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HOMOLOGY COVERINGS OF RIEMANN SURFACES
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Abstract. We extend a result on homology coverings of closed Riemann surfaces
due to Maskit [1] to the class of analytically finite ones. We show that if S is an analyti-
cally finite hyperbolic Riemann surface, then its conformal structure is determined by
the conformal structure of its homology cover. The homology cover of a Riemann
surface S is the highest regular covering of S with an Abelian group of covering
transformations. In fact, we show that the commutator subgroup of any torsion-free,
finitely generated Fuchsian group of the first kind determines it uniquely.

1. The main theorem. Let S be a Riemann surface. We say that S is analytically
finite if S is conformally equivalent to the complement of a finite number of points on
a closed Riemann surface S. If the genus of S is g and the number of deleted points is

fc, then we say that S has signature (g, fc; oo,. . . , oo).
We say that an analytically finite Riemann surface S of signature (q, k\ oo, . . . , oo)

is hyperbolic if its universal covering surface is the hyperbolic disc. It is the case if and
only if 2g-2 + k>Q.

A Riemann surface S is an Abelian cover of S if there exists a regular covering
π: S-+S with an Abelian group of deck transformations. The homology covering of S,
π: S-^S, is the highest Abelian covering of S, that is, it is the covering corresponding
to the commutator subgroup of the fundamental group Π^S) of S.

THEOREM. Let S^ and S2 be analytically finite hyperbolic Riemann surfaces of
signature (0l5 k±\ oo,. . . , oo) and(g2, k2; oo,..., oo), respectively. Suppose Sl andS2 have
conformally equivalent homology covering surfaces. Then Sl and S2 are conformally
equivalent.

REMARKS. The above theorem, for the class of closed hyperbolic Riemann surfaces,
was proved by Maskit in [1]. Since the homology cover of a Riemann surface S,
obtained by deleting one point in a closed Riemann surface S, is the homology cover
of S minus the orbit of a (suitable) point, the above theorem for k1 =k2 = 1 is an easy
consequence of Maskit's result.

I would like to thank Professor Maskit for introducing me to this problem. I also
would like to thank the referee for all the suggestions and corrections.
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2. Proof of the theorem. We may assume SΊ and S2 to have the same homology
covering S. Let Γm be the group of deck transformations for § covering Sm; that is,

§/Γm = Sm. It is well known that § is conformally equivalent to none of the following
Riemann surfaces: (i) the Riemann sphere, (ii) the complex plane, (iii) the complex
plane with one point deleted, (iv) a torus, (v) the unit disk, and (vi) a ring domain.
Hence the full group of conformal automorphisms of S acts discontinuously on £; in
particular, the group Γ of conformal automorphisms of S generated by Γ1 and Γ2 acts
discontinuously on S. Set S=S/Γ.

Since SΊ and S2 are analytically finite Riemann surfaces, they have finite hyperbolic
area. Hence they are finite sheeted coverings of S; that is, both 7\ and Γ2 are of finite

index in Γ. It then follows that Γ=Γ1nΓ2 is of finite index in Γ l5 Γ2 and Γ.
Let S = S/(Γ1 nΓ2). We have the following commutative diagram of coverings:

S

The covering qm : S^>Sm is a regular (possibly branched) covering with an Abelian group
of deck transformations Gm = ΓJΓ. Note that qm: S-+Sm can be extended to a holo-
morphic mapping of the Riemann surface Sv {the punctures of 5} onto the Riemann
surface Sm u (the punctures of Sm}.

Observe that a loop w on S lifts to a loop on S if and only if its projection to Sm

is homologically trivial. Let (#m)*: #ι(S)->//ι(Sm) be the induced map on homology
with complex coefficients. The above observation says that and (q2)* have the
same kernel. Since qm is a covering map, the map (#J* is a surjection. The fact that
(q^t and (#2)* have the same kernel now implies that H^S^ and H^SJ have the
same dimension; that is,

(*)
-1=202,

if &ι>0 and k2>0

if k1=0 and fc2>0

if fcι>0 and fc2 = 0

if jt1 =o and A: = 0

If X is an analytically finite (hyperbolic) Riemann surface of signature
(0, fc; oo, . . . , oo), we denote by H{ °(X9 C) the complex vector space of holomorphic
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1-forms on X with poles of order at most one at the punctures. The Riemann-Roch

theorem implies that the complex dimension of this space is:

10 f 0 + ̂  ~ 1 if λ; > 0

I 0 if fc = 0.

We have natural linear injections q* : #}'°(Sm, G)-+H\ 0(S, C). We can regard the
image q*(H\'°(Sm, C)) as those differentials in H{ °(5, C) which are invariant under

Gm. Clearly, qϊ(H{ °(Sm, C)) is orthogonal to the kernel of (#m)*> which we denote by
ker^J*)- The lemma below shows that the subspace ofH{ °(S9 C) which is orthogonal

to ker((O») is exactly q*(H\ \Sm, G)). Since ker(to1)l,) = ker((ί2)J, we obtain
q*(fίι'°(Sl9 C)) = q%(H\'Q(S2, C)). In particular, a form w in H{ °(S9 C) is G^invariant
if and only if it is G2-invariant, and these spaces have the same dimension; that is:

gι+kί — l=g2 + k2 — l, if fc1>0 and A;2>0

gί=g2 + k2 — 1 , if kί=0 and A:2>0

0ι+^ι~l=025 if ^ι>0 and &2 = 0

0ι = 02» if ^ι=0 and fc2 = 0.

Now, (*) and (**) imply

0ι=02 and

(***)

As observed before, if S is a closed Riemann surface and § is its homology cover,

then the homology cover of S-{p} is S-{orbit(#)}, where π(q)=p9π: S-*S is the
homology covering map and orbit(^) is the orbit of q under the group of deck
transformations. In particular, the homology cover of a closed Riemann surface and

the homology cover of a 1-punctured surface cannot be conformally equivalent. As
a consequence, g^=g2 and k1 =k2.

Let G be the group of conformal automorphisms of S generated by Gl and G2.
Then S=S/G. Since every form in H{ °(S,C) is G-invariant if and only if it is
Gm-invariant, S must have signature (g, fc; oo, . . . , oo) with g + k—\=gl+kι — \=g2 +
k2 — 1, if k± > 0; or g = g 1 = g2, otherwise.

Since k1>k and g1>g (by area arguments), we must have kί=k and g1=g. In
particular, Sm is conformally equivalent to S. Then S1 and S2 are conformally equivalent.
This finishes the proof of our theorem.

Now we proceed to establish and prove the lemma we needed above.

k1=k2,

01=02 ,

01=02,

01=02,

if ,

if .

if t

if ,

fe!>0

fc1=0

kι = l

fc1 = 0

and

and

and

and

A:2>0

*2=1

^2 = 0

fc2 = 0.
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LEMMA. Let p: X^X be a covering (possibly branched) between analytically finite
Riemann surfaces. Then

PROOF. Since X and X are analytically finite Riemann surfaces, p is a finite sheeted
covering. Clearly, p*(H\>°(X'9 CJ)^{weH\>Q(X, C); wε(ter(p)Jλ} .

To show the opposite inclusion, we need to recall some trivial facts.

FACT 1. If A" is an analytically finite Riemann surface of signature (0, fe;
oo,. . . , oo), then every form weH\'Q(X, C) is uniquely determined by J w, j^.w, /=
1,..., 0, j= 1,..., k— 1, where the αf's are g homologically independent disjoint sim-
ple loops on the closed Riemann surface (of genus g) X' = X\J (punctures of X] (also
disjoint from the punctures), the <5/s are small simple loops around k— 1 of the punctures
and all the above loops are disjoint. Figure 1 shows loops α, and δj in signature

(3, 3; oo, oo, oo).

FACT 2. Let X be an analytically finite Riemann surface of signature (g, fc; oo,
..., oo). For any set of simple loops αί? δj9 /=! , . . . , g, j= 1,..., k— 1, as in Fact 1,

there exist disjoint simple loops β{ such that {αί? /?,-},-=ι,...,0 form a canonical basis
for the homotopy of X' and such that βinδj = 0, for all / and j (see Figure 2). In

FIGURE 1. The loops α's and <5's in a surface of signature (3, 3; oo, oo, oo).

FIGURE 2. The loops α's, /Γs and <5's in a surface of signature (3, 3; oo, oo, oo).
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this case, H^X, Z) = <α1? βl9...9 otg, βg, δl9...9 δk. x>.

We need some notation and definitions. (1) We call a set of simple loops, as above,

a canonical set. (2) Let us denote by (g(X)9 k(X); oo, . . . , oo) and (g(X), k(X); oo, . . . , oo)
the signatures of X and X, respectively.

FACT 3. On X and A" there exist canonical sets {αf, Jfi9 Sj} and {αn, βn, δt}

respectively, such that

(1)

(2)

PROOF (Fact 3). Construct a canonical set {αn, /?„, (5J on A'. Since /? is a finite
sheeted covering, for any simple loop η on X there exists a positive integer m such that

fy m lifts to a loop on .̂ In particular, p~l(η) consists of a finite number of disjoint

simple loops. Consider the family of simple loops /?"1(α1), . . . ,p~1(αβ(X)). In this family
there exist a maximal set of disjoint simple loops which are homologically independent
on the closed Riemann surface Y obtained by adding the punctures to X. Now we
complete them to a set of homologically independent disjoint simple loops on Y. Now
consider small simple loops around k(X) — 1 of the punctures of X. We can make these
loops to be disjoint from the above ones. These loops project to loops with homology

in <απ, δl;n=l9...9 g(X)l /=!, . . . , k(X)— 1>. Now use Fact 2 to get a family of loops
as desired.

Let Fbe the complex vector space generated by αί? SJ9 l<i<g(X), 1 <j<k(X)—l,
and let Fbe the complex vector space generated by απ, δt; 1 <n<g(X}, \<l<k(X)—\.
Then Fact 3 implies that a linear map p^ : V-* V is well defined.

Fact 1 says that its dual map is

Now the lemma follows from the fact that (kerpJ-L=p*(H{'0(X, CJ). Q

We obtain the following result from the proof of our theorem:

COROLLARY. Let G and H be finitely generated torsion-free Fuchsian groups of the
first kind. Assume these groups to have the same commutator subgroup, that is,
[G, G] = [#, H]. Then G = H.
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