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KaAzuaki TAIRA

(Received February 6, 1992)

Abstract. The purpose of this note is to give an analytic (and direct) proof of an
index formula for the relative de Rham cohomology groups, which may be considered
as a generalization of the celebrated Atiyah-Singer index theorem for the absolute de
Rham cohomology groups. The crucial point is how to find an operator D for which an
index formula holds. In deriving our index formula, the theory of harmonic forms
satisfying an interior boundary condition plays a fundamental role. We remark that the
operator D is no longer a local (differential) operator.

Introduction and results. Let X be an n-dimensional smooth manifold, and let
Q(X) be the space of smooth differential forms on X:

(x)= ea ),

where Q4X) is the space of smooth k-forms.

Let d: Q(X)— Q(X) be the exterior derivative on X. A smooth k-form o on X is
said to be closed if du=0. It is said to be exact if a=df for some smooth (k— 1)-form
pon X.

We let

Z¥(X)=the space of closed k-forms on X ,
B¥(X)=the space of exact k-forms on X ,
and
HYX)=Z4X)/B4X) .

The quotient space H¥X) is called the k-th de Rham cohomology group of X. These
groups come from a sequence of maps (the de Rham complex)

1) o - oy,

and
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H¥X)=Kerd*/Imd*~!.

The celebrated de Rham theorem states that the de Rham cohomology groups H*(X)
are isomorphic to the simplicial cohomology groups HXX, R) defined in algebraic
topology:

H¥X)~HX,R).

We recall that the Euler-Poincaré characteristic y(X) is defined by the formula:
1X)= Y. (—1)ydim H(X, R).
i=0

Now let X be a compact, oriented smooth Riemannian manifold without boundary.
The Riemannian structure on X gives rise to a strictly positive smooth measure on X,
and to an inner product (-, ) on each Q*(X).

Let 6 be the adjoint operator of the exterior derivative d with respect to the inner
product (-, *):

(0o, )= (o, df), aeQ**1(X), BeQ¥X).
We “roll up” the de Rham complex, and define an operator
(d+9).: 24X)- Q(X)
o> (d+6)a ,
where:

Q(X)= @"21Q%(X), the space of differential forms of even degree ,
Q(X)= @2 Q**(X), the space of differential forms of odd degree .

We recall that the analytical index ind(d + J), of the operator (d+ ), is defined by the
formula:

ind(d + 8), = dim Ker(d + &), — dim Ker(d + 5)* ,

where (d+ 6)¥ is the adjoint operator of (d +9d),.
Then we obtain the following index formula which is a special case of the
Atiyah-Singer index theorem (cf. [CP], [G], [P]):

THEOREM 1. ind(d+6), = y(X).

The purpose of this note is to prove an index formula for the cohomology groups
H'(X, Y) of X relative to an (n— 1)-dimensional, compact oriented submanifold Y of
X. The crucial point is how to find an operator D, a generalization of (d +§),, for which
such an index formula as in Theorem 1 holds.

We let
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QP(X)=the space of smooth p-forms on X ,
QP(Y)=the space of smooth p-forms on Y,
and
"X, Y)={0eQ"(X); 1*(6)=0},

where 1: Y— X is the natural inclusion map. Then the exterior derivative d maps Q?(X, Y)
into Q?*1(X, Y). Indeed, it suffices to note that 1*d =d'1* where d' is the exterior derivative
on Y. Thus we have the following sequence of maps

dr-1 dr
Q" YX,Y)— QX,Y) — QPP Y(X, Y).

We let
H?(X, Y)=Kerd?/Imdr~'.

The quotient space H?(X, Y) is called the p-th de Rham cohomology group of X relative
to Y. In other words, the relative cohomology group H'(X, Y) is the cohomology group
of the complex Q°(X, Y) defined by the exact sequence of complexes

0—— (X, Y)—— Q(X) s @'(Y)—— 0.

The de Rham theorem extends to this case, that is, the cohomology groups H?(X, Y)
are isomorphic to the relative cohomology groups H?(X, Y, R) defined in algebraic
topology:

HY(X,Y)~H"X,Y,R).

We define the Euler-Poincaré characteristic (X, Y) by the following formula:

(X, Y)= Z (—1)dim H(X, Y, R) .

i=0

We let

QP(X\Y)=the space of p-currents on X which are smooth in X\ Y and may
have jump discontinuities at Y,

and

Q(XNY)= @ Q*(X\Y), 2X\Y)= ¥ '(X\Y);

Q(Y)=@ Q*(Y), 2(Y)=@ Q**\(Y).
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If T is a p-current on Y, we define a p-current 7® Jd, on X by the formula:
J oA *(T®6y)=f *an¥'T, oeQP(X).
X Y

Here * and *’ are the Hodge star operators on X and on Y, respectively.
We introduce a linear operator

' Q(X\Y) Q(X\Y)
D=<(d4;6) —( ?5’)>: 5 — @
: (Y) Q(Y)

as follows:
(1) The domain 2(D) of D is the space

(D)= {( : ) s ae QXN Y), SeQY), dae Q(X\Y), 5a—(S® dy) € Q(X\, Y)} .

) D<a>=<(d+5)oc—(8®5y)>’ <a>&_9w)_
S 1*o S

Here do and da are taken in the sense of currents. Now we can state our index formula:
THEOREM 2. ind D=y(X, Y)=x(X)—x(Y).

The rest of this note is organized as follows: In Sections 1 and 2, we present a
brief description of the basic definitions and results about differential operators and
function spaces in differential geometry and partial differential equations. In Section 3,
we consider the exterior derivative d restricted to the space QP(X, Y) in the space W§(X)
of square integrable p-currents on X, and then characterize its minimal closed extension
d and the adjoint operator d*. In Section 4, via the Hilbert-Schmidt theory, we formulate
the celebrated Hodge-Kodaira decomposition theorem for the Laplacian A=dé + éd
in the framework of the Hilbert spaces Wg(X). In particular, we have the following:

Ker’ A=Ker?(d+6)~ H/(X)~H"(X, R) .

In Section 5, we study the operator D and its adjoint D*, and characterize the kernels
Ker D and Ker D* componentwise. The characterizations of the operators d and d* in
Section 3 play an important role in the proof. Sections 6 and 7 are devoted to the proof
of Theorem 2. First we consider an elliptic pseudo-differential operator P of order —1
on Y which is associated with the interior boundary value problem for the Laplacian
A=dé+dd:

{AT=0 in X\,
Tly=¢ on Y.

Next, by using the operator P, we introduce a generalized Laplacian L' on Y by the
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formula:
L/ =d16/1 +511d/ ,

where 6, =P&P~1. It is easy to see that the Hodge-Kodaira theory extends to the
operators d’, 67 and L"

Ker? L' =Ker?(d' + &)~ H(Y)~H"(Y, R) .

Finally we construct explicitly six mappings p,, p., p., p,, P, and p} so that the following
sequence of homomorphisms forms a complex, and is exact:

"

Po, Ker?D Peu Ker?(d+0) Lo Ker¥(d +9))

”"

Pe, Ker?*1p*x Lo, Ker¥*1(d+8) Lo Ker®*1(d'+6)) .

Therefore, Theorem 2 follows from an application of the well-known five lemma.
Our index formula is inspired by the work of Fujiwara [F]. The author would
like to thank Professor Daisuke Fujiwara for valuable discussions.

1. Differential operators. Let X be an n-dimensional smooth manifold, and let
Q(X) be the space of smooth differential forms on X. The space Q(X) is graded by the
degrees of forms:

xX)= & oX)
k=0

where Q%(X) is the space of smooth k-forms. There exists a unique linear map
d: QX)- QX),

called the exterior derivative, such that:
(a) d: QX)—- Q**(X).
(b) df equals the ordinary differential df if fe C*(X).
(c) If ue QXX) and te(X), then we have

dunty=dunt+(—=Dunde.

(d) d*=0.
The operator d is a first-order differential operator.

Now let X be a compact, oriented smooth Riemannian manifold without boundary.
The Riemannian structure on X gives rise to a strictly positive smooth measure y on
X, and to an inner product (-, *) on each Q%X).

Let 0 be the adjoint operator of the exterior derivative d with respect to the inner
product (-, *):

(6o, B)=(a,dB), aeQ**1(X), BeQ4X).
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The operator ¢ is a first-order differential operator, and is called the codifferential
operator.
There is an isomorphism

*: QX)) - 2"HX),

called the Hodge star operator, such that:
(i) (0 B =[yanr*p, a, feQ"X).
(ii) *1=p,*u=1.
(iii) *xo=(—1)"""Pg, x e Q4X).
(iv) (o, *f)=(a, ), o, fe Q(X).
We remark that the operator é can be expressed in terms of the operator # as follows:
Sa=(—1"* D hdua . aeQ¥X).
We define the Laplace-Beltrami operator A on X by the formula:
A=(d+8)* =dé+4d .

The operator A maps QX(X) into itself, since d is of degree + 1 while § is of degree — 1.
It is known that A is a second-order elliptic differential operator.

2. Function spaces. First we recall the basic definitions and facts about the

Fourier transform.
If fe L'(R™), we define its (direct) Fourier transform £/ by the formula

9’7(5)=J e ™ ifdx, E=(8y, .., 8

where x-&=x,&,+ -+ +x,¢,. We also denote Zf by f. Similarly, if ge L}(R"), we
define

Fr9(x)=

ix &
0y Lne g(&)de .

The function & *¢ is called the inverse Fourier transform of g.
We introduce a subspace of L!(R") which is invariant under the Fourier transform.
We let

& (R")=the space of C*-functions ¢ on R" such that we have for any non-
negative integer j
P{®)= sup {(1+]x*)"*| 0¢(x) |} < oo .
xeR"
lal<j

The space £ (R") is called the space of C®-functions on R" rapidly decreasing at infinity.
We equip the space #(R") with the topology defined by the countable family {p;} of
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seminorms. The space & (R") is complete.
We list some basic properties of the Fourier transform:
(1) The transforms & and #* map S (R") continuously into itself.

(2) The transforms & and #* are isomorphisms of &%(R") onto itself; more
precisely, we have

FF¥X=F*F =1 on Z(R").

The elements of the dual space ¥'(R") are called tempered distributions on R".
The direct and inverse Fourier transforms can be extended to the space &'(R")
respectively by the following formulas:

(Fu,0>=<u,Fp), 9eL(R").
(F*u, 0>=<{u, F*¢), @eZL(R").

Here (-, -) is the pairing between the spaces &'(R") and ¥(R"). Once again, the
transforms & and #* map &'(R") continuously into itself, and FF*=F*F =1 on
F'(R™).

The function spaces we shall treat are the following (cf. [CP], [H1], [T]): If ae R,
we let

W, (R")=the space of distributions ue S'(R") such that 4=%u is a locally
integrable function on R" and that

j A+1EP ) IPdE < oo .

We equip the space W, (R") with the inner product

(©, v), =J (L+]EP)AONEdE ,
R

and with the associated norm

1/2
llu Ila=<j ( +I€I2)“Iﬁ(€)l2d5> .

The space W,(R") is complete.
We list some basic topological properties of the spaces W,(R"):
(1) The space ¥ (R") is dense in each W (R").
(2) If a'<a, we have inclusions
SR =W, (R") = W, (R =S (R") ,
with continuous injections.
(3) The spaces W, (R") and W_,(R") are dual to each other with respect to the
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bilinear form:
{u, v) = L UE)()AE, ue W, (R"), veW_,(R").
We let dgn-1(x) be a distribution on R" defined by the following formula:
(Ogn-1, @)= Jnn_l(p(x’, 0)dx', ¢eCZ(R").

We remark that
Opn-1(X', X,)=1® d(x,) .

The next result characterizes the restrictions of elements in W,(R") to the hyperplane
{x,=0} which enter naturally in connection with interior boundary value problems:

THEOREM 2.1. If a>1/2, then the restriction map

p: SRS R, ox,x)—o(x,0)

can be exte;:ded in one and only one way to a continuous mapping p of W, (R") onto
We-12(R"7).

If X is an n-dimensional, compact smooth manifold without boundary, then the
space WP(X) of p-currents on X is defined to be locally the space W, (R"), upon using
local coordinate systems (x!, ..., x") flattening out X, together with a partition of unity.
That is, we let

WP(X)=the space of p-currents « on X such that in local coordinates

a= y o, AXTA s AdXT,
1<i;<--<ip<n

where the coefficients «;, . ; belong locally to the space W (R").
Then we have the following topological properties of the spaces WP(X) (cf. [F,
Proposition 3.2]):
(1) If @' <a, then we have an inclusion
WiX)=Wa(X),

with continuous injection.
(2) (Rellich) If @’ <a, then the injection

Wa(X) - WiX)

is completely continuous (or compact).
(3) If Yis an (n—1)-dimensional, compact submanifold of X, then the restriction

map
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p: Wf(X)_’Wf—uz(Y)’ “"’”'Y
is well-defined for all a>1/2, and surjective.
3. The exterior derivative and the codifferential operator. We denote by d and

the exterior derivative and the codifferential operator in the sense of currents, re-
spectively. If T is a p-current on Y, we define a p-current 7® dy on X by the formula:

J\ O(/\*(T@éy):f *an¥'T, aeQP(X).
X

Y

Here * and #' are the Hodge star operators on X and on Y, respectively.
Then it is easy to see the following:

LemMAa 3.1.  We have for any p-current T on Y
H(T®Iy)=0T®dy,
where &' is the codifferential operator on Y.
We recall that
WE(X)=the space of square integrable p-currents on X.

This is a Hilbert space with respect to the inner product

(o, ﬁ)=4[ aAnxf, o, e WHX).
p's

We let

d = the minimal closed extension in Wg(X) of the operator d restricted to
the space Q/(X, Y)={aeQ"(X); 1*a=0},

and
d*=the adjoint of the operator d: Wg(X)— WE*(X).
The next theorem gives a characterization of the operator d (cf. [F, Theorem 5.117]):

THEOREM 3.2. If ae WE(X), due WE(X) and oy =0, then we have

{ae@(ﬁ),
du=da .

The next theorem gives a characterization of the operator @* (cf. [F, Theorem 5.1]):

THEOREM 3.3. An element o€ WE*'(X) belongs to the domain 2(d*) of d* if and
only if there exist ye W§(X) and Te W2, ,(Y) such that
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du=y+(T®Jy) -
In this case, we have
d*o=y=0a—(T® dy),
and

STeWrii(Y).

4. The Hodge-Kodaira decomposition theorem. Let d be the exterior derivative
with domain

Dd)={Te Wi(X);dTe WE*'(X)},
and ¢ the codifferential operator with domain
D(0)={Se W+ (X); 6Se WE(X)} .

We remark that the operators d and J are adjoint to each other with respect to the
L2-inner product of the spaces W2(X):

dT, S)=(T, 5S), Te2(d), Se2().
We introduce the Laplace-Beltrami operator A on X by the formula:
A=dé+dd .

It is easy to see that the operator A is a non-negative, self-adjoint operator in the Hilbert
space WE(X). Hence we find that the resolvent (A — AI)™! exists on the space W§(X) for
all 1<0, and that the following commutative relations hold:

(i) Ad=dA on 29(d); A=A on D(9).

(i) (A=A~ 'dcdA—AD)~! on 9(d); (A—Al)" 16 <S(A—AD)~ ! on D(9).

Furthermore, by virtue of Rellich’s theorem, it follows that the resolvent (A—AI)~!
is completely continuous on the space W§(X), since the domain 2(A) is contained in
the space WE(X). Therefore, the Hilbert-Schmidt theory tells us the following:

(iii) The eigenvalues of A form a countable set accumulating only at + co.

We can define the harmonic operator H and the Green operator G for A respectively
by the following formulas:

@.1) H=—1 (AI—A)"'dJ.
27U |i]=¢

4.2) Gzi,f AV A —A) A .
27i Jr

Here ¢>0 is so small that all positive eigenvalues of A lie outside of the circle |A|=¢
in the complex plane, and I is a contour which encloses all positive eigenvalues of A
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in the complex plane. Then we have the following:
(iv) The operator H is the orthogonal projection onto the kernel Ker? A of A,

and G is a bounded operator on W§(X).
(v) GH=HG=0 on W{§(X); GAcAG on 2(A).
Furthermore we have the following Hodge-Kodaira decomposition theorem (cf.
[CP], [D], [K]):
THEOREM 4.1 (Hodge-Kodaira). AG+H=d0G+ddG+ H=1I on W§X).
REMARK 4.2. By the elliptic regularity theorem, we find that
KerPA={Te W§(X); AT=0 in X}
={TeQ"X); AT=0in X}
={TeQ"(X); dT=0,6T=0in X}
=Ker?(d+9) .

5. The operator D. We let

QP(X\ Y)=the space of p-currents on X which are smooth in X\ Y and
may have jump discontinuities at Y,

and

QUXNY)=@ 2*(X\Y), 2(X\Y)=@ 2*"'(X\Y),
&) =@ Q¥(Y), Q(Y)=® Q**X(Y).

Now we can introduce a linear operator

o QX Y) X\ Y)
D=<(d+;é) (gbéy)>: o e ®
! Q(Y) Q4(Y)

as follows:
(a) The domain 2(D) of D is the space

(D)= {( : ) s ae QXN Y), Se Q(Y), due Q(X\ Y), 5 —(S® dy) e Q(X\ Y)} .

®) D(a)=<(d+5)a—(S®6y)>, <a)69(D).
S 1*a S

Here do and 6o are taken in the sense of currents.
Near Y, we introduce coordinates (x’, a) such that x'=(x', ..., x""!) give local
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coordinates for Y and that Y={(x’, a); a=0}. We further normalize the coordinates by
assuming the curves x(a)=(xjy, a), Xp € Y, are unit speed geodesics perpendicular to Y
for | a| sufficiently small.

If o € QP(X), then we can write, near Y,

a= Y @, dXTA s AdxT

l1...1p
1<iy<-+<ip<n-—-1

+ > o‘il...i,,.m‘/bci‘/\"'Adxi"“/\da=o:’+oc”/\da,

1<ig<-<ip-1<n-1
where
o eQ(Y), o« eQPYY).

We call o’ (resp. o) the tangential part (resp. the normal part) of a.
Ifa=a'+a" AdaeQ (X Y), then we have

do=doa' +d'oa" nda .
It is easy to see that:
6.1 doe Q' (X\\Y)<da' e Q" (X\ YY)

<> The tangential part ' of « does not have any jump
discontinuity at Y.

Thus we can define the pull-back 1*a=1*a’ as an element of 2°(Y), that is,
ra=1*a'€ Q" (Y) if daeQ'(X\\Y).
We remark that
o' €Q°(X\Y),

while the term d(a” A da) may be equal to “delta functions”, since we have in local
coordinates

0

ox™

o’ Ada)y= =Y g™ (%, ...ip_ )X A - AdXP"2 A da .

Hence the condition that
oa—(S®dy)eQ°(X\Y)

makes sense.
The next proposition characterizes the adjoint operator D* of the operator D:

PROPOSITION 5.1.  The adjoint D* of D is the operator
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S — )

D*=<(d+5) (- ®5Y)
QYY) QY)

Q(X\Y) Q(X\Y)
—* 0 ) :

given by the following:
(¢) The domain 9(D¥*) of D* is the space

2(D*)= {( p ) : Be X\ Y), Te Q«(Y), dBe QX \Y), 5B +(T® dy) € 24X\, Y)} .

T
@ D*<g>=<(d+5)lit£;®5Y)>» (’;>59(D*).
Proor. (i) If feQ(X\\Y) and TeQ%Y) such that
{dﬂeQe(X\Y),
OB+ (T®oy)eQ(X\Y),

then we have for all <:>e 2(D)

P D=2 (5)
s/\1)/ 1*o, T
=(do+ 6 —(S®dy), )+ (1*a, T)

=(da+ oo, f)—(S, 1*B)+ (1*a, T)
=(a, 6f+dp) + (o, T® dy)—(S, 1*B)

_<(a> (dﬂ+6ﬁ+(T®5,)>>
B s/ —1*p '

This proves that

(l;)é@(D*),
and that
D*( B >=((d+6)ﬁ+(T® 6y)>
T —1*f ’

(i) Conversely, assume that feQ°(X\\Y) and TeQ%(Y) belong to the domain
9(D¥*), that is,

there exist ye Q%X '\ Y) and € Q°(Y) such that for all < :>e 9(D) we have
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CHE-(GHC)

(da+ 60, B)—(S®dy, B)+ (1*a, T)=(a, Y) +(S, 1) -

or equivalently,

Then, taking

{S=0 ,
xeQ4X),
we have for all x e Q4X)
(a, Y)=(da+ ba, B)+ (1*a, T)=(o, 6f+df)+ (o, T® dy) ,
so that
df++(T®dy)=ye (X \Y).
This gives that for all Se€Q°(Y)
(S® by, B+ (a, (d+)B+(TQ 6y))=(S®y, f)+(, 7)
=((d+d), f)+(*a, T)—(S, n)=(x, (d+)B+(T®y))—(S, 1),
so that
(S®dy, p)=—(S,m).
This proves that
*f=—neQ(Y).

In other words, the tangential part f’ of B does not have any jump discontinuity at Y.
In view of assertion (5.1), it follows that

dfeQ4(X\Y).
Therefore, we find that
P+H(T®oy)=y—dfe QX \Y).
This completes the proof of Proposition 5.1. [ ]

The next proposition characterizes the kernel KerD of the operator D com-
ponentwise:

PROPOSITION 5.2. An element
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( ) ) 2(X\Y)
€ ®
S ()

belongs to the kernel of the operator D if and only if it satisfies the following conditions:
doy; =0, oyly=0, 0<i<[n/2],
005542 — (82,41 ®3y)=0, 0<j<[n/2].

Here
%o S
oy S3
2
Oop—2 Sak-1
Aok Sok+1

PrOOF. (i) The “only if” part: First we remark that

(Xoly=0, ceey azkly=0 N

dao+6a2—(sl®5y)=0 s

doty— 5+ 00— (S -1 ® 6y) =0,
dotg—(S2k 41 ® 0y)=0.

Hence we have
dayly=0,
dotj+ 00212 = (8241 ®dy)=0,
doy;€ Q¥ H XN\ Y) e WEH(X),
0j+2€ QYT HXNY) e WETA(X),
S,j+1€QYHY(Y).

In view of Theorem 3.3, this implies that a,;, , € 2(d*), and

(5.2) J*a2j+2=5a2j+2_(s2j+1®5Y)=_da2j~
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Furthermore, by virtue of Theorem 3.2, it follows that

{doczje@(&') ,
d(doy;)=d(da,;)=0,

since dat, |y =d'(25;]y) =0. Therefore, we find that
A@*a;, )= —d(doy;) =0 .
This implies that
@2y 20 T2y )= g AT*0351) =0,
so that d*a,;,,=0. Hence we have by Formula (5.2)
003;12—(82j4+1 ®dy)=0,

and also da,;=0.
(i) The “if” part is trivial. |

The next theorem is an immediate consequence of Proposition 5.2:

THEOREM 5.3. KerD=@"?Ker? D, where
Ker? D= {( : > ; 0e QXN Y), Se Q¥ Y(Y), da=0, afy=0, Sa—(S® 6,)=0} .
Similarly, by Proposition 5.1, we can characterize the kernel Ker D* of the operator

D* componentwise:

THEOREM 5.4. KerD*=@ "2 Ker®'*! D, where

Ker?+! D*={( i) Be Q¥ X\Y), TeQ*(Y), df=0, fly=0,8+(T® 5,)=0} :

6. The long exact sequence and the operator D. We let
6.1 Po=Glp ® dy)

where G is the Green operator for the Laplacian A defined by Formula (4.2). It is
known (cf. [H2], [S1], [T]) that G is an elliptic pseudo-differential operator of order
—2 on X. Then we have the following (cf. [F, Proposition 7.6]):

Yy, QeQY),

THEOREM 6.1. The operator P is an elliptic pseudo-differential operator of order
—1 on Y, and it extends to an isomorphism

P: WEY)-> WHY).
PrOOF. Let x, be an arbitrary point of Y. We remark that
TH(X)=T(Y)® N1 (Y).
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Thus we can decompose each covector (xo, £) e T (X) as follows:
(%0, §)=(%0, &) D (x0, 1) -
Then the principal symbol of G is equal to:
1E&P+n)"".
Hence we find (cf. [H2], [S1], [T]) that the principal symbol of P is given by the

following:
1 d 1 d ., 1
5| TreL 211 2=<_—J CZ)"f’I =17
2n Jr 1E' 15 +n 2n Jr 1+¢ 2

This proves that P is an elliptic pseudo-differential operator of order —1 on Y.

We prove that P: W§(Y)— WI(Y)is an isomorphism. To do so, since the principal
symbol of P is real, it suffices to show (cf. [P, Chapter XI, Theorem 12]) that P is
injective, that is,

eeR?(Y) and Pop=0=¢=0.
We let

P=G"*(9p®dy),
where (cf. Formula (4.2))

G”2=L_J~ A™12(A0— A4 .
r

2mi

We know (cf. [S2], [T]) that the operator G'/? is an elliptic pseudo-differential operator
of order —1 on X. Then we have

r~

(6.2) IP¢A*'¢= (G((p®5,))|,,/\*’<p=j G(o ® dy) A *(¢ @ y)

=| G (p®y) A G”z*((p®6y)=j G'*(¢ ® by) A*G'*(9 ® by)
JXxX X

r

=| OAxD,

JX

since *A=Ax* and so *G'/?>=G!/?x. Therefore, it follows from Formula (6.2) that
Pp=0=®=G"*(p®,)=0
= Go®dy)=G"*®=0.
Hence we have by Theorem 4.1 and Remark 4.2
¢®Sy=H(¢ ®y)+AG(¢ ® dy)=H(p ® dy) € Q"(X) .
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However, this happens only when ¢ =0. The proof of Theorem 6.1 is complete. 1l

Since the inverse P~ is a positive, elliptic pseudo-differential operator of order 1
on Y, it follows (cf. [S2], [T]) that the operator P~ /2 is an elliptic pseudo-differential
operator of order 1/2 on Y.

We equip the space W7,,(Y) with the inner product

<(P, ¢>=(P—1/2¢’P_1/2¢)=I P—l/z(pA*/(P—-l/z'/I) .
Y

By Theorem 6.1, it is easy to see that the space WY,,(Y) is a Hilbert space with respect
to this inner product (-, - >. We let

1 =the minimal closed extension in W?,(Y) of the operator d’ restricted to
the space Q7(Y),

and
) =the adjoint of the operator d}: W?,(Y)—> WP5(Y).

Then we have the following relationship between the adjoint &' of d’ and the adjoint
o, of di (cf. [F], Proposition 8.1):

LEMMA 6.2. &, =P§'P~1.

We introduce a generalized Laplacian L' on Y by the formula:

L'=dié,+67d; .

Then the operator L' is a non-negative, self-adjoint operator in the Hilbert space W7,,(Y).
It is easy to see that the Hodge-Kodaira theory extends to the operators d}, &) and L'
More precisely, we have the following:

(i) The eigenvalues of L' form a countable set accumulating only at + co.

(ii) We can define the harmonic operator H' and the Green operator G’ for L'
respectively by the following formulas:
1

H=—" (AI—L)"'dA .
27'[i |A|=¢

G’=L_J\ AYAI—-L)"YdA.
27i Jr

Here ¢>0 is so small that all positive eigenvalues of L’ lie outside of the circle | A|=e¢
in the complex plane, and I' is a contour which encloses all positive eigenvalues of L’
in the complex plane.

We have the following (cf. [F, Theorem 8.4]):

(ii-a) The operator H' is the orthogonal projection onto the kernel Ker?L' of L',
where (cf. Remark 4.2)
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KerPL'={Se W},(Y); L'S=0inY}
={SeQ?(Y); L'S=0inY}
—{SeQ¥(Y); d'S=0,5,S=0in Y}
=Ker?(d'+9}),

and the operator G’ is a bounded operator on W?¥,(Y).
(ii-b) G'H'=H'G'=0 on W},(Y); GL'<L'G on (L.
(ii-c) L'G'+H' =dj01G'+01d{G'+H =1 on W{,(Y).
Now we can introduce six mappings p,, s, P, Po, P, and p. as follows:

0] p.: Ker?D — Ker?(d+9), (;)»—»H(x.

Here H is the orthogonal projection on the space Ker?A=Ker?(d + ).

n p.: Ker?(d+8) »Ker?(d' +6}), a—>H'(a|y).

Here 8, = P&'P~! and H' is the orthogonal projection on the space Ker* L' =Ker?(d' + 8)).
. . AG(P~J,T®6

(1IT) pt: Ker?(d' +6,) — Ker®*1D* | Tr—»( ( p- IJ(?* Y)) .

Here J, is the orthogonal projection onto the orthogonal complement (Im p'); of Im p),
in the space Ker?(d’ +96,).

av) p,: Ker?*1D* 5 Ker?*(d+96), ({;)»-»Hﬁ.

Here H is the orthogonal projection on the space Ker?*!A=Ker?*(d+4).

V) p,: Ker?*1(d+06) »Ker?*'(d'+6y), B—H(Bly).

Here H' is the orthogonal projection on the space Ker?* 'L’ =Ker?*}(d’ 4 &}).
. . dG(P~ I, T

VD) o Ker?*(d' 4+ §))—» Ker?*2D, T»—»( ol P‘l‘.,] ;95”) .

Here J, is the orthogonal projection onto the orthogonal complement (Im p’)} of Im p),
in the space Ker?'*1(d’ +&}).

The next theorem is the essential step in the proof of Theorem 2 (cf. [F, Theorem
8.6]):

THEOREM 6.3. The following sequence of homomorphisms forms a complex, and is
exact.
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0 — Ker°D = Ker’d+d) — Ker°(d +8%)
pe 1 po 1 po 1037 1

—» Ker'D* — Ker'(d+6) —> Ker'(d'+6})

Lo, Ker?D P, Kerd+0) P Ker’d +9))

()

Lo, Ker¥D e, Ker?(d+0) —Pon Ker?(d +6))

”"

_Pe, Ker?itip*r _Po, Ker2*1(d +9) LN Ker?*1(d'+6))

Assuming this theorem for the moment, we shall prove Theorem 2. It follows from
an application of the Hodge-Kodaira theorem that

Keri(d+ )= Hi(X)~H/X, R),
Ker/(d' +6,)~H{(Y)~H/{Y,R) .
Therefore, by virtue of the five lemma, the long exact sequence (*) implies that
KerD~H*(X,Y,R), Ker**'D*~H?**(X,Y,R).
Hence we have by Theorems 5.3 and 5.4
ind D=dim Ker D —dim Ker D*

[n/2] [n/2]
=) dimKer*D— Z dim Ker?'*! D*
i=0 i=0
[n/2] [n/2]
=) dim H*X, Y,R)— ), dim H**!(X, Y, R)
i=0 i=0

= 3 (— 1y dim H(X, Y, R)
i=0

=X(X’ Y)
=xX)—x(Y).

7. Proof of Theorem 6.3. (I) Now we define a mapping
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p: KerD—Ker(d+9), (:)»—»Ha,

and a mapping
p': Ker(d+0) > Ker(d' +6}), a—H'(xy).

Throughout this section we drop the 2i, 2i+ 1 and use Ker D, Ker(d + 8) and Ker(d + 6,),
respectively. Then we have the following:

LemMma 7.1. Imp=Kerp'

Proor. (1) Let (:) be an arbitrary element of the space Ker D, that is,

da=0,
oz|y=1*oc=0 R
00— (S®dy)=0.
Then we have
o=Ha+ GAa=Ha+ G(déa+ dda)= Hou+ Gd(S ® dy) = Ho+ dG(S ® by ) .
This gives that
Hely=(2—dG(S ® dy))|y=—d'PS .

Hence we have

p'<p( : >>=H’(Ha|y)= _Hd'PS=0,

since H'd’=0. This proves that Im pc=Kerp'.
(2) Conversely, assume that o e Ker p’, that is,

do=0,
oa=0,
H'(x|y)=0.
We recall that
d'6\G'+61d'G+H =I.
Then it follows that
7.1) a|y=d’5’1G’(oz|Y)+5’1d’G’(a|y)
=d’6’1G'(oz|y)+5’1G’d’(a|y)=d'5’1G’(a|y) ,
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since d'(a|y) =do|y =0. If we let
{s: —P715,G(aly)=—P'G'aly),
f=a+dG(S®dy),
then we have by Formula (7.1)

{dﬁ:d«x:O ,
Bly=a|y+d'PS=a|y—d'8,G'(x|y)=0.

(7.2)

Furthermore, since we have
§S=—88P *G'(|y)=0,
it follows that
0f=0dG(S® dy)=(A—dO)G(S® dy)

=(I—H)S ®dy)—doG(S ® dy)
=S ®dy)—HS ®y)—dG(0'S ® dy)
=(S®Jy)—H(S®dy) .

By Theorem 3.3, this implies that

{BEQ(J*),
d*f=0p—~(S®dy)=—H(S®Jy) .

However, we have the following:
CLaM 1. H(S® 6y)=0, or equivalently, 6 —(S ® 6y)=0.

Proor. If {h,,..., hy} is an orthonormal basis of the space Ker(d+ d), then we
have by Formula (7.2)

N
HS®6y)|y= Y. (j h;A *(S®6,)>h,.|,
X

ji=1

N
= Z <f hJ'YA*IS>h]|Y
i=1 Y

— .;1 (J‘ hj|y A*(P~ 15/1G/(aly))>hj|y

N N
=- '21 <hj'Y’ 5’1Gl(°‘|y)>hj|y= - '21 <d'(hj|y), G’(“Iy»hjly
j= j=

N
=- _Zl <dhj Ys Gl(°‘|¥)>hj|y=0 s
j=
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since dh;=0. By Theorem 3.2, it follows that

{(T*ﬂ= —H(S®dy)e2(d),
dd*B= —dH(S ® 5y)=0.

Hence we have

(HS®6y), H(S®y))=(d*B, d*B)=(dd*B, p)=0.

This proves Claim 1. |
Summing up, we have proved that
dg=0,
B | Y= 0,
f—(S®y)=0,
that is,
( b ) eKerD,
S
and
e up_ (B
a=Ha=HB=p S elmp.
The proof of Lemma 7.1 is complete. ]

(I) We define
0S=H(S®dy)ly »
and let
n=QP !,
Then we have the following characterization of Im p':
CLaM 2. Imp'=ImH'o7.

Proof. (i) ImH'omcImp’: This is trivial.
(i) Imp'cImH’on: Let T be an arbitrary element of Im p’, and assume that
T=p'(a), aeKer(d+9), that is,

T=H'(a|y).

If {hy, ..., hy} is an orthonormal basis of the space Ker(d + d), then we have

HS®dy)= i q th*(S®5Y))hj= i (J- hj|,,/\*’S)hj,
X J Y

=1 i=
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so that

N
0S=H(S®dy)|y= Z (J hily A *'S)hjly .
Y

i=1

This gives that

N N
(7.3) nS=QP 'S= ) (J h,.|,,\*'P—ls>h,.|,= Y, <hjly, SOhyly
j=1 Y j=1
so that
N
(7.4 H'(nS)= Zl Chylys SYH'(hyly) -
j=

On the other hand, since we have

it follows that

N
P@=Hel)=Y (f hiA *a)H'(h,-Iy) :
X

Jj=1

However, we can find an element S, such that

<hyly, S0>=J hjaxa, 1<j<N.
X
Hence we have
p’(<>t)=j§:1 Chilys So>H'(hyly) -
Therefore, combining this formula with Formula (7.4), we obtain that

T=p'(0)=H'(nSy)eImH ox .

REMARK 7.2. The operator = is symmetric, that is, we have
(nS, T)>={S,nT) .

Indeed, it follows from Formula (7.3) that
N
(nS, Ty= 3, {hyly, SY<hyly, TH=(S,nT) .
i=1

(III) Now we define a linear mapping
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dG(P7'JT®d
p": Ker(d' +6;)—>KerD, T|—>< ( ® Y)).

P YT

Here J is the orthogonal projection onto the orthogonal complement (Im p’)* of Im p’
in the space Ker(d' +d}).
(IlI-a) First we check the well-definedness of the mapping p” : If we let

{a=dG(P‘1JT® ),
S=P~UT,

then we have

{dtx =0,
a|y=d'P(P~'JT)=d'JT=0,
since JTe Ker(d' + ;). Further it follows that
(7.5) 00.=0dG(S ® dy)=(A—dd)G(S @ dy)=(I —H—déG)S ® dy)
=(S®dy)—HS®dy)—déG(S® dy) .
However, we have the following:
CLaM 3. H(S®dy)=0, doG(S ® dy)=0.
Proor. First we have
(7.6) d6G(S ® 8y)|y=dG(S ® 8y)|y=d'P§'S=d'(PSP~)JT=d'§,JT=0,

since JTeKer(d' + ).
If T=T,+ T, with T, eIm p’ and T,e(Imp’)*, then we have

H(S®dy)|y=0S=QP 'JT=QP 'JT,=QP 'T,=nT,,
since JT, =0 and JT,=T,.

However, if {h,, ..., hy} is an orthonormal basis of the space Ker(d+J), then it
follows from Formula (7.3) that

N N
nT,= 21 <hj|Y’ T2>hj|}’= _Zl <hj
= j=

J

N
Y> HI(T2)>hj|Y= '21 <H’(hj|Y)’ T2>hj|}’=0 5
j=

since T, €(Im p")* cKer(d'+6}) and H'(h jly) =p'(h;)eImp’. Hence we have

7.7 H(S®dy)|y=nT,=0.

Thus, in view of Theorem 3.2, it follows from Assertions (7.6) and (7.7) that
HS®6,)+d6G(S®6y)e 2(d).

Therefore, since we have by Formula (7.5)
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d*a=00—(S®Jy)=—H(S ® 6y)—ddG(S ® dy) e 2(d),
it follows that
(d*a, d*a)=(dd*a, 2)=0,
so that
0=d*a=—H(S®dy)—doG(S® dy) .
This proves Claim 3, since Hd=0.

By Claim 3, it follows from Formula (7.5) that da—(S ® éy)=0.
Summing up, we have proved that

<a>eKerD.
S

(ITI-b) Next we show the following:
Lemma 7.3. Imp'=Kerp".
Proor. (1) Kerp”’cImp': If TeKer(d' +6}) and

. dG(P~'JT® 6
O R
then we have TelIm p’, since JT=0.

(2) Imp’ =Kerp”: This is trivial.

(IV) Finally it remains to show the following:

LEMMA 7.4. Imp”=XKerp.

ProoF. (1) Imp”<Kerp: This is trivial, since Hd=0.

(2) KerpcImp™: If<:)eKerD and p(:>=0, then we have

da=0,
aly=0,
do—(S®dy)=0,
Ha=0.
Thus a can be written in the following form:
o=GAa=Gdéu=Gd(S ® dy)=dG(S ® dy) .
If we let
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T=PS,
then it follows that
d'T=dG(S® dy)|y=aly=0,
and from Lemmas 6.2 and 3.1 and also Formula (6.1) that
8, T=P5'S=G(5'S®dy)|y=G(S ® dy)|y =G|y =0.
Hence we have TeKer(d’'+d}). However, we have JT =T, that is,
(7.8) Te(Imp)*.
Indeed, since we have
nT=nPS=QS=H(S®Jy)|y=H(x)|y=0,

we find from Remark 7.2 that for all p€Q°(Y)

KL Hno)={H'T, n¢)={T, np)={nT, 9> =0,
so that by Claim 2

TlImHon=Imp .

This proves assertion (7.8).
In view of assertion (7.8), it follows that

P YT=P 'T=S.
Hence we have
( o >= <dG(S ® 5y)> _ (dG(P“ UT® dy)
S S P~UT
This completes the proof of Lemma 7.4. |

) =p"(T)elmp” .

Now the proof of Theorem 6.3 and hence that of Theorem 2 is complete.
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