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Abstract. We describe a factorization theorem for holomorphic maps from a
compact manifold M into the loop group of U(N). We prove that any such map is a
finite Blaschke product of maps into Grassmann manifolds (unitons), satisfying recursive
holomorphicity conditions; each map being attached to a point in the open unit disc.
This factorization is essentially unique. Using a theorem of Atiyah and Donaldson, we
construct a stratification of the moduli space of framed SU(2) Yang-Mills instanton over
the 4-sphere, in which the strata are iterated fibrations of spaces of polynomials, indexed
by plane partitions; and the unique open stratum of "generic" instantons of charge d,
is the configuration space of d distinct points in the disc, labelled with d biholomorphisms
of the 2-sphere.

Introduction. Let ΩU(N) = {γ: S1 -» U(N)\γ real analytic, y(l) = /} be the real an-
alytic loop group of the unitary group U(N). By using Fourier series expansions,
ΩU(N) may be given a Kahler manifold structure (cf. [A]).

In this paper we study holomorphic maps (or, more generally, rational maps (cf.
the definition in §2), from a compact complex manifold M into ΩU(N).

The motivation for this study comes from two different results, both in the realm

of gauge theory and twistor geometry.
(1) By a theorem of Atiyah and Donaldson (cf. [A]), for any classical group G,

the parameter space of based holomorphic maps S2 -> ΩG is diίfeomorphic to the space
of Yang-Mills instantons over S4, modulo based gauge transformations. The instanton

number corresponds to the degree of the map, defined via H2(ΩG, Z)^Z.
(2) Uhlenbeck [17] associated a holomorphic map F:S2-+ΩU(N) to any

harmonic map/: S2 -> U(N), using methods from the theory of completely integrable

systems. She gave a recursive procedure, similar to a Backlund transformation, to
generate new F's from given ones by the choice of appropriate holomorphic vector
bundles over S2, called unitons. Then she proved a unique factorization theorem of

any such F as a product of unitons.
Moreover, generalizing the paper of Uhlenbeck, Segal [Seg] has showed that any

holomorphic map from a compact manifold into ΩU(N) has values in the space of
rational loops. But it is relatively well known that any based rational matrix valued
function, unitary on the circle, has a finite factorization as a "Blaschke product" (cf. [G]).
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In this paper we describe the factorization of holomorphic maps F: M
M being a compact complex manifold, induced by the Blaschke product decompositions.
This includes Uhlenbeck's work as a special case.

The appropriate notion of uniton is a torsion-free coherent sheaf over M, "based"
at a point α of the open unit disc D. After giving a new proof of Segal's result, we show
that any holomorphic map M -> ΩU(N) is a Blaschke product of such unitons; moreover,
this product is essentially unique (by the constructions in [V3]).

In §1 we give the basic facts about the loop group ΩU(N); we also define Blaschke
products. In §2 we give the definition of rational maps, explaining some basic material;
and we recall the definition of the *-product (a commutative meromorphic product on

ΩU(N), generalizing the ordinary product for rational functions) from [V3]. Chapter
3 is more specific: we give the definition of uniton, and we show that "adding a uniton"
increases the degree of the map by the degree of the uniton (this generalizes the energy
formula in [VI]). In §4 we show that any holomorphic map M -> ΩU(N) is a (Blaschke)
product of unitons, if M is compact; and in §5 we give a unique factorization theorem.
Finally, in §6 we apply our results to based holomorphic maps from S2 into ΩSU(2),
thus describing a holomorphic stratification of the moduli space of SL7(2) instantons,
and computing the dimensions of the strata; we also give some open problems.

This is a revised version of a preprint of November 1990. A short version of this
paper has already appeared in an informal lecture notes (in Japanese) of Tokyo
Metropolitan University, August 1990. While finishing this paper, we learnt of the paper
of Lerner [L] about factorization of instantons. Presumably, our results are very much
related to Lerner's, via the Atiyah-Donaldson theorem quoted above (cf. also [Mu]).
Moreover, Boyer, Mann, Hurtubise, and Milgram [BHMM] have recently proved the
Atiyah-Jones conjecture, about the topology of the moduli space of framed 517(2)
instantons: in this context they defined a stratification of this moduli space which has
many striking similarities with the one we discuss in §6 of this paper. It would be
interesting to compare the two approaches.
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1. The loop group ΩU(N). The material in this section is quite standard; it may
be found in (for example) [A], [EL], [PS].

Let U(N) be the unitary group of degree N. We define the loop group by
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(1)

It has a group structure defined by pointwise multiplication. Different choices of
regularity for the loops y's are possible. For example, one can consider:

( i ) The real analytic loop group, which we simply denote ΩU(N).
(ii) The smooth loop group ΩsmU(N): it is a Frechet manifold.
(iii) The "Hubert loop group", of loops of Sobolev class L2

/2. It is a Hubert mani-
fold, and it may be seen as a Hubert space Grassmannian (cf. [PS]).

(iv) The rational loop group ΩTΛiU(N) = {γeΩU(N)\γ extends to a rational
matrix- valued function on S2}. By the result of Segal quoted in the introduction, it is
of fundamental importance.

In the following we will always consider the real analytic loop group (Case (i)),
unless we say otherwise. This choice does not seem to be particularly restrictive; in
particular, Uhlenbeck's "extended solution" of the harmonic map equation (cf. [U])
falls in this class; and also Atiyah's paper [A] actually treats this case. We have to
remark that Segal's result and proofs in [Seg], although stated for the smooth case,
hold for the Hubert case.

Let λ = elt be the complexified loop variable. The Lie algebra of ΩU(N) is

(2) Ωu(N) = {η:S1^n(N)\η(l) = Q}

with the appropriate choice of regularity. We identify Ωu(N) with the tangent space to
ΩU(N) at each point, via left translation. It is possible to define a complex structure /
on ΩU(N) using Fourier series expansion; if ηεΩu(N), then we have ty==Σα,t0(l — λα)tyα,
and we define J~ : Ωu(N) -> Ωu(N) by

(3)
α<0 α > 0

We then define J as the left translation of J".
The standard Riemannian metric on ΩU(N) is defined by the left translation of

the norm

(4) M 2 = Σ o l « I I Ή 2

This metric is Kahler with respect to the complex structure J. The real analytic
and the smooth loop groups are not complete with respect to this metric. Their
topological completion is given by the Hubert loop group mentioned above.

The associated symplectic 2-form S, normalized so as to be the positive generator
of H2(ΩU(N), Z)^Z, is given by the left translation of the alternating form

(5)
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S is a closed integral 2-form of type (1, 1): since ΩU(N) is simply connected, —2iπS is
the curvature form of a holomorphic line bundle over ΩU(N), called the determinant
line bundle (cf. [PS]).

The complex structure on ΩU(N) may also be described as follows (cf. [PS], [A]):

let D = {λ G C11 λ I < 1}. Define the two complex groups

LGL(N, C) = { y : S1 -»GL(JV, C)} and

L+GL(N, C) = {yeLGL(N9 C)|y extends continuously to a holomorphic
map D -> GL(JV, C)} .

Then ΩU(N) is a homogeneous space for LGL(N, C), with left isotropy group

L+GL(N, C); and this gives a complex structure to ΩU(N), which coincides with the
one previously defined.

Let M be a diίferentiable manifold. Let/: M -» ΩsmU(N) be a map into the smooth

loop group. Suppose that / is smooth with respect to the Frechet manifold structure
on ΩsmU(N). Then the map

/$: M x S1 -» U(N), /$(z, e'<) - f(z)(elt)

is smooth (cf. [Mi] for the general theory of manifolds of smooth maps).
Let now/: M-^ΩU(N) be any smooth map; suppose M is a compact complex

manifold of complex dimension m; and let Ω be any real closed 2-form on M. Then we

can define the degree off with respect to Ω, by

(6) degoi/)=ί
JM

If Ω is an integral form, then degβ(/) is also integral, and we have

(7) degβ(/) = </*[S] u

where [S] is the (integral) cohomology class of S, u is the cup product in cohomology,
and < , [M]> is the evaluation on the fundamental cycle of M.

Let Gk(CN) be the Grassmann manifold of complex λ -planes in CN. Let

e_i\ ΩU(N)-*U(N) be loop evaluation at λ= - 1.

LEMMA 1.1. There is a totally geodesic embedding ψ, and a family (parametrized
by D) of holomorphic embedding φΛ, such that the following diagram commutes for

any αe D:

ΩU(N)

(8) ΦΛ

ψ:Gk(CN) - > U(N).

Moreover, φΛ induces an isomorphism of 2-dimensional integral homology groups.
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PROOF. If VE Gk(CN), let p be the Hermitian projection operator p : CN -> V\ we

have p* = p, P2 = P', moreover p± = I—p is the Hermitian projection onto (T)1. We also

denote V by /?, as image space of p. The map defined by ψ(V) = p — pλ is well-known

to be a totally geodesic embedding, called "Cartan embedding".

Similarly, if FeGfe(CN), and αeD, let (/>α: V\->p + ξap
λ, where/? is the Hermitian

projection onto V, and ξΛeΩU(l) is the rational function

(9) ίβ(A) = μ-α)(ά

It is easy to prove that, for AeS 1, p + ζap^ is unitary. It is also easy to see that

φΛ is holomorphic, because, by composing it with holomorphic maps into the

Grassmannian, we get holomorphic maps into ΩU(N) (cf. §3).

The commutativity of the diagram is obvious. Π

LEMMA 1.2. Any rational loop γeΩU(N) admits a factorization

(10) γ = ξΛίξa2 . . . ̂ (P! + ξβίpϊ)(p2 + ξβj>$ ...(pκ + ξβκpk)

which is called a (finite) Blaschke product.

PROOF. Lemma 1.2 is a special case of a factorization theorem for rational

matrix-valued functions of Hardy class, and unitary on the disc, due to Potapov and

Masani (see [Ma], [Po], [G]). A simple proof is in [U]; see also [Be], and the proof

of Theorem 4. 1 in the following. The idea is first to multiply y with a scalar, so as to

obtain a function of Hardy class. Then one chooses as p's the Hermitian projections

onto the image (or kernel) spaces of y, at those points αeD, where y is singular;

proceeding by induction on the order of zero of det(y) at these points, one proves the

result. Π

Of course the orders of the α's and /?'s are quite arbitrary. To overcome this

difficulty, we present the approach in [V3]. For any finite subset αciD, we define

α* = {l/α|αeα}c:D, and a subgroup of ΩratU(N) by

Ωa = {γeΩTΛtU(N)\γ is smooth and invertible outside αuα*} .

In particular, Ω(0} is the space of algebraic loops ΩΛlκU(N) (those which admit a

finite Laurent decomposition into powers of X). For any αeD, Ω{a]^Ω(0\ by the change

of variable λ\-^ξa(λ).

The subgroups Ωa satisfy the lattice conditions

For γ e Ωa, ηeΩb with a n b = 0 we define the *-product (a sort of least common multiple)

y*ηGΩaυb as follows: there exist y'eΩa, η'eΩb, satisfying: yη' = ηy' = y*η. It is proved

in [V3] that this recipe gives a well-defined, meromorphic, associative and commutative
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product on ΩτatU(N). Lemma 1.2 may now be rephrased.

LEMMA 1.3. Let y e ΩratU(N). Then there exist oc1 ... ock e D, uniquely determined by
y, and loops yt e Ω{Λί\ algebraic in ξΛ.(λ), so that

(12) 7 = 7 α ι*...*7 α k.

Moreover, any yα. is a product of a power of ξΛ. and of factors Pi + ξ^p^.

In the following, we will apply Lemma 1.2 (and its proof) in order to decompose
holomorphic maps from compact manifolds M into ΩU(N), into the product of factors
(Pi + ζaipi)(z). This factorization will depend on the order of the α^s; but Lemma 1.3
will give, in a very precise sense, the meaning by which our factorizations are intrinsic,

and unique.

2. Holomorphic and rational maps into ΩU(N). Let M be a complex manifold

of complex dimension m. In the following we will always suppose M is connected. Let
d = d'' + d" be the decomposition of the exterior derivative into components of types

(1,0) and (0,1).
By our definitions, & holomorphic map f:M^ΩU(N) is a smooth map /:

M-> Ωsmί/(JV), with image in the real analytic loops, such that Aeit = (f~ld"f)eit
extends continuously, and holomorphically in λ, from S1 = {λ = eit} to the disc
D = {λeC\λ\<l}. We call A λ (λ e D) the holomorphic extension of Aeit. We remark that,
(cf. §1), any holomorphic map induces a smooth map/$: M x S1 -> U(N), which is real
analytic in the loop variable.

The main purpose of this paper is to give a quite explicit description of every
holomorphic map from a compact manifold M into ΩU(N), as a Blaschke product of
maps into Grassmannians. When M has complex dimension greater than 1, one has to
consider anyway a wider class of maps: rational maps. We give a definition which is
the most useful for our purposes (cf. [OV]).

Let M be a compact complex manifold. A rational map/: M -»ΩU(N) is given by
( i ) a complex analytic subset Sf of M, of complex codimension at least 2; and

a smooth holomorphic map/: M — &>-+ΩU(N);
(ii) a compact complex manifold M*, and a holomorphic map τ : M* -> M, which

is a biholomorphism outside Sf\

(iii) a holomorphic map /* : M* -> ΩU(N) such that /* = /τ outside τ~ \&).
We say that (M*, τ,/*) is a resolution o f f : M->ΩU(N). Moreover, we identify two
rational maps, if they have the same/. Of course, when M is a Riemann surface, every
rational map is holomorphic, in an obvious sense.

REMARK. It is proved in [SV] that, if M is compact, any smooth holomorphic
map/: M\£f -+ΩU(N), with if complex analytic subset of M, of complex codimen-
sion at least 2, is rational. This result will not be used in this paper, anyway.
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In the following we will always argue supposing M is a Riemann surface, and/is

a holomorphic map, unless we say otherwise. Anyway, we will say explicitly how to
modify the statements and proofs, in order to deal with the general case. For example,
a natural assumption in higher dimensions, is to require M Moishezon, i.e. birational

to a compact projective manifold. As such, M inherits a Hermitian holomorphic line
bundle, with curvature — 2iπΩ, where Ω is a closed integral semipositive 2-form of type
(1, 1), which is strictly positive outside some 0-measure subset. Conversely, this condition

characterizes Moishezon manifolds, by a well known result of Siu (cf. [Si]). This allows
one to consider degrees of maps, and the first Chern classes of sheaves, as integers.

We remark that any compact Riemann surface is obviously Moishezon; and that,

if τ : M* -* M is a resolution of M, and M is Moishezon with semipositive 2-form Ω,
then M* is also Moishezon, with 2-form τ*Ω. This is not true for the category of Kahler
manifolds. The following remark shows that this assumption is not too heavy.

PROPOSITION 2.1. Let M be a complex manifold, and suppose there exists a
nonconstant holomorphic map f: M-+ΩU(N). Then either there exists a foliation of M
into closed analytic subsets, such that f is constant along the leaves, or the differential of
f has maximal rank somewhere, and M is Moishezon.

PROOF. Suppose df has never maximal rank. Then the sets {zeM|/(z) = y} are
analytic subsets of M, for any loop yeΩU(N).

Suppose df has maximal rank somewhere. Then, by holomorphicity, the set where
df has not maximal rank has measure 0, with respect to any metric on M. Let L be the
pullback of the dual of the determinant line bundle over ΩU(N) (cf. [PS]); it has as

curvature the pullback 2/π/*5, where S is the symplectic 2-form on ΩU(N). We can
use Siu's result concluding that M is Moishezon, because it admits a semipositive
holomorphic line bundle, with strictly positive curvature outside a 0-measure subset.

We give now some applications of the definitions, which we will need in the
following. Let M be a compact complex manifold. Let/: M-+ΩU(N) be a rational map.

PROPOSITION 2.2. Let Ω be a real closed 2-form of type (1, I) form.
( i ) degβ(/) is well-defined, independently of the resolution (M*, τ,/*) off;
(ii) if Ω represents an integral cohomology class, degβ(/) is an integer;
(iii) // M is Moishezon, with semipositive 2-form Ω, and degβ(/) = 0, then f is

constant.

PROOF. Let (M*,τ,/*) be a resolution of/. We define degβ(/) = degt*β(/*). By
functoriality of pull-backs, (ii) is obvious. Moreover, using the usual notation, we have:

degτ*Ω(/*) = f (/*)*(S) Λ (τ*Ω)m-' = f (/*)*(S) Λ (τ*fl)»-1

JM* JM*-T-I(^)

f y^fl-i.
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Therefore degΩ(/) does not depend on the chosen resolution, but only off. Let ZΓ c M

be a 0-measure subset, such that Ω is positive outside y. Then we have

)=f
JM-

deg«(/)= /*(S)ΛQ"-1=0.

But/*S Λ βm~ * is a positive (m, m) form on M-(^ u F u {̂ = 0}). Therefore /must be

constant. Π

Let M be a complex manifold, and E -> M a smooth complex vector bundle. Let
V be a ^''-operator on E — > M, i.e. a first order differential operator

which has the Cauchy-Riemann-Dolbeault operator d" as principal part. In local
coordinates we have V — d^ + ̂ A^dz—d'^, where A = ^ιAi(z)dzi.

Suppose the integrability condition (V)2 = 0 is satisfied. This means d"(A) +
1/2 [A, A] = 0 in local coordinates. Then we have the following.

THEOREM 2.3 (Koszul-Malgrange). There exists a unique holomorphic structure
on E, such that a local section υ of E is holomorphic if and only

We denote M x CN, with the holomorphic structure induced by a ^''-operator V,
by (CN, V).

Let/: M-+ΩU(N) be a holomorphic map. Let Aλ, or A(λ)9 be the holomorphic
(in λ) extension of/^δ'/to the disc D. Let δ^(λ) = d" + A(λ) be the associated d"-opera-
tor on the trivial bundle M x CN. For each λεS1, we have Γ = (δ^(λ))

2 = 0. Since Γ is
holomorphic in D, by the unicity of the solution to the Dirichlet problem, it must be
0 on all the disc. Therefore Koszul-Malgrange theorem defines a vector bundle (CN, 3^(λ)),
for any λeD. This vector bundle will play a major role in the following.

In the rational case, the following holds.

LEMMA 2.4. Let M be a compact complex manifold, and let f: M-+ΩU(N) be a

rational map, singular on &*. Then, for each λeD, there exists a torsion-free coherent

sheaf ^ over M, which coincides with (CN, d'^(λ}), over M—£f, and which has the first

Chern class 0.

PROOF. The proof is as in [OV, §7]. We just remark that the sheaf !F coincides
with a topologically trivial vector bundle outside a set of complex codimension > 2.

Therefore it has the first Chern class 0.

3. Unitons. In [U] Uhlenbeck associated to any harmonic map g : S2 -> U(N) a
holomorphic map (called extended solution)/: S2 ^ΩU(N), satisfy ing /_ι=0. In our
language, extended solutions are holomorphic maps/: S2 -> ΩU(N), which have an A(λ)
of the form A(λ) = (l — λ)B, with B independent of the loop variable.
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Uhlenbeck gave a one-to-one correspondence between based extended solutions
and based harmonic maps S2 -> U(N). She proved that any such extended solution is a
Blaschke product of at most N—l factors (p + λp^~)(z\ which she called unitons, each
one satisfying holomorphicity equations; and she also gave a unique factorization
theorem. This immediately produced a unique factorization theorem for harmonic maps
S2 -> U(N).

We want to generalize this work to the case of general rational maps M -> ΩU(N),
with M a compact complex manifold. As a first step, we generalize the notion of unitons.
In §§4, 5 we will give a unique factorization theorem (Theorem 5.1). In the case M has
complex dimension greater than 1, one has to use the theory of coherent sheaves (cf.
[OV], where the work of Uhlenbeck is generalised to pluriharmonic maps M-> U(N),
with M compact, complex, simply-connected).

Let M be a complex manifold, and let αeD. Let/: M->Gk(CN) be a smooth
map; for any αeD, /defines a map g = φΛf=(p + ξΛp

L}\ M-+Gk(CN}<^ΩU(N\ with
p = Im p c= M x CN complex subbundle; p may be identified with the pullback, via / of
the tautological bundle. Moreover, / is holomorphic if and only if p is holomorphic,
since both conditions are equivalent to p±δ"p = Q. We then call g a l-uniton, based at
α. More generally, if /is rational in the standard sense, i.e. smooth and holomprhic
outside an analytic subset of complex codimension > 2, then / defines a rational map
into ΩU(N), and a coherent subsheaf p of the trivial bundle M x CN (cf., for example,
[UY], [OV]).

One way to iterate this procedure, would be to take *-products of 1 -unitons; but
this does not cover the general case (cf. Theorem 5.1 and Lemma 1.3). We therefore
study the holomorphicity properties of the Blaschke product factorization of Lemma
1.2. Since the pointwise product of ΩU(N) is not holomorphic, we are going to get
twisted Cauchy-Riemann equations. We proceed as follows.

Let/: M-*ΩU(N) be a given holomorphic map; we do not assume M is compact.
As usual, let A(X) be the holomorphic extension off~ld"fio the disc. Let p(z) be a
Hermitian projection operator of constant rank, which is a function of the point z in
M. It defines a subbundle p c M x CN. Let p1 = / — p, as in Lemma 1.1; and we fix α e D.
We want to know when the map/~ =f(p + ζolp

λ)'> M-+ΩU(N) is holomorphic.
Let A~ = ( f ~ ) ~ 1 d " f ~ . Then/" is holomorphic if and only if A~ extends holo-

morphically to the disc D. But we have

(1) A~={p + ξ-y)A(p + ξp±) + (l-ξ)pd''p + ( ξ - 1 - l ) p ± f f ' p .

A(λ) is extendable to the disc, and so is £α; therefore the unique obstruction to
extendability lies in the coefficient of (ξj"1 which is pLA(λ)p + pLd"p. We may write

pLA(λ)p + p±d"p = p^A(a)p + pLd"p + pL(A(λ) -

But we have
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where A(λ) — A(a) = B(λ)(λ — α) is extendable holomorphically to the disc. Therefore we
have that A~ is extendable holomorphically to the disc D if and only if

(2) p^"p + pLA(a)p = Q.

This is a Cauchy-Riemann equation for the subbundle p (cf. the discussion on
Koszul-Malgrange theorem in §2).

PROPOSITION 3.1. Letf: M-+ΩU(N) be a holomorphίc map. Letf~ =
with I α I < 1; and p, ξ as above. Thenf~ is holomorphic if and only if p is a holomorphic
subbundle ofM x CN, with respect to the holomorphic structure induced by the d" -operator

SAW

Slightly extending the terminology in [U], we say that/~ has been obtained by

addition of the uniton p, based at α, to the map f. We remark that the case considered
by Uhlenbeck is when α = 0. Moreover she gets an extra condition, motivated by the

requirements to obtain extended solutions /~'s, starting from extended solutions/'s.
Actually, Uhlenbeck also considers unitons based at α^O; but the requirement to

get extended solutions forces the bundles p's to be not only holomorphic, but also co-

variant constant, (with respect to an appropriate flat connection), and holomorphically
trivial: their use in [U] is to study a "dressing action" of ΩU(N) on the space of extended
solutions.

Let us consider now the case of rational maps. Let/: M-^ΩU(N) be a rational
map; we suppose M is compact. Let &*(f) be the singularity set of/: it is an analytic
subset of M of complex codimension at least 2. We want to add "rational unitons" to
/. We can use the arguments in [OV §7]. Let (M*, τ,/*) be a resolution of the map/.
By Lemma 2.4, for each αeD there exists a torsion-free coherent sheaf v = τJj£(CN, δ^*(α))
over M, which coincides with (CN, <%(α)) outside the singularity set έ?(f) of/.

We call any holomorphic vector subbundle^ of (CN|M_^(/)_^(ί7), <%(α)), (where ^(ί/)
is also an analytic subset of M of complex codimension at least 2), a rational uniton
for f , based at α. Equivalently (cf. [OV]), we can call a rational uniton for/

(1) a coherent subsheaf 3? of τ^.(CN, <%*(α)), with torsion-free quotient; or
(2) a coherent subsheaf ^* of (CN, <%*(α)), with torsion-free quotient, which

coincides with the pull-back of η, on M* — τ~l(^(f)(j^(ηj).
We remark that, if /is a rational map, and η is a uniton for/ with associated

projection operator p, then there exists a resolution M* of M, such that both / and p
are smooth, when "read" on M*.

PROPOSITION 3.2. Let M be a compact complex manifold, and let f: M

be a rational map. Let p be a rational uniton for f based at αeD. Let f~ =f(p + ξaίp
±).

Then, for any real closed 2-form Ω on M we have
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(3) degΩ/ ~ - degΩ/ - - degβ/>

where degΩfand degβ/~ #re defined as in §2, α«J degβ/j M defined by contraction of the
first Chern class of the coherent sheaf defined by p, with Ωm~ί.

PROOF. The proof generalizes the proofs in [VI] and [OV], with some minor
variations. We divide the proof into four steps.

( i ) We prove a topological lemma on the additivity of degrees, under pointwise
multiplication. It is not the most general statement; formulas are probably related to
cyclic cohomology.

(ii) We prove the formula in the case α = 0.
(iii) We use invariance of the problem under a group of biholomorphism of the

disc to prove the case of general α.
(iv) We use the technique of resolution of singularities to pass from the smooth

case to the general case.
( i ) The following is a special case of a property of 1 -dimensional cycles in gauge

groups (cf. [V2]).

LEMMA 3.3. Let M be a compact manifold, and let g, h: M ^ΩU(N) be smooth
maps. Let Ω be any real closed 2-form on M. Then we have

(4) degβ(0/ι) = degΩ# + degβ/ι .

PROOF. Let /= 0/ι. Then we have

2π2 •-L
2π2degΩ/ι=

Therefore

(5) 2π2(degΩ/-degβ0-degΩJι)

-L,
Integrating by parts on S1 and on M, we get

dhh-ίA(g-1dg)fAΩm-ί= g~l

J M x S 1 J M x S 1
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= I
J

Ύτ(g ~ldgΛ (d(h'h ~ *) + [h'h ~ 1 , dhh ~ 1])) Λ Ωm ' 1

Integrating by parts on M also the second term in (5) we easily get, by elementary

algebraic manipulations, the result:

degΩ/-degΩ0-degΩ/z = 0 .

D

(ii) We observe the following.

LEMMA 3.4. Let />c=M x CN be a vector subbundle of constant rank, and let p be

the associated projection. Then, for any real closed 2m — 2 form Ω on M, we have

(6)

PROOF. The proof is a quite simple and purely algebraic computation. We endowe

p with the connection induced by the trivial connection on M x CN, by Hermitian

projection, and we compute its curvature, as in [OV §5]. Then we use Chern-Weil

formulas for characteristic classes to evaluate the right hand side. Π

Lemmas 3.3 and 3.4 prove Proposition 3.2 in the case when /and p are smooth

on M, and the uniton is based at α = 0. We must now allow any α, and singularities in

/»,/.
(iii) We could prove the result for any α, by a direct argument, but we would get

involved in messy computations. We prefer to use another argument, using a group

action. We define the group

^ = {biholomorphisms of the disc D which extend smoothly, together with

their inverses, to orientation preserving diffeomorphisms of the circle,

sending 1 to 1}.

By a standard "reflection across the boundary" argument ^ is a subgroup of the group

of automorphisms of the Riemann sphere SL(2, C)/{ + /, — /}. More precisely, ̂  is made

precisely of all rational maps of type λ\-+ξΛ(λ) with αeD, considered in §1. The group

^ acts transitively on D, because ξα(α) = 0, for each αeD.

We remark that, by identifying the disc with the Poincare' half-plane, ^ gets

identified with the group of affinities of the real line.

The group ^ acts on ΩU(N) by change of the loop parameter. This action is

symplectic, because it preserves the 2-form 5" on the Lie algebra Ωu(N). Moreover ^

acts by holomorphic transformations on ΩU(N); therefore ^ also acts on the space of

rational maps M->ΩU(N), for any M, preserving the 2-dimensional degree.
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This proves Proposition 3.2 for any α. Indeed, acting by a change of parameter in
,̂ we can suppose the uniton p is based at α = 0; and so we are in the case previously

considered.

(iv) Suppose now/, and/? are smooth only outside analytic subsets of codimension
> 2. By the arguments of some pages ago, we may suppose there exists a resolution
(M*, τ) of both/and^. The map/~ =f(p + ζΛp

L) will also be smooth, when defined on
M*. But the degrees of/(and/~) agree when computed on M or on M*, by Proposition
2.2. Moreover the degree of p, as a vector bundle η* on M*, agrees with its degree,
when considered as a coherent sheaf η over M. Indeed, let £f be the subset of M where
p and /are not smooth. Let c^(η, V^(Λ)) be the 2-form on M — £f obtained by applying

the Chern-Weil formulas to the connection induced by A(λ) on η. Similarly, we define

Cι(η*> V4*(A)) We have

)= f
JM*

* = degβO/)

(the first equality is by definition, the second is obvious, and the third may be proved

by considering determinant line bundles, and using the fact that £f has complex
codimension >2: cf. [OV], [K]). f j

REMARKS. A different proof, in the case M Riemann surface, and α = 0, is in [V2] .
It uses Fourier series expansion.

The use of unbased maps into Grassmannians to parametrize (based, cf. §6) maps
into ΩU(N) is just a generalization of the well-known /-homomorphism in topology
(see [BM]).

4. The factorization theorem. As in the case of the extended solutions studied

by Uhlenbeck, adding unitons produces all holomorphic maps M -*ΩU(N).

THEOREM 4.1. Let M be a compact complex manifold. Let f: M-+ΩU(N) be a
rational map into the real analytic loop group. Then f is obtained from a constant loop
Q(λ)εΩU(N) by a finite number of additions of rational unitons. More precisely, f is a
Blaschke product of a constant loop Q and of a finite number of rational unitons

(1) f=Q(Pι + ξβίPΪ)(p2 + ξβj>ϋ (PK + ξβκPΪ)

Moreover, there exists a resolution M* of M such that each pt is smooth on M*; and, if
M is Moishezon, then K < deg/.

REMARK. By the Atiyah-Donaldson theorem quoted in the introduction, holo-
morphic maps S2-+ΩSU(N) correspond to Yang-Mills 5ί/(ΛΓ)-instantons; since maps
into flag manifolds (in particular, Grassmannians) correspond to monopoles, we can
heuristically rephrase Theorem 4.1 as: instantons are product of monopoles.

NOTE. In most of the following, we will assume M to be a compact Riemann
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surface. If M has greater dimension, one has to consider resolutions, as usual, in order
to prove similar statements.

Let M be a compact Riemann surface; and let/: M-+ΩU(N) be a holomorphic
map. Let A(λ), for λ in D be the holomorphic extension of/"1δ"/from S1 to D. An
expansion of/is a smooth map G: D x M -> gI(JV, C), holomorphic in the loop variable
A, such that

(i ) d"G + yl(A)G = 0 for (A, z) e D x M;
(ii) There exist o^ ... απeD so that G ) M X ( D_ { a i_ a n } ) is invertible;
(iii) G extends smoothly to the closure of the disc, and it satisfies G(l, z) = /;
(iv) G = /" lk on the circle, where k e LGL(N, C).

A unitary expansion is an expansion which is unitary for λeS1.
We may introduce a partial ordering among expansions of/as follows: G! <G2 if

G! = G2<?(A), with q: D -> gl(ΛΓ, C) holomorphic, smooth up to the boundary, (and

invertible except at a finite number of points, since Gί9 G2 are). An expansion is said
to be maximal, if it is maximal with respect to <. We remark that maximal expansions

are defined modulo right multiplication by elements q in L+GL(N, C) satisfying q(\) — L
In particular, the points α x ... αn are uniquely determined by/

The following is a key lemma. It is an analogue of Theorem 13.2 in [U].

LEMMA 4.2. Let M be a compact Riemann surface^ and let f: M-+ΩU(N) be a

holomorphic map. The there exists a unique unitary maximal expansion off.

PROOF. Uniqueness: let G1? G2 be maximal unitary expansions of/ Then Gx =
G2q, with qeΩU(N). Since both G1? G2 are maximal, q and q'1 are both holomorphic
and invertible in D. Therefore qeL+GL(N, C)nΩU(N) = (I).

Existence. Let η be the holomorphic vector bundle on D x M induced by the
ίΓ-operator

(3Ϊ + ̂ (A)) = V on DxMxCN.

We have indeed: (V)2 = 0, because A(λ) is holomorphic in λ. Therefore we may apply
the Koszul-Malgrange theorem 2.3.

The bundle η extends to a holomorphic vector bundle on Dε x M, (where Dε =
{Ae C| I A I < 1 +ε}, ε>0), because A is real analytic on the circle.

The projection π: Dε x M -> Dε is holomorphic and proper. By Grauert's direct
image theorem, v = n^η is a (torsion-free) coherent sheaf over Dε; therefore it is locally
free, because the disc has complex dimension 1. But every holomorphic vector bundle
over the disc is holomorphically trivial, i.e. it is globally free. Moreover v must have
rank TV, because it has rank AT in a neighbourhood of the circle, where a local holomorphic
extension of/gives a trivialization.

Therefore v has N spanning holomorphic sections v± ... VN; they satisfy δ'Ί^/δ'Ά = 0,
<%(λ)ϋi = 0 Let K be the matrix-valued function which has υ± ... VN as column vectors.
Of course K satisfies equation (i) above.
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Det K is a holomorphic section of Det(^), the determinant bundle of η; therefore
its zero locus T= {(λ, z)eDε x M | det(K)(/ί, z) = 0} is an analytic subset of Dε x M.

Let us fix μeD. We claim that Γn ({λ = μ}) x M is either empty or all of {μ} x M.
Indeed, the restriction of det K is either identically 0 or nowhere vanishing, because it

is a holomorphic section of the topologically trivial line bundle Det(^)1{μ}xM. Therefore,
if (μ, z) e T, then (μ, w) 6 T for any w e M. The set T is a closed analytic subset of Dε x M,
therefore its intersection with the closure of D x M is of the form {oq . . . απ} x M. On

S1 we have, by a trivial computation, d"(/X) = 0, which in turn implies (iv). If we set
λ=l, d"K(l z) = 0, therefore K(l, z) is independent of z.

Our construction does not guarantee that G is unitary on the unit circle. We have
anyway, for

d"K + Λ(λ)K = 0 o 3"(/K) - 0 o d'(fK) = Qod'K + f- ld'fK = 0

Therefore we have

d"(K*K) = 3"(JK:*)£ + K*d"K = K*A(λ)K - K*A(λ)K = 0

which implies that K*K is constant on M, for any fixed λeS1.
We fix a point peM: then K(λ,p)eLGL(N,C) has a (unique) factorization

jφ,, p) = pσ, with peΩU(N) and σeL+GL(N, C) (cf. Theorem 8.1.1 in [PS], or §2 of

this paper). Let G(λ, z) = K(λ, z)σ~1. G(λ, z) is also a maximal expansion of/, because
σeL+GL(N,C). Moreover, we have G*G = (σ"1)*Xμ, z)*7φ, z)σ~1, and G*G is a

constant function of z, for | λ \ = 1. Evaluating at z = p we get

(G*G)(1, z) = (σ

Therefore G is a maximal expansion of/, unitary for λeS1. Π

REMARKS. The map G is a sort of holomorphic "extension" of the map/"1 from
S1 to the disc D. Since the word "extension" is overused in mathematics, we prefer to
call the map G expansion. Lemma 4.2 is an analogue of similar normalization conditions
in [U] and [Seg]. The inverse of the unique maximal expansion gives a canonical choice

between all left translates of the given rational map.

PROOF OF THEOREM 4.1. The proof of Theorem 4.1 is quite similar to the proof
of the analogous factorization theorem in [U], and to the proof of Lemma 1.2. As usual,

we suppose that M is a compact Riemann surface.
Let G be a maximal unitary expansion of the holomorphic map /. Fix an order

for the α/s. We denote, for a fixed αeD, the function G(α, z) on M by G(α).

From the definition of G, we have

d"G(at.) + A^Gfa) = 0 for each i.

Therefore G(αt ) defines a (non-zero, because of maximality) holomorphic map be-
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tween holomorphic vector bundles over M

(2) G(*i):(CN

9d")^(CN

9ff^.

Outside a finite number of points in M, G(at) has constant rank r < N. Let us choose
ί= 1. Let p be the rank r subbundle of (CN, <%(αι)) obtained by taking Im G(αx) outside
this finite set of points, and "filling out zeroes".

By (2), p is a uniton for/, based at oq. Let us addp to/. We get a new holomorphic
maP/~ —f(P + ̂ αiP1) : M-*ΩU(N). Now/" has an expansion G" = (p + (ζΛl)~1p'L')G; we

will see in §5 that G" is also maximal. We have

(3) det G" =(ξJ-N+rk^ det G .

Therefore det G~ has an order of zero at a1 which is strictly less than the order
of zero of det G.

We repeat the procedure at α1? adding another uniton. By the above argument,
after a finite number of times, we finish up with a G which is invertible at α l β Moreover,
the rank of the new G has not changed, for λφuv.

Repeating the procedure at α2, then at α3, . . . then at αn, we finish up with a G
which is invertible everywhere, and unitary for | λ | = l. But ΩU(N)nL+GL(N, C) = (I)
(the constant loop). Therefore G'(λ, z) = I.

The last statement may be proved by elementary algebraic geometry: arguing as
in [OV, Lemma 6.6], we see that each image bundle of the maximal unitary expansion
has positive integral first Chern class, by using Lemma 5.2. Therefore, at each step of
the factorization above, the degree of the holomorphic map decreases by a positive
integer. Since the degree is not negative, it follows that the number of steps, i.e. of
unitons, is bounded above by the degree of the map Π

REMARK. A possible alternative proof, avoiding the use of theorem in [PS], is
the following. Suppose that M is a Moishezon manifold. We can take a maximal
expansion G of/ and factor out unitons, as above. After a finite number of steps, we
reach a holomorphic map g and an expansion G' of #, which is invertible everywhere
inside the disc; and we must prove that g is constant. For λ on the unit circle we have:
(G')~l=q(λ)g, with a based loop q in GL(7V, C). Since the inclusion U(N)^>GL(N, C)
is a deformation retract, we can compute the degrees of loops in GL(N, C) using
Maurer-Cartan forms. We get

Indeed, we have degG' = 0, because G is extendable to a map defined on the disc (cf.
the proof of Proposition 4.3 (ii)); and deg q = 0 because q is independent of the variable
in M. Therefore the map g is holomorphic of degree 0; it is therefore constant, by
Proposition 2.2 (iii).

REMARK. We can extend Theorem 4.1 to the case of holomorphic maps /into
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the smooth loop group ΩsmU(N). The key point is to take as η, in the proof of Lemma
4.2, the restriction of the bundle on S2 x M defined by /(see [PS], Theorem 8.10.2) to
a neighbourhood of D x M. We do not know if our proof can be extended to the case
of holomorphic maps into the Hubert loop group, quoted in § 1 : maybe the key point
would be a Koszul-Malgrange theorem for Sobolev connections, and the analysis of
families of ^''-operators, and of their determinants (cf. [Q], [GMS]).

We have therefore given a canonical decomposition of any given holomorphic map
/: M-+ΩU(N) as a product of unitons. The only thing that was not canonical in our
construction was the order of the points α's. A different order produces a different
factorization.

The α's are canonically and uniquely defined by/. Indeed the α's are the zeroes of
the determinant of a maximal expansion of/; moreover, it is easy to see that they do
not depend on the choice of the maximal expansion. We call the α's the poles of f.
Moreover, they have a natural notion of multiplicity, defined as follows.

PROPOSITION 4.3. Letf: M -> ΩU(N) be a holomorphic map, with M compact. Then
we have the following.

( i ) The poles off are uniquely defined by /

(ii) Let f=Qfaι ...fΛk be a factorization with QeΩU(N), /α.: M->Ω{/αί}. Then
di = dQgfai is uniquely defined by f, independently of a choice of an order of the poles a's.
When have:

(4) Σdι = deg/.
i

NOTE. We call dt the degree of fat α^. These are not topological invariants, since

they are not stable under small deformations of/.

PROOF. As usual, we suppose that M is a compact Riemann surface, for simplicity
of exposition, (i) has just been observed. We prove (ii).

The definition of degree for a map/: M -*ΩU(N) given in §2 was essentially the
following. Let θ = g~1dg be the Maurer-Cartan form on U(N). Then the 3-form φ =
Tr(0 Λ θ Λ 0) represents, properly normalized, the positive generator of H3(U(N), Z) =
Z. Let p be the normalization of φ. I f/ : MxS1-^U(N) is a smooth map, then

/*p = ω2'1+ω3'0, where the indexes refer to the cartesian product MxS 1. We have

Therefore

with the obvious notation. Integrating ω2'1 over S1, we get a closed integral 2-form on
M, which is, by definition, the degree of /(as a cohomology class: if we want a number,
we must integrate over M). Since the inclusion U(N) -> GL(ΛΓ, C) is a deformation retract,
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we could take /with values in GL(N, C), and nothing would change.
If / is smoothly extendible to a map g : M x D -> GL(N, C), then we have

g*p = ψ2 i + ψi 2 + ψ* ° on D; and dMψ2 1 + dDψ* ° = Q9 d^^ + d^'^Q. Therefore

Let/: M -» ΩU(N) be a holomorphic map. Then, using a maximal expansion G(/l, z),
we see that the degree of /is "concentrated" at the points were G is not invertible, i.e.

at the "poles" of/. More precisely, i f f = Q f Λ l •••/«,,, then we have deg/=£.deg/α..
Now we deform S1 as a sum of a finite number of loops γ^ . . . γk, each one winding

once around the respective αf; we have

deg/αι i y, x M = 0 if ί Φ j , and deg/j Vι x M = deg/αί , yi x M = deg/Λι .

If we take another maximal expansion G', we have G' = Gq(λ) with q a constant loop,
invertible on the disc. By the above discussion, this does not change the degrees. Π

The poles of a based holomorphic function /: M ^>ΩU(N) have also an
algebro-geometric interpretation in terms of generalized "jumping lines". Let peM,
and suppose /(p) = L Let G be the maximal unitary expansion of / We have

f=G(λ, p)G(λ, z)"1. Let η be the holomorphic vector bundle on D x M constructed in
the proof of Lemma 4.2. We can attach η to the trivial bundle on (S2 — D) x M, using
/as the transition function. In this way we get a CN-bundle E -> S2 x M, with a canonical

trivialization on (S2 — D)xM and S2x{p}. We call E the bundle associated to f; it
coincides with the bundle associated to / considered in [A]. A canonical set of TV
meromorphic sections of E is given by G itself (on D x M) and by the identity matrix
(on (S2 — D) x M). Generalizing the algebro-geometric notion of jumping lines, we define
a "jumping manifold" of E, to be a submanifold N c S2 x M such that E\ N is not trivial.

PROPOSITION 4.4. The poles αf of the based holomorphic map f: M ->ΩU(N) are

the "vertical" jumping manifolds {αt } x M of the bundle E associated to f.

PROOF. The only possible vertical jumping manifolds are the α^s, since we have
just remarked that E is trivialized by N meromorphic sections outside {αj x M.
Moreover, semistability is an open condition for families of holomorphic vector bundles;

therefore, by using Lemma 4.5 below, we can easily see that, if {α} x M is not a jumping
manifolds, a maximal expansion of /should be invertible on {α} x M, by construction.

D

REMARK. Our proof of Theorem 4.1 is a generalization of Uhlenbeck's proof of
the factorization theorem for extended solutions, together with the proof of the Blaschke
product factorization. This will perhaps become clearer in §5, when we will give a unicity
result for the factorization. It is possible to prove analogous statements, using Quillen's
"Grassmannian model" of ΩU(N), in the style of [Seg]. This was shown to me by F.
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Burs tall and M. Guest.

It is also possible to generalize instead the proof in [VI] of Uhlenbeck's
factorization, arguing as follows. By Proposition 2.1, it is not really a restrictive

assumption to take M a complex projective manifold. Let /: M-+ΩU(N) be a
holomorphic map. Then, for λ near S1, the holomorphic vector bundle (CN, £%(λ)) is
holomorphically trivial. Suppose that there exists Λ,0, such that the bundle (CN, <%(AO))
is not semistable, in the sense of algebraic geometry (cf. [K]). Then, using Proposition

3.2, we see that it is possible to decrease the degree of /by an integer, by adding a
uniton based at λ0. Since the degree is finite, and everything is integral, after repeating
the procedure a finite number of times, we finally get a new holomorphic map/", such

that (CN, d"A~(λQ) is semistable. We repeat the procedure at the other points of the disc.
Moreover, we do not pass back through the previous λ's, because adding a uniton at
λ0 acts by a gauge transformation on 3^(A), for λ^λ0, hence preserving semistability
and triviality.

We finally get be a holomorphic family {Eλ} of semistable holomorphic vector
bundles over M, parametrized by the disc. Moreover, {Eλ} is a holomorphically trivial
family of holomorphically trivial vector bundles in a neighbourhood of S1. Then, if we
know that this implies that {Eλ} is a trivial family of trivial vector bundles, we have
finished, since this would imply the existence of an invertible expansion of/ But this
is a consequence of the following lemma, which was showed to us by Professor Masaki

Maruyama.

LEMMA 4.5. Let E-+M be a holomorphic vector bundle of rank N and the first
Chern class 0 over a compact projective manifold M. Suppose E is semistable, and
dimH°(E)>N. Then E is trivial.

PROOF. Let 0 be the sheaf of holomorphic functions on M. Let us consider the
natural map, given by multiplication, g: H°(E)®Θ-*E\ and the quotient map

π: E-+E/Im(g). Let T<^E/Im(g) be the torsion part; and let π-1(T) = F. The map g
induces a (generically surjective) map

α: ((9)S-+F s = rank(F).

If the complex codimension of the supporting set Supp(F/Im(α)) is 1, then cί(F)>0;
but this is not possible, because E is semistable. Therefore we have: codimSupp(F/

Im(α))>2. The quotient sheaf E/F is torsion-free, and therefore F is reflexive. There
is an injective map (0)S-»F, and F is locally free on an open set C/c=M, with
codim(M-l/)>2. Let;: t/-»M. We have (β)s^F}u; but Fis reflexive, and therefore
normal. Therefore

The map g factors through F: g:H°(E)® (9 -»F = (&)*-+ E. At the level of zeroth
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cohomology, we have

H°(H°(E) ®Θ)^ H°(E) -U fl°(£) ̂  CN .

Therefore s = N, since i is an isomorphism; and F = E, since they are free sheaves of the
same rank.

REMARK. In the case M = S2, the proof is much simpler, because the unique
semistable vector bundle with zero first Chern class over the Riemann sphere is trivial.

COROLLARY 4.7. Let M be a compact complex manifold, and let f : M-*ΩU(N)
be a rational map, smooth and holomorphic on M — £f . Then f is real analytic on M—£f.
Moreover, let xeM, and suppose f(x) = 1. Then f is rational in the loop variable λ, for
each z G M.

PROOF OF 4.7. We decompose /as a product of unitons /^'s. Let (M*, τ) be a
resolution of M such that each uniton/^ is smooth on M*. Using induction, we easily
see that each pi is real analytic, because it is the solution of an elliptic equation with
real analytic coefficients. The second statement is a direct consequence of Theorem 4.1.
Its first proof appeared in [Seg]. Π

REMARK. It is proved in [V3] that if / is holomorphic, and M is a compact
projective manifold, then /is real algebraic.

5. Uniqueness theorems for the factorization. Theorem 4.1 gives a canonical
decomposition of any rational map /from a compact manifold M into the loop group
ΩU(N). The main idea of the proof, in its different versions, was, starting from/ to
"factor out" canonically chosen unitons, so as to decrease the "complexity" of/

Of course the factorization one finds in this way depends on the order of the
"poles" a,-; moreover it is not unique, since no recipe for constructing uniquely maps
from simpler ones was given. The first problem may be overtaken by the use of the *
product of [V3], briefly described in §2; while the second problem leads us to a
generalization of Uhlenbeck's proof of the unique factorization theorem for extended
solutions in [U]. We shall arrive at a unique factorization theorem (Theorem 5.1).

REMARKS. Let M be a compact connected complex manifold, and let p e M. By
the arguments in §4, the space of based (i.e. f(p) = I) rational maps/: M^>ΩSU(N) is
in natural one-to-one correspondence with the space of corresponding maximal unitary
expansions; or, equivalently, with the space of unbased rational maps M -> ΩU(N),
modulo left multiplication by constant loops. This is because any rational map
M ->ΩU(N) must have constant determinant, because any rational map M -+ΩU(l) is
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constant. This will be implicitly used in the following, when we will switch to the
definition occasionally more convenient (see also §6, with the description of the moduli
space of ίS'ί7(2)-instantons).

In the rest of this section, we will suppose M to be a compact Riemann surface.
In the general case one would have to consider resolutions of M and/, but the statements
and the proofs would be essentially unchanged.

Let/: M-+ΩU(N) be a holomorphic map; and let G be a maximal expansion of
/. Let <*! ... aneD be the poles of/. We define the unίton number kt off at αt as the

order of the pole of G, at l/α, . (By order of the pole at one point, of a meromorphic
matrix-valued function, we mean the maximum pole order of its entries, at the point).

In other words, kt is the smallest positive integer such that (ξa)~kiG is holomorphic at
1/α. This notion generalizes Uhlenbeck's notion of uniton number; but Uhlenbeck's
extended solutions have non-zero uniton number only at α = 0.

We call the total uniton number K of/the sum of the uniton numbers kί of/at its
poles. We also define the McMillan degree rt of fat αf (cf. [G], [MH]) as the order of
zero of the determinant of G at α f; and the total McMillan degree R of/as the sum
of the McMillan degrees rt of/at its poles. We will see that, if N = 2, we have rί = feί.

The following is the main result of this section; an equivalent version is Theorem 5.6.

THEOREM 5.1. Let f: M -+ΩU(N) be a holomorphic map, with M compact. Then
there exists a unique Q eΩU(N)9 unique points o^ ... απ G D, and unique holomorphic maps

f i : M -> £2{α'}, satisfying the following.

a) ( ί ) /=β(/ι* ••*/„).
(ii) The maps f i are products of kt unίtons based at α f:

(2) fι = (Pι.t + ξ.ipi,i)(p2.t + ξ*tp2.ύ - - - (Pκitt + ξΛiPκitύ
(iii) Ph+\.(Ph,ϊ)=Ph + ι,i as holomorphic vector bundles, for any h, ί.
(iv) The holomorphic subbundle K e r ( / ? £ # £ _ I t i . . . p 2 , i P i , i ) < ^ M x C N has no

holomorphic sections, for any h, ί.

Moreover we have:
1) the above factorization coincides with the one produced in the proof of Theorem

4.1; and ki coincides with the uniton number of f at α, ;

2) rk(/>Λ>;)<rk(ph + M) for any h, i.

3) degOΛ> i) < 0 for any h, i. D

REMARK. Arguing by induction on ft, it is easy to show that (iii) is equivalent to:

(iiiy The image bundle lm(p^ίph-ίii... P2,iPι,i) coincides with />£,., for any Λ, i.

The idea of the proof of Theorem 5.1 is simple; given a factorization of a maximal

expansion of/into unitons, we look for conditions on the unitons to ensure that the
factorization coincides with the one constructed in the proof of Theorem 4.1.

As the first step, we need to study a bit more the notion of "maximal expansion"
of a given holomorphic map/ Remember that G was essentially a holomorphic extension
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of/~ * from S1 to the disc. The following lemma relates our notion of maximal expansion
with Uhlenbeck's normalization condition for extended solutions.

LEMMA 5.2. Let f: M -^ΩU(N) be a holomorphίc map. Let H be an expansion of
f. Then H is a maximal expansion if and only if for any vector subspace Va CN, and for
any λ0 eD, H(λ0, z)V is not identically 0.

PROOF. Suppose there exists a V and a λ0 satisfying H(λ0, z)V=Q for each z. Let

p be the Hermitian projection onto V, and p^ = I—p. Then K(λ, z) = H(λ, z)(p + (ξλo)~1p1-)
has no pole at λ = λ0, and we have K>H. Therefore H is not maximal.

Conversely, suppose H is not maximal; let G be a maximal expansion of/ Then
there exists a loop q(λ), holomorphic in λ, matrix-valued, satisfying

(3) Gq(λ) = H.

If q is everywhere invertible, the //is maximal; otherwise there exists λ0eD so that
det(g(A0)) = 0. Then q'1 is a meromorphic matrix- valued function on D, with poles of

finite order, less than or equal to the order of zero of det q at the same points. Around
A = λ we have

λ,z)} j >0

G(λ, z) = (λ- λ0)
k(G0 + (λ - λ0)Gι(λ, z))

) = (λ- λ0)
h(H0 + (λ- λQ)H,(λ, z))

with g0(z), G0(z), H0(z) not identically 0.
If h>Q the thesis is obvious. Suppose then h = Q. We must also have fc = 0, for

otherwise G is not maximal. Therefore we get from (3):

Let V be the image bundle of q0. Then H(λ0, z)V is identically 0. Π

The condition of Lemma 5.2 may be rephrased as follows. Remember that by (4.2),
for any λ0 e D, Ker G(/10, z) c M x CN is a holomorphic subbundle, with respect to the
standard complex structure.

LEMMA 5.3. Letf: M2 -> ΩU(N) be a holomorphίc map. Let H be an expansion of
f. Then H is a maximal expansion if and only if, for any λ0 e D, the holomorphίc subbundle
Kerfί(A0, z)c:M x CN does not have holomorphic sections.

IfN= 2 this is equivalent to Ker H(λ0, z) not being a holomorphίcally trivial subbundle
ofMxC2.

PROOF. The holomorphic vector bundle MxCN does not have non-constant
holomorphic sections. Q

Let/: M -+ΩU(N) be a rational map, and let G be its maximal unitary expansion.
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Then G"1 has poles for λ = ai9 ί=l ... n (where αf are the poles of/). The order of
these poles is equal to the uniton number of/ at the respective αί5 because G is unitary

on S1. Therefore the function Y\(ξΛi)
kiG~ί=H is defined and holomorphic inside the

disc; the fc/s are the uniton numbers of /at α/s. Then, for each fixed α in the disc,
, z) defines a holomorphic map of holomorphic vector bundles over M

(4) H:(CN,d'^^(CN,d").

In particular, the kernel bundle of H is a uniton for / based at α. It is easy to prove
that we have: Im G(α, z)c=Ker ίf(α, z). (We could have used Ker #(α, z) all along in our
proofs; this would have been more similar to the approach in [U], but the factorization

would have been different). By a slight abuse of language, by KerG-1(α) we denote
Ker fί(α, z); and let G(α) be the function G(α, z) on M.

LEMMA 5.4. Let f be a holomorphic map M ->ΩU(N)9 with M compact. Suppose f
has the uniton number n at a point α e D. Let G be the maximal unitary expansion off.

Let p be a uniton for f , based at α. Let f~ =f(p + ξΛp
L) be the rational map obtained by

addition of the uniton p to f. Let G~ be the maximal unitary expansion off~. Then we
have the following.

( i ) ImG(α)c=p if and only ifG~(λ) = (ξ^1p± + p)G(λ).

(ii) /~ has uniton number n—\ at α, and G~(λ) = (ξ~1p± + p)G(λ) if and only if

(iii) /~ has uniton number n-f-1 at α, and G~ =(p1' + ξ(Xp)G if and only if the
following (A) and (B) are satisfied:

(A) For each constant vector υeCN, p1G(α)t;^0.

(B) ImGίoOΦ/FφKerG-Hα).
(iv) Suppose p satisfies:

(A) /(ImG(α))=/Λ
(B) For each v e CN, p^G(φ φ 0.

Then G" =(p1-hξαp)G, and f is obtained from f~ by addition of the uniton
/ι-L = ImG~(α); in particular, f~ has uniton number n+ 1 at α.

PROOF. The proof of this lemma is tedious. The first computations of this type
appeared in [U], but we cannot rely on them, since our construction is dual to

Uhlenbeck's. We have

(5) G~q(A)=^ + ̂ p)G.

The loop q exists because G~ is a maximal expansion. Moreover, q is invertible at
every point in the disc λ φ α; otherwise, evaluating (5) at λ = α would show G(α) has
some constant kernel, and this is against the maximality of G.

(i) and (ii) are more or less obvious. One has to expand G~ (or (G~)-1) in power
series of ξa, and check directly the uniton number. Similar computations are also in [U] .

(iii) We first remark that the condition (iii) (A) is precisely the condition of
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maximality for (p1 + ξαp)G, according to Lemma 5.1.
To prove the sufficiency, we write

(6) (W"(G~)~1 = (iJ"1((i«)"G

If the left hand side is holomorphic inside the disc, so that the uniton number of f~

at α is <n, we must have: ((^α)"G~1)p = 0, i.e. /jcKerG"1^). Therefore the uniton

number of/~ at α is >n. It is easy to prove that it must be <n+1.
The converse is also easy to prove, examining (6).

In order to prove (iv) observe that condition (iv) (B) implies that (pL + ξap)G is a
maximal expansion. Moreover, we have G~(α) = /?1G(α), therefore (iv) (A) implies that
/ι-L = ImG~(α). Applying (ii), one gets the equality for the uniton numbers. Π

The following lemma reduces the study of maximal expansions to the study of

maximal expansions with only one pole; or, equivalently, to the study of holomorphic
maps into the space of algebraic loops.

LEMMA 5.5. Let f: M^ΩU(N) be a holomorphic map; let ai ... αn be its poles;

and let G be its maximal unitary expansion. Let G~1=(G1)~1* ^(GJ"1, with
Gf 1 : M->£2{αί} holomorphic, be the decomposition given by Lemma 1.3. Then we have
the following.

(i) G is maximal if and only if each Gt is maximal.
(ii) The uniton number and the McMillan degree off at each αf are equal to the

uniton number of Gt at at.

PROOF. (i) Let G~ 1 = H^ ... Hn, with Ht:M-+ Ω{*i}; and Hl = GΪ 1.
Then, G = H~1 ... H^ 1G1; by using Lemma 5.2, we see that G is a maximal expansion
around α t if and only if G1 is, because the other factors are all invertible around α x.
By permuting the poles α/s, and repeating this argument, we get the conclusion.

(ii) This is a pointwise statement on the matrix-valued rational functions Gf's,
and it may be easily deduced from the alternative definition of the * product presented
in [V3], in terms of union of "zero pairs" (generalized divisors) of Gohberg's theory

(cf. [G]). D

PROOF OF THEOREM 5.1. The statements are a direct consequence of Lemmas 1.2,
5.5, and 5.4 (iv). Conditions (iii) and (iv) come from 5.4 (iv), (A), (B), by induction.
Part (1) is by definition, while part (2) is a trivial consequence of (iii). Π

The following is a version of Theorem 5.1, if one does not want to use the *
product. The proof is analogous, but we do not use Lemma 5.5.

THEOREM 5.6. Letf: M -» ΩU(N) be a holomorphic map, with M compact. Suppose
we choose an order for the poles αx ... απ off. Let kh i=l ...n be the uniton numbers of
f at the poles oct. Let K = ̂ jl<ί<nki be the total uniton number. Then there exists a unique
factorization off into unίtons
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(7) f=Q(pί + ξ

such that:

( i ) the first k^β's are equal to α l 5 the second k2's are equal to α2, and so on.

(ii) For each h with \<h<K—\, if βh = βh+ι? we have

(8) Pπ + ι(pi)=Ph+^

(iii) For each constant vector veCN, and for each h with \<h<K,

Phtfβn-iPh-l+Ph-l) - - (ξβ2P2+P2)(ξβJ>l+Pi)(βh)V

is not identically 0.

In the case N = 2 the statements are simpler.

THEOREM 5.1. Letf: M^>ΩU(2) be a rational map, with M compact. Then there

exists a unique QeΩU(2\ unique points aί...oιneD, and unique holomorphic maps

fi'. M ->• Ω^ satisfying the following.

( i ) >=S(/ι* ••*/„)•
( ii ) The maps fί are products of kt unitons based at αt

fi = (Pi, i + ZnPi, ί)(P2, i + ξΛiP2, i) (Pκit i + ̂ Piif i)

(9) (iii) Ph,i^Ph + i,i as holomorphic line bundles.
(iv) pί i is not trivial for any i.

Moreover we have

(10) deg(/>ft + M)<degOM)<0 for any i.

PROOF. Because every uniton is a holomorphic line bundle, (9) is equivalent to

(11) Ph,iftPh+ι,i = Q almost everywhere .

This is in turn equivalent to the condition (iii) in Theorem 5.1. The existence of a

factorization satisfying the condition (iii) comes from Theorem 5.1. We remark that,

for each i, h9p^ti a.nάph + ίίi are holomorphic with respect to the same complex structure

on M x CN. '
Condition (iv) implies that the holomorphic line bundle Ker(/?^Λ/?£ή_ 1 . . . p^) =PU

is not trivial. Therefore 5.7 (iv) is equivalent to 5.1 (iv), by Lemma 5.3.

It is quite straightforward to check that the Hermitian projection onto/?^+ M defines

a holomorphic map between holomorphic line bundles Ph,i^Ph+i,i- This implies (10).

((10) is also a consequence of (11)).

6. Holomorphic maps from S2 into ΩSU(2). We want to examine in more detail

the case of holomorphic maps from the Riemann sphere into the loop group of SU(2).

By the theorem of Atiyah and Donaldson quoted in the introduction (cf . [A]) the space

Hol(d) of based holomorphic maps from S2 into ΩSU(2) of topological degree d, is
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naturally diffeomorphic to the space Md of Yang-Mills 5Ί/(2)-instantons over the
4-sphere, with instanton number d, modulo framed gauge equivalence. A similar
statement holds for any classical group G. For G = SU(2) this moduli space Md is an
hyper-Kahler manifold with components of real dimension 8d (cf. [Sal]). From the
point of view of complex structures the two spaces are different; the space Hol(d) has
a complex structure coming from the complex structure on the space of associated

holomorphic vector bundles (cf. [A] and §4); and the argument in [A] identifies Hol(d),

with an open subset of Md (with one of the complex structures).
We quote some well-known results, which we will need in the following.
(1) Because M = S2 has complex dimension 1, it is sufficient to treat the case of

holomorphic maps, and vector bundles. Moreover the first Chern class of a holomorphic
vector bundle may be identified with a number, the degree, by integration on M.

(3) For any integer h, there exists a unique isomorphism class of holomorphic
line bundles of degree h on S2, which we denote by (9(h).

(4) By a theorem of Birkhoff and Grothendieck, every holomorphic vector bundle
E over S2 decomposes as direct sum of holomorphic subbundles of rank one. The

degrees of these line subbundles are uniquely determined by E.
(5) In particular, if E is a topologically trivial holomorphic vector bundle over

S2, of rank 2, then E^Θ(h)®Θ(-h\ where /z>0 (with the subbundle Θ(h) uniquely
determined). We denote such a bundle by Eh.

(6) Let Eh-+S2 be the holomorphic vector bundle in (5). Then we have the
following:
(A) There exists a unique holomorphic line subbundle of Eh of degree h.
(B) Let LaEh be a holomorphic line subbundle of degree fc. Then either k = h, and
L is the (9(h) factor in Eh; or k< -h.

We want now to discuss the moduli space Fhtk for the space of holomorphic line
subbundles of Eh9 of degree —k<—h. We have to study holomorphic inclusions
Θ( — k)-*Θ(ti)®(9( — h), modulo the action of C*. This is equivalent to studying holo-

morphic inclusions Θ(G)-^Φ(k \-h)®&(k-h), modulo the action of C*. But holo-
morphic sections of Θ(r\ for r>0 are in natural one-to-one correspondence with
complex polynomials of degree < r (where, if the degree is less than r, the polynomial
is considered to have roots at infinity).

Therefore Fh>k is biholomorphic to the space of pairs of polynomials of degree
<h + k, <—h + k, with no roots in common (including those at infinity), modulo the
action of C*. In particular, Fhtk is a smooth manifold of complex dimension 2fc+l.
(This type of results have a very old history; see, for example, [GO]). As a special case,
we observe that Fh^h is a contractible space. Some computations in [V3] identify Fh^h

with a fibre of the tangent space to the space of unbased rational maps S2 ->> S2 of degree h.
Finally, we can now construct a parametrization of the space of holomorphic maps

from S2 into ΩSU(2).
For d positive integer, we define a plane partition of d, of size n < d, to be an n x d
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matrix c = (cίι7 ) of non-negative integers, satisfying cij<cij+1, and ΣijCij = d:> modulo
permutation of the rows. To any plane partition, we may associate the numbers kt of

non-zero elements on the z-th row; ̂ =Σ1<l <ίί^i total uniton number; and

, We have n<K<d.

PROPOSITION 6. 1 . Any based holomorphic map S2 -> ΩSU(2) of degree d is obtained
by the following data.

(1) a plane partition c = (cij) of size n.
(2) a choice ofn points ocj . . . αn eD;

(3) a choice of holomorphic line subbundles pίtj+1 0/£^0(cy)®0( — cί7 ) of degree
— cij+ί,for each ίj such that cij+ί>0.

Then by the above procedures we obtain a holomorphic map with poles α x . . . αweD;

with degree Σι<j<dcίj = di ana w^m uniton number kt at α f.

Denote the space of maps/eHol(d), with a given plane partition c, by X(c). The
spaces X(c) define a stratification of Hol(d) by complex manifolds. We remark that the
complex submanifold structure on each X(c\ is different from the complex structure
coming from the Blaschke product factorization. This is a consequence of the fact that
the complex structures on the space of based holomorphic maps, is different from the
complex structure on the space of maximal expansions.

COROLLARY 6.2. For any plane partition c ofd, of size n, the space X(c) is a complex
manifold of complex dimension 2d + n + K (where K is the total uniton number). X(c) has
maximal complex dimension 4d if and only if d = n = K, and X(c) is made up of those
maps which are products of d unitons of degree— 1, based at d different oc's.

PROOFS. The proof of 6.1 is almost finished. One has only to observe that, if/~
is obtained from /by addition of the uniton p, of degree — h, /z>0, based at α, then, if

we want to add other unitons, also based at α, we have to find a line subbundle of

E = &(h)®(9( — h). This is because/?1 may be added to/~, giving back/. Therefore, by
Remark (6) above, we get that/?1 must be the factor Φ(h). The other parts are corollaries
of our previous results. Conversely, given the above data, one can construct a holo-

morphic map, by repeated addition of the unitons py.
Concerning 6.2, the fact that X(c) is smooth follows from 6.1, since it is a

"configuration space" of points α's in the disc, each one "labelled" by iterated fibrations

of spaces of polynomials F i t f s . The total number of complex parameters is, by the
discussion above:

Σ (2Cy+l) = 2 Σ 'y+ Σ

l < ί < « l < j < f e t l < i < n l < j < f c i l < ΐ

= 2 Σ di+ Σ k, =
ί<i<n l<i<n

for the choice of the unitons. This must be added to n, for the choice of the poles α/s.
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Therefore we get 2d + K + n. This number is equal to 4d if and only if d = n = K. Π

For any space 7, and positive integer d, we denote by Cd(D, Y) the "configuration
space" of d ordered points in the disc Z>, each one associated ("labelled") with a point
in Γ, modulo the permutation group in d letters. This is a well-known notion in algebraic

topology.
The following is a rephrasing of part of Proposition 6.1 and Corollary 6.2, because

the space of holomorphic subbundles of S2 x C2 of degree — 1 is isomorphic to the

Mόbius group PSL(2, C).

COROLLARY 6.3. In the stratification of Hol(d) by the X(c)'s, there is a unique

open stratum', it is dίffeomorphic to Cd(D, PSL(2, C)).

EXAMPLE. We describe the lower-dimension moduli space (d= 1, 2).

A holomorphic map S2 -+ΩSU(2) of degree 1 is of the form

where QGΩU(2), and p is associated to a holomorphic map S2-+S2 of degree 1. The
moduli space is diίfeomorphic to D x PSL(2, C).

A holomorphic map S2 -*ΩSU(2) of degree 2 is one of the following:

(A) f=Q(p + ξ«PA-)
where QeΩSU(2), and/? is associated to a holomorphic map S2^>S2 of degree 2. The
number of complex parameters is 1+5 = 6.

(B) /is a product of two unitons, based at the same α. The number of complex
parameters is 1+3 + 3 = 7.

(C) /is a product of two unitons based at different α's. The number of complex
parameters is 1 + 1+3 + 3 = 8.

REMARK. Let ΩalgU(N) be the space of algebraic loops. As a special case of the argu-
ments above, we see that the space of holomorphic maps S2 -+ΩalgSU(2), of uniton
number K and degree d, is described by 2d + K complex parameters (this agrees with
previous results in [GP]). Therefore the generic holomorphic map S2 -> ΩalgSU(2) of
degree d is a product of d unitons p's of degree — 1, based at /ί = 0; and the moduli
space of these generic maps is a complex vector bundle over PSL(2, C).

We finish up with some questions.
( i ) Is it possible to use the stratification above in order to give a proof of the

Atiyah- Jones conjecture (about the topology of the moduli space of instantons)? The
stratification used in [BHMM] for this purpose, is very similar to ours; and it has the
natural complex structure.

(ii) Which is the analogue of our stratification, for the moduli space of
S(7(ΛΓ)-instantons? The combinatorics looks more complicated.

(iii) Is it possible to construct a similar stratification for the moduli space of based
harmonic maps from a compact Riemann surface M into ΩU(2)Ί This is likely to
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produce a proof of the Atiyah-Jones conjecture for certain moduli spaces of framed

instantons over M x S2.

(iv) A conjecture by Atiyah states that any harmonic map S2 -* ΩSU(2) is either

holomorphic or anti-holomorphic. We wonder if it is possible to construct a

counterexample to Atiyah's conjecture by adding a uniton and an antiuniton (in some

possible sense: a map into S2 which is antiholomorphic with respect to a certain

connection). Preliminary computations seem to deny this possibility.

(v) Is there an analogue of Theorem 4.1 for non-compact M's?
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