AN INDEX FORMULA FOR THE DE RHAM COMPLEX

Kazuaki Taira

(Received February 6, 1992)

Abstract

The purpose of this note is to give an analytic (and direct) proof of an index formula for the relative de Rham cohomology groups, which may be considered as a generalization of the celebrated Atiyah-Singer index theorem for the absolute de Rham cohomology groups. The crucial point is how to find an operator D for which an index formula holds. In deriving our index formula, the theory of harmonic forms satisfying an interior boundary condition plays a fundamental role. We remark that the operator D is no longer a local (differential) operator.

Introduction and results. Let X be an n-dimensional smooth manifold, and let $\Omega(X)$ be the space of smooth differential forms on X :

$$
\Omega(X)=\bigoplus_{k=0}^{n} \Omega^{k}(X),
$$

where $\Omega^{k}(X)$ is the space of smooth k-forms.
Let $d: \Omega(X) \rightarrow \Omega(X)$ be the exterior derivative on X. A smooth k-form α on X is said to be closed if $d \alpha=0$. It is said to be exact if $\alpha=d \beta$ for some smooth $(k-1)$-form β on X.

We let

$$
\begin{aligned}
& Z^{k}(X)=\text { the space of closed } k \text {-forms on } X, \\
& B^{k}(X)=\text { the space of exact } k \text {-forms on } X
\end{aligned}
$$

and

$$
H^{k}(X)=Z^{k}(X) / B^{k}(X) .
$$

The quotient space $H^{k}(X)$ is called the k-th de Rham cohomology group of X. These groups come from a sequence of maps (the de Rham complex)

$$
\Omega^{k-1}(X) \xrightarrow{d^{k-1}} \Omega^{k}(X) \xrightarrow{d^{k}} \Omega^{k+1}(X),
$$

and

[^0]$$
H^{k}(X)=\operatorname{Ker} d^{k} / \operatorname{Im} d^{k-1}
$$

The celebrated de Rham theorem states that the de Rham cohomology groups $H^{k}(X)$ are isomorphic to the simplicial cohomology groups $H^{k}(X, R)$ defined in algebraic topology:

$$
H^{k}(X) \cong H^{k}(X, \boldsymbol{R})
$$

We recall that the Euler-Poincaré characteristic $\chi(X)$ is defined by the formula:

$$
\chi(X)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H^{i}(X, \boldsymbol{R}) .
$$

Now let X be a compact, oriented smooth Riemannian manifold without boundary. The Riemannian structure on X gives rise to a strictly positive smooth measure on X, and to an inner product (\cdot, \cdot) on each $\Omega^{k}(X)$.

Let δ be the adjoint operator of the exterior derivative d with respect to the inner product (\cdot, \cdot) :

$$
(\delta \alpha, \beta)=(\alpha, d \beta), \quad \alpha \in \Omega^{k+1}(X), \quad \beta \in \Omega^{k}(X) .
$$

We "roll up" the de Rham complex, and define an operator

$$
\begin{gathered}
(d+\delta)_{e}: \Omega^{e}(X) \rightarrow \Omega^{o}(X) \\
\alpha \mapsto(d+\delta) \alpha,
\end{gathered}
$$

where:
$\Omega^{e}(X)=\oplus_{i=0}^{[n / 2]} \Omega^{2 i}(X)$, the space of differential forms of even degree,
$\Omega^{o}(X)=\oplus_{i=0}^{[n / 2]} \Omega^{2 i+1}(X)$, the space of differential forms of odd degree.
We recall that the analytical index $\operatorname{ind}(d+\delta)_{e}$ of the operator $(d+\delta)_{e}$ is defined by the formula:

$$
\operatorname{ind}(d+\delta)_{e}=\operatorname{dim} \operatorname{Ker}(d+\delta)_{e}-\operatorname{dim} \operatorname{Ker}(d+\delta)_{e}^{*},
$$

where $(d+\delta)_{e}^{*}$ is the adjoint operator of $(d+\delta)_{e}$.
Then we obtain the following index formula which is a special case of the Atiyah-Singer index theorem (cf. [CP], [G], [P]):

Theorem 1. $\operatorname{ind}(d+\delta)_{e}=\chi(X)$.
The purpose of this note is to prove an index formula for the cohomology groups $H^{\cdot}(X, Y)$ of X relative to an $(n-1)$-dimensional, compact oriented submanifold Y of X. The crucial point is how to find an operator D, a generalization of $(d+\delta)_{e}$, for which such an index formula as in Theorem 1 holds.

We let

$$
\begin{aligned}
& \Omega^{p}(X)=\text { the space of smooth } p \text {-forms on } X, \\
& \Omega^{p}(Y)=\text { the space of smooth } p \text {-forms on } Y,
\end{aligned}
$$

and

$$
\Omega^{p}(X, Y)=\left\{\theta \in \Omega^{p}(X) ; l^{*}(\theta)=0\right\},
$$

where $t: Y \rightarrow X$ is the natural inclusion map. Then the exterior derivative d maps $\Omega^{p}(X, Y)$ into $\Omega^{p+1}(X, Y)$. Indeed, it suffices to note that $\iota^{*} d=d^{\prime} \imath^{*}$ where d^{\prime} is the exterior derivative on Y. Thus we have the following sequence of maps

$$
\Omega^{p-1}(X, Y) \xrightarrow{d^{p-1}} \Omega^{p}(X, Y) \xrightarrow{d^{p}} \Omega^{p+1}(X, Y) .
$$

We let

$$
H^{p}(X, Y)=\operatorname{Ker} d^{p} / \operatorname{Im} d^{p-1}
$$

The quotient space $H^{p}(X, Y)$ is called the p-th de Rham cohomology group of X relative to Y. In other words, the relative cohomology group $H^{\cdot}(X, Y)$ is the cohomology group of the complex $\Omega^{\cdot}(X, Y)$ defined by the exact sequence of complexes

$$
0 \longrightarrow \Omega^{*}(X, Y) \longrightarrow \Omega^{*}(X) \xrightarrow{i^{*}} \Omega^{*}(Y) \longrightarrow 0 .
$$

The de Rham theorem extends to this case, that is, the cohomology groups $H^{p}(X, Y)$ are isomorphic to the relative cohomology groups $H^{p}(X, Y, R)$ defined in algebraic topology:

$$
H^{p}(X, Y) \cong H^{p}(X, Y, \boldsymbol{R})
$$

We define the Euler-Poincaré characteristic $\chi(X, Y)$ by the following formula:

$$
\chi(X, Y)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H^{i}(X, Y, \boldsymbol{R})
$$

We let
$\Omega^{p}(X \backslash Y)=$ the space of p-currents on X which are smooth in $X \backslash Y$ and may
have jump discontinuities at Y,
and

$$
\begin{aligned}
& \Omega^{e}(X \backslash Y)=\underset{i}{\oplus} \Omega^{2 i}(X \backslash Y), \quad \Omega^{o}(X \backslash Y)=\underset{i}{\oplus} \Omega^{2 i+1}(X \backslash Y) ; \\
& \Omega^{e}(Y)=\underset{i}{\oplus} \Omega^{2 i}(Y), \quad \Omega^{o}(Y)=\underset{i}{\oplus} \Omega^{2 i+1}(Y) .
\end{aligned}
$$

If T is a p-current on Y, we define a p-current $T \otimes \delta_{Y}$ on X by the formula:

$$
\int_{X} \alpha \wedge *\left(T \otimes \delta_{Y}\right)=\int_{Y} \imath^{*} \alpha \wedge *^{\prime} T, \quad \alpha \in \Omega^{p}(X) .
$$

Here * and $*^{\prime}$ are the Hodge star operators on X and on Y, respectively.
We introduce a linear operator

$$
D=\left(\begin{array}{cc}
(d+\delta) & -\left(\cdot \otimes \delta_{Y}\right) \\
\imath^{*} & 0
\end{array}\right): \begin{array}{ccc}
\Omega^{e}(X \backslash Y) \\
& \oplus & \Omega^{o}(X \backslash Y) \\
\Omega^{o}(Y)
\end{array} \longrightarrow \begin{gathered}
\oplus \\
\Omega^{e}(Y)
\end{gathered}
$$

as follows:
(1) The domain $\mathscr{D}(D)$ of D is the space

$$
\mathscr{D}(D)=\left\{\binom{\alpha}{S} ; \alpha \in \Omega^{e}(X \backslash Y), S \in \Omega^{o}(Y), d \alpha \in \Omega^{o}(X \backslash Y), \delta \alpha-\left(S \otimes \delta_{Y}\right) \in \Omega^{o}(X \backslash Y)\right\} .
$$

$$
\begin{equation*}
D\binom{\alpha}{S}=\binom{(d+\delta) \alpha-\left(S \otimes \delta_{Y}\right)}{i^{*} \alpha}, \quad\binom{\alpha}{S} \in \mathscr{D}(D) . \tag{2}
\end{equation*}
$$

Here $d \alpha$ and $\delta \alpha$ are taken in the sense of currents. Now we can state our index formula:
Theorem 2. ind $D=\chi(X, Y)=\chi(X)-\chi(Y)$.
The rest of this note is organized as follows: In Sections 1 and 2, we present a brief description of the basic definitions and results about differential operators and function spaces in differential geometry and partial differential equations. In Section 3, we consider the exterior derivative d restricted to the space $\Omega^{p}(X, Y)$ in the space $W_{0}^{p}(X)$ of square integrable p-currents on X, and then characterize its minimal closed extension \bar{d} and the adjoint operator \bar{d}^{*}. In Section 4, via the Hilbert-Schmidt theory, we formulate the celebrated Hodge-Kodaira decomposition theorem for the Laplacian $\Delta=d \delta+\delta d$ in the framework of the Hilbert spaces $W_{0}^{p}(X)$. In particular, we have the following:

$$
\operatorname{Ker}^{p} \Delta=\operatorname{Ker}^{p}(d+\delta) \cong H^{p}(X) \cong H^{p}(X, \boldsymbol{R}) .
$$

In Section 5, we study the operator D and its adjoint D^{*}, and characterize the kernels $\operatorname{Ker} D$ and Ker D^{*} componentwise. The characterizations of the operators \bar{d} and \bar{d}^{*} in Section 3 play an important role in the proof. Sections 6 and 7 are devoted to the proof of Theorem 2. First we consider an elliptic pseudo-differential operator P of order -1 on Y which is associated with the interior boundary value problem for the Laplacian $\Delta=d \delta+\delta d$:

$$
\left\{\begin{array}{lll}
\Delta T=0 & \text { in } & X \backslash Y, \\
\left.T\right|_{Y}=\varphi & \text { on } & Y .
\end{array}\right.
$$

Next, by using the operator P, we introduce a generalized Laplacian L^{\prime} on Y by the
formula:

$$
L^{\prime}=d^{\prime} \delta_{1}^{\prime}+\delta_{1}^{\prime} d^{\prime},
$$

where $\delta_{1}^{\prime}=P \boldsymbol{\delta}^{\prime} \boldsymbol{P}^{-1}$. It is easy to see that the Hodge-Kodaira theory extends to the operators $d^{\prime}, \delta_{1}^{\prime}$ and L^{\prime} :

$$
\operatorname{Ker}^{p} L^{\prime}=\operatorname{Ker}^{p}\left(d^{\prime}+\delta_{1}^{\prime}\right) \cong H^{p}(Y) \cong H^{p}(Y, \boldsymbol{R}) .
$$

Finally we construct explicitly six mappings $\rho_{e}, \rho_{e}^{\prime}, \rho_{e}^{\prime \prime}, \rho_{o}, \rho_{o}^{\prime}$ and $\rho_{o}^{\prime \prime}$ so that the following sequence of homomorphisms forms a complex, and is exact:

$$
\begin{aligned}
& \xrightarrow[o]{\rho_{o}^{\prime \prime}} \operatorname{Ker}^{2 i} D \xrightarrow{\rho_{e}} \operatorname{Ker}^{2 i}(d+\delta) \xrightarrow{\rho_{e}^{\prime}} \operatorname{Ker}^{2 i}\left(d^{\prime}+\delta_{1}^{\prime}\right) \\
& \xrightarrow{\rho_{e}^{\prime \prime}} \operatorname{Ker}^{2 i+1} D^{*} \xrightarrow{\rho_{o}} \operatorname{Ker}^{2 i+1}(d+\delta) \xrightarrow{\rho_{o}^{\prime}} \operatorname{Ker}^{2 i+1}\left(d^{\prime}+\delta_{1}^{\prime}\right) .
\end{aligned}
$$

Therefore, Theorem 2 follows from an application of the well-known five lemma.
Our index formula is inspired by the work of Fujiwara [F]. The author would like to thank Professor Daisuke Fujiwara for valuable discussions.

1. Differential operators. Let X be an n-dimensional smooth manifold, and let $\Omega(X)$ be the space of smooth differential forms on X. The space $\Omega(X)$ is graded by the degrees of forms:

$$
\Omega(X)=\bigoplus_{k=0}^{n} \Omega^{k}(X),
$$

where $\Omega^{k}(X)$ is the space of smooth k-forms. There exists a unique linear map

$$
d: \Omega(X) \rightarrow \Omega(X),
$$

called the exterior derivative, such that:
(a) $d: \Omega^{k}(X) \rightarrow \Omega^{k+1}(X)$.
(b) $d f$ equals the ordinary differential $d f$ if $f \in C^{\infty}(X)$.
(c) If $\mu \in \Omega^{k}(X)$ and $\tau \in \Omega(X)$, then we have

$$
d(\mu \wedge \tau)=d \mu \wedge \tau+(-1)^{k} \mu \wedge d \tau
$$

(d) $d^{2}=0$.

The operator d is a first-order differential operator.
Now let X be a compact, oriented smooth Riemannian manifold without boundary. The Riemannian structure on X gives rise to a strictly positive smooth measure μ on X, and to an inner product (\cdot, \cdot) on each $\Omega^{k}(X)$.

Let δ be the adjoint operator of the exterior derivative d with respect to the inner product (\cdot, \cdot) :

$$
(\delta \alpha, \beta)=(\alpha, d \beta), \quad \alpha \in \Omega^{k+1}(X), \quad \beta \in \Omega^{k}(X)
$$

The operator δ is a first-order differential operator, and is called the codifferential operator.

There is an isomorphism

$$
*: \Omega^{k}(X) \rightarrow \Omega^{n-k}(X),
$$

called the Hodge star operator, such that:
(i) $(\alpha, \beta)=\int_{X} \alpha \wedge * \beta, \alpha, \beta \in \Omega^{k}(X)$.
(ii) $* 1=\mu, * \mu=1$.
(iii) $\quad * * \alpha=(-1)^{k(n-k)} \alpha, \alpha \in \Omega^{k}(X)$.
(iv) $(* \alpha, * \beta)=(\alpha, \beta), \alpha, \beta \in \Omega^{k}(X)$.

We remark that the operator δ can be expressed in terms of the operator $*$ as follows:

$$
\delta \alpha=(-1)^{n(k+1)+1} * d * \alpha, \quad \alpha \in \Omega^{k}(X) .
$$

We define the Laplace-Beltrami operator Δ on X by the formula:

$$
\Delta=(d+\delta)^{2}=d \delta+\delta d
$$

The operator Δ maps $\Omega^{k}(X)$ into itself, since d is of degree +1 while δ is of degree -1 . It is known that Δ is a second-order elliptic differential operator.
2. Function spaces. First we recall the basic definitions and facts about the Fourier transform.

If $f \in L^{1}\left(\boldsymbol{R}^{n}\right)$, we define its (direct) Fourier transform $\mathscr{F} f$ by the formula

$$
\mathscr{F} f(\xi)=\int_{\boldsymbol{R}^{n}} e^{-i x \cdot \xi} f(x) d x, \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right),
$$

where $x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$. We also denote $\mathscr{F} f$ by \hat{f}. Similarly, if $g \in L^{1}\left(\boldsymbol{R}^{n}\right)$, we define

$$
\mathscr{F} * g(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbf{R}^{n}} e^{i x \cdot \xi} g(\xi) d \xi
$$

The function $\mathscr{F}^{*} g$ is called the inverse Fourier transform of g.
We introduce a subspace of $L^{1}\left(\boldsymbol{R}^{n}\right)$ which is invariant under the Fourier transform. We let
$\mathscr{S}\left(\boldsymbol{R}^{n}\right)=$ the space of C^{∞}-functions φ on \boldsymbol{R}^{n} such that we have for any nonnegative integer j

$$
p_{j}(\varphi)=\sup _{\substack{x \in \mathbb{N}^{n} \\|\alpha| \leq j}}\left\{\left(1+|x|^{2}\right)^{j / 2}\left|\partial^{\alpha} \varphi(x)\right|\right\}<\infty .
$$

The space $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ is called the space of C^{∞}-functions on \boldsymbol{R}^{n} rapidly decreasing at infinity. We equip the space $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ with the topology defined by the countable family $\left\{p_{j}\right\}$ of
seminorms. The space $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ is complete.
We list some basic properties of the Fourier transform:
(1) The transforms \mathscr{F} and $\mathscr{F} *$ map $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ continuously into itself.
(2) The transforms \mathscr{F} and \mathscr{F}^{*} are isomorphisms of $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ onto itself; more precisely, we have

$$
\mathscr{F} \mathscr{F}^{*}=\mathscr{F}^{*} \mathscr{F}=I \quad \text { on } \quad \mathscr{S}\left(\boldsymbol{R}^{n}\right) .
$$

The elements of the dual space $\mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ are called tempered distributions on \boldsymbol{R}^{n}. The direct and inverse Fourier transforms can be extended to the space $\mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ respectively by the following formulas:

$$
\begin{aligned}
& \langle\mathscr{F} u, \varphi\rangle=\langle u, \mathscr{F} \varphi\rangle, \quad \varphi \in \mathscr{S}\left(\boldsymbol{R}^{n}\right) . \\
& \left\langle\mathscr{F}^{*} u, \varphi\right\rangle=\left\langle u, \mathscr{F}^{*} \varphi\right\rangle, \quad \varphi \in \mathscr{S}\left(\boldsymbol{R}^{n}\right) .
\end{aligned}
$$

Here $\langle\cdot, \cdot\rangle$ is the pairing between the spaces $\mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ and $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$. Once again, the transforms \mathscr{F} and \mathscr{F}^{*} map $\mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ continuously into itself, and $\mathscr{F} \mathscr{F}^{*}=\mathscr{F} * \mathscr{F}=I$ on $\mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$.

The function spaces we shall treat are the following (cf. [CP], [H1], [T]): If $a \in \boldsymbol{R}$, we let
$W_{a}\left(\boldsymbol{R}^{n}\right)=$ the space of distributions $u \in \mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ such that $\hat{u}=\mathscr{F} u$ is a locally integrable function on \boldsymbol{R}^{n} and that

$$
\int_{\mathbf{R}^{n}}\left(1+|\xi|^{2}\right)^{a}|\hat{u}(\xi)|^{2} d \xi<\infty
$$

We equip the space $W_{a}\left(\boldsymbol{R}^{n}\right)$ with the inner product

$$
(u, v)_{a}=\int_{\boldsymbol{R}^{n}}\left(1+|\xi|^{2}\right)^{a} \hat{u}(\xi) \hat{v}(\xi) d \xi,
$$

and with the associated norm

$$
\|u\|_{a}=\left(\int_{\mathbf{R}^{n}}\left(1+|\xi|^{2}\right)^{a}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

The space $W_{a}\left(\boldsymbol{R}^{n}\right)$ is complete.
We list some basic topological properties of the spaces $W_{a}\left(\boldsymbol{R}^{n}\right)$:
(1) The space $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ is dense in each $W_{a}\left(\boldsymbol{R}^{n}\right)$.
(2) If $a^{\prime} \leq a$, we have inclusions

$$
\mathscr{S}\left(\boldsymbol{R}^{n}\right) \subset W_{a}\left(\boldsymbol{R}^{n}\right) \subset W_{a^{\prime}}\left(\boldsymbol{R}^{n}\right) \subset \mathscr{S}^{\prime}\left(\boldsymbol{R}^{n}\right),
$$

with continuous injections.
(3) The spaces $W_{a}\left(\boldsymbol{R}^{n}\right)$ and $W_{-a}\left(\boldsymbol{R}^{n}\right)$ are dual to each other with respect to the
bilinear form:

$$
\langle u, v\rangle=\int_{\boldsymbol{R}^{n}} \hat{u}(\xi) \hat{v}(\xi) d \xi, \quad u \in W_{a}\left(\boldsymbol{R}^{n}\right), \quad v \in W_{-a}\left(\boldsymbol{R}^{n}\right)
$$

We let $\delta_{\boldsymbol{R}^{n-1}}(x)$ be a distribution on \boldsymbol{R}^{n} defined by the following formula:

$$
\left\langle\delta_{\boldsymbol{R}^{n-1}}, \varphi\right\rangle=\int_{\boldsymbol{R}^{n-1}} \varphi\left(x^{\prime}, 0\right) d x^{\prime}, \quad \varphi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) .
$$

We remark that

$$
\delta_{\mathbf{R}^{n-1}}\left(x^{\prime}, x_{n}\right)=1 \otimes \delta\left(x_{n}\right) .
$$

The next result characterizes the restrictions of elements in $W_{a}\left(\boldsymbol{R}^{n}\right)$ to the hyperplane $\left\{x_{n}=0\right\}$ which enter naturally in connection with interior boundary value problems:

Theorem 2.1. If $a>1 / 2$, then the restriction map

$$
\rho: \mathscr{S}\left(\boldsymbol{R}^{n}\right) \rightarrow \mathscr{S}\left(\boldsymbol{R}^{n-1}\right), \quad \varphi\left(x^{\prime}, x_{n}\right) \mapsto \varphi\left(x^{\prime}, 0\right)
$$

can be extended in one and only one way to a continuous mapping ρ of $W_{a}\left(\boldsymbol{R}^{n}\right)$ onto $W_{a-1 / 2}\left(R^{n-1}\right)$.

If X is an n-dimensional, compact smooth manifold without boundary, then the space $W_{a}^{p}(X)$ of p-currents on X is defined to be locally the space $W_{a}\left(R^{n}\right)$, upon using local coordinate systems $\left(x^{1}, \ldots, x^{n}\right)$ flattening out X, together with a partition of unity. That is, we let
$W_{a}^{p}(X)=$ the space of p-currents α on X such that in local coordinates

$$
\alpha=\sum_{1 \leq i_{i}<\cdots<i_{p} \leq n} \alpha_{i_{1} \ldots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

where the coefficients $\alpha_{i_{1} \ldots i_{p}}$ belong locally to the space $W_{a}\left(\boldsymbol{R}^{n}\right)$.
Then we have the following topological properties of the spaces $W_{a}^{p}(X)$ (cf. [F, Proposition 3.2]):
(1) If $a^{\prime} \leq a$, then we have an inclusion

$$
W_{a}^{p}(X) \subset W_{a^{\prime}}^{p}(X),
$$

with continuous injection.
(2) (Rellich) If $a^{\prime}<a$, then the injection

$$
W_{a}^{p}(X) \rightarrow W_{a^{\prime}}^{p}(X)
$$

is completely continuous (or compact).
(3) If Y is an $(n-1)$-dimensional, compact submanifold of X, then the restriction map

$$
\rho: W_{a}^{p}(X) \rightarrow W_{a-1 / 2}^{p}(Y),\left.\quad u \mapsto u\right|_{Y}
$$

is well-defined for all $a>1 / 2$, and surjective.
3. The exterior derivative and the codifferential operator. We denote by d and δ the exterior derivative and the codifferential operator in the sense of currents, respectively. If T is a p-current on Y, we define a p-current $T \otimes \delta_{Y}$ on X by the formula:

$$
\int_{X} \alpha \wedge *\left(T \otimes \delta_{Y}\right)=\int_{Y} l^{*} \alpha \wedge *^{\prime} T, \quad \alpha \in \Omega^{p}(X) .
$$

Here * and $*^{\prime}$ are the Hodge star operators on X and on Y, respectively.
Then it is easy to see the following:
Lemma 3.1. We have for any p-current T on Y

$$
\delta\left(T \otimes \delta_{Y}\right)=\delta^{\prime} T \otimes \delta_{Y},
$$

where δ^{\prime} is the codifferential operator on Y.
We recall that

$$
W_{0}^{p}(X)=\text { the space of square integrable } p \text {-currents on } X \text {. }
$$

This is a Hilbert space with respect to the inner product

$$
(\alpha, \beta)=\int_{X} \alpha \wedge * \beta, \quad \alpha, \beta \in W_{0}^{p}(X) .
$$

We let
$\bar{d}=$ the minimal closed extension in $W_{0}^{p}(X)$ of the operator d restricted to the space $\Omega^{p}(X, Y)=\left\{\alpha \in \Omega^{p}(X) ; \iota^{*} \alpha=0\right\}$,
and

$$
\bar{d}^{*}=\text { the adjoint of the operator } \bar{d}: W_{0}^{p}(X) \rightarrow W_{0}^{p+1}(X) .
$$

The next theorem gives a characterization of the operator \bar{d} (cf. [F, Theorem 5.11]):
Theorem 3.2. If $\alpha \in W_{o}^{p}(X), d \alpha \in W_{o}^{p}(X)$ and $\left.\alpha\right|_{Y}=0$, then we have

$$
\left\{\begin{array}{l}
\alpha \in \mathscr{D}(\bar{d}), \\
\bar{d} \alpha=d \alpha .
\end{array}\right.
$$

The next theorem gives a characterization of the operator \bar{d}^{*} (cf. [F, Theorem 5.1]):
Theorem 3.3. An element $\alpha \in W_{0}^{p+1}(X)$ belongs to the domain $\mathscr{D}\left(d^{*}\right)$ of d^{*} if and only if there exist $\gamma \in W_{0}^{p}(X)$ and $T \in W_{-1 / 2}^{p}(Y)$ such that

$$
\delta \alpha=\gamma+\left(T \otimes \delta_{Y}\right)
$$

In this case, we have

$$
\bar{d}^{*} \alpha=\gamma=\delta \alpha-\left(T \otimes \delta_{Y}\right),
$$

and

$$
\delta^{\prime} T \in W_{-1 / 2}^{p-1}(Y) .
$$

4. The Hodge-Kodaira decomposition theorem. Let d be the exterior derivative with domain

$$
\mathscr{D}(d)=\left\{T \in W_{0}^{p}(X) ; d T \in W_{0}^{p+1}(X)\right\},
$$

and δ the codifferential operator with domain

$$
\mathscr{D}(\delta)=\left\{S \in W_{0}^{p+1}(X) ; \delta S \in W_{0}^{p}(X)\right\} .
$$

We remark that the operators d and δ are adjoint to each other with respect to the L^{2}-inner product of the spaces $W_{o}^{p}(X)$:

$$
(d T, S)=(T, \delta S), \quad T \in \mathscr{D}(d), \quad S \in \mathscr{D}(\delta)
$$

We introduce the Laplace-Beltrami operator Δ on X by the formula:

$$
\Delta=d \delta+\delta d
$$

It is easy to see that the operator Δ is a non-negative, self-adjoint operator in the Hilbert space $W_{0}^{p}(X)$. Hence we find that the resolvent $(\Delta-\lambda I)^{-1}$ exists on the space $W_{0}^{p}(X)$ for all $\lambda<0$, and that the following commutative relations hold:
(i) $\Delta d=d \Delta$ on $\mathscr{D}(d) ; \delta \Delta=\Delta \delta$ on $\mathscr{D}(\delta)$.
(ii) $(\Delta-\lambda I)^{-1} d \subset d(\Delta-\lambda I)^{-1}$ on $\mathscr{D}(d) ;(\Delta-\lambda I)^{-1} \delta \subset \delta(\Delta-\lambda I)^{-1}$ on $\mathscr{D}(\delta)$.

Furthermore, by virtue of Rellich's theorem, it follows that the resolvent $(\Delta-\lambda I)^{-1}$ is completely continuous on the space $W_{0}^{p}(X)$, since the domain $\mathscr{D}(\Delta)$ is contained in the space $W_{2}^{p}(X)$. Therefore, the Hilbert-Schmidt theory tells us the following:
(iii) The eigenvalues of Δ form a countable set accumulating only at $+\infty$.

We can define the harmonic operator H and the Green operator G for Δ respectively by the following formulas:

$$
\begin{align*}
& H=\frac{1}{2 \pi i} \int_{|\lambda|=\varepsilon}(\lambda I-\Delta)^{-1} d \lambda . \tag{4.1}\\
& G=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1}(\lambda I-\Delta)^{-1} d \lambda . \tag{4.2}
\end{align*}
$$

Here $\varepsilon>0$ is so small that all positive eigenvalues of Δ lie outside of the circle $|\lambda|=\varepsilon$ in the complex plane, and Γ is a contour which encloses all positive eigenvalues of Δ
in the complex plane. Then we have the following:
(iv) The operator H is the orthogonal projection onto the $\operatorname{kernel}^{K_{e r}}{ }^{p} \Delta$ of Δ, and G is a bounded operator on $W_{0}^{p}(X)$.
(v) $G H=H G=0$ on $W_{0}^{p}(X) ; G \Delta \subset \Delta G$ on $\mathscr{D}(\Delta)$.

Furthermore we have the following Hodge-Kodaira decomposition theorem (cf. [CP], [D], [K]):

Theorem 4.1 (Hodge-Kodaira). $\Delta G+H=d \delta G+\delta d G+H=I$ on $W_{0}^{p}(X)$.
Remark 4.2. By the elliptic regularity theorem, we find that

$$
\begin{aligned}
\operatorname{Ker}^{p} \Delta & \equiv\left\{T \in W_{0}^{p}(X) ; \Delta T=0 \text { in } X\right\} \\
& =\left\{T \in \Omega^{p}(X) ; \Delta T=0 \text { in } X\right\} \\
& =\left\{T \in \Omega^{p}(X) ; d T=0, \delta T=0 \text { in } X\right\} \\
& =\operatorname{Ker}^{p}(d+\delta) .
\end{aligned}
$$

5. The operator D. We let

$\Omega^{p}(X \backslash Y)=$ the space of p-currents on X which are smooth in $X \backslash Y$ and may have jump discontinuities at Y,
and

$$
\begin{aligned}
& \Omega^{e}(X \backslash Y)=\underset{i}{\oplus} \Omega^{2 i}(X \backslash Y), \quad \Omega^{o}(X \backslash Y)=\oplus_{i} \Omega^{2 i+1}(X \backslash Y), \\
& \Omega^{e}(Y)=\oplus_{i} \Omega^{2 i}(Y), \quad \Omega^{o}(Y)=\oplus_{i} \Omega^{2 i+1}(Y) .
\end{aligned}
$$

Now we can introduce a linear operator

$$
D=\left(\begin{array}{cccc}
(d+\delta) & -\left(\cdot \bullet \delta_{Y}\right) \\
l^{*} & 0
\end{array}\right): \begin{array}{ccc}
\Omega^{e}(X \backslash Y) & & \Omega^{o}(X \backslash Y) \\
\Omega^{o}(Y)
\end{array} \longrightarrow \begin{array}{ll}
\oplus \\
\Omega^{e}(Y)
\end{array}
$$

as follows:
(a) The domain $\mathscr{D}(D)$ of D is the space

$$
\mathscr{D}(D)=\left\{\binom{\alpha}{S} ; \alpha \in \Omega^{e}(X \backslash Y), S \in \Omega^{o}(Y), d \alpha \in \Omega^{o}(X \backslash Y), \delta \alpha-\left(S \otimes \delta_{Y}\right) \in \Omega^{o}(X \backslash Y)\right\} .
$$

(b)

$$
D\binom{\alpha}{S}=\binom{(d+\delta) \alpha-\left(S \otimes \delta_{Y}\right)}{\iota^{*} \alpha}, \quad\binom{\alpha}{S} \in \mathscr{D}(D) .
$$

Here $d \alpha$ and $\delta \alpha$ are taken in the sense of currents.
Near Y, we introduce coordinates (x^{\prime}, a) such that $x^{\prime}=\left(x^{1}, \ldots, x^{n-1}\right)$ give local
coordinates for Y and that $Y=\left\{\left(x^{\prime}, a\right) ; a=0\right\}$. We further normalize the coordinates by assuming the curves $x(a)=\left(x_{0}^{\prime}, a\right), x_{0}^{\prime} \in Y$, are unit speed geodesics perpendicular to Y for $|a|$ sufficiently small.

If $\alpha \in \Omega^{p}(X)$, then we can write, near Y,

$$
\begin{aligned}
\alpha= & \sum_{1 \leq i_{1}<\cdots<i_{p} \leq n-1} \alpha_{i_{1} \ldots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} \\
& +\sum_{1 \leq i_{1}<\ldots<i_{p-1} \leq n-1} \alpha_{i_{1} \ldots i_{p-1}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}} \wedge d a=\alpha^{\prime}+\alpha^{\prime \prime} \wedge d a,
\end{aligned}
$$

where

$$
\alpha^{\prime} \in \Omega^{p}(Y), \quad \alpha^{\prime \prime} \in \Omega^{p-1}(Y)
$$

We call α^{\prime} (resp. $\alpha^{\prime \prime}$) the tangential part (resp. the normal part) of α.
If $\alpha=\alpha^{\prime}+\alpha^{\prime \prime} \wedge d a \in \Omega^{\cdot}(X \backslash Y)$, then we have

$$
d \alpha=d \alpha^{\prime}+d^{\prime} \alpha^{\prime \prime} \wedge d a
$$

It is easy to see that:

$$
\begin{align*}
d \alpha \in \Omega^{\cdot}(X \backslash Y) \Leftrightarrow & d \alpha^{\prime} \in \Omega^{\bullet}(X \backslash Y) \tag{5.1}\\
\Leftrightarrow & \text { The tangential part } \alpha^{\prime} \text { of } \alpha \text { does not have any jump } \\
& \text { discontinuity at } Y .
\end{align*}
$$

Thus we can define the pull-back $l^{*} \alpha=l^{*} \alpha^{\prime}$ as an element of $\Omega^{*}(Y)$, that is,

$$
\iota^{*} \alpha=\imath^{*} \alpha^{\prime} \in \Omega^{\bullet}(Y) \quad \text { if } \quad d \alpha \in \Omega^{\bullet}(X \backslash Y)
$$

We remark that

$$
\delta \alpha^{\prime} \in \Omega^{\bullet}(X \backslash Y),
$$

while the term $\delta\left(\alpha^{\prime \prime} \wedge d a\right)$ may be equal to "delta functions", since we have in local coordinates

$$
\delta\left(\alpha^{\prime \prime} \wedge d a\right)=-\sum g^{m l} \frac{\partial}{\partial x^{m}}\left(\alpha_{l i_{1} \ldots i_{p-2}}\right) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-2}} \wedge d a
$$

Hence the condition that

$$
\delta \alpha-\left(S \otimes \delta_{Y}\right) \in \Omega^{\cdot}(X \backslash Y)
$$

makes sense.
The next proposition characterizes the adjoint operator D^{*} of the operator D :
Proposition 5.1. The adjoint D^{*} of D is the operator

$$
D^{*}=\left(\begin{array}{cc}
(d+\delta) & \left(\cdot \otimes \delta_{Y}\right) \\
-l^{*} & 0
\end{array}\right): \begin{array}{ccc}
\Omega^{o}(X \backslash Y) \\
\Omega^{e}(Y)
\end{array} \longrightarrow \begin{aligned}
& \Omega^{e}(X \backslash Y) \\
& \Omega^{o}(Y)
\end{aligned}
$$

given by the following:
(c) The domain $\mathscr{D}\left(D^{*}\right)$ of D^{*} is the space

$$
\begin{aligned}
& \mathscr{D}\left(D^{*}\right)=\left\{\binom{\beta}{T} ; \beta \in \Omega^{o}(X \backslash Y), T \in \Omega^{e}(Y), d \beta \in \Omega^{e}(X \backslash Y), \delta \beta+\left(T \otimes \delta_{Y}\right) \in \Omega^{e}(X \backslash Y)\right\} . \\
& \text { (d) } \quad D^{*}\binom{\beta}{T}=\binom{(d+\delta) \beta+\left(T \otimes \delta_{Y}\right)}{-\imath^{*} \beta},\binom{\beta}{T} \in \mathscr{D}\left(D^{*}\right) .
\end{aligned}
$$

Proof. (i) If $\beta \in \Omega^{o}(X \backslash Y)$ and $T \in \Omega^{e}(Y)$ such that

$$
\left\{\begin{array}{l}
d \beta \in \Omega^{e}(X \backslash Y) \\
\delta \beta+\left(T \otimes \delta_{Y}\right) \in \Omega^{e}(X \backslash Y)
\end{array}\right.
$$

then we have for all $\binom{\alpha}{S} \in \mathscr{D}(D)$

$$
\begin{aligned}
\left\langle D\binom{\alpha}{S},\binom{\beta}{T}\right\rangle & =\left\langle\binom{ d \alpha+\delta \alpha-\left(S \otimes \delta_{Y}\right)}{\iota^{*} \alpha},\binom{\beta}{T}\right\rangle \\
& =\left(d \alpha+\delta \alpha-\left(S \otimes \delta_{Y}\right), \beta\right)+\left(\iota^{*} \alpha, T\right) \\
& =(d \alpha+\delta \alpha, \beta)-\left(S, \imath^{*} \beta\right)+\left(\imath^{*} \alpha, T\right) \\
& =(\alpha, \delta \beta+d \beta)+\left(\alpha, T \otimes \delta_{Y}\right)-\left(S, \imath^{*} \beta\right) \\
& =\left\langle\binom{\alpha}{S},\binom{d \beta+\delta \beta+\left(T \otimes \delta_{Y}\right)}{-\iota^{*} \beta}\right\rangle
\end{aligned}
$$

This proves that

$$
\binom{\beta}{T} \in \mathscr{D}\left(D^{*}\right),
$$

and that

$$
D^{*}\binom{\beta}{T}=\binom{(d+\delta) \beta+\left(T \otimes \delta_{Y}\right)}{-\iota^{*} \beta}
$$

(ii) Conversely, assume that $\beta \in \Omega^{o}(X \backslash Y)$ and $T \in \Omega^{e}(Y)$ belong to the domain $\mathscr{D}\left(D^{*}\right)$, that is,
there exist $\gamma \in \Omega^{e}(X \backslash Y)$ and $\eta \in \Omega^{o}(Y)$ such that for all $\binom{\alpha}{s} \in \mathscr{D}(D)$ we have

$$
\left\langle D\binom{\alpha}{S},\binom{\beta}{T}\right\rangle=\left\langle\binom{\alpha}{S},\binom{\gamma}{\eta}\right\rangle,
$$

or equivalently,

$$
(d \alpha+\delta \alpha, \beta)-\left(S \otimes \delta_{Y}, \beta\right)+\left(\imath^{*} \alpha, T\right)=(\alpha, \gamma)+(S, \eta)
$$

Then, taking

$$
\left\{\begin{array}{l}
S=0, \\
\alpha \in \Omega^{e}(X),
\end{array}\right.
$$

we have for all $\alpha \in \Omega^{e}(X)$

$$
(\alpha, \gamma)=(d \alpha+\delta \alpha, \beta)+\left(\imath^{*} \alpha, T\right)=(\alpha, \delta \beta+d \beta)+\left(\alpha, T \otimes \delta_{Y}\right),
$$

so that

$$
d \beta+\delta \beta+\left(T \otimes \delta_{Y}\right)=\gamma \in \Omega^{e}(X \backslash Y)
$$

This gives that for all $S \in \Omega^{\circ}(Y)$

$$
\begin{aligned}
& \left(S \otimes \delta_{Y}, \beta\right)+\left(\alpha,(d+\delta) \beta+\left(T \otimes \delta_{Y}\right)\right)=\left(S \otimes \delta_{Y}, \beta\right)+(\alpha, \gamma) \\
& \quad=((d+\delta) \alpha, \beta)+\left(\imath^{*} \alpha, T\right)-(S, \eta)=\left(\alpha,(d+\delta) \beta+\left(T \otimes \delta_{Y}\right)\right)-(S, \eta)
\end{aligned}
$$

so that

$$
\left(S \otimes \delta_{Y}, \beta\right)=-(S, \eta)
$$

This proves that

$$
l^{*} \beta=-\eta \in \Omega^{o}(Y) .
$$

In other words, the tangential part β^{\prime} of β does not have any jump discontinuity at Y. In view of assertion (5.1), it follows that

$$
d \beta \in \Omega^{e}(X \backslash Y) .
$$

Therefore, we find that

$$
\delta \beta+\left(T \otimes \delta_{Y}\right)=\gamma-d \beta \in \Omega^{e}(X \backslash Y) .
$$

This completes the proof of Proposition 5.1.
The next proposition characterizes the kernel $\operatorname{Ker} D$ of the operator D componentwise:

Proposition 5.2. An element

$$
\binom{\alpha}{S} \in \begin{array}{cc}
\Omega^{e}(X \backslash Y) \\
\Omega^{o}(Y)
\end{array}
$$

belongs to the kernel of the operator D if and only if it satisfies the following conditions:

$$
\begin{aligned}
& d \alpha_{2 i}=0,\left.\quad \alpha_{2 i}\right|_{Y}=0, \quad 0 \leq i \leq[n / 2], \\
& \delta \alpha_{2 j+2}-\left(S_{2 j+1} \otimes \delta_{Y}\right)=0, \quad 0 \leq j \leq[n / 2] .
\end{aligned}
$$

Here

$$
\alpha=\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{2} \\
\cdot \\
\cdot \\
\cdot \\
\alpha_{2 k-2} \\
\alpha_{2 k}
\end{array}\right), \quad S=\left(\begin{array}{c}
S_{1} \\
S_{3} \\
\cdot \\
\cdot \\
\cdot \\
S_{2 k-1} \\
S_{2 k+1}
\end{array}\right), \quad k=\left[\frac{n}{2}\right]
$$

Proof. (i) The "only if" part: First we remark that

$$
D\binom{\alpha}{S}=0 \Leftrightarrow\left\{\begin{array}{l}
\left.\alpha_{0}\right|_{Y}=0, \ldots,\left.\alpha_{2 k}\right|_{Y}=0 \\
d \alpha_{0}+\delta \alpha_{2}-\left(S_{1} \otimes \delta_{Y}\right)=0 \\
\cdot \\
\cdot \\
\cdot \\
d \alpha_{2 k-2}+\delta \alpha_{2 k}-\left(S_{2 k-1} \otimes \delta_{Y}\right)=0 \\
d \alpha_{2 k}-\left(S_{2 k+1} \otimes \delta_{Y}\right)=0
\end{array}\right.
$$

Hence we have

$$
\begin{aligned}
& \left.d \alpha_{2 i}\right|_{Y}=0, \\
& d \alpha_{2 j}+\delta \alpha_{2 j+2}-\left(S_{2 j+1} \otimes \delta_{Y}\right)=0, \\
& d \alpha_{2 i} \in \Omega^{2 i+1}(X \backslash Y) \subset W_{0}^{2 i+1}(X), \\
& \alpha_{2 j+2} \in \Omega^{2 j+2}(X \backslash Y) \subset W_{0}^{2 j+2}(X), \\
& S_{2 j+1} \in \Omega^{2 j+1}(Y) .
\end{aligned}
$$

In view of Theorem 3.3, this implies that $\alpha_{2 j+2} \in \mathscr{D}\left(\bar{d}^{*}\right)$, and

$$
\begin{equation*}
d^{*} \alpha_{2 j+2}=\delta \alpha_{2 j+2}-\left(S_{2 j+1} \otimes \delta_{Y}\right)=-d \alpha_{2 j} \tag{5.2}
\end{equation*}
$$

Furthermore, by virtue of Theorem 3.2, it follows that

$$
\left\{\begin{array}{l}
d \alpha_{2 j} \in \mathscr{D}(\bar{d}) \\
\bar{d}\left(d \alpha_{2 j}\right)=d\left(d \alpha_{2 j}\right)=0
\end{array}\right.
$$

since $\left.d \alpha_{2 j}\right|_{Y}=d^{\prime}\left(\left.\alpha_{2 j}\right|_{Y}\right)=0$. Therefore, we find that

$$
\bar{d}\left(\bar{d}^{*} \alpha_{2 j+2}\right)=-\bar{d}\left(d \alpha_{2 j}\right)=0 .
$$

This implies that

$$
\left(d^{*} \alpha_{2 j+2}, d^{*} \alpha_{2 j+2}\right)=\left(\alpha_{2 j+2}, \bar{d} d^{*} \alpha_{2 j+2}\right)=0,
$$

so that $d^{*} \alpha_{2 j+2}=0$. Hence we have by Formula (5.2)

$$
\delta \alpha_{2 j+2}-\left(S_{2 j+1} \otimes \delta_{Y}\right)=0
$$

and also $d \alpha_{2 j}=0$.
(ii) The "if" part is trivial.

The next theorem is an immediate consequence of Proposition 5.2:
Theorem 5.3. $\operatorname{Ker} D=\oplus_{i=0}^{[n / 2]} \operatorname{Ker}^{2 i} D$, where

$$
\operatorname{Ker}^{2 i} D=\left\{\binom{\alpha}{S} ; \alpha \in \Omega^{2 i}(X \backslash Y), S \in \Omega^{2 i-1}(Y), d \alpha=0,\left.\alpha\right|_{Y}=0, \delta \alpha-\left(S \otimes \delta_{Y}\right)=0\right\}
$$

Similarly, by Proposition 5.1, we can characterize the kernel $\operatorname{Ker} D^{*}$ of the operator D^{*} componentwise:

Theorem 5.4. $\operatorname{Ker} D^{*}=\oplus_{i=0}^{[n / 2]} \operatorname{Ker}^{2 i+1} D$, where
$\operatorname{Ker}^{2 i+1} D^{*}=\left\{\binom{\beta}{T} ; \beta \in \Omega^{2 i+1}(X \backslash Y), T \in \Omega^{2 i}(Y), d \beta=0,\left.\beta\right|_{Y}=0, \delta \beta+\left(T \otimes \delta_{Y}\right)=0\right\}$.
6. The long exact sequence and the operator D. We let

$$
\begin{equation*}
P \varphi=\left.G\left(\varphi \otimes \delta_{Y}\right)\right|_{Y}, \quad \varphi \in \Omega^{p}(Y) \tag{6.1}
\end{equation*}
$$

where G is the Green operator for the Laplacian Δ defined by Formula (4.2). It is known (cf. [H2], [S1], [T]) that G is an elliptic pseudo-differential operator of order -2 on X. Then we have the following (cf. [F, Proposition 7.6]):

Theorem 6.1. The operator P is an elliptic pseudo-differential operator of order -1 on Y, and it extends to an isomorphism

$$
P: W_{o}^{p}(Y) \rightarrow W_{1}^{p}(Y)
$$

Proof. Let x_{0} be an arbitrary point of Y. We remark that

$$
T_{x_{0}}^{*}(X)=T_{x_{0}}^{*}(Y) \oplus N_{x_{0}}^{*}(Y) .
$$

Thus we can decompose each covector $\left(x_{0}, \xi\right) \in T_{x_{0}}^{*}(X)$ as follows:

$$
\left(x_{0}, \xi\right)=\left(x_{0}, \xi^{\prime}\right) \oplus\left(x_{0}, \eta\right)
$$

Then the principal symbol of G is equal to:

$$
\left(\left|\xi^{\prime}\right|^{2}+\eta^{2}\right)^{-1}
$$

Hence we find (cf. [H2], [S1], [T]) that the principal symbol of P is given by the following:

$$
-\frac{1}{2 \pi} \int_{R} \frac{d \eta}{\left|\xi^{\prime}\right|^{2}+\eta^{2}}=\left(-\frac{1}{2 \pi} \int_{R} \frac{d \zeta}{1+\zeta^{2}}\right) \cdot\left|\xi^{\prime}\right|^{-1}=\frac{1}{2}\left|\xi^{\prime}\right|^{-1} .
$$

This proves that P is an elliptic pseudo-differential operator of order -1 on Y.
We prove that $P: W_{0}^{p}(Y) \rightarrow W_{1}^{p}(Y)$ is an isomorphism. To do so, since the principal symbol of P is real, it suffices to show (cf. [P, Chapter XI, Theorem 12]) that P is injective, that is,

$$
\varphi \in \Omega^{p}(Y) \text { and } P \varphi=0 \Rightarrow \varphi=0 .
$$

We let

$$
\Phi=G^{1 / 2}\left(\varphi \otimes \delta_{Y}\right)
$$

where (cf. Formula (4.2))

$$
G^{1 / 2}=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1 / 2}(\lambda I-\Delta)^{-1} d \lambda
$$

We know (cf. [S2], [T]) that the operator $G^{1 / 2}$ is an elliptic pseudo-differential operator of order -1 on X. Then we have

$$
\begin{align*}
\int_{Y} P \varphi \wedge *^{\prime} \varphi & =\left.\int_{Y}\left(G\left(\varphi \otimes \delta_{Y}\right)\right)\right|_{Y} \wedge *^{\prime} \varphi=\int_{X} G\left(\varphi \otimes \delta_{Y}\right) \wedge *\left(\varphi \otimes \delta_{Y}\right) \tag{6.2}\\
& =\int_{X} G^{1 / 2}\left(\varphi \otimes \delta_{Y}\right) \wedge G^{1 / 2} *\left(\varphi \otimes \delta_{Y}\right)=\int_{X} G^{1 / 2}\left(\varphi \otimes \delta_{Y}\right) \wedge * G^{1 / 2}\left(\varphi \otimes \delta_{Y}\right) \\
& =\int_{X} \Phi \wedge * \Phi
\end{align*}
$$

since $* \Delta=\Delta *$ and so $* G^{1 / 2}=G^{1 / 2} *$. Therefore, it follows from Formula (6.2) that

$$
\begin{aligned}
P \varphi=0 & \Rightarrow \Phi=G^{1 / 2}\left(\varphi \otimes \delta_{Y}\right)=0 \\
& \Rightarrow G\left(\varphi \otimes \delta_{Y}\right)=G^{1 / 2} \Phi=0 .
\end{aligned}
$$

Hence we have by Theorem 4.1 and Remark 4.2

$$
\varphi \otimes \delta_{Y}=H\left(\varphi \otimes \delta_{Y}\right)+\Delta G\left(\varphi \otimes \delta_{Y}\right)=H\left(\varphi \otimes \delta_{Y}\right) \in \Omega^{p}(X)
$$

However, this happens only when $\varphi=0$. The proof of Theorem 6.1 is complete.
Since the inverse P^{-1} is a positive, elliptic pseudo-differential operator of order 1 on Y, it follows (cf. [S2], [T]) that the operator $P^{-1 / 2}$ is an elliptic pseudo-differential operator of order $1 / 2$ on Y.

We equip the space $W_{1 / 2}^{p}(Y)$ with the inner product

$$
\langle\varphi, \psi\rangle=\left(P^{-1 / 2} \varphi, P^{-1 / 2} \psi\right)=\int_{Y} P^{-1 / 2} \varphi \wedge *^{\prime}\left(P^{-1 / 2} \psi\right)
$$

By Theorem 6.1, it is easy to see that the space $W_{1 / 2}^{p}(Y)$ is a Hilbert space with respect to this inner product $\langle\cdot, \cdot\rangle$. We let
$d_{1}^{\prime}=$ the minimal closed extension in $W_{1 / 2}^{p}(Y)$ of the operator d^{\prime} restricted to the space $\Omega^{p}(Y)$,
and

$$
\delta_{1}^{\prime}=\text { the adjoint of the operator } d_{1}^{\prime}: W_{1 / 2}^{p}(Y) \rightarrow W_{1 / 2}^{p+1}(Y)
$$

Then we have the following relationship between the adjoint δ^{\prime} of d^{\prime} and the adjoint δ_{1}^{\prime} of d_{1}^{\prime} (cf. [F], Proposition 8.1):

Lemma 6.2. $\delta_{1}^{\prime}=P \delta^{\prime} P^{-1}$.
We introduce a generalized Laplacian L^{\prime} on Y by the formula:

$$
L^{\prime}=d_{1}^{\prime} \delta_{1}^{\prime}+\delta_{1}^{\prime} d_{1}^{\prime}
$$

Then the operator L^{\prime} is a non-negative, self-adjoint operator in the Hilbert space $W_{1 / 2}^{p}(Y)$. It is easy to see that the Hodge-Kodaira theory extends to the operators $d_{1}^{\prime}, \delta_{1}^{\prime}$ and L^{\prime}. More precisely, we have the following:
(i) The eigenvalues of L^{\prime} form a countable set accumulating only at $+\infty$.
(ii) We can define the harmonic operator H^{\prime} and the Green operator G^{\prime} for L^{\prime} respectively by the following formulas:

$$
\begin{aligned}
& H^{\prime}=\frac{1}{2 \pi i} \int_{|\lambda|=\varepsilon}\left(\lambda I-L^{\prime}\right)^{-1} d \lambda . \\
& G^{\prime}=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1}\left(\lambda I-L^{\prime}\right)^{-1} d \lambda .
\end{aligned}
$$

Here $\varepsilon>0$ is so small that all positive eigenvalues of L^{\prime} lie outside of the circle $|\lambda|=\varepsilon$ in the complex plane, and Γ is a contour which encloses all positive eigenvalues of L^{\prime} in the complex plane.

We have the following (cf. [F, Theorem 8.4]):
(ii-a) The operator H^{\prime} is the orthogonal projection onto the kernel $\operatorname{Ker}^{p} L^{\prime}$ of L^{\prime}, where (cf. Remark 4.2)

$$
\begin{aligned}
\operatorname{Ker}^{p} L^{\prime} & \equiv\left\{S \in W_{1 / 2}^{p}(Y) ; L^{\prime} S=0 \text { in } Y\right\} \\
& =\left\{S \in \Omega^{p}(Y) ; L^{\prime} S=0 \text { in } Y\right\} \\
& =\left\{S \in \Omega^{p}(Y) ; d^{\prime} S=0, \delta_{1}^{\prime} S=0 \text { in } Y\right\} \\
& =\operatorname{Ker}^{p}\left(d^{\prime}+\delta_{1}^{\prime}\right)
\end{aligned}
$$

and the operator G^{\prime} is a bounded operator on $W_{1 / 2}^{p}(Y)$.
(ii-b) $G^{\prime} H^{\prime}=H^{\prime} G^{\prime}=0$ on $W_{1 / 2}^{p}(Y) ; G^{\prime} L^{\prime} \subset L^{\prime} G^{\prime}$ on $\mathscr{D}\left(L^{\prime}\right)$.
(ii-c) $L^{\prime} G^{\prime}+H^{\prime}=d_{1}^{\prime} \delta_{1}^{\prime} G^{\prime}+\delta_{1}^{\prime} d_{1}^{\prime} G^{\prime}+H^{\prime}=I$ on $W_{1 / 2}^{p}(Y)$.
Now we can introduce six mappings $\rho_{e}, \rho_{e}^{\prime}, \rho_{e}^{\prime \prime}, \rho_{o}, \rho_{o}^{\prime}$ and $\rho_{o}^{\prime \prime}$ as follows:

$$
\begin{equation*}
\rho_{e}: \operatorname{Ker}^{2 i} D \rightarrow \operatorname{Ker}^{2 i}(d+\delta), \quad\binom{\alpha}{S} \mapsto H \alpha \tag{I}
\end{equation*}
$$

Here H is the orthogonal projection on the space $\operatorname{Ker}^{2 i} \Delta=\operatorname{Ker}^{2 i}(d+\delta)$.

$$
\begin{equation*}
\rho_{e}^{\prime}: \operatorname{Ker}^{2 i}(d+\delta) \rightarrow \operatorname{Ker}^{2 i}\left(d^{\prime}+\delta_{1}^{\prime}\right), \quad \alpha \mapsto H^{\prime}\left(\left.\alpha\right|_{Y}\right) \tag{II}
\end{equation*}
$$

Here $\delta_{1}^{\prime}=P \delta^{\prime} P^{-1}$ and H^{\prime} is the orthogonal projection on the space $\operatorname{Ker}^{2 i} L^{\prime}=\operatorname{Ker}^{2 i}\left(d^{\prime}+\delta_{1}^{\prime}\right)$.

$$
\begin{equation*}
\rho_{e}^{\prime \prime}: \operatorname{Ker}^{2 i}\left(d^{\prime}+\delta_{1}^{\prime}\right) \rightarrow \operatorname{Ker}^{2 i+1} D^{*}, \quad T \mapsto\binom{d G\left(P^{-1} J_{e} T \otimes \delta_{Y}\right)}{-P^{-1} J_{e} T} \tag{III}
\end{equation*}
$$

Here J_{e} is the orthogonal projection onto the orthogonal complement $\left(\operatorname{Im} \rho^{\prime}\right)_{e}^{\perp}$ of $\operatorname{Im} \rho_{e}^{\prime}$ in the space $\operatorname{Ker}^{2 i}\left(d^{\prime}+\delta_{1}^{\prime}\right)$.

$$
\begin{equation*}
\rho_{o}: \operatorname{Ker}^{2 i+1} D^{*} \rightarrow \operatorname{Ker}^{2 i+1}(d+\delta), \quad\binom{\beta}{T} \mapsto H \beta \tag{IV}
\end{equation*}
$$

Here H is the orthogonal projection on the space $\operatorname{Ker}^{2 i+1} \Delta=\operatorname{Ker}^{2 i+1}(d+\delta)$.

$$
\begin{equation*}
\rho_{o}^{\prime}: \operatorname{Ker}^{2 i+1}(d+\delta) \rightarrow \operatorname{Ker}^{2 i+1}\left(d^{\prime}+\delta_{1}^{\prime}\right), \quad \beta \mapsto H^{\prime}\left(\left.\beta\right|_{Y}\right) \tag{V}
\end{equation*}
$$

Here H^{\prime} is the orthogonal projection on the space $\operatorname{Ker}^{2 i+1} L^{\prime}=\operatorname{Ker}^{2 i+1}\left(d^{\prime}+\delta_{1}^{\prime}\right)$.

$$
\begin{equation*}
\rho_{o}^{\prime \prime}: \operatorname{Ker}^{2 i+1}\left(d^{\prime}+\delta_{1}^{\prime}\right) \rightarrow \operatorname{Ker}^{2 i+2} D, \quad T \mapsto\binom{d G\left(P^{-1} J_{o} T \otimes \delta_{Y}\right)}{P^{-1} J_{o} T} \tag{VI}
\end{equation*}
$$

Here J_{o} is the orthogonal projection onto the orthogonal complement $\left(\operatorname{Im} \rho^{\prime}\right)_{o}^{\perp}$ of $\operatorname{Im} \rho_{o}^{\prime}$ in the space $\operatorname{Ker}^{2 i+1}\left(d^{\prime}+\delta_{1}^{\prime}\right)$.

The next theorem is the essential step in the proof of Theorem 2 (cf. [F, Theorem 8.6]):

THEOREM 6.3. The following sequence of homomorphisms forms a complex, and is exact.

(*)

$$
\begin{array}{llll}
\xrightarrow{\rho_{o}^{\prime \prime}} & \operatorname{Ker}^{2 i} D & \xrightarrow{\rho_{e}} \operatorname{Ker}^{2 i}(d+\delta) & \xrightarrow{\rho_{e}^{\prime}} \operatorname{Ker}^{2 i}\left(d^{\prime}+\delta_{1}^{\prime}\right) \\
\xrightarrow{\rho_{e}^{\prime \prime}} & \operatorname{Ker}^{2 i+1} D^{*} \xrightarrow{\rho_{o}} \operatorname{Ker}^{2 i+1}(d+\delta) \xrightarrow{\rho_{o}^{\prime}} \operatorname{Ker}^{2 i+1}\left(d^{\prime}+\delta_{1}^{\prime}\right)
\end{array}
$$

Assuming this theorem for the moment, we shall prove Theorem 2. It follows from an application of the Hodge-Kodaira theorem that

$$
\begin{aligned}
& \operatorname{Ker}^{j}(d+\delta) \cong H^{j}(X) \cong H^{j}(X, \boldsymbol{R}), \\
& \operatorname{Ker}^{j}\left(d^{\prime}+\delta_{1}^{\prime}\right) \cong H^{j}(Y) \cong H^{j}(Y, \boldsymbol{R}) .
\end{aligned}
$$

Therefore, by virtue of the five lemma, the long exact sequence (*) implies that

$$
\operatorname{Ker}^{2 i} D \cong H^{2 i}(X, Y, \boldsymbol{R}), \quad \operatorname{Ker}^{2 i+1} D^{*} \cong H^{2 i+1}(X, Y, \boldsymbol{R})
$$

Hence we have by Theorems 5.3 and 5.4

$$
\begin{aligned}
\text { ind } D & =\operatorname{dim} \operatorname{Ker} D-\operatorname{dim} \operatorname{Ker} D^{*} \\
& =\sum_{i=0}^{[n / 2]} \operatorname{dim} \operatorname{Ker}^{2 i} D-\sum_{i=0}^{[n / 2]} \operatorname{dim} \operatorname{Ker}^{2 i+1} D^{*} \\
& =\sum_{i=0}^{[n / 2]} \operatorname{dim} H^{2 i}(X, Y, \boldsymbol{R})-\sum_{i=0}^{[n / 2]} \operatorname{dim} H^{2 i+1}(X, Y, \boldsymbol{R}) \\
& =\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H^{i}(X, Y, \boldsymbol{R}) \\
& =\chi(X, Y) \\
& =\chi(X)-\chi(Y) .
\end{aligned}
$$

7. Proof of Theorem 6.3. (I) Now we define a mapping

$$
\rho: \operatorname{Ker} D \rightarrow \operatorname{Ker}(d+\delta), \quad\binom{\alpha}{S} \mapsto H \alpha,
$$

and a mapping

$$
\rho^{\prime}: \operatorname{Ker}(d+\delta) \rightarrow \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right), \quad \alpha \mapsto H^{\prime}\left(\left.\alpha\right|_{Y}\right)
$$

Throughout this section we drop the $2 i, 2 i+1$ and use $\operatorname{Ker} D, \operatorname{Ker}(d+\delta)$ and $\operatorname{Ker}\left(d+\delta_{1}^{\prime}\right)$, respectively. Then we have the following:

Lemma 7.1. $\operatorname{Im} \rho=\operatorname{Ker} \rho^{\prime}$.
Proof. (1) Let $\binom{\alpha}{S}$ be an arbitrary element of the space $\operatorname{Ker} D$, that is,

$$
\left\{\begin{array}{l}
d \alpha=0 \\
\left.\alpha\right|_{Y}=\iota^{*} \alpha=0 \\
\delta \alpha-\left(S \otimes \delta_{Y}\right)=0
\end{array}\right.
$$

Then we have

$$
\alpha=H \alpha+G \Delta \alpha=H \alpha+G(d \delta \alpha+\delta d \alpha)=H \alpha+G d\left(S \otimes \delta_{Y}\right)=H \alpha+d G\left(S \otimes \delta_{Y}\right)
$$

This gives that

$$
\left.H \alpha\right|_{Y}=\left.\left(\alpha-d G\left(S \otimes \delta_{Y}\right)\right)\right|_{Y}=-d^{\prime} P S .
$$

Hence we have

$$
\rho^{\prime}\left(\rho\binom{\alpha}{S}\right)=H^{\prime}\left(\left.H \alpha\right|_{Y}\right)=-H^{\prime} d^{\prime} P S=0
$$

since $H^{\prime} d^{\prime}=0$. This proves that $\operatorname{Im} \rho \subset \operatorname{Ker} \rho^{\prime}$.
(2) Conversely, assume that $\alpha \in \operatorname{Ker} \rho^{\prime}$, that is,

$$
\left\{\begin{array}{l}
d \alpha=0 \\
\delta \alpha=0 \\
H^{\prime}\left(\left.\alpha\right|_{Y}\right)=0
\end{array}\right.
$$

We recall that

$$
d^{\prime} \delta_{1}^{\prime} G^{\prime}+\delta_{1}^{\prime} d^{\prime} G^{\prime}+H^{\prime}=I .
$$

Then it follows that

$$
\begin{align*}
\left.\alpha\right|_{Y} & =d^{\prime} \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right)+\delta_{1}^{\prime} d^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right) \tag{7.1}\\
& =d^{\prime} \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right)+\delta_{1}^{\prime} G^{\prime} d^{\prime}\left(\left.\alpha\right|_{Y}\right)=d^{\prime} \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right),
\end{align*}
$$

since $d^{\prime}\left(\left.\alpha\right|_{Y}\right)=\left.d \alpha\right|_{Y}=0$. If we let

$$
\left\{\begin{array}{l}
S=-P^{-1} \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right)=-\delta^{\prime} P^{-1} G^{\prime}\left(\left.\alpha\right|_{Y}\right), \tag{7.2}\\
\beta=\alpha+d G\left(S \otimes \delta_{Y}\right)
\end{array}\right.
$$

then we have by Formula (7.1)

$$
\left\{\begin{array}{l}
d \beta=d \alpha=0, \\
\left.\beta\right|_{Y}=\left.\alpha\right|_{Y}+d^{\prime} P S=\left.\alpha\right|_{Y}-d^{\prime} \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right)=0 .
\end{array}\right.
$$

Furthermore, since we have

$$
\delta^{\prime} S=-\delta^{\prime} \delta^{\prime} P^{-1} G^{\prime}\left(\left.\alpha\right|_{Y}\right)=0,
$$

it follows that

$$
\begin{aligned}
\delta \beta & =\delta d G\left(S \otimes \delta_{Y}\right)=(\Delta-d \delta) G\left(S \otimes \delta_{Y}\right) \\
& =(I-H)\left(S \otimes \delta_{Y}\right)-d \delta G\left(S \otimes \delta_{Y}\right) \\
& =\left(S \otimes \delta_{Y}\right)-H\left(S \otimes \delta_{Y}\right)-d G\left(\delta^{\prime} S \otimes \delta_{Y}\right) \\
& =\left(S \otimes \delta_{Y}\right)-H\left(S \otimes \delta_{Y}\right) .
\end{aligned}
$$

By Theorem 3.3, this implies that

$$
\left\{\begin{array}{l}
\beta \in \mathscr{D}\left(\bar{d}^{*}\right), \\
\bar{d}^{*} \beta=\delta \beta-\left(S \otimes \delta_{Y}\right)=-H\left(S \otimes \delta_{Y}\right) .
\end{array}\right.
$$

However, we have the following:
Claim 1. $\quad H\left(S \otimes \delta_{Y}\right)=0$, or equivalently, $\delta \beta-\left(S \otimes \delta_{Y}\right)=0$.
Proof. If $\left\{h_{1}, \ldots, h_{N}\right\}$ is an orthonormal basis of the space $\operatorname{Ker}(d+\delta)$, then we have by Formula (7.2)

$$
\begin{aligned}
\left.H\left(S \otimes \delta_{Y}\right)\right|_{Y} & =\left.\sum_{j=1}^{N}\left(\int_{X} h_{j} \wedge *\left(S \otimes \delta_{Y}\right)\right) h_{j}\right|_{Y} \\
& =\left.\sum_{j=1}^{N}\left(\left.\int_{Y} h_{j}\right|_{Y} \wedge *^{\prime} S\right) h_{j}\right|_{Y} \\
& =-\left.\sum_{j=1}^{N}\left(\left.\int_{Y} h_{j}\right|_{Y} \wedge *^{\prime}\left(P^{-1} \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right)\right)\right) h_{j}\right|_{Y} \\
& =-\left.\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, \delta_{1}^{\prime} G^{\prime}\left(\left.\alpha\right|_{Y}\right)\right\rangle h_{j}\right|_{Y}=-\left.\sum_{j=1}^{N}\left\langle d^{\prime}\left(\left.h_{j}\right|_{Y}\right), G^{\prime}\left(\left.\alpha\right|_{Y}\right)\right\rangle h_{j}\right|_{Y} \\
& =-\left.\sum_{j=1}^{N}\left\langle\left. d h_{j}\right|_{Y}, G^{\prime}\left(\left.\alpha\right|_{Y}\right)\right\rangle h_{j}\right|_{Y}=0,
\end{aligned}
$$

since $d h_{j}=0$. By Theorem 3.2, it follows that

$$
\left\{\begin{array}{l}
\bar{d}^{*} \beta=-H\left(S \otimes \delta_{Y}\right) \in \mathscr{D}(\bar{d}), \\
\bar{d} \bar{d}^{*} \beta=-d H\left(S \otimes \delta_{Y}\right)=0 .
\end{array}\right.
$$

Hence we have

$$
\left(H\left(S \otimes \delta_{Y}\right), H\left(S \otimes \delta_{Y}\right)\right)=\left(\bar{d}^{*} \beta, \bar{d}^{*} \beta\right)=\left(\bar{d} \bar{d}^{*} \beta, \beta\right)=0
$$

This proves Claim 1.
Summing up, we have proved that

$$
\left\{\begin{array}{l}
d \beta=0 \\
\left.\beta\right|_{Y}=0 \\
\delta \beta-\left(S \otimes \delta_{Y}\right)=0
\end{array}\right.
$$

that is,

$$
\binom{\beta}{S} \in \operatorname{Ker} D
$$

and

$$
\alpha=H \alpha=H \beta=\rho\binom{\beta}{S} \in \operatorname{Im} \rho .
$$

The proof of Lemma 7.1 is complete.
(II) We define

$$
Q S=\left.H\left(S \otimes \delta_{Y}\right)\right|_{Y}
$$

and let

$$
\pi=Q P^{-1}
$$

Then we have the following characterization of $\operatorname{Im} \rho^{\prime}$:
Claim 2. $\operatorname{Im} \rho^{\prime}=\operatorname{Im} H^{\prime} \circ \pi$.
Proof. (i) $\operatorname{Im} H^{\prime} \circ \pi \subset \operatorname{Im} \rho^{\prime}$: This is trivial.
(ii) $\operatorname{Im} \rho^{\prime} \subset \operatorname{Im} H^{\prime} \circ \pi$: Let T be an arbitrary element of $\operatorname{Im} \rho^{\prime}$, and assume that $T=\rho^{\prime}(\alpha), \alpha \in \operatorname{Ker}(d+\delta)$, that is,

$$
T=H^{\prime}\left(\left.\alpha\right|_{Y}\right)
$$

If $\left\{h_{1}, \ldots, h_{N}\right\}$ is an orthonormal basis of the space $\operatorname{Ker}(d+\delta)$, then we have

$$
H\left(S \otimes \delta_{Y}\right)=\sum_{j=1}^{N}\left(\int_{X} h_{j} \wedge *\left(S \otimes \delta_{Y}\right)\right) h_{j}=\sum_{j=1}^{N}\left(\left.\int_{Y} h_{j}\right|_{Y} \wedge *^{\prime} S\right) h_{j},
$$

so that

$$
Q S=\left.H\left(S \otimes \delta_{Y}\right)\right|_{Y}=\left.\sum_{j=1}^{N}\left(\left.\int_{Y} h_{j}\right|_{Y} \wedge *^{\prime} S\right) h_{j}\right|_{Y} .
$$

This gives that

$$
\begin{equation*}
\pi S=Q P^{-1} S=\left.\sum_{j=1}^{N}\left(\left.\int_{Y} h_{j}\right|_{Y} \wedge *^{\prime} P^{-1} S\right) h_{j}\right|_{Y}=\left.\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, S\right\rangle h_{j}\right|_{Y}, \tag{7.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
H^{\prime}(\pi S)=\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, S\right\rangle H^{\prime}\left(\left.h_{j}\right|_{Y}\right) . \tag{7.4}
\end{equation*}
$$

On the other hand, since we have

$$
\alpha=H \alpha=\sum_{j=1}^{N}\left(\int_{X} h_{j} \wedge * \alpha\right) h_{j},
$$

it follows that

$$
\rho^{\prime}(\alpha)=H^{\prime}\left(\left.\alpha\right|_{Y}\right)=\sum_{j=1}^{N}\left(\int_{X} h_{j} \wedge * \alpha\right) H^{\prime}\left(\left.h_{j}\right|_{Y}\right) .
$$

However, we can find an element S_{0} such that

$$
\left\langle\left. h_{j}\right|_{Y}, S_{0}\right\rangle=\int_{X} h_{j} \wedge * \alpha, \quad 1 \leq j \leq N .
$$

Hence we have

$$
\rho^{\prime}(\alpha)=\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, S_{0}\right\rangle H^{\prime}\left(\left.h_{j}\right|_{Y}\right) .
$$

Therefore, combining this formula with Formula (7.4), we obtain that

$$
T=\rho^{\prime}(\alpha)=H^{\prime}\left(\pi S_{0}\right) \in \operatorname{Im} H^{\prime} \circ \pi .
$$

Remark 7.2. The operator π is symmetric, that is, we have

$$
\langle\pi S, T\rangle=\langle S, \pi T\rangle .
$$

Indeed, it follows from Formula (7.3) that

$$
\langle\pi S, T\rangle=\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, S\right\rangle\left\langle\left. h_{j}\right|_{Y}, T\right\rangle=\langle S, \pi T\rangle .
$$

(III) Now we define a linear mapping

$$
\rho^{\prime \prime}: \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right) \rightarrow \operatorname{Ker} D, \quad T \mapsto\binom{d G\left(P^{-1} J T \otimes \delta_{Y}\right)}{P^{-1} J T}
$$

Here J is the orthogonal projection onto the orthogonal complement $\left(\operatorname{Im} \rho^{\prime}\right)^{\perp}$ of $\operatorname{Im} \rho^{\prime}$ in the space $\operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right)$.
(III-a) First we check the well-definedness of the mapping $\rho^{\prime \prime}$: If we let

$$
\left\{\begin{array}{l}
\alpha=d G\left(P^{-1} J T \otimes \delta_{Y}\right), \\
S=P^{-1} J T,
\end{array}\right.
$$

then we have

$$
\left\{\begin{array}{l}
d \alpha=0, \\
\left.\alpha\right|_{Y}=d^{\prime} P\left(P^{-1} J T\right)=d^{\prime} J T=0,
\end{array}\right.
$$

since $J T \in \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right)$. Further it follows that

$$
\begin{align*}
\delta \alpha & =\delta d G\left(S \otimes \delta_{Y}\right)=(\Delta-d \delta) G\left(S \otimes \delta_{Y}\right)=(I-H-d \delta G)\left(S \otimes \delta_{Y}\right) \tag{7.5}\\
& =\left(S \otimes \delta_{Y}\right)-H\left(S \otimes \delta_{Y}\right)-d \delta G\left(S \otimes \delta_{Y}\right) .
\end{align*}
$$

However, we have the following:
Claim 3. $\quad H\left(S \otimes \delta_{Y}\right)=0, d \delta G\left(S \otimes \delta_{Y}\right)=0$.
Proof. First we have

$$
\begin{equation*}
\left.d \delta G\left(S \otimes \delta_{Y}\right)\right|_{Y}=\left.d G \delta\left(S \otimes \delta_{Y}\right)\right|_{Y}=d^{\prime} P \delta^{\prime} S=d^{\prime}\left(P \delta^{\prime} P^{-1}\right) J T=d^{\prime} \delta_{1}^{\prime} J T=0, \tag{7.6}
\end{equation*}
$$

since $J T \in \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right)$.
If $T=T_{1}+T_{2}$ with $T_{1} \in \operatorname{Im} \rho^{\prime}$ and $T_{2} \in\left(\operatorname{Im} \rho^{\prime}\right)^{\perp}$, then we have

$$
\left.H\left(S \otimes \delta_{Y}\right)\right|_{Y}=Q S=Q P^{-1} J T=Q P^{-1} J T_{2}=Q P^{-1} T_{2}=\pi T_{2},
$$

since $J T_{1}=0$ and $J T_{2}=T_{2}$.
However, if $\left\{h_{1}, \ldots, h_{N}\right\}$ is an orthonormal basis of the space $\operatorname{Ker}(d+\delta)$, then it follows from Formula (7.3) that

$$
\pi T_{2}=\left.\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, T_{2}\right\rangle h_{j}\right|_{Y}=\left.\sum_{j=1}^{N}\left\langle\left. h_{j}\right|_{Y}, H^{\prime}\left(T_{2}\right)\right\rangle h_{j}\right|_{Y}=\left.\sum_{j=1}^{N}\left\langle H^{\prime}\left(\left.h_{j}\right|_{Y}\right), T_{2}\right\rangle h_{j}\right|_{Y}=0,
$$

since $T_{2} \in\left(\operatorname{Im} \rho^{\prime}\right)^{\perp} \subset \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right)$ and $H^{\prime}\left(\left.h_{j}\right|_{Y}\right)=\rho^{\prime}\left(h_{j}\right) \in \operatorname{Im} \rho^{\prime}$. Hence we have

$$
\begin{equation*}
\left.H\left(S \otimes \delta_{Y}\right)\right|_{Y}=\pi T_{2}=0 . \tag{7.7}
\end{equation*}
$$

Thus, in view of Theorem 3.2, it follows from Assertions (7.6) and (7.7) that

$$
H\left(S \otimes \delta_{Y}\right)+d \delta G\left(S \otimes \delta_{Y}\right) \in \mathscr{D}(\bar{d})
$$

Therefore, since we have by Formula (7.5)

$$
\bar{d}^{*} \alpha=\delta \alpha-\left(S \otimes \delta_{Y}\right)=-H\left(S \otimes \delta_{Y}\right)-d \delta G\left(S \otimes \delta_{Y}\right) \in \mathscr{D}(\bar{d})
$$

it follows that

$$
\left(\bar{d}^{*} \alpha, \bar{d}^{*} \alpha\right)=\left(\bar{d} \bar{d}^{*} \alpha, \alpha\right)=0,
$$

so that

$$
0=\bar{d}^{*} \alpha=-H\left(S \otimes \delta_{Y}\right)-d \delta G\left(S \otimes \delta_{Y}\right) .
$$

This proves Claim 3, since $H d=0$.
By Claim 3, it follows from Formula (7.5) that $\delta \alpha-\left(S \otimes \delta_{Y}\right)=0$.
Summing up, we have proved that

$$
\binom{\alpha}{S} \in \operatorname{Ker} D .
$$

(III-b) Next we show the following:
Lemma 7.3. $\operatorname{Im} \rho^{\prime}=\operatorname{Ker} \rho^{\prime \prime}$.
Proof. (1) $\operatorname{Ker} \rho^{\prime \prime} \subset \operatorname{Im} \rho^{\prime}$: If $T \in \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right)$ and

$$
\rho^{\prime \prime}(T)=\binom{d G\left(P^{-1} J T \otimes \delta_{Y}\right)}{P^{-1} J T}=0,
$$

then we have $T \in \operatorname{Im} \rho^{\prime}$, since $J T=0$.
(2) $\operatorname{Im} \rho^{\prime} \subset \operatorname{Ker} \rho^{\prime \prime}:$ This is trivial.
(IV) Finally it remains to show the following:

Lemma 7.4. $\operatorname{Im} \rho^{\prime \prime}=\operatorname{Ker} \rho$.
Proof. (1) Im $\rho^{\prime \prime} \subset \operatorname{Ker} \rho$: This is trivial, since $H d=0$.
(2) $\operatorname{Ker} \rho \subset \operatorname{Im} \rho^{\prime \prime}: \operatorname{If}\binom{\alpha}{S} \in \operatorname{Ker} D$ and $\rho\binom{\alpha}{S}=0$, then we have

$$
\left\{\begin{array}{l}
d \alpha=0 \\
\left.\alpha\right|_{Y}=0 \\
\delta \alpha-\left(S \otimes \delta_{Y}\right)=0, \\
H \alpha=0
\end{array}\right.
$$

Thus α can be written in the following form:

$$
\alpha=G \Delta \alpha=G d \delta \alpha=G d\left(S \otimes \delta_{Y}\right)=d G\left(S \otimes \delta_{Y}\right) .
$$

If we let

$$
T=P S
$$

then it follows that

$$
d^{\prime} T=\left.d G\left(S \otimes \delta_{Y}\right)\right|_{Y}=\left.\alpha\right|_{Y}=0
$$

and from Lemmas 6.2 and 3.1 and also Formula (6.1) that

$$
\delta_{1}^{\prime} T=P \delta^{\prime} S=\left.G\left(\delta^{\prime} S \otimes \delta_{Y}\right)\right|_{Y}=\left.G \delta\left(S \otimes \delta_{Y}\right)\right|_{Y}=\left.G \delta(\delta \alpha)\right|_{Y}=0 .
$$

Hence we have $T \in \operatorname{Ker}\left(d^{\prime}+\delta_{1}^{\prime}\right)$. However, we have $J T=T$, that is,

$$
\begin{equation*}
T \in\left(\operatorname{Im} \rho^{\prime}\right)^{\perp} \tag{7.8}
\end{equation*}
$$

Indeed, since we have

$$
\pi T=\pi P S=Q S=\left.H\left(S \otimes \delta_{Y}\right)\right|_{Y}=\left.H(\delta \alpha)\right|_{Y}=0,
$$

we find from Remark 7.2 that for all $\varphi \in \Omega^{\bullet}(Y)$

$$
\left\langle T, H^{\prime} \pi \varphi\right\rangle=\left\langle H^{\prime} T, \pi \varphi\right\rangle=\langle T, \pi \varphi\rangle=\langle\pi T, \varphi\rangle=0,
$$

so that by Claim 2

$$
T \perp \operatorname{Im} H^{\prime} \circ \pi=\operatorname{Im} \rho^{\prime} .
$$

This proves assertion (7.8).
In view of assertion (7.8), it follows that

$$
P^{-1} J T=P^{-1} T=S
$$

Hence we have

$$
\binom{\alpha}{S}=\binom{d G\left(S \otimes \delta_{Y}\right)}{S}=\binom{d G\left(P^{-1} J T \otimes \delta_{Y}\right)}{P^{-1} J T}=\rho^{\prime \prime}(T) \in \operatorname{Im} \rho^{\prime \prime} .
$$

This completes the proof of Lemma 7.4.
Now the proof of Theorem 6.3 and hence that of Theorem 2 is complete.

References

[CP] J. Chazarain et A. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires, Gauthier-Villars, Paris, 1981.
[D] G. de Rham, Variétés différentiables, Hermann, Paris, 1955; English translation, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984.
[F] D. Fujwara, A relative Hodge-Kodaira decomposition, J. Math. Soc. Japan 24 (1972), 609-637.
[G] P. B. Gllkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, Wilmington, 1984.
[H1] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin Heidelberg New York, 1963.
[H2] L. HÖRmander, Pseudodifferential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966), 129-209.
[K] K. Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory), Ann. of Math. 50 (1949), 587-665.
[P] S. Palais, Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies, No. 57, Princeton Univ. Press, Princeton, 1963.
[S1] R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781-809.
[S2] R. T. Seeley, Complex powers of an elliptic operator, Proc. Sym. Pure Math. Vol. X (Singular integrals), Amer. Math. Soc., Providence, Rhode Island, 1967, 288-307.
[T] M. TAYLOR, Pseudodifferential operators, Princeton Univ. Press, Princeton, 1981.
Institute of Mathematics
University of Tsukuba
Tsukuba 305
JAPAN

[^0]: 1991 Mathematics Subject Classification. Primary 58A12; Secondary 58G10, 58A14, 35J25.
 This research was partially supported by Grant-in-Aid for General Scientific Research (No. 03640122), Ministry of Education, Science and Culture.

