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Abstract. We will give a complete classification of non-rigid families of abelian

varieties by means of the endomorphism algebra of the variation of Hodge structure.

As a consequence, we can obtain several conditions of rigidity for abelian schemes.

For example, we show that an abelian scheme which has no isotrivial factor is rigid if

the relative dimension is less than 8. Moreover, examples of non-rigid abelian schemes

are obtained as Kuga fiber spaces associated to symplectic representations classified by

Satake.

Introduction. Let Y be an algebraic curve defined over an algebraically closed
field k of characteristic zero, and let Σ a Y be a finite set of points. Faltings [F] has
shown a theorem of Arakelov-type for abelian varieties, that is, there are only finitely
many families of principally polarized abelian varieties of relative dimension g on Y, with
good reduction outside Σ, and satisfying the condition (*) in [F],

His proof consists of two ingredients. First he showed that the moduli space of
families of principally polarized abelian varieties on Y with good reduction outside Σ
is a scheme of finite type over k (a boundedness result). Next he proved that a family
of abelian varieties cannot be deformed (i.e., a family is rigid) if and only if the condition
(*) is satisfied.

The condition (*) says essentially that all endomorphisms of the local system of
the first (co-)homology groups of fibers come from endomorphism of the abelian
varieties, and Deligne [D] has shown that the condition is satisfied by a family of
abelian varieties which has no isotrivial factors and the relative dimension <3.

On the other hand, following Deligne's suggestion, Faltings [F] gave an example
of non-rigid families of abelian varieties with relative dimension 8 which has no isotrivial
factors. So it is interesting to ask, for example, whether there exists a non-rigid family
of abelian varieties of relative dimension d, 4<d<Ί9 which has no isotrivial factors.

In this paper, we will give a complete classification of non-rigid families of abelian
varieties by means of the endomorphism algebra of the variation of Hodge structure
of the first homology (or cohomology) groups of the fibers.

Let S be a connected smooth quasi-projective variety over C, and / : X-+S an
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abelian scheme over S. Consider the local system Wz\ = Rιf^Zx of free Z-modules,
which come from the first homology groups of fibers. Then Wz underlies a (polarized)
variation of Hodge structure (VHS) of weight — 1, and of type (—1,0), (0, — 1). On
the other hand, if a polarized VHS of weight - 1 , and of type (-1,0), (0, — 1) on S
is given, one has the corresponding abelian scheme on S. The algebra E\ =
H°(S, Snd(W^j), consisting of all flat global endomorphisms of WQ : = WZ®ZQ9 has
a natural pure Hodge structure of weight 0. Let Q denote a symplectic bilinear
form on Wτ induced by a polarization of the abelian scheme. Let us denote by EQ the
subalgebra of E which consists of all skew endomorphisms with respect to Q. Then the
abelian scheme satisfies the condition (*), if EQ® C = (EQ® C) ( 0 '0 ), i.e., all skew
endomorphisms of WQ are of type (0, 0). More precisely, the Zariski tangent space of
the moduli space of abelian schemes over S with a fixed polarization type is isomorphic
to the space (EQ(S)QC)~1Λ. Therefore, in order to classify non-rigid abelian scheme
over a fixed base space S, we only classify polarized VHS's of weight — 1 and of type
( - 1 , 0), (0, -1) such that dim{EQ ® C)" 1 ' 1 >0.

We have a primary decomposition of WQ (cf. § 3), and each primary component
is a Q-subVHS over S, hence we can reduce the problem to the primary Q-VHS. (We
can see that if the generic fiber of the corresponding abelian scheme is simple then WQ

is primary.)
Let us assume that WQ = RίfήίQx is a primary Q-VHS over 5, (and of weight - 1 ,

and of type (0, — 1), (—1, 0)). Denote by V an irreducible Q-local subsystem of WQ,
and set

D = End( V), F= Cent D , U=Hom( V, WQ).

By Schur's lemma, D is a division algebra over Q, and the polarization Q on WQ

induces an involultion i on D. The center F of D is stable under i, and let F+ denote
the subfield of F fixed by i. From the positivity condition of β, one can deduce that i
is a positive involution on F, hence Fis either (i) a totally real number field and F=F+,
or (ii) a CM field and IF: F + ] = 2.

Moreover we have a tensor product decomposition of WQ

(see (3.11)).
The main theorem of this paper, which will give a classification of non-isotrivial,

non-rigid, abelian schemes, can be stated as follows.

(0.1) THEOREM (cf. Theorem (8.1)). Let f: X--+S be an abelian scheme such that the
corresponding Q-VHS WQ^R^JQX is primary {e.g., the generic fiber Xη off is simple).
Let WQ=U ®D V be the tensor product decomposition of WQ as above. Set rankD U=m,
rankD V=n, and t=\_F+ : Q]. Assume that f: X-^S is non-isotrivial and non-rigid.

(i) If the center F of D is totally real {i.e., F=F+), then D is a quaternion algebra
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over F=F+ such that

D ® Q I R g H x ••• x H x M2{U) x x M2{U) ,

t' t—t'

where H denotes the Hamilton quaternion algebra.

Hence if one denotes by r(f) the relative dimension of f: X-*S, one has

(0.2) r(f) =— mnkQ{U(g)D V) = 2tmn .

Here, one must have tf>0 and t — t'>0, hence in particular / = [ F : Q ] > 2 , and one

of the following cases occurs.

Case (R2, 1) n>\ and m>2 ,

Case (R2, - 1 ) n>2 and m> 1 .

In particular, the relative dimension r(f) is even, and>$.

(ii) If the center F of D is a CM field {i.e., \_F\ F + ] =2), then D is a central simple

division algebra over F such that [Z>: F] = r2 and

-" xM r(C).
t

In this case, one has

(0.3) r(f) = — 2tnmr2 = t(nr)(mr),

and / = [ F + : <Q] = (1/2)[F: Q ] > 2 , nr>2, mr>2. In particular, r ( / ) > 8 .

From this one can obtain the following:

(0.4) COROLLARY (cf. Corollary (8.4)). Let f: X-+S be an abelian scheme which has

no iso trivial factors. If the relative dimension r(f) of f is less than 8, the abelian scheme

is rigid.

(0.5) COROLLARY (cf. Corollary (8.5)). Let / : X^S be an abelian scheme whose

generic fiber Xη is simple. Assume that f has no-isotrivial factor and the relative dimension

of f is a prime integer. Then f: X-+S is rigid.

On the other hand, as a by-product of the proof of Theorem (0.1), we can obtain

the following result, which we call the monodromy theorem.

(0.6) THEOREM (cf. Theorem (8.6)). Let f: X^S be an abelian scheme such that the

corresponding Q-VHS W/Q = /?i/HeQχ is primary {e.g., the generic fiber of f is simple).

Assume that S is non-compact and a local monodromy around a point in the boundary

has infinite order. Then f: X-+S is rigid.
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The organization of this paper is as follows. In § 1 and § 2, we shall review some
fundamental facts on VHS, abelian schemes, and deformation theory of VHS, or abelian
schemes. In §3, we shall study the structure of the Q-VHS WQ = R1f^Qx and its
endomorphism algebra E. We will introduce a tensor product decomposition of a
primary Q-VHS WQ following Satake [SI], [S2]. In §4, the decomposition of the
polarization Q on WQ will be introduced, which is also due to Satake. In § 5, we shall
investigate the scalar extension of a primary Q-VHS WQ and a polarization Q. In §6,
we shall introduce the notion of Q-symplectic representation of a Q-Hermitian pair
(GQ, HO) due to Satake [SI], [S2], and show our fundamental result, i.e., Theorem
6.17. This theorem says that to each Q-primary VHS WQ on S we can associate two
Q-Hermitian pairs (GQ, Ho), (G'Q, H'o) and their Q-symplectic representations. One can
show that Q-primary VHS WQ is non-rigid if and only if the R-valued point G'u of G'Q
is non-compact. (See Theorem (6.21) and Corollary (6.23).) In §7, we shall review the
classification of Q-primary sympletic representations of Q-Hermitian pair (GQ9 HO) due
to Satake [SI], [S2]. Then in §8, we shall obtain our main results. In §9, we shall give
an examples of non-rigid abelian schemes. Such examples are constructed by Kuga fiber
spaces of abelian varieties associated to Q-symplectic representations. These examples
show that Theorem (0.1) ( = Theorem (8.1)) is best possible, or complete.

Here are some remarks on works related to our results. Naturally, Faltings [F]
and Peters [P] are starting points of this paper. Besides these works, Noguchi [N],
which studied the structure of the space Hol(S, Γ \2ί) of the holomorphic mapping
from a Zariski open set S of a compact complex manifold to the arithmetic quotient
of a Hermitian symmetric space, is another motivation for this work. (There are also
other previous works due to Kuga-Ihara [K-I], and Sunada [Sul], [Su2] when Γ\2f
and S is compact.) Actually, he showed that Hol(S, Γ \3f) is a quasi-projective variety
whose irreducible components are also arithmetic quotients of Hermitian symmetric
spaces. We can deduce the boundedness of VΆ~J(S) from his result. (Note that this
follows from Faltings' original theorem in [F] or a result due to Deligne in [D2].)
Moreover Noguchi [N] obtained some interesting results on the rigidity of holomorphic
mapping in Hol(5, Γ\3>). One can regard our Theorem (6.17) as a refinement of his
results.

It is obvious that the work on Q-symplectic representations and Kuga fiber spaces
of Satake [SI], [S2] is essential for our work. In fact, he considered the rigidity of
Q-symplectic representation in §4 and §6, Ch. IV of [SI]. After getting Theorem (6.17),
the classification of non-rigid families is reduced to his classification of Q-symplectic
representations. Some of these non-rigid Q-symplectic representations and correspond-
ing Kuga fiber spaces (i.e., Kuga fiber spaces of type (R2, +1)) were first studied by
Shimura [Sh3], in which he has already remarked that such Kuga fiber spaces have
non-holomorphic real-analytic endomorphisms. Similar classification of non-rigid
families of K3 surfaces were carried out by Saito-Zucker in [S-Z].
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1. VHS and abelian schemes.

(1.1) VHS. Let S be a connected smooth qausi-projective variety defined over C.

(1.2) DEFINITION. A polarized Z-variation of Hodge structure (Z-VHS for short) on
S of weight - 1 (resp. weight 1) and of type (0, -1), ( - 1 , 0) (resp. of type (1, 0), (0, 1))
consists of

(i) a local system of free Z-modules Wz on S,
(ii) a decreasing filtration

0 = ̂ 1 c e ^ o d ^ - 1 = ^ s (resp. 0 = &2^&1cz^=WΘs),

of WΘs\=Wτ®τΘs such that

(For each point seS, the Weil operator Cs on WUfS= WZfS (g)z U is defined by the above
Hodge decomposition so that

Csu = y/-1 w for we J%° (resp. J^1).)

(iii) A flat Z-valued symplectic non-degenerate bilinear from Q on WΈ such that
the form Qs(x, Csy) on WR>S is symmetric and positive definite, which we write
symbolically

(1.3) βs C s »0.

Let (Wz, {Fp}9 Q) be a polarized VHS over S, and s a geometric point 5. Then by
choosing a basis of fFz>s, we can transform the symplectic bilinear form Qs into the
following standard form

o
(1.4) J(δ) =

0
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where g = (1/2) rank Wτ and δ = {δu , δg) is a sequence of positive integers such that

(1.5) <

The sequence δ of integers does not depend on the choice of points s e S. We say that
such a polarization Q is of type <5, and we set

(1.6) d=f[δt,
i=l

which is the degree of the polarization.
We denote by VΆ~ϊ(S) the set of isomorphism classes of Z-VHS (WZ9 {Fp}, Q)

over S of weight —1 and of type (—1,0) + (0, —1) with a local system Wz of free
Z-modules of rank 2g and a polarization Q of type δ.

Then this set YH~J(S) has a natural analytic structure (see e.g., [S-Z, §3]).
Moreover, VH~/(»S) turns out to be a quasi-projective variety with only quotient
singularities (cf. [F], [N] or [S-Z]).

(1.7) Abelian schemes. Let S be as above. An abelian scheme over S is a smooth
proper group scheme / : X-^S of finite type with connected geometric fibers. By
definition, each geometric fiber is a proper group variety over C, hence is an abelian
variety. Since S is smooth, by a theorem of Grothendieck [R, Theoreme XI, 1.4], X is
projective over 5. Therefore the dual abelian scheme / v : Xw =Pic°(Ar/S)^S exists (see
e.g., [M-F, Cor. 6.8]). A polarization is an S-homomorphism λ\ X^Xy such that for
any geometric point seS, the induced homomorphism λs: Xs-> A7 is of the form λs = φ#s

for some ample invertible sheaf if s on Xs, where φ#s is given by the formula

(1.8) Xs3a^φ<?s{ά)'. = t*a£es®<es-
lεX:

Let λ: X/S^>XV /S be a polarization as above. Then λ is a surjective homomorphism
and ker λ is a finite group scheme whose geometric fibers are isomorphic to (Z/^Z 0
• © ΈjδgT)®2 where 0 = dim X— dim S, and δ = {δuδ2, '— δg) is a set of positive
integers such that δγ \ δ2 \ * | δg. We say that such a polarization is of type δ.

We denote by Agδ(S) the set of isomorphism classes of abelian schemes over S of
relative dimension g with polarizations of type δ.

(1.9) Equivalence between Aβtδ(S) and VH~/(S). Let (X/S, λ) be an abelian scheme
over S with a polarization λ of type δ. Denote by R1f^Zx (resp. Z?1/*/^ the local
system of the first homology (resp. cohomology) groups of the fibers of/. Let us denote
by S£ie(X\S) the locally free sheaf on 5 a n which is a pull-back by the zero section of
/ of the sheaf of the Lie algebras of the fibers. The relative exponential map induces
an exact sequence of the sheaf

0 - RJJ_X -> 2*4X1 S) - G?(X) -> 0 .

Setting
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we have the Hodge filtration of Rιf*Zx®ZsΘψ of weight - 1 and of type (0, -1),
(—1, 0) (see [D, 4.4.2]). Moreover, one easily sees that

Sei4XlS) £ GrJ x ^ R %Θx

n .

On the other hand, taking higher direct images of the usual exponential sequence
->1, we get the exact sequence

0 -+R%ZX ^R%ΘT -> 0 f ( * v ) -> 0 ,

which defines a VHS on R%ZX of weight 1 and of type (1,0), (0, 1).
The polarization λ: (X/S)^(XV /S) induces a surjective sheaf homomorphism

which can be lifted to an isomorphism between locally free 0|n-modules

λ\ <£le{X\s)^ <£ίe{Xy\S) .

This λ induces an injective homomorphism

J-X, ZS) ,

and hence corresponds to a flat bilinear form Q on Rχf^Zx. It is easy to see that Q
satisfies the condition (iii) of (1.2) and if the polarization λ is of type δ then the cor-
responding bilinear form Q is also of type δ. Therefore, we have the natural morphism

(1.10) Φs:Ag,δ(S) J { }

Deligne [D] showed the following:

(1.11) PROPOSITION (cf. [D, 4.3.3]). The morphism Φs induces an isomorphism between

2. Deformation of abelian schemes and VHS. Let S be a connected smooth
quasi-projective variety over C, / : X^S an abelian scheme over S of relative dimension
g, λ its polarization of type δ, and (Wz: = /?1/5|eZ, {Fp}, Q) the corresponding polarized
VHS of weight - 1 , and of type (0, -1), ( - 1 , 0).

It can be proved that the moduli space AβtΛ(S)^VΆgJ(S) defined in §1 has a
natural structure of a quasi-projective variety with at most quotient singularities (see
[F], [No], and [S-Z]). Due to Faltings [F] and Peters [P], the local analytic structure
ofVH~fi(S) at the point [Wj} can be described as follows.

Let E=End(WQ) = H°(S, £nd(WQ)) denote the algebra of the global flat endo-
morphisms of WQ: = R1f^Q, and EQ = EndQ(WQ) the subalgebra of E consisting of
the elements skew with respect to the polarization Q. Then by [D], E underlies a
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pure Hodge structure of weight 0 (see Theorem (3.1) below), i.e., one has a decom-

position

E®QC=®pE~p>p,

such that E~P'P^EP'~P.

(2.1) THEOREM. Let \_W{\ eVΆ~J(S) be as above. Then the Zariski tangent space of

the local semi-universal deformation space of [ Wj\ is isomorphic to

(2.2) (EQ®QCy1>1=(EndQ(WQ)®QCΓί>1 .

The local analytic structure ofYH~J(S) at [Wj} is isomorphic to

(2.3) ( £ f l ® Q C ) - u / C ,

where G is a finite group induced by the automorphism group of the given polarized VHS

PROOF. The first assertion is due to Faltings [F] in the case S is a curve, and the

result was extended to the case of arbitrary quasi-projective bases by Peters [P]. The

rest of the proof is similar to the proof of Theorem (3.5.2) in [S-Z].

(2.4) COROLLARY. An abelian scheme / : X^S with a polarization λ is rigid, that is,

has no non-trivial deformation with the base scheme S and the polarization fixed, if and

only if

(2.5) (End Q (/? 1 /A)® z C)- 1 ' 1 ^{0} .

(2.6) REMARK. Since the Hodge types oiRxf^lx ®Έs C are only ( - 1 , 0) and (0, -1),

the Hodge types of End^/^/^Z*) ® z C are ( - 1 , 1), (0, 0), and (1, -1) . Therefore the

condition (2.5) is equivalent to Faltings' condition (*) in [F], i.e.,

3. The endomorphism algebra of R\fjJLx. Let us keep the notation in § 2. In this

section, we will study the structure of the endomorphism algebra Ez\ = Έnd(R1f^Zx)

or E=End(R1fχQx) for an abelian scheme / : X-+S. Let us recall the following

fundamental results:

(3.1) THEOREM (cf. [D, Theoreme (4.2.6) and Corollarie (4.2.8)]). Let seS be a

geometric point. Then we have the following.

(i) The action of the fundamental group πx(S, s) on the fiber (R1f*Qx)s is

semi-simple.

(ii) The endomorphism algebra E=Έnd(R1f^Qx) is a semi-simple algebra, and

admits a natural Hodge structure of weight 0.

(iii) The center of E is of type (0, 0).
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(3.2) DEFINITION. A Q-local system TQ on D is said to be primary if TQ is a sum of

irreducible local systems which are mutually isomorphic to each other.

Set WQ: = R1f+Qx. From (i) of (3.1), we can write WQ as

(3.3) WQ = (W1)®nί 0 (W2)
θn2 Θ

where W/s are irreducible Q-local systems such that WiφWj for i+j. In the

decomposition (3.3), each local system (WQeWi is primary, and is called a primary

component of WQ. It is easy to show the following:

(3.4) LEMMA. For a polarized Q-VHS WQ, each primary component forms a polarized

Q-subYYίS, and hence the primary decomposition (3.3) is orthogonal decomposition with

respect to the given polarization Q.

From the decomposition (3.3), we can write E as

(3.5) E= W
£ = 1 ί = l

where we have set Dt = Έnά(W^ which are division algebras over Q by Schur's lemma.

By Lemma (3.4), the Hodge decomposition of £ ® Q C is compatible with the de-

composition (3.5). Hence, in order to classify non-rigid Q-VHS's over S, it suffices to

classify primary ones.

(3.6) REMARK. Let η be the generic point of S. Then the generic fiber Xη is an abelian

variety over the field of rational functions K=C(S). We have an isomorphism

End s (Z) = Έndκ(Xη), because / : X-^S is an abelian scheme. Moreover we have an

isomorphism

Assume that Xη is simple over K. Then the center Z of End(A^) ® Q is a field, and so

is the center of E n d ^ i / ^ Q ^ ) , because of (iii) of (3.1). In view of Lemma (3.4) and

(3.5), Rxf+Qx must be a primary Q-VHS in this case.

(3.7) Tensor product decomposition of primary WQ. From now on, we assume that

WQ = R1fχQx is a primary Q-VHS over S, (and of weight — 1 , and of type (0, —1),

( - 1 , 0)). In this subsection, we recall the tensor product decomposition of WQ following

[SI, Ch. IV]. Denote by V a non-trivial irreducible Q-local subsystem of WQ, and

set

(3.8) D = End( V), F= Cent D , U= Hom( V, WQ).

By Schur's lemma, D is a division algebra over Q, and F is a finite extension field of

Q. The local system V has a natural structure of a left Z>-module, and the Q-vector

space U has a natural structure of a right Z>-module. We put:
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(3.9) lF:Q] = d, [_D:F] = r2,

(3.10) dimDU=m, τankDV=n.

Denote by D the division algebra opposite to D. Then U can be regarded as a left

5-module.

We have the following assertions, which follow from [SI, Lemma 1.1, Ch. IV].

(3.11) PROPOSITION. For a primary Q-VHS WQ as above, one has the following iso-

morphisms:

(3.12)

(3.13) E

Here U ®D V denotes the tensor product of U and V over the division algebra D.

(3.14) Involutions on E. Since the polarization Q induces an isomorphism PFQ =

WQ : = J^^^ι(WQ, Q s), we have an involution on E, which plays an important roll in

the classification.

Fixing a geometric points s e S, we have an isomorphism

Then we can define an involution ιs on End(WQs) by als as the adjoint of aeEnd(WQ s)

with respect to Qs, namely,

for all x,ye WQiS and aeEnd(WQJ). Since Qs is invariant under the action of nx(S, s),

the subalgebra EczEnd(WQfS) is stable under ιs. Moreover, it is easy to check that ιs

is compatible with the Hodge decomposition on E®QC, and if we restrict ιs to

End( WQfS)
0'0 £ End(^ s) (x) z Q, then it coincides with the Rosati involution on the abelian

variety Xs induced by the polarization λs. On E=Endπi(Ss)(WQ s), the involution ιs does

not depend on the choice of the point seS, so we denote it by u

From the self-duality WQ= WQ, we can deduce that the irreducible local system

Fis also self-dual, that is, V^ Vv. Therefore there exists an involution i 0 on D = End( V).

The center F of E (F is also equal to Cent(D)) is stable under both involutions i and

i0, and one has

(3.15) I o | F = ί | F .

In general, an involution on an algebra is said to be of the first kind if it fixes all

elements in the center of the algebra, and of the second kind otherwise.

(3.16) PROPOSITION. The center F of the endomorphism algebra of a primary Q-VHS WQ

is a finite extension field ofQ with a positive involution ι = ι0, so it is one of the following:

(i) F is a totally real number field and i = id, or
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(ii) F is a purely imaginary quadratic extension of a totally real number field and

i = the complex conjugation.

Proof. Let Cs denote the Weil operator on WUfS. Then we have the positivity

condition

(3.17) Qs(x, Csx) > 0 for all JC e WRtS.

For aeEnd(WQs) and XG WQίS such that axΦO, we have

0 < Qs(a x, Csa x) = ββ(x, Cs(Cs(aι) a) x),

where Cs(aι) = C~1aιCs. Hence we have

(3.18) Ίr(Cs(aι)-a)>0.

By (iii) of Theorem (3.1), F has a Hodge type (0, 0), so it commutes with the Weil

operator Cs. Hence from (3.18), for aeF— {0}, one has

ΊrF/Q(aιa)>0 .

Since F is a finite extension field of Q with a positive involution i, according to Albert,

we obtain the classification.

4. Decomposition of polarization.

(4.1) (D, ε)-Hermitian form. Let A: be a field of characteristic zero and D a division

algebra over k. Denoting by F the center of D, we set

Consider a finite dimensional fc-vector space T with a structure of a right Z>-module,

and set n = rankD T.

Let ι0 be an involution on D, i.e., an anti-automorphism of order < 2 , and let

ε = ± 1. A (Z), ε)-Hermitian form h on Γ with respect to z0 is, by definition, a fc-bilinear

mapping h: Tx T^D satisfying the following conditions:

(4.2) *(

(4.3) h(v\ v) = εh(v, v')ι° for all v,v'eT, oceD.

A (Z), ε)-Hermitian form h is said to be non-degenerate if a intersection matrix

L = {h(eb ej)) for a Z>-basis (ef) of Γis invertible. For a non-degenerate (Z>, ε)-Hermitian

form h on T with respect to Ϊ 0 , we define the unitary group and the special unitary

group for h by

(4.4) ί/(Γ, h) = {g e GL(T/D) | h(gυ9 gυf) = A(ι;, υ')(v, υ' e Γ)} ,

(4.5) St/(7; Λ) = t/(Γ, h) n SL(T/D).
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Note that these are F-algebraic groups.

If 7" is a left Z>-module, we can define a (D, ε)-Hermitian form h on 7" with respect

to TQ, by regarding T as a right Z)-module.

(4.6) Recall that a primary Q-VHS WQ has a tensor product decomposition WQ =

U®D V as in (3.12). The following theorem shows that the polarization Q is also de-

composed according to this decomposition.

As in (3.14), one obtains an involution i on E induced from the polarization Q

and an involution ι0 on D such that (ιo)\F= i\F.

(4.7) THEOREM. In the notation in (3.7), there exist a flat non-degenerate (25, ε)-

Hermitίan form h on V with respect to 7 ,̂ and a non-degenerate (D, — ε)-Hermitian form

h! on U with respect to ι0 such that the polarization Q on WQ can be written as

(4.8) Q = TτD/Q(h'®Dh).

Here the sign ε is uniquely determined by Q ifι0 is of the first kind, but arbitrary ifι0 is

of the second kind.

The proof is similar to that of Lemma 2.2 and Theorem 2.3 in [SI, Ch. IV].

5. Scalar extension. In § 3 and § 4, we obtained the tensor product decomposi-

tion of a primary Q-VHS WQ

wQ=u®Dv,

as in (3.12) and the decomposition of the polarization Q = TτD/Q(h' ®Dh). In this section,

we will study the structure of IR-VHS Wu: = WQ ®QU which is obtained by scalar

extension.

The center F of D = End( V) is a finite extension field of Q with a positive involution

i 0 (see (3.16)), so set F+ = {zeF\ zl0 = z}. Then, from (3.16), F+ is a totally real number

field, and either

(R) F=F+, so F is a total real fields, or

(C) F is a CM field, i.e., a purely imaginary quadratic extension of F+.

Setting t = [ F + : Q], let {τf: F+ c_> U, 1 < / < ή be the set of t distinct embeddings

of F+ into U. Regarding WQ as a local system of F+ -vector spaces, we can decompose

as

where we have set

(5.2) W(i)=WQ®F+,τiU.

Since F+ is of Hodge type (0, 0), this decomposition is compatible with the Hodge

decomposition of each fiber. Denote by Q(i) the bilinear form on W(ι) induced by Q.
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Then we have the following:

(5.3) LEMMA. The local systems W(ί) are U-subYHS's of Wu with a polarization Q(i\

and the decomposition (5.1) is an orthogonal sum with respect to Qu.

From this lemma, we have the decomposition of the Weil operator

ί

(5.4) Cs = 0 C f for each SGS

and the polarization

t

(5.5) Qu=®Q{i),
ι = l

according to (5.1).

For each embedding T( : F
+ CL> R, we put

(5.6) ^

(5.7) Dτi

(5.8) P<

(5.9) Uτi

The algebra DZi becomes a central simple algebra over F ( i ) . Hence there exists a

division algebra D{i) over F ( ί ) such that

Fixing an above isomorphism, we denote by ει

vμ the corresponding matrix unit in DTi.

We moreover set

(5.10) F ^ ε d P ' , U{ΐ)=UXiε[1 .

Then V{i) is a local system of left D(i)-modules, and U(i) is a right Z>(I)-module, and we

have an isomorphism (cf. [SI, p. 189]),

(5.11) WK ( i )=ί/ ( ί )(x)p ( i )F
( ί ).

Note that F(i) is isomorphic to R or C, corresponding to the case (R) or (C), so D(i) is

isomorphic to R, H, or C.

(5.12) LEMMA. Let WQ be a primary Q-VHS over S of weight (0, 0) and of type

( - 1 , 0) + (0, - 1 ) . Let W®=U®DV be the tensor product decomposition in (3.12). For

each embedding τ f : F
+ c_> R, let W(ϊ), F ( ί ) , Dτ\ V{i), ί/(i) be as above. There exists an

isomorphism

(5.13) ^ ( 0 ^ C /
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such that for every geometric point seS, the Weil operator C<1) can be written as

(5.14) C f = / ' ( ί ) ® / s

( ί ) ,

where Γ(ι) and Is are U-linear automorphisms of U(i) and Vf\ respectively.

Moreover, one of the following cases occurs:

(5.15) Im=\vw and (/f ) 2 = - l^o ,

and

(5.16) (7' ( ί ))2 = - 1 pμ, and 7s

(ί) = 1 F<<>.

Proof. Regarding E as an F+ -vector space, we set

Since from (3.13) we have an isomorphism E^Endg(U), we get an isomorphism

Since E(i) has a natural Hodge structure of weight 0, there esists a corresponding Weil

operator C's
{i) on E{i\ which is induced by an IR-linear automorphism /'( ί ) on U(i). For

each point ssS, the natural map/s ( i ) (x) Ws

(l)-» W*p is a morphism of Hodge structures.

Hence, the Weil operator Cs

(ί) on W® can be written as in (5.14). Since ^ s

( i ) ® R C is of

type ( - 1 , 0) + (0, - 1 ) , one of the cases (5.15) and (5.16) occurs. (See [D, (4.4.8)].)

(5.17) REMARK. In the case (5.15), E(i) (x) R C consists of elements of type (0, 0), while

/S

(I) determines a complex structure on each fiber V^\ In the case (5.16), £ ( i ) ® R C

consists of elements of type (—1,1), (0,0), ( 1 , - 1 ) , but V^®uC consists of bi-

homogeneous elements.

Now let us study the scalar extension of the polarization Q.

(5.18) LEMMA. Keeping the notation in Proposition (5.12), let Q be a polarization of

WQ with a decomposition Q = TτD/Q(h' ®DA) as in (4.8), ι0 the involution on D defined

in (3.14), and ι§ the induced involution on D{i).

Then for each i, l<i<t,h induces a (D{ί\ zγ\^)-Hermitianform h(i) on V(ι) (with respect

to ι$}), and a (Z), — ε)-Hermitian form h! on U induces a (D{1\ — sηι)-Hermitian form h'(ι)

on U(i) (with respect to ι^), where ηt= ± 1, so that

(5.19) Q(i) = TrD{i)/u(h'U®D(i)hM).

For the proof, see [SI, Ch. IV, §3].

(5.20) PROPOSITION. According to the cases (5.15) and (5.16), one can assume the

following:

(5.21) Cose (5.15) βf|f= — 1 , and λ ' ( ί )»0 and
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(5.22) Case (5Λ6) eηt=l , and h'(i)Γ(i)»0 and

Here, for example, hfl^ denotes the bilinear form hf(x, I^y), and "/z' ( 0»0" means that

the bilinear form h'(i) is symmetric ( —D(i)-Hermitian) and positive definite.

PROOF. First, note that D{i) = U, D-D or C and iff is the standard involution on

the division algebra D(i\ (cf. Proposition (3.16) and §5). Assume first that we are in

the case (5.15). Setting x = u ® D ( i ) v, y = u' ®D ( i, v' e 0 f > ^ U{i) ®Dii) V^\ from (5.15) and

(5.19), one has

(5.23) β(/)(x, C®y) = Qf\u ®D(i) Ό, C < V ®x>«> Ό) = TrD(I)/R(A/(0(w, W) hf{v, ifhfo).

Since the bilinear form Q?\x, C®y) is a symmetric form by Definition (1.3), one has

i/)'ό0}) = 0 .

Since h'(i)(u, uf) takes arbitrary values in D{i\ this implies that

(5.24) hf(v, /<V) = - h^(I^v, υf) .

Now we show that εηι= — 1. Assume the contrary. Then h'(i)(u, u') (resp. h^\v9 v')) is a

(Z)(0, — 1)-Hermitian form (resp. a (D ( 0 , 1)-Hermitian form), hence together with (5.24)

one has

Λ/(0(M, uγo = - h'{\u, u') , and hf(υ, Ifυ)ιf = - hψ{vy Ifυ).

Hence both h'(i)(u, u) and *J°(t?, Ijpυ) are purely imaginary numbers in D(i\ On the other

hand, the positivity condition of βs

(ί)(x, C^x) > 0 implies that

(5.25) TrD(i)/R(λ/(i)(u, M)*W(i7, jj V " ) >0 for all ue U{i)- {0} , i e F f - {0} .

Thus in the case £>(0 = U, this is obviously impossible, and in the case D(i) = 0-0, it is easy

to find w and i7 for which the condition (5.25) does not hold. In the case D(i) = C, if we

replace A/(i) and Λ(/) by yj—lhr(i) and —yj—\h(i\ one can assume that ε ^ = — 1. Thus

one may assume that εη^ — l in the case (5.15). In case (5.16), one may similarly

assume that zr\{ — 1.

Now both Λ'(i)(w,u') and hf(vjfv') (resp. h'{i)(uj'{i)u') and Λ<°(t;,ι/)) are

Z>(0-Hermitian forms in the case (5.15) (resp. (5.16)). These also imply that both of

λ'(ί)(w, u) and *f(i?, /fi;) (resp. Λ'(ί)(u, //(ί)w) and *£>(!?, t;)) are real numbers in the case

(5.15) (resp. (5.16)). Hence (5.25) implies that

Case (5.15) Λ'(ί)(u, u) hf(v, I®Ό) > 0 for all u e U(i) - {0} , v e V™ - {0} .

(resp. Case (5.16) Λ'(0(u, Γ{ϊ)u)'hf (v, v)>0 for all we *7(0-{0}, ve V^-{0}.)

Thus A/(I)(M, M) and ^ ( i ; , /ft;) (resp. λ'(ί)(w, //(ί)w) and Λ^(t;, v)) are both negative or

positive real numbers. By a well-known theorem of algebraic number theory, one can

find an element α e ( F + ) x such that τi(oc)'h'(i)(u9u)>0 for all i in the case (5.15) and
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τj(θί)-hfUXu, ΓU)ύ)>0 for ally in the case (5.16). Replacing h and h by oi h' and α " 1 λ,

one can get the assertion.

6. Q-symplectic representations. Let GQ be a Q-algebraic group such that the

group Gu of its IR-valued points is a Zariski connected semi-simple IR-group of Hermitian

type. Let K be a maximal compact subgroup of Gu and @> = GU/K the corresponding

Hermitian bounded symmetric space. We denote by g and I Lie algebras of Gu and K

respectively, and by p the orthogonal complement of ϊ in g with respect to the Killing

form. Then the complex structure of 2 is induced by an element Ho e Cent(ϊ) such that

(ad p (// 0 )) 2 = — l p . We call such an element Ho an //-element of Gu. A pair (GQ, Ho)

consisting of the above GQ and Ho is called a Q-Hermitian pair.

(6.1) DEFINITION. A Q-symplectic representation of a Q-Hermitian pair (GQ, Ho) is

a quadruple (WQ, pQ, QQ, I) consisting of

(i) a Q-vector space WQ of dimension 2g,

(ii) a non-degenerate symplectic bilinear form QQ on WQ,

(iii) a faithful representation pQ: G Q -> S/?(JFQ, 2 Q ) a n d

(iv) a complex structure Ie^(Wu, Qu) satisfying the condition

(6.2) [rfpR(Jϊo)-(l/2)/,rfpR(J0] = 0 for all

where @(WU, Qu) denotes

(6.3) {/eEnd(^ R ) jI2 = - 1^R, 2R(x, /j) is a positive definite (R-symmetric form} .

Moreover, a Q-symplectic representation (WQ, pQ, QQ, I) of a Q-Hermitian pair

(GQ, HO) is said to be Q-primary if(WQ, pQ) is a sum of GQ-stable subspaces isomorphic

to an irreducible Q-representation ρx: G Q - » G L ( F / Q ) .

In this section, we will show that one can obtain a Q-symplectic representation

from a given primary Q-VHS WQ on S.

(6.4) Let us fix a geometric point .yeS. Then, from Theorem (4.7), the fiber Vs is

a right /5-module with (25, ε)-Hermitian form hs9 and t/ a right D-module with

(Z>, -ε)-Hermitian form h'. Denote by SU(Vs,hs) and SU(U,h') the special unitary

group corresponding to (Vs, hs) and (U, h'), respectively. Then these groups are

F-algebraic groups. Consider the Q-algebraic groups

(6.5) G Q = RF/Q(SU( Vs, hs)), Gb = RF/Q(SU(U, h'))

obtained by the scalar restriction RF/Q of Weil [W, 1.3]. Let

(6.6) Pί:GQ = RF/Q(SU( Vs, hs)) ^ SU( Vs, hs),

(6.7) p[: G'Q = RF/Q(SU(U, h')) ^ SU(U, h),

be the natural homomorphisms. Then, from Proposition (3.11) and Theorem (4.7), we
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have natural representations

(6.8) p = \υ ® P l : GQ = RF/Q(SU{VS, hs)) - Sp(WQ,s9 Qs),

(6.9) p' = p ; ® l F s : Gb = ̂ F / Q (^C/(t/ ,A / ) )^*(^Q, s ,β) ,

which commute with each other.

(6.10) Let B be a division algebra over R, i.e., 5 = R, H, or C, Γa right 2?-vector space

of dimension n, and Λ a non-degenerate (2?, ε)-Hermitian form with respect to the

standard involution ι0 on B, where ε= ± 1. In case ε= 1, we assume that h is positive

definite, so that we have an orthonormal 2?-basis of T with respect to h and identify

SU(T, h) with

Note that the R-group SUn(B) is always compact.

Next in the case ε= — 1, we can choose a basis {ej of T so that the intersection

matrix H=(h(eu βj)) can be written as follows:

(i) B= U; n — 2m is an even integer

0 ln

- l m 0

(ii) B=M;

(iii) 5 = C; (/?, ̂ ) is a pair of non-negative integers such that p + q = n.

i\p 0

In the last case (iii), (/?, q) is called the signature of h.

Then in each case, the group SU(T, h) is isomorphic to the following groups.

(ir) B = R; n = 2m is even.

SC/ΛR, A) = S Λ / 2 (R) = {g e SLn(U) \ *gjnllg = Jn/2} .

(ϋ') B=U

SUn(U, h) = SUn(H)-={gε SLn(U) \ *gV\Jg =j\n} .

(iii') B = C;p + q = n.

SUn(C, h) = SU(p, q, C) = {gε SLn(C) \ Γg\pqg = \pq) .

In case ε= — 1, the group GU = SU(T, h) is a connected semi-simple R-group unless

^S1, and is non-compact of Hermitian type unless SU(n, 0, C) £ 5^/(0, n, C) or
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. Let @(T, h) = GujK denote the corresponding Hermitian symmetric bounded

domain where AT is a maximal compact subgroup of Gu. Then we have an isomorphism

(6.11) @(T, h) = {Ie Endu(T) \ I2 = - 1 τ , h(x, Iy) is a positive definite 5-Hermitian} .

Corresponding to each case above, $)(T, h) is isomorphic to one of the following bounded

symmetric domains:

(i) (Π)m = {ZeM m (C) | 'Z=Z, l m - ' Z Z » 0 } ,

(ii) (Π)π = {ZeMn(C)| 'Z= - Z , l n - ' Z Z » 0 } ,

(iii) (I)M = {ZeM(p, q, C)| 1,-'ZZ»O}.

The relation between 5ί/(Γ, A) and 0(Γ, Λ), and the R-rank of 5t/(Γ, A) are shown

in the following table.

B G=SU(T,h) @ = 2){T,h) dimcS» R-rank

ί Λ m

 R * Π / 2 (R) (ΠI)n/2
l° l z ; H 5C/Λ(H)- (II).

C S ^ ( Λ ί , C ) (I) M p q mm(p,q)

(6.13) REMARK. If A is a positive definite -S-Hermitian form, the group SU(T, λ) =

SUn(B) is simple, and non-abelian unless SU^U), SU2(U) and SU^C). If A is a fi-skew

Hermitian form, then GR = SUn(B,h) is simple and non-abelian unless SUn(H)~ s

S1, SU2(H)~ s5L 2 (R)x SU2(C), and 5ί/(l, 0, C ) s

Let Gκ (resp. G'R) be the group of R-valued points of Go (resp. G'Q). From Lemma

(5.12) and (5.18), we have the following decomposition of GR (resp. G'R):

(6.14) G Q =

(6.15) GR=t

Moreover, from p one has a natural representation

(6.16) p ( ί ) : GR = ΛF/Q(St/(Fs, AJ)R - 5/7(ί/(ί) ®D ( ι ) Kf, A ^ s S / K ^ , β j .

(One can also obtain a representation p' ( i ) of G'u.) Note that the isomorphism classes

of GQ and ρx do not depend on the point seS.

The most fundamental result in this paper is the following:

(6.17) THEOREM. Let the notation be as above.

(i) The Q-algebraic groups GQ and G'Q are Zariski connected, and the groups Gu

and G'u of their U-valued points are reductive U-groups of Hermitian type.

(ii) If moreover, Gu (resp. G'u) is non-compact, then Gu (resp. G'u) is a semi-simple

U-group of Hermitian type.
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(iii) Assume that Gu (resp. Gf

u) is non-compact. For each point seS, there exists

an H-element HOs (resp. H'o) of Gu (resp. G'R) such that (GQ, HOs) (resp. (G'Q, H'o) is a

Q-Hermitian pair and the data (WQtS, p, Qs, Cs) (resp. (WQ^ p', Q, Cs)) become a

Q-symplectic representation of (GQ, HO S) (resp. (GQ, H'O)).

PROOF, (i) The Zariski connectedness of GQ and G'Q follows from the argument

in [S1, Appendix, § 1 ] . In view of (6.10) and (6.11), we only have to show that SU( V®, hf)

and SU(U(i\ h'Λί)) are reductive groups. From Proposition (5.20), Λ<° and h'(i) are

/)(0-skew-Hermitian or positive definite Hermitian. Hence this follows from Remark

(6.13).

(ii) We only have to prove the assertion (ii) for GR. If Gu is non-compact, one

of SU(V^\ Λ<°) is non-compact. Hence in particular Λ<° is a Z>(i)-skew-Hermitian form

and SU(Vj?\ h^) is a sem-simple IR-group of Hermitian type. Then by Remark (6.13),

the group SU(V^k\ Λ*fc)) for kφiis semi-simple of Hermitian type. Therefore, we obtain

the assertion (ii).

(iii) Consider the Weil operator Cs on WUfS. It is decomposed as Cs= φ\=ί Cs

(ί)

according to (5.1). By Lemma (5.12), after a suitable renumbering of/, one may assume

that

(6.18) (
\i=ί

Note that Cse9(Wu^ Qs) (cf. (6.3)). Now set

(6.19)

(6.20)
1 \i=t'

where

if / ) ( ί ) = R, H

' l ( ) / ( ) if ί 0 = C and J - l*g> has signature (ph qt).

Then it is easy to see that HOs (resp. H'o) defines an /Γ-element of Gu (resp. G'u).

Moreover one can also check the condition (6.2) for pu, HOs, Cs (resp. pj,, H'o, Cs).

(6.21) THEOREM. In the notation in Proposition (5.12), let H'Q denote the element of

Lie algebra QR if G'u defined in Theorem (6.17). Let gu = f φ p ' be the corresponding

decomposition of the Lie algebra, and Pc = p / + θ p / " the decomposition of the

complexification ofp' with respect to the complex structure adP'(i/o) Then we have an

isomorphism of the C-vector spaces

(6.22)
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PROOF. First, let us remark that from (3.13), (4.8) and (6.5), there exists an
isomorphism

The Hodge structures on both hand sides of this isomorphism are induced by the Weil

operator on WUtS (cf. (6.18) and (6.20)). q.e.d.

(6.23) COROLLARY. A primary Z-VHS Wz is rigid if and only if the Lie group G'u =

RF/Q(SU(U, h'))u is compact.

PROOF. In view of Corollary (2.4) and (6.21), Wz is rigid if and only if p / + = {0},

which is equivalent to the compactness of G'u.

Let us fix a point seS, and consider the monodromy representation

(6.24) μs'.π^s^SpiW^Q).

Then μs factors through p, i.e., there exists a homomorphism

(6.25) μUs: π^S, s)-+GQ = RF/Q(SU(Vs, hs)),

such that μs = P'μlfS.

(6.26) PROPOSITION. IfGu is compact, the Z-VHS Wz is locally trivial, and hence the

corresponding abelian scheme f: X^S becomes isomorphic to the product S' x Xs after a

finite base change p: S'^S.

PROOF. Since the image of μ1 s is contained in a discrete subgroup of Gu, the

compactness of Gu implies the finiteness of the image of π^S, s) under μ l s .

(6.27) COROLLARY. Let f: X^S be an abelian scheme such that the corresponding

Q-VHS WQ = R1fχQx is primary (e.g., the generic fiber of f is simple). Let GQ and G'Q
be the Q-algebraic groups defined in (6.5), and set G$ = SU(V?\ Λ<°) and G$> =

SU(U{i\ h'(i)) as in (6.14) and (6.15). Then we have the following:

(i) If G$ (resp. G$}) is non-compact, then the group GJ|0 (resp. G$) is compact.

Therefore, if f: X^S in non-isotrivial, then Gu is non-compact, and hence at least one

of {G&1)} is compact, i.e., G'u has compact factors.

(ii) Iff: X-+S is non-rigid, then G'u is non-compact, and hence at least one of{G$}

is compact, i.e., ( J R has compact factors.

(iii) In particular, when f'.X^S is non-isotrivial and non-rigid, one has t =

[F+ : Q] > 2 and Gu and G'u have both compact and non-compact factors.

7. The Satake classification. In view of Theorem (6.21) and Corollary (6.27),

the classification of non-rigid primary Q-VHS, or the corresponding abelian schemes,

can be reduced to that of the certain types of Q-symplectic representations. Namely, in

the notation of §6, if a primary Q-VHS WQ over S is non-rigid if and only if G'u is
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non-compact, and if it is non-isotrivial then GR must be non-compact.

Satake [S2] classified Q-primary symplectic representations of Q-Hermitian pair

(G®, HO). We refer to his results in [S2] and to [SI, Ch. IV].

First, from Theorem (6.17), (iii), and Corollary (6.26) and the argument in [SI,

Ch. IV, §6], we can deduce the following:

(7.1) THEOREM. Let WQ be a primary Q-VHS of weight - 1 of type (0, - 1 ) and

(0, — 1) over S, V, D, F as defined in (3.7), and ι0, h as in (4.6). Assume that WQ is not

isotrivial. Then the one of the following cases occurs:

(Rl) D = F is a totally real algebraic number field and with i the identity, and h is

a symplectic form on Vs (ε = — 1).

(R2, ε) D is a quaternion algebra over a totally real algebraic number field F and

i is the standard involution, while h is a (D, ε)-Hermitian form V with respect to i, where

ε = ± l .

(C) F is a CM field, i.e., a purely imaginary quadratic extension of a totally real

algebraic number field F+, D is a central division algebra over F, i an involution of D of

the second kind, and h a (D, ε)-Hermition form with respect to i, where ε= + 1 .

Moreover in each case, under the notation of § 5, one has the following explicit

descriptions of F{i), Dτi, D{i), F<°, h<f\ U(i), hr{i\ Gu, G'u for the cases (Rl), (R2, ε), (C)

respectively.

(7.2) THEOREM (cf. [SI, Ch. IV, §6]). Let WQ be as in Theorem (7.1), F ( ί ), Dτ\ D(i\

V(i), h(i\ U(i\ hf(i) as in §5, and Gu, G'u as in (6.5). Assume that WQ is not isotrivial. Then

for each of the cases (Rl), (R2, ε), (C), we have the following:

(Rl) (ε = - \)D = F= F+. Set dimF Vs = n, dimF U=m. Then one has

hf: an U-symplecticform on V[9 (^=1) for \<i<t = d,

h'{ι): a positive definite U-symme trie form on U\ (rji=l)for \<i<t = d,

and

(7.3) Gu * Spn/2(U)x -"X Spn/2(U).

(7.4) G'R*SOJR)x •" xSOJR).

d x compact

(R2, ε) We have F=F+, and D is a quaternion algebra over F. Set rankD V=n,

rank D ί/=m. Then one has F(ι) = R. After a suitable renumbering ^/{τj, we may assume

that for some t', 0<t'<t,
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^ Γ H \<i<f Du~\u 1 ^ ' /

\M2(U) t'+l<i<t, \u t' +

Then one has

s ~~\u2n' ~[ lR 2 m , s ~ \ U2n (x)R U
2m t'+\<i

(ε=l)

(ί) _ f a positive definite M-symmetric form {η{ =\) \<i<t',

\an U-symplectic form (ηt= — 1) t'+l<i<t,

L'd) — San ^-sywplectίc form (ηt =1) 1 </</',

[ α positive definite U-symmetric form (^ = — 1) / ' + ! < / < / ,

( 7 . 5 ) Gu = S U n ( M ) x ••• x S C / π ( I H I ) x S Λ ( R ) x ••• x

ί' x compact (t-t')x (IΠ)Π

(7.6) GJ3 = St/m(HΓ x x SUJUy x 5O2m(R) x x SO2m(R).

t' x (II)m (/-/') x compact

(ε=-l)

( i ) ί α« H-symplectic form (ηi=l) \<i<tf,

[ α positive definite M-symmetric form (ηt = — 1) ί' 4-1 < ί < ί,

a positive definite H-symmetric form (ηi=l) 1 <ί<t',

β« U-symplectic form (η^—l) t' + 1 < i < ί,

(7.7) GR =/S
f^7yϊ(H)"x •• x ^ C H ) " x ̂ Q # ) x •• xSO2n(U).

/' x (II)Π (t-t')x compact

(7.8) G'R = 5 C / m ( H ) x ••• x 5 t / m ( H ) x SPm(U)x •• x5j> M (R) .

/' x compact (t-t')x (ΠI)m

(C) (ε= ± 1) F is a purely imaginary quadratic extension of F+, so / = [iΓ: Q]/2.

We set ID: F] = r2, rankDV=n, andmnkDU=m. Then one has

~ c m r WZi — C m
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We may assume that for t', 0<t'<t,

( ί ) f C-symplectic form with signature (ph qt) \<ί<t' (Pi>qi>0),

I positive definite C-Hermitian form t' + 1 < / < t,

(f) {positive definite C-Hermitian form \<i<tr,

\ C-symplectic form with signature (p[, q[) tf +\<i<t, (p[>qί>0) ,

(7.9)

(7.10)

Gu

Gί

s Π su(Pi

&SUJC)>
t'

, ? ί , C ) x 5 t / w ( C ) x ••• xSl

T)Piq. (t—t')x compact

< x SUJC) x f] SU(p'h
x compact ι~L ( ί

Jnr(^C)

C)

8. Geometric results. The following theorem is a consequence of Corollary (6.27)

and Theorem (7.2).

(8.1) THEOREM. Let f: X-^S be an abelian scheme such that the corresponding

Q-VHS WQ = R1f*Qx is primary (e.g., the generic fiber Xη of f is simple). Let V,

D = Έnd(V) and U be as in (3.8), and WQ=U®D V the tensor product decomposition of

WQ as in (3.11). Set mnkDU=m, mnkDV=n, and t = [F+ : Q] (see §3 and §5 for

notation). Assume that f: X->S is non-isotrivial and non-rigid.

(i) If the center F of D is totally real (i.e., F=F+), then D is a quaternion algebra

over F—F+ such that

Hx ••• x H x M2(U) x x M2(U).

Hence if one denotes by r(f) the relative dimension of f: X-+S, one has

(8.2) r(f) =— mnkQU®DV=2tmn.

Here one must have t'>0 and t — tf>0, hence in particular t = [F\ Q]>2. Moreover one

of the following cases occurs (see Theorem (7.2)):

Case (R2, 1) n>\ and m>2 ,

Case (R2, - 1 ) n>2 and m>\.

In particular, the relative dimension r(f) is even, and >8.

(ii) If the center F of D is a CM field (i.e., [F: F+] = 2), then D is a central simple

division algebra over F such that [Z>: F] = r2 and

••• xMr(C).

t

In this case, one has
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(8.3) r(f) = — Itnmr2 = t(nr)(mr).

Moreover, the bilinear forms hs must be indefinite at a place τt: F+ CL+ U and definite at

some other places. And h! satisfies the condition in (C) in Theorem (7.2). Hence

t = [F+ : Q] = [F: Q]/2>2, w>2, mr>2. In particular, r(/)>8.

(8.4) COROLLARY. Let f: X-+S be an abelian scheme which has no isotrivial factors.

The abelian scheme is rigid, if the relative dimension r(f) of f is less than 8.

(8.5) COROLLARY. Let f: X-^S be an abelian scheme whose generic fiber Xη is simple.

Assume that f has no-isotrivial factor and the relative dimension of f is a prime integer.

Then f: X^S is rigid.

The following theorem is a consequence of Corollary (6.27), and we call it the

monodromy theorem.

(8.6) THEOREM. Let f: X^S be an abelian scheme such that the corresponding Q-

VHS WQ = R1fχQx is primary (e.g., the generic fiber of f is simple). Assume that S is

non-compact and a local monodromy around a point in the boundary has infinite order.

Then f: X-^S is rigid.

PROOF. The image of the monodromy representation of nx(S, s) lies in GQ (see

(6.25)). If/: X->S is non-rigid, from Corollary (6.27), Gu has a compact factor, hence,

in particular, the Q-rank of GQ is zero. On the other hand, it is known that the

monodromy of the Z-VHS around the boundary divisor is quasi-unipotent, a

contradiction to the assumption.

9. Examples of non-rigid abelian schemes. In this section, we will give examples

of non-rigid abelian schemes and show that Theorem (8.1) is the best possible, i.e., in

both cases (i) and (ii) in Theorem (8.1), one can give examples of abelian schemes with

a given relative dimension. Such examples shall be obtained as Kuga fiber spaces of

abelian varieties, which are constructed from Q-symplectic representations of Q-algebraic

groups.

(9.1) Kuga fiber spaces. Let (GQ, Ho) be a Q-Hermitian pair and (WQ, pQ, QQ, I) a

Q-symplectic representation of (GQ, Ho) (see Definition (6.1)). By a lattice Wτ of WQ,

we mean a free Z-submodule Wz of WQ such that WQ ® Z Q ^ WQ and

QQ(WZ, WZ)^Z.

Such a quintuple (WQ, pQ,QQ, /, Wz) is called a Kuga quintuple. Let K be the

maximal compact subgroup of Gu determined by Ho, and denote by @: = GU/K the

corresponding Hermitian symmetric space. The representation pQ: GQ^>SP(WQ, QQ)

induces a representation pu: Gu^Sp(Wu, Qu), and an equivariant holomorphic em-
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bedding h: 2 CL+®{WU, Qu) = Sp(JVu, QuiJK' with respect to pR. Note that @(WU, Qu)
is isomorphic to the Siegel upper half plane (ΠI)fc where A: = (1/2) dim Wu.

The lattice Wz determines an arithmetic subgroup ΓWz = {geSp(Wu, Qn\gWz =
Wz}, and a subgroup PQ1{ΓW^) of Gu becomes arithmetic. There exists a torsion-free
subgroup ΓczpQ^Γ^) of a finite index, so that the quotient space Γ\2 becomes a
smooth quasi-projective variety (cf. [Ba-Bo]). It is well-known (or easy to see) that
there exists a universal Z-VHS φ: WZ-+Θ(WU, Qu) of weight - 1 and of type ( - 1 , 0),
(0,-1), whose typical fibers are isomorphic to Wz. Moreover, there exists the
corresponding universal family of abelian varieties. Via the equivariant embedding
h: 9 cz_> @(WU, Qu\ one can pull back the Z-VHS φ to a Z-VHS over 3, and moreover
descends it to a Z-VHS over the quotient variety MΓ: = Γ \3f. Hence one obtains the
corresponding abelian scheme / : XΓ-*MΓ = Γ\Θ (see (1.10)).

(9.2) DEFINITION (cf. [SI, Ch. IV, §7]). The abelian scheme / : XΓ^>MΓ =
constructed from a given Kuga quintuple and a torsion-free subgroup ΓaGQ is called
the Kuga fiber space of abelian varieties.

(9.3) REMARK. The fiber spaces of abelian varieties above have been studied from
many points of view by many people such as Kuga, Shimura, Satake, Mumford, et al.
The reader can find many references about Kuga fiber spaces in §7 of Ch. IV and the
References in Satake [SI].

(9.4) Quaternion algebras. We shall quickly review the theory of quaternion algebras
following Satake [SI, Appendix, §2]. Let F be a field of characteristic different from
2. A quaternion algebra over F is, by definition, a central simple algebra over F with
[D: i7] =4. If D is not a division albgebra, one has D^M2(F), in which case D is called
a split quaternion algebra.

For given α, βeF*, one can define a quaternion algebra D(α, β) as an algebra with
the unit element 1 over F generated by two elements xu x2 satisfying

Let @{F) denote the Brauer group of F, and Cl(Z>)e @{F) the Brauer class of D.
Since [D: F] = 22, Cl(D) lies in the subgroup 2@(F) of @(F) consisting of the elements
of order at most 2.

If F is a local field, the Brauer group is

1 if F ^ C ,

Z/2 if F^U,

. Q/Z otherwise.

In these cases, Cl(Z>(α, β)) is given by the Hubert symbol (α, β)F, that is,
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1 if (xx2 + βy2 = 1 has a solution in F,

— 1 otherwise .

Note that Cl(Z>(α, β))= 1 if and only if Z>(α, β) splits.

Now let Fbt an algebraic number field, Ω{F) the set of all valuations of F. Consider

the quaternion algebra Z>(α, β) for α, /JeF*. For a valuation veΩ(F), denote by Fv the

completion of F with respect to v, and set

Then the Hubert reciprocity law says that for all most all veΩ(F), one has

Cl(D(<x,β)v)=l,and

(9.5) Π C\(D(x,β)v)=l .
υeβ(F)

Conversely, if Γ is a finite subset of Ω(F) consisting of an even number of discrete

or real valuations of F, then there exist α, βeFx such that

if VEΩ(F) — T.

(See [O'M, Theorem [71:19]].)

From this fact, one can see the following:

(9.6) PROPOSITION. For an arbitrary positive integer t and an integer t' satisfying

0<t'<t, there exist a totally real number field F of degree t and a quaternion algebra D

such that

(9.7) £ > ® Q ( R ^ H x ••• x H x Af2(R) x ••• xM 2((R).

t' t—t'

PROOF. It is well-known that there is a totally real number field F of arbitrary

degree. The existence of the quaternion algebra over F with arbitrary spliting type

follows from the converse of the Hubert reciprocity theorem.

(9.8) Examples of type (R2, ± 1). Let / be an arbitrary positive integer, t' an integer

such that 0 < / ' < / , and let F and D be as in Proposition (9.5). We denote by i0 the

standard involution of D. For positive integers n and m, set

V\ = D\ U:=Dm.

We regard V as a left Z>-module, which can also be regarded as a right 5-module via

the action

for ve V and oceD. We regard U as a right D-module.
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Taking seD* an element skew with respect to Ϊ 0 , i.e., sl0=—s, we define a
(D, 1)-Hermitian form h on V and a (D, — 1)-Hermitian form h on U by

(9.9) h(x, y)=Σ xryp , Λ'(x, y)= J *ί° ^ .

Now consider the Q-algebraic groups

(9.10) GQ = RFίQ(SU(V,h)), G'Q = RF/Q{SU{U,h')),

and denote by Gu and G'R the corresponding IR-groups, respectively. From Lemma

(5.18) and Theorem (7.2), one has the decompositions

(9.H) Gu = SUn{H)x ••• x5C/w(H)x5/7w(R)x ••• xSpJjU),

t' x compact (t -1') x (III),,

(9.12) GJ3 = St/ m (HΓ x • x SUJH)- x SO2m(U) x • - - x

/' x (Π)m (/—/') x compact

Note that Gu is non-compact if and only if t -1' > 0, while « > 1, and G'u is non-compact
if and only if ί r > 0 and m > 2 . Setting

(9.13) ^ Q = C / ® D F , β : = TrD / Q(A'®A),

one has natural representations

P l : GQ -+ Sp(WQ, Q), p2:G'Q^ Sp(WQ, Q).

One can get a complex structure / on Wu (see (R2, 1) in Theorem (7.2)), so that

(WQ,Q,PUP) become a Q-symplectic representation of GQ (with respec to some

//-element Ho) of type (R2, 1) (see §6 and (7.2)). Therefore we obtain a Z-VHS

φ: Ψ~Z-+MΓ where MΓ = Γ\@ is an arithmetic quotient of the Hermitian symmetric

space

(9.14) ^ : = G ^ ^ ( I I I ) w x •• x(III) w ,

t—t' times

and the corresponding Kuga fiber space / : A>->MΓ. Similarly, (WQ, Q, p2,1) becomes

a Q-symplectic representation of G'u of type (R2, — 1). Hence we obtain a Z-VHS

φf: #z->M' Γ where M'Γ = T' \&' is an arithmetic quotient of the Hermitian symmetric

space

(9.15) 3': = G'ulK' S (Π)mx -.-- x(Π) m ,

t' times

and the corresponding Kuga fiber space / ' : X'Γ^>M'r.

(9.16) DEFINITION-PROPOSITION. The Kuga fiber space f: XΓ-+MΓ {resp. / ' : X'Γ^>

M'Γ) as above is said to be of type (R2, 1) {resp. (R2, -1)) . The relative dimension f {resp.
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/') is 2tnm, and the fiber space has no isotrivial factors z/dimMΓ>0 (resp. dimM^>0).

Moreover, the data (WQ, Q,p^® ρ2,1) become a Q-symplectic representation of

the product group GQ x G'Q, and therefore we obtain a Z-VHS φ: # Z - > M Γ x M'Γ, and

the corresponding Kuga fiber space / : (XΓxΓ)
A-*MΓ x M'Γ.

If we take a suitable point [p] e M'Γ, the family f]o x Mr: (JΓΓ x r ) £ x M r - • [0] x M Γ is

isomorphic to the original Kuga fiber space / : XΓ-+MΓ, and the family / : (XΓxΓ)
Λ -•

M Γ x Mf> can be regarded as a deformation of the original abelian scheme / of type

(R2, 1) with the parameter space M'Γ. We can interchange the roles of MΓ and M'Γ and

regard MΓ as the parameter space for the deformation of the Kuga fiber space

/ ' : X'Γ-+M'Γ of type (R2, -1) .

From these facts, we can deduce the following:

(9.17) THEOREM. Let t, n, m be arbitrary positive integers, and t' an integer such that

0<t'<t.

(i) One has Q-algebraic groups GQ and G'Q of Hermitian type defined in (9.10) and

Q-symplectic representations (WQ, Q, pl91) for GQ of type (R2, 1) and(WQ, Q, p2,1) of

G® of type (R2, — 1) such that dimQ WQ = 4tmn.

Hence we obtain a Kuga fiber space f: XΓ-+MΓ of type (R2, 1) and a Kuga fiber

space f: X'Γ->M'Γ of type (R2, -1) , where MΓ = Γ\@ and M'Γ = Γ'\3)r are arithmetic

quotients of the Hermitian symmetric spaces 3f and®' in (9.14) and (9.15), respectively.

(ii) Moreover from the tensor product representation px ® p2 °ne obtains a Kuga

fiber space / : (XΓxΓ)
A->MΓ x M'Γ9 which Kuga fiber space / gives the deformation of

both Kuga fiber spaces f and / ' .

(iii) If d imM r >0, i.e., if t — t'>0 and n>\9 then f: XΓ-+MΓ has no isotrivial

factor, andifάimM'Γ > 0, i.e., ίft' > 0 and m >2,f is non-rigid. Conversely, ifd\mM'Γ > 0,

/ ' has no isotrivial factor, and if dimMΓ>0, then f is non-rigid.

(9.18) COROLLARY. For all even integer r > 8 , there exists a non-rigid abelian scheme

of relative dimension r of type (R2, ± 1) with no isotrivial factor.

(9.19) REMARK. In Theorem (9.17), one has dimMΓ = (t-t')xn(n+\)/2 and

dimMf/ = t' x m(m—l)/2. Following Deligne's suggestion, Faltings [F] gave an example

of non-rigid abelian schemes over a modular curve of relative dimension 8 which has

no isotrivial factor. In our notation, his example corresponds to a Kuga fiber space of

type(R2, l)withί = [F: Q] = 2,ί/=l,(i.e.,Z)®(Q!IR^IH] xM2(IR)and« = 1 andw = 2).

(9.20) Examples of type (C). In this subsection, we shall give a non-rigid abelian

scheme of type (C) in Theorem (7.2). Let / be an arbitrary positive integer, and F

a CM field of degree 2t, i.e., a purely imaginary quadratic extension of a totally real

field F+ of degree t. The complex conjugation of F will be denoted by ι0, and let

{τf: F+ c ^ R}{=1 be the set of all distinct embeddings of F+ into R.

For positive integers n and m, set
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Taking two sequences {α,}"=1 and {βk}ΐ=1 of non-zero elements in F+, we can define

((F, l)-)Hermitian forms h and h on V and U by

(9.21) Kχ,y)=t*? "j yj>

(9.22) h\x\y)=Σxΐ^βk'y
f

k.

Since one has isomorphisms

one obtains a Hermitian form h(i) on V(i) induced by A, as well as a Hermitian form

Λ'(ί) on U(i) induced by *'.

(9.23) LEMMA. Assume that for every i, \<i<t, a pair of non-negative integers (ph # f)

such that Pi + qi = n is given. Then we can choose {αj}"=1 in such a way that the cor-

responding Hermitian form Λ(x, y) in (9.21) induces a Hermitian form h(i) on V(i) with the

pre-assigned signature ( + , — ) = (Pi, qt). The same is true for A'.

PROOF. The induced Hermitian form Λ(ί) has the form

Then the assertion follows from a well-known result in number theory, that is, there

exists a non-zero element OLGF+ such that τf(α) for every i has a pre-assigned sign.

Now let us take an element θeF such that θl0= -θ. Setting

we obtain a Q-symplectic vector space (WQ, QQ) of dimension 2mm. Define Q-algebraic

groups GQ and G'Q as in (9.10), and assume that we are given an integer t\ 0<t'<t,

pairs of integers (ph qι)9Pi + qι = n for \<i<t', {p\, q'i)>Pi + q'i = m f°Γ t' +\<i<t. Then

by Lemma (9.23), we may assume that the Hermitian forms h and h! satisfy

( j ) _ f a C-Hermitian form with signature (/?ί5 qt) \<i<t' (/?,->qt>0),

1 a positive definite C-Hermitian form t'+\<i<t,

( ί ) _ f a positive definite C-Hermitian form 1 <i<tf,

\ a C-Hermitian form with signature (p'i9 q\) t' + \<i<t, {p\>q\>0).

Then the groups GR and G'u of IR-valued points of GQ and G'Q are given by
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(9.24) GR s Π SϋjPh 9t, C) x SUjjQx
' ~* 5 W (t-t')x compact

(9.25) GJ, s SUm(C)x ••• x5£/m(C) x ft SUM, gj, C ) .

/' x compact ' ~* (1)^,

As in (9.8), one can obtain representations

(9.26) P I : G Q

(9.27) p2:G'Q

so that for a suitable complex structure / on Wu, the data (PFQ, QQ, ph I) for /= 1, 2

become Q-symplectic representations of GQ and G'Q, respectively. From (9.24) and

(9.25), one can see that the corresponding Hermitian symmetric spaces are given by

(9-28) 0 = G R / ^ Π ( I ) p M i ,

(9-29) ®> = G'UIK'* Π (I)p ί Λ ί
i = ί' + l

Choosing suitable torsion-free arithmetic subgroups ΓaGQ and T'CZCQ, one obtains

Kuga fiber spaces

(9.30) / : XΓ-+MΓ

(9.31) / ' : X'Γ-->λf'r = Γ'\@'.

As in (9.8), one can also obtain a Kuga fiber space / : (XΓxΓ')
Λ->MΓ x Mf, induced by

the Q-symplectic representation (WQ, QQ, pγ ® p 2,1) of GQ, X G'Q. Therefore one has

the following:

(9.32) THEOREM. Let t, n and m be arbitrary positive integers, and t' an integer such

that 0<tr<t. Assume that the signatures (ph q^for \<i<tf and (p'i9 q'?)fort'+\<i<t

are given.

(i) There exists Kuga fiber spaces f: XΓ^MΓ and f: X'Γ-+M'Γ constructed from

Q-symplectic representations (9.26) and (9.27) of type (C), whose relative dimensions are

equal to tnm. Here MΓ (resp. M'Γ) is an arithmetic quotient of a product of Hermitian

symmetric domains of type Q)Pitq. in (9.27) (resp. (I)pί.,9ί in (9.28)).

(ii) From the tensor representation p x ® p2>
 o n e obtains a Kuga fiber space

J: (XΓ x Γ>)Λ -*MΓ x M'Γ. This gives deformations of f and / ' .

(iii) IfdimMp > 0, i.e., t' > 0, then the Kuga fiber space f: XΓ-*MΓ has no isotrivial

factor, and if dim M'Γ,>0, i.e., t — t'>0, then f is non-rigid. Conversely, if ά\mM'Γ>0,

then f has no isotrivial factor, and if d i m M Γ > 0 , then f is non-rigid.

(9.33) REMARK. In order to obtain a non-rigid Kuga fiber space of type (C) which
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has no isotrivial factor, one must have t > 2, n > 2, and m > 2. Hence the minimal relative
dimension r(f) for non-rigid Kuga fiber space is 8, when t — n = m~2. In this case, one
has Gu^SU(l, 1, C) x 577(2, C) and G'U^SU(2, C) x SU(\, 1, C).
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