose that we had 4̂ = 0. Let Dj of module M, be an admissible family of
domains for the family Jίfp j= 1,..., L, giving a maximal value in ^(0, a2,..., aL). On
the one hand

while

L 1

j=2 J Λ J j = 2

Passing to the limit
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7 = 2 j=2

Thus Dx must be degenerate and the Dp j=2,..., L, must be the structure domains

for Q(z)dz2. Moreover there is a positive lower bound for the lengths of the elements

in Jtf[ in the metric \Q(z)\ll2\dz\ so that this would be the extremal metric for the

problem P(X, a2,..., aL) for X sufficiently close to 0. Thus A >0 .

There will be a sequence of values Y^A such that for them there are admissible

families Z)m 7 of modules M m j , j= 1, . . . , L, maximizing for the problem 0*(Ym, a2,..., aL)

with Dml degenerate and these can further be chosen to converge to an admissible

family of domains Dj of modules Mj,j= 1,...,L, with Dί degenerate. On the one hand

7=2 j=2

while

7=2 7=2

Passing to the limit n, m-+co we have

L L

7=2 J J 7=2

and

7=2 J J 7=2

so that we have equality. Thus the domains Dj if not degenerate must be the structure

domains of Q(z)dz2 and Dγ must be degenerate. There will be a geodesic in the β-metric

in «#i composed of trajectories plus end points and having length A. Thus Q(z)dz2

provides the solution of problem P(T, a2,..., aL) for T<A as in Theorem F and the

domains Dj9 j=2,..., L, provide the solution of problem 0>{T, a2,..., aL). This

completes the proof of Theorem F for schlichtartig surfaces.

For surfaces of positive genus Theorem F is proved by induction on the genus

assuming it is known for all surfaces of lower genus and arbitrary connectivity. Let 0t

be a finite Riemann surface of genus g (>0) and connectivity «, JfJ , j= 1, . . . , L, a free

family of homotopy classes on 01 which we may again assume to be a maximal family.

There will be a class which we choose to be ^CL such that when 01 is severed along a

Jordan curve representing it we obtain a surface of genus one less. We consider the

problem 0>(al9 ...,aL) and take an admissible family of domains D} of modules

Mj9j= 1, . . . , L, maximizing YJ]^^o]Mj. We suppose that we have aL>0, ML>0 and

sever 0t along a level curve c of DL. In this way we obtain a finite Riemann surface M
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of genus g - 1 and connectivity n + 2. On it the family ^ determines a free family

Jt?pj=l,...,L+l, which jξ. determined by Jfj9j=l9...9L-l9 and <&L,3tf?

L+1

determined by tfL. The original admissible family of domains is replaced by

Dj = Dpj=\,...,L—\, and the two domains DL, DL+1 into which DL is divided by c.

We take the values άj, j=l,..., L+l where a~ap j — 1, . . . , L — 1, αL = α L + 1 = α L .

Z)L, DL+1 have modules ML, M L + 1 with ML + ML+1 = ML. By induction Theorem F is

valid for $ and the remainder of the proof follows exactly on the lines of the preceding

one.

3. Several authors have formulated other problems in this same context. As before

0ί is a finite Riemann surface, ^ ,y = 1,. . . , L, a free family of homotopy classes on 01.

Strebel [8] enunciated the following rather artificial problem, designed purely to

produce a positive quadratic differential all of whose structure domains are ring domains

such that all such domains in an admissible family are non-degenerate. StrebeΓs method

was taken directly from [3].

Problem S(m1,..., mL). Let mpj= 1, . . . , L, be positive numbers. For an admis-

sible family of domains D} of modules Mp j — 1, . . . , L, find the least upper bound of

Renelt [7] gave a somewhat more natural problem which produces the same sort

of admissible family. It does not, however, have the intimate connection with quadratic

differentials which makes possible the above proof of Theorem F.

Problem R(b1,..., bL). Let bj9j= 1, . . . , L, be positive numbers. For an admissi-

ble family of domains Z>7 of modules Mp j= 1, . . . , L, find the greatest lower bound

Renelt used variation of the Dirichlet integral. He actually dealt only with plane

domains.

Both of these problems are very easily solved by the use of Theorem F. For StrebeΓs

problem this was done in [6]. (Unfortunately in the course of publication of that paper

part of the text was transposed. Lines 7 through 16 on page 68 should be moved to

between lines 15 and 16 on page 69.)

Renelt's problem can be treated just as easily. The expression for $$m\Q(z)\dAz

can be written in the form £ ^ = χ ajβj(a1,... ,aL) where

β j ( a ί 9 . . . , a L ) = a j M j ( a l 9 . . . , a L ) .

Some authors refer to these quantities as the "heights" of the domains Dj(au . . . , aL).

Widths might seem to be a more appropriate term.

The following lemma is easily proved (see for example a proof in [9; p. 106]).

LEMMA. Let 01 be a finite Riemann surface, $?p j= 1, . . . , L, a free family of

homotopy classes on 0ί, Q(z)dz2 a quadratic differential providing the solution of problem

0>(au ...,aL) with Dj(au ...,aL) non-degenerate, j= 1, . . . , L. Let bj = βj(au . . . , aL),
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j= 1, . . . , L. Then for an admissible family of domains Dj of modules Mj for JfJ , j=

1,...,L.

Σ b]Mj'>t b]M;\au...,aL)

with equality only if the Dj coincide with Dj(al9..., aL), j= 1, . . . , L.

Now consider the mapping from the (cij) L-dimesnional Euclidean space to the

(bj) space by (aj)^(βj(a1,..., aL)). Since for a>0

βj(aau . . . , aaL) = a2βj(al9..., aL), j= 1, . . . , L ,

we normalize taking Σ ^ = 1 0 / = 1 . (This is slightly nicer than the normalization in [6]

since it gives immediately an (L— l)-simplex Σ.) As in [6] the mapping is continuous.

We project the image of Σ radially back onto Σ and this carries each r-face of Σ into

itself. Proceeding stepwise and using the lemma we see the latter mapping is (1, 1) on

the open faces and thus the (oriented) boundary of each face is mapped onto itself with

degree 1. Hence for every set of positive bj we can find a^ and α > 0 so that

bj = ocβj(au . . . , aL) , j= 1, . . . , L .

This completes the solution of problem R(b1,..., bL). The derivations in the opposite

direction are much more troublesome.

BIBLIOGRAPHY

[ 1 ] JAMES A. JENKINS, Some problems in conformal mapping, Transactions of the American Mathematical

Society 67 (1949), 327-350.

[ 2 ] JAMES A. JENKINS, Some new canonical mappings for multiply-connected domains, Annals of

Mathematics 65 (1957), 179-196.

[ 3 ] JAMES A. JENKINS, On the existence of certain general extremal metrics, Annals of Mathematics 65

(1957), 44(M53.

[ 4 ] JAMES A. JENKINS, Univalent functions and conformal mapping, Springer-Verlag, Berlin-Gόttingen-

Heidelberg, 1958.
[ 5 ] JAMES A. JENKINS, On the global structure of the trajectories of a positive quadratic differential, Illinois

Journal of Mathematics 4 (1960), 405^12.

[ 6 ] JAMES A. JENKINS, On quadratic differentials whose trajectory structure consists of ring domains,

Complex Analysis, Proceedings of the S.U.N.Y. Brockport Conference, Lecture Notes in Pure and

Applied Mathematics, vol. 36, Marcel Dekker Inc., 1978, pp. 65-70.

[ 7 ] H. RENELT, Konstruktion gewisser quadratischer DifΓerentiale mit Hilfe von Dirichletintegralen,

Mathematische Nachrichten 73 (1970), 125-142.

[ 8 ] K. STREBEL, Uber quadratische DifΓerentiale mit geschlossenen Trajektorien und extremale

quasikonforme Abbildungen, Festband zum 70 Geburtstag von Rolf Nevanlinna, Springer, 1966,

105-127.

[ 9] K. STREBEL, Quadratic differentials, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.



EXISTENCE OF GENERAL EXTREMAL METRICS 257

DEPARTMENT OF MATHEMATICS

WASHINGTON UNIVERSITY

CAMPUS Box 1146

ONE BROOKINGS DRIVE

ST. LOUIS, MO 63130-4899

U.S.A.






