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Abstract. The purpose of this note is to give an analytic (and direct) proof of an
index formula for the relative de Rham cohomology groups, which may be considered
as a generalization of the celebrated Atiyah-Singer index theorem for the absolute de
Rham cohomology groups. The crucial point is how to find an operator D for which an
index formula holds. In deriving our index formula, the theory of harmonic forms
satisfying an interior boundary condition plays a fundamental role. We remark that the
operator D is no longer a local (differential) operator.

Introduction and results. Let X be an n-dimensional smooth manifold, and let

Ω(X) be the space of smooth differential forms on X:

Ω{X)= ® Ωk(X),
k = 0

where Ω\X) is the space of smooth fc-forms.

Let d: Ω(X) -> Ω(X) be the exterior derivative on X. A smooth λ>form α on X is

said to be closed if doc = O. It is said to be exact if ot = dβ for some smooth (fe — l)-form

β o n X .

We let

Zfcpf) = the space of closed fc-forms on X ,

Bk(X) = thG space of exact A -forms on X ,

and

Hk(X) = Zk(X)/Bk(X).

The quotient space H\X) is called the k-th de Rham cohomology group of X. These

groups come from a sequence of maps (the de Rham complex)

and
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The celebrated de Rham theorem states that the de Rham cohomology groups H\X)
are isomorphic to the simplicial cohomology groups Hk(X, R) defined in algebraic
topology:

We recall that the Euler-Poincarέ characteristic χ(X) is defined by the formula:

Now let AT be a compact, oriented smooth Riemannian manifold without boundary.
The Riemannian structure on X gives rise to a strictly positive smooth measure on X,
and to an inner product ( , ) on each Ω\X).

Let δ be the adjoint operator of the exterior derivative d with respect to the inner
product ( , ):

(δa9β) = (0L9dβ)9 oceΩk + 1(X), βeΩ\X).

We "roll up" the de Rham complex, and define an operator

(d + δ)e:Ω
e(X)^Ω°(X)

where:

Ωe{X)= θ[πj2

0

]Ω2ίPO, the space of differential forms of even degree ,

Ω°(X) = 0 [f0

] Ω2i+\X), the space of differential forms of odd degree .

We recall that the analytical index ind(d + δ)e of the operator {d + δ)e is defined by the
formula:

ind{d + δ)e = dim Ker(d + δ)e - dim Ker(d + δ)* ,

where (d + δ)* is the adjoint operator of (d + δ)e.
Then we obtain the following index formula which is a special case of the

Atiyah-Singer index theorem (cf. [CP], [G], [P]):

THEOREM 1. ind(d + δ)e = χ(X).

The purpose of this note is to prove an index formula for the cohomology groups
H'(X, Y) of X relative to an (n— l)-dimensional, compact oriented submanifold Y of
X. The crucial point is how to find an operator D, a generalization of (d + δ)e, for which
such an index formula as in Theorem 1 holds.

We let
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ΩP(X) = the space of smooth p-forms on X ,

Ωp(Y) = the space of smooth p-forms on F,

and

Ωp(X,Y)={θeΩp(X);ι*(θ) = O},

where i: Y-> X is the natural inclusion map. Then the exterior derivative rfmaps ΩP(X, Y)
into Ωp + X(X, Y). Indeed, it suffices to note that ι*d = d'ι* where d' is the exterior derivative
on Y. Thus we have the following sequence of maps

Ωp-\X, Y) ̂ —> ΩP(X9 Y) - ^ > Ωp+ \X, Y).

We let

HP(X9 Y) = Kerdp/Imdp-1 .

The quotient space HP(X, Y) is called the p-th de Rham cohomology group ofX relative
to Y. In other words, the relative cohomology group H'(X, Y) is the cohomology group
of the complex Ω'(X, Y) defined by the exact sequence of complexes

0 > Ω\X, Y) • Ω\X) - ^ Ω\Y) > 0 .

The de Rham theorem extends to this case, that is, the cohomology groups HP(X, Y)
are isomorphic to the relative cohomology groups HP(X, Y, R) defined in algebraic
topology:

HP(X, Y)^Hp(X,Y,R).

We define the Euler-Poincare characteristic χ(X9 Y) by the following formula:

We let

Ωp(X\Y) = the space of/?-currents on X which are smooth in X\Yand may
have jump discontinuities at Y,

and

Ωe(X\Y) = 0 Ω2i(X\Y), Ω°(X\7)=©Ω2i+ \X\Y)
ί 1

Ωe(Y)=φΩ2i(Y), Ω°(Y)=®Ω2i + ί(Y).
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If T is a /7-current on Y, we define a /7-current Γ® δγ on X by the formula:

ocΛ*(T®δγ)=\

)x
Here * and *' are the Hodge star operators on X and on Y, respectively.

We introduce a linear operator

DJ{d+δ) -( ®δγ)\ © _ _ ©

^ l* °
as follows:

(1) The domain Q}{ΰ) of Z) is the space

), S e Ω°( Y), doL e Ω°{X\ Y),δx-(S®δr)e Ω°{X\ Y)} .
IΛ Λ/

/nΛ /
(2)

\ 1 (X

Here da and <5α are taken in the sense of currents. Now we can state our index formula:

THEOREM 2. ind D = χ(X, Y) = χ(X) - χ( Y).

The rest of this note is organized as follows: In Sections 1 and 2, we present a
brief description of the basic definitions and results about differential operators and
function spaces in differential geometry and partial differential equations. In Section 3,
we consider the exterior derivative d restricted to the space ΩP(X, Y) in the space Wg(X)
of square integrable /^-currents on X, and then characterize its minimal closed extension
Jand the adjoint operator J*. In Section 4, via the Hilbert-Schmidt theory, we formulate
the celebrated Hodge-Kodaira decomposition theorem for the Laplacian Δ = dδ + δd
in the framework of the Hubert spaces Wξ(X). In particular, we have the following:

KerpΔ = Kerp(d + δ)^HP(X)^HP(X, R).

In Section 5, we study the operator D and its adjoint D*, and characterize the kernels
KerD and KerD* componentwise. The characterizations of the operators Jand 3* in
Section 3 play an important role in the proof. Sections 6 and 7 are devoted to the proof
of Theorem 2. First we consider an elliptic pseudo-differential operator P of order — 1
on Y which is associated with the interior boundary value problem for the Laplacian
A = dδ + δd:

AT=0 in X\Y,

^T\γ = φ on Y.

Next, by using the operator P, we introduce a generalized Laplacian L on Y by the
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formula:

L = d'δ\+δ\d\

where δ\=Pδ'P~1. It is easy to see that the Hodge-Kodaira theory extends to the
operators d\ δ\ and L\

Ker" L = Kerp(d' + δ\)^Hp(Y) ^ Hp(Y, R).

Finally we construct explicitly six mappings pe, p'e, p"e, ρo, p'o and p'ό so that the following
sequence of homomorphisms forms a complex, and is exact.

-f-L Ker2iD -A* Ker2ί(d + δ) -^U Ker2ί(d'+ δ\)

-^L Ker 2 i + 1D* -A> Ker2i+1(d + δ) - ^ Ker2 ί + 1(^' + ̂ ) .

Therefore, Theorem 2 follows from an application of the well-known five lemma.
Our index formula is inspired by the work of Fujiwara [F]. The author would

like to thank Professor Daisuke Fujiwara for valuable discussions.

1. Differential operators. Let X be an ^-dimensional smooth manifold, and let
Ω(X) be the space of smooth differential forms on X. The space Ω(X) is graded by the
degrees of forms:

fc = O

where Ωk(X) is the space of smooth fc-forms. There exists a unique linear map

d: Ω(X)->Ω{X),

called the exterior derivative, such that:

(a) d:Ω\X)-+Ωk+1{X).
(b) df equals the ordinary differential df if fe C°°(X).
(c) If μ e Ω\X) and τ e Ω(X), then we have

d(μ Λτ) = dμΛτ + (—l)kμΛdτ.

(d) d2 = 0.
The operator d is a first-order differential operator.

Now let Zbe a compact, oriented smooth Riemannian manifold without boundary.
The Riemannian structure on X gives rise to a strictly positive smooth measure μ on
X, and to an inner product ( , ) on each Ω\X).

Let δ be the adjoint operator of the exterior derivative d with respect to the inner
product ( , •):

(δa,β) = (a,dβ)9 <xeΩk+ί(X), βeΩk(X).
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The operator δ is a first-order differential operator, and is called the codifferential

operator.

There is an isomorphism

called the Hodge star operator, such that:

( i ) (0L,β) = $χ0LΛ*β,0L,βeΩk(X).

(ii) * l = μ , * μ = l .

(iii) **α = (-l) f c ( π- f c )α, <xeΩ\X).

(iv) (*a,*β) = (x,βl<x,βeΩk(X).
We remark that the operator δ can be expressed in terms of the operator * as follows:

δa = (-l)n(k + 1) + 1*d*(x, aeΩk(X).

We define the Laplace-Beltrami operator Δ on X by the formula:

The operator Δ maps Ω\X) into itself, since d is of degree + 1 while <5 is of degree — 1.

It is known that Δ is a second-order elliptic differential operator.

2. Function spaces. First we recall the basic definitions and facts about the

Fourier transform.

lϊfeL1{Rn), we define its (direct) Fourier transform # / b y the formula

) = [ e-ixξf(x)dx, ξ = (ξl9...,ξj,

where χ ξ = x1ξί-\- - - +xnξn. We also denote 3Ff by /. Similarly, if geL1(Rn), we

define

•ik\j"
The function ^*g is called the inverse Fourier transform of g.

We introduce a subspace of L^JF1) which is invariant under the Fourier transform.

We let

= the space of C00-functions φ on Rn such that we have for any non-

negative integer j

Pj(φ) = sup {(1 +1 x \2γ'2 I Pφ(x) |} < oo .

The space ^(Rn) is called the space of C°°-functions on Rn rapidly decreasing at infinity.

We equip the space ^(Rn) with the topology defined by the countable family {p3) of
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seminoπns. The space £f(Rn) is complete.

We list some basic properties of the Fourier transform:

(1) The transforms $F and ^ * map έ?(Rn) continuously into itself.

(2) The transforms 2F and ^ * are isomorphisms of ^(Rn) onto itself; more

precisely, we have

The elements of the dual space &"(Rn) are called tempered distributions on Rn.

The direct and inverse Fourier transforms can be extended to the space

respectively by the following formulas:

Here < , •> is the pairing between the spaces &"(Rn) and ^(Rn). Once again, the

transforms & and J^* map Sf'iβF) continuously into itself, and &r#r* = &r*^ = I on

The function spaces we shall treat are the following (cf. [CP], [ H I ] , [T]): If aeR,

we let

Wa(Rn) = the space of distributions ue£f'(Rn) such that ύ = ̂ u is a locally

integrable function on Rn and that

f
J R

We equip the space Wa(Rn) with the inner product

and with the associated norm

\\u\\a = [\

The space Wa(Rn) is complete.

We list some basic topological properties of the spaces Wa(Rn)\

(1) The space S?(Rn) is dense in each Wa(Rn).

(2) If a' < a, we have inclusions

Sf(Rn) c ^α(/?π) c Wa(Rn) c y (/?π),

with continuous injections.

(3) The spaces Wa(Rn) and W_fl(/?π) are dual to each other with respect to the
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bilinear form:

<«,!?>= I ύ(ξ)ΰ(ξ)dξ, ueWa(Rn), veW_a(Rn).

We let δRn-ί(x) be a distribution on Rn defined by the following formula:

(δRn-i, φ) = I φ(x\ 0)dx', φ e Cg

We remark that

The next result characterizes the restrictions of elements in WJJRn) to the hyperplane

{xn = 0} which enter naturally in connection with interior boundary value problems:

THEOREM 2.1. If a> 1/2, then the restriction map

p: <^(/r> - > ^ ( t f Λ - X ) , Φ ( ^ *n)^<?(* ' , 0)

cα« 6^ extended in one and only one way to a continuous mapping p of Wa(Rn) onto

Wa-uiUr-1).

If X is an ^-dimensional, compact smooth manifold without boundary, then the

space W*(X) of /7-currents on X is defined to be locally the space Wa{Rn), upon using

local coordinate systems (x 1 , . . . , xn) flattening out X, together with a partition of unity.

That is, we let

W*(X) = Uίe space of /^-currents α o n l such that in local coordinates

α = £ och^ApdxiιA ••• Λdxip,
l<ii<-<ip<n

where the coefficients αfl Λp belong locally to the space Wa(Rn).

Then we have the following topological properties of the spaces Wξ{X) (cf. [F,

Proposition 3.2]):

(1) If a'<a, then we have an inclusion

with continuous injection.

(2) (Rellich) If a' < a, then the injection

is completely continuous (or compact).

(3) If Y is an (n— l)-dimensional, compact submanifold of X, then the restriction

map
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p :

is well-defined for all a> 1/2, and surjective.

3. The exterior derivative and the codifferential operator. We denote by d and δ

the exterior derivative and the codifferential operator in the sense of currents, re-

spectively. If T is a /?-current on 7, we define a /^-current Γ(χ) δγ on X by the formula:

(XΛ*(T®δγ) =
Jx JY

αΛ*(Γ(χ)(5y)= Ϊ * « Λ * T , α
)X JY

Here * and *' are the Hodge star operators on X and on F, respectively.

Then it is easy to see the following:

LEMMA 3.1. We have for any p-current T on Y

where δ' is the codifferential operator on Y.

We recall that

Wξ(X) = the space of square integrable /7-currents on X.

This is a Hubert space with respect to the inner product

,/O=f
Jx

(α

We let

1= the minimal closed extension in Wg(X) of the operator d restricted to

the space ΩP(X, Y) = {oceΩp{X); ι*α = 0},

and

J * = the adjoint of the operator I\ Wg{X) -+Wg+ ι(X).

The next theorem gives a characterization of the operator J(cf. [F, Theorem 5.11]):

THEOREM 3.2. Ifae Wg(X), dae Wg(X) and α | y = 0, then we have

The next theorem gives a characterization of the operator d* (cf. [F, Theorem 5.1]):

THEOREM 3.3. An element αe Wg+1(X) belongs to the domain @((I*) ofJ* if and

only if there exist ye Wg(X) and Te Wί1/2(Y) such that
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In this case, we have

d*0C = y = δ(X

and

δ'Te WΓ^Y).

4. The Hodge-Kodaira decomposition theorem. Let d be the exterior derivative

with domain

) ; dTe

and δ the codiίferential operator with domain

We remark that the operators d and δ are adjoint to each other with respect to the

ZΛinner product of the spaces Wξ(X):

We introduce the Laplace-Beltrami operator Δon J b y the formula:

It is easy to see that the operator Δ is a non-negative, self-adjoint operator in the Hubert

space Wg(X). Hence we find that the resolvent (Δ — λiy1 exists on the space Wξ(X) for

all λ < 0, and that the following commutative relations hold:

( i ) Ad = dA on 2{d) δA = Aδ on ®{δ).

(ii) (A-λiy^^diA-λiy1 on 9(d); {A-λiy'δ^δiA-λiy1 on &{8).

Furthermore, by virtue of Rellich's theorem, it follows that the resolvent (A — λI)~1

is completely continuous on the space Wξ(X), since the domain £&(A) is contained in

the space Wξ(X). Therefore, the Hilbert-Schmidt theory tells us the following:

(iii) The eigenvalues of Δ form a countable set accumulating only at + oo.

We can define the harmonic operator H and the Green operator G for Δ respectively

by the following formulas:

(4.1)
2πi J m = ε

(4.2)

if = _ L | (λl-AΓ'dλ.
2πi J m = ε

G = - 1 - I λ~\λI-Ayιdλ .
2πi JΓ

Here ε > 0 is so small that all positive eigenvalues of Δ lie outside of the circle \λ\ = ε

in the complex plane, and Γ is a contour which encloses all positive eigenvalues of Δ
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in the complex plane. Then we have the following:
(iv) The operator H is the orthogonal projection onto the kernel Kerp Δ of Δ,

and G is a bounded operator on Wg(X).
(v) GH = HG = 0 on Wg{X)\ GAaAG on 0(Δ).
Furthermore we have the following Hodge-Kodaira decomposition theorem (cf.

[CP], [D], [K]):

THEOREM 4.1 (Hodge-Kodaira). AG + H = dδG + δdG + H = I on Wg{X).

REMARK 4.2. By the elliptic regularity theorem, we find that

{Γe Wg(X); AT=0 in X)

= {TeΩp(X); AT=0 in X}

= {TeΩp(X); dT=0, <5Γ=0 in X}

5. The operator D. We let

Ωp(X\Y) = the space of/?-currents on X which are smooth in
may have jump discontinuities at Y,

and

Ωe{X\Y)= 0 Ω2i(X\Y), Ω°(X\Y)= 0 Ω2i+1(X\Y),
i i

Ωe(Y)= 0 Ω2i(Y), Ω°{Y)= © Ω2i+1(Y).

i i

Now we can introduce a linear operator

Ω°(X\Y) Ω°(X\Y)
DJ(d+δ) -C®δγ)\. θ — θ

as follows:
(a) The domain Q){Ό) of D is the space

, SeΩ°(Y), d<xeΩ°(X\Y), δa-(S® δr)eΩP(X\Y)\ .

Here da and (5α are taken in the sense of currents.
Near F, we introduce coordinates (x', a) such that x ' ^ x 1 , . . . , x"" 1 ) give local
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coordinates for Yand that Y= {(*', a); a = 0}. We further normalize the coordinates by
assuming the curves x(a) = (x'o, a), x'oe Y, are unit speed geodesies perpendicular to Y
for I a I sufficiently small.

If α G ΩP(X), then we can write, near Y,

Σ ^...ip-m L" Ada ,

l<ii<-<ip-i<n-ί

where

<x'eΩp(Y), 0L"eΩp-\Y).

We call αr (resp. α") the tangential part (resp. the normal part) of α.
If α = a' + a" A da e Ω' (AΓ\ 7), then we have

d(x = doi' + d'<x"Ada.

It is easy to see that:

(5.1) doceΩ (X\Y)odoc'eΩ'{X\Y)

o The tangential part α' of α does not have any jump
discontinuity at Y.

Thus we can define the pull-back ι*α = i*αr as an element of Ω*(Y\ that is,

i*α = ι V e Ω (y) if doceΩ'(X\Y).

We remark that

δa'eΩm(X\Y),

while the term δ((x"Ada) may be equal to "delta functions", since we have in local
coordinates

<5(α" Λ da) = -Σβ"11-^^-h-2n)dxiι Λ Λ dx1*~*Ada.

Hence the condition that

δoc-(S®δγ)eΩ'(X\Y)

makes sense.

The next proposition characterizes the adjoint operator D* of the operator D:

PROPOSITION 5.1. The adjoint D* ofD is the operator
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Ω°(X\Y)

'*

g/vew όj the following:
(c) ΓΆe domain 2>(D*) of D* is the space

γ)eΩe(X\Y)\

Tj \ -ι*β ) \T

PROOF. (i) If β e Ω°(X\ Y) and Te Ω% Y) such that

UβeΩ%X\Y),

\δβ + (T®δγ)eΩe{X\Y),

then we have for all

β

V -111 \\ '*« / V
*α,T)

-(S, i*jί)

(β β (®

s)\ -t*β

This proves that

and that

D*
TJ \ -ι*β

(ii) Conversely, assume that βeΩ°(X\Y) and TeΩe(Y) belong to the domain
®{D*\ that is,

there exist ysΩe(X\Y) and ^GΩ°(7) such that for all ( α je^(D) we have
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or equivalently,

(da + <5α, β)-(S®δγ,β) + (i a, T) = (a, y) + (S, ι/).

Then, taking

{5 = 0,

we have for all

(α, γ) = (da + <5α, j?) + (i*α, Γ) = (α, δβ + d/0 + (α, Γ® <5y),

so that

dβ + (5jS + (Γ® δY) = y e Ωe(X\ Y).

This gives that for all SeΩ°(Y)

so that

(S®δY,β)=-(S,η).

This proves that

ι*β=-ηεΩ°(Y).

In other words, the tangential part β' of β does «oί have any jump discontinuity at Y.
In view of assertion (5.1), it follows that

dβeΩe(X\Y).

Therefore, we find that

δβ + (T®δY) = y-dβeΩe(X\Y).

This completes the proof of Proposition 5.1. •

The next proposition characterizes the kernel KerD of the operator D com-
ponentwise:

PROPOSITION 5.2. An element
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Ωe(X\Y)

Ω°(Y)

belongs to the kernel of the operator D if and only if it satisfies the following conditions:

Here

α =

αo \

α2

\

S = k = \ —

Xlk-l

\ ^2fc+l /

PROOF, (i) The "only if" part: First we remark that

D . - I - 0 .

Hence we have

dcc2i\γ = O,

d(x2j + δθL2j+2-(S2j+ί®δγ)

S2j+1sΩ2j+1(Y).

In view of Theorem 3.3, this implies that oc2j+2e<3(ct*), and

(5.2) H*oc2j+2 =
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Furthermore, by virtue of Theorem 3.2, it follows that

\da2Je9{I),

since dθί2j\γ = df(oί2j\γ) = 0. Therefore, we find that

This implies that

so that fi*ot2j+2 = 0. Hence we have by Formula (5.2)

and also doc2j = 0.

(ii) The "if" part is trivial.

The next theorem is an immediate consequence of Proposition 5.2:

THEOREM 5.3. KerD = 0 [ f n

] Ker 2 ίD, where

Similarly, by Proposition 5.1, we can characterize the kernel KerD* of the operator

D* componentwise:

THEOREM 5.4. Ker D* = 0 ^ K e r 2 ί + x D, where

Ker2ί+1D* = j f M ; j 8 e Ω 2 ί + 1 ^

6. The long exact sequence and the operator D. We let

(6.1) Pφ = G{φ®δγ)\γ, φeΩp(Y),

where G is the Green operator for the Laplacian Δ defined by Formula (4.2). It is

known (cf. [H2], [SI], [T]) that G is an elliptic pseudo-differential operator of order

— 2 on X. Then we have the following (cf. [F, Proposition 7.6]):

THEOREM 6.1. The operator P is an elliptic pseudo-differential operator of order

— 1 on Y, and it extends to an isomorphism

P: 1Vg(Y)-+1Vf(Y).

PROOF. Let x0 be an arbitrary point of Y We remark that

T*0(X)=T*a(Y)φNl(Y).
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Thus we can decompose each covector (x0, ξ) e T*o(X) as follows:

(x0, ξ) = (x0, ξΊ

Then the principal symbol of G is equal to:

Hence we find (cf. [H2], [SI], [T]) that the principal symbol of P is given by the
following:

_ 1 Γ άη _( 1 1

This proves that P is an elliptic pseudo-differential operator of order - I o n 7.
We prove that P: Wξ(Y) -> W[(Y) is an isomorphism. To do so, since the principal

symbol of P is real, it suffices to show (cf. [P, Chapter XI, Theorem 12]) that P is
injective, that is,

φeΩp(Y) and Pφ = 0=>φ = 0.

We let

Φ = G1'2(φ®δγ),

where (cf. Formula (4.2))

G λ i λ l Γ d λ .
2πi JΓ

We know (cf. [S2], [T]) that the operator G1/2 is an elliptic pseudo-differential operator
of order — 1 o n l . Then we have

(6.2) PφΛ*'φ=\ (G(φ® δγ))\γ Λ*'φ=\ G(φ (g) δγ) A *(φ (g) δγ)
JY JY JX

= | G1/2(φ®δγ)ΛG1/2*(φ®δγ)= \ G1/2(φ®δγ)Λ*G1/2(φ®δγ)
Jx Jx

= 1
Jx

Φ Λ *Φ ,
x

since *Δ = Δ* and so *G1 / 2 = G1/2*. Therefore, it follows from Formula (6.2) that

Pφ = 0 => Φ = Gί/2(φ®δγ) = 0

Hence we have by Theorem 4.1 and Remark 4.2

φ ® δγ = H{φ ® δγ) + ΔG(φ ® δγ) = H(φ®δγ)s ΩP(X).
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However, this happens only when φ = 0. The proof of Theorem 6.1 is complete. •

Since the inverse P " 1 is a positive, elliptic pseudo-differential operator of order 1
on Y, it follows (cf. [S2], [T]) that the operator P~1/2 is an elliptic pseudo-differential
operator of order 1/2 on Y.

We equip the space Wξ/2(Y) with the inner product

- J , *'(P~1/2ψ) .

By Theorem 6.1, it is easy to see that the space W[j2(Y) is a Hubert space with respect
to this inner product < , >. We let

di = the minimal closed extension in W[j2(Y) of the operator d' restricted to
the space ΩP(Y),

and

δ\ = the adjoint of the operator d[: Wξ/2(Y) -+ Wtf2 \Y)

Then we have the following relationship between the adjoint δ' of d' and the adjoint
δ\ of d[ (cf. [F], Proposition 8.1):

LEMMA 6.2. δ\ = Pδ'p-\

We introduce a generalized Laplacian L' on Y by the formula:

Then the operator L is a non-negative, self-adjoint operator in the Hubert space Wξ/2(Y).
It is easy to see that the Hodge-Kodaira theory extends to the operators d[, δ\ and ZΛ
More precisely, we have the following:

(i) The eigenvalues of L form a countable set accumulating only at + oo.
(ii) We can define the harmonic operator H' and the Green operator G for L'

respectively by the following formulas:

H' = — ί (λI-Lf)-χdλ.

G ' = — I λ-\λI-LyHλ.
2πi JΓ

Here ε>0 is so small that all positive eigenvalues of L lie outside of the circle \λ\ = ε
in the complex plane, and Γ is a contour which encloses all positive eigenvalues of L
in the complex plane.

We have the following (cf. [F, Theorem 8.4]):
(ii-a) The operator Hf is the orthogonal projection onto the kernel KerpZ/ of L',

where (cf. Remark 4.2)
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= {Se Wξ/2(Y); L'S = 0 in 7}

= {SeΩp(Y);L'S = OinY}

and the operator G' is a bounded operator on WP

I2{Y).

(ii-b) GΉ' = H'G' = 0 on WP

/2(Y) G'L aLG on

(ii-c) L'G' + H' = dΊδΊG'+ δΊdΊG'+ H'= I on Wf/2(Y).

Now we can introduce six mappings pe, p'e, p"e, p0, p'o and pj,' as follows:

(I) pe: Ker2ίZ) -> Ker2ί(d + δ), ( α ) h-> iία .

Here H is the orthogonal projection on the space Ker2 ίΔ = Ker2i(d + <5).

(II) p'e: |

Here 5; = Pδ'P~ι and /ί' is the orthogonal projection on the space Ker2 ίL' = Ker2ί(d' + δ\).

Here / e is the orthogonal projection onto the orthogonal complement (Imp')g

in the space Ker2ι(d'+ δ\).

2i+lr>* v 1^^21+1/ Λ . S\ IP(IV) p o : K e r

Here H is the orthogonal projection on the space K e r 2 i + 1 Δ = Ker 2 ί + 1 (d + <5).

(V) p'0\ Ker 2 i + 1(d + δ)^KQτ2i+1(df + δf

1), β\-*H'(β\γ).

Here Hf is the orthogonal projection on the space K e r ^ ^ L ^ K e r ^ " ^ ^ ^ ^ ) .

(VI) p:

Here Jo is the orthogonal projection onto the orthogonal complement (Imp');}

in the space KQr2i+ί(dr-\-δ\).

The next theorem is the essential step in the proof of Theorem 2 (cf. [F, Theorem

8.6]):

THEOREM 6.3. The following sequence of homomorphisms forms a complex, and is

exact.
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0 • Ker°D - ^

-^-> Ker1!)* -A^

Ker2/) -A+ Ker2(d + δ) —

Ker2ί+1D* - A

Assuming this theorem for the moment, we shall prove Theorem 2. It follows from
an application of the Hodge-Kodaira theorem that

Keτj(d + <5) ^ H\X) s Hj(X, R),

KerV + <̂ ) = # W = HJ'(y, R)

Therefore, by virtue of the five lemma, the long exact sequence (*) implies that

Ker 2 ίD^ if 2ί(ΛΓ, 7, R), Ker2/+ ίD*^H2i+\X9 7, R).

Hence we have by Theorems 5.3 and 5.4

ind D = dim Ker D - dim Ker D*

in/2] in/2]

= Σ dimKer2ίD- £ dimKer2i+1D*
i = 0 i = 0

[n/2] [n/2]

= Σ dim H2i(X, Y,R)-Σ dimif2ί+1(X, Y,R)

= Σ (-IfdimH\X,Y,R)

= χ(X)-χ(Y).

7. Proof of Theorem 6.3. (I) Now we define a mapping
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p :

and a mapping

p ' :

Throughout this section we drop the 2ΐ, 2i +1 and use Ker D, Ker(d + δ) and Ker(d + δ\),
respectively. Then we have the following:

LEMMA 7.1. Imp = Kerp/.

PROOF. (1) Let ( ] be an arbitrary element of the space KerD, that is,

Then we have

a = Ha + GΔα = Ha + G(dδa + δda) =

This gives that

Ha\γ = (a-dG(S®δγ))\γ= -d'PS .

Hence we have

a

y) = Ha + dG(S ® δγ)

9 V
since H'd' = 0. This proves that ImpczKerp'.

(2) Conversely, assume that αeKerp', that is,

da = 0,

H'(α|y) = 0.

We recall that

Then it follows that

(7.1)
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since d'(α|y) = dα|y = O. If we let

(7.2)

then we have by Formula (7.1)

Furthermore, since we have

δ'S=-δ'δfp-1G'{<x\γ) = 0,

it follows that

δβ = δdG(S ® δ γ) = (Δ - dδ)G(S ® (5y)

= (/ - #)(S ® δγ) - d^G(5 ® δγ)

= (S®δγ)-H(S®δγ)- dG(δ'S ® δy

= (S®δγ)-H(S®δγ).

By Theorem 3.3, this implies that

)= -H(S®δγ).

However, we have the following:

CLAIM 1. H(S®δγ) = 0, or equivalently, δβ-(S®δγ) = O.

PROOF. If {ftl9..., hN} is an orthonormal basis of the space Ker(d + <5), then we
have by Formula (7.2)

Σ <hj\γ,δ'ιG'(0L\γ)}hj\γ=- Σ
7 = 1 7 = 1

7 = 1
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since dhj = O. By Theorem 3.2, it follows that

\d*β=-H(S®δγ)e@(S),

{H*β=-dH(S®δγ) = 0.

Hence we have

(H(S®δγ), H(S®δγ)) = (J*β9Ί*β) = @l*β9 β) = 0.

This proves Claim 1. •

Summing up, we have proved that

δβ-(S®δγ) = O,

that is,

and

( n \
P lelmp.
S )

The proof of Lemma 7.1 is complete. •

(II) We define

QS = H(S®δγ)\Yi

and let

π = QP~ί.

Then we have the following characterization of Im p'\

CLAIM 2. lmp' = lmHf °π.

PROOF. (i) ImHΌπcImp': This is trivial.

(ii) Imp'clmtfoπ: Let T be an arbitrary element of Impr, and assume that
Γ=p'(α), αeKer(d + (5), that is,

T=H'(OL\Y).

If {hl9..., hN} is an orthonormal basis of the space Ker(d + (5), then we have

H(S®δγ) =t(\ hjA*(S®dY)\j=t([ hj\YA*'s\hj9
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so that

QS = H(S®δγ)\γ=Σ ( I hj\γΛ*'Sjhj\γ.

This gives that

N / r \ N

(7.3) πS = Qp-1S=Σ\ hj\γA*fp-1S)hj\γ= Σ <hj\γ^}hj\

so that

(7.4) H'{πS)=Σ<hj\r,S>H'(hj\r).

On the other hand, since we have

it follows that

p'(α) = tf'(α|y)= Σ ( ί hj

° Jx j Λ * α '

However, we can find an element So such that

Hence we have

Therefore, combining this formula with Formula (7.4), we obtain that

T= p'(α) = H'(πS0)

REMARK 7.2. The operator π is symmetric, that is, we have

Indeed, it follows from Formula (7.3) that

<πS,Γ>= Σ <hj\Y9

(III) Now we define a linear mapping
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Here / is the orthogonal projection onto the orthogonal complement (Im p')L of Im p'

in the space Kετid' + δΊ).

(IΠ-a) First we check the well-definedness of the mapping p": If we let

= P~1JT,

then we have

since JTeKeτ(d'+ δ\). Further it follows that

(7.5) δθL = δdG(S®δγ) = (A-dδ)G(S®δγ) = (I

= (S®δγ)-H(S®δγ)- dδG(S ® δγ).

However, we have the following:

CLAIM 3. H(S®δγ) = 0, dδG(S®δγ) = 0.

PROOF. First we have

(7.6) \ \

since ( 1)

If T= Tx + T2 with Tt e Im p' and T2 e (Im p')1, then we have

since JTX = 0 and JT2 = T2.

However, if {hl9..., hN} is an orthonormal basis of the space Ker(d + δ), then it

follows from Formula (7.3) that

*T2= £ <Λj|r ^ A |y= £ <hj\γ,H'(T2)yhj\γ=

since Γ2G(Imp')1c:Ker(d/ + ̂ /

1) and H'(hj\γ) = p'(hj)elmp'. Hence we have

(7.7) H{S®δγ)\γ = πT2 = 0.

Thus, in view of Theorem 3.2, it follows from Assertions (7.6) and (7.7) that

H{S ® δγ) + dδG(S ® δγ) 6

Therefore, since we have by Formula (7.5)
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J*a = δaι-(S®δγ)=-H(S®δγ)-dδG(S®δγ)e9(I)9

it follows that

so that

0 = d *a = - H(S ® δγ) - dδG{S ® δγ).

This proves Claim 3, since Hd = 0.

By Claim 3, it follows from Formula (7.5) that δoc-{S®δγ) = Q.

Summing up, we have proved that

leKerD.
(;)•

(IΠ-b) Next we show the following:

LEMMA 7.3. Imp' = Kerp".

PROOF. (1) Ker p" c Im p'\ If Te Ker(d' + δ\) and

μ \

then we have Telmp', since JT=0.

(2) Imp'czKer^: This is trivial.

(IV) Finally it remains to show the following:

LEMMA 7.4. Imp" = Kerp.

PROOF. (1) Imp"cKerp: This is trivial, since Hd = 0.

(2) Ker p czIm p"\ If ( α \eKerD and pi α ) = 0, then we have

<5α — (

Thus α can be written in the following form:

α = GΔα = Gώ5α = Gd(S ® 5y) = dG(S ® δ y

If we let
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T = PS,

then it follows that

and from Lemmas 6.2 and 3.1 and also Formula (6.1) that

δ\ T = Pδ'S = G(δ'S ® δγ)\γ = Gδ(S ® δγ)|y = Gδ(δa)\γ = 0 .

Hence we have TeY^Qΐ(d' Λ-δ\). However, we have JT=T, that is,

(7.8) Γe(Imp')1

Indeed, since we have

we find from Remark 7.2 that for all φeΩ'(Y)

so that by Claim 2

This proves assertion (7.8).

In view of assertion (7.8), it follows that

p-1jτ=p~ίτ=s.

Hence we have

oΛ fdG{S®δγ)\ (dG{p-1JT®δγ)1 = 1 " 1 = 1 i " J = p"(T)eImp".

This completes the proof of Lemma 7.4. •

Now the proof of Theorem 6.3 and hence that of Theorem 2 is complete.
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