Tôhoku Math. J. 45 (1993), 499–503

HOMOLOGY COVERINGS OF RIEMANN SURFACES

RUBÉN A. HIDALGO

(Received April 27, 1992, revised July 27, 1992)

Abstract. We extend a result on homology coverings of closed Riemann surfaces due to Maskit [1] to the class of analytically finite ones. We show that if S is an analytically finite hyperbolic Riemann surface, then its conformal structure is determined by the conformal structure of its homology cover. The homology cover of a Riemann surface S is the highest regular covering of S with an Abelian group of covering transformations. In fact, we show that the commutator subgroup of any torsion-free, finitely generated Fuchsian group of the first kind determines it uniquely.

1. The main theorem. Let S be a Riemann surface. We say that S is *analytically finite* if S is conformally equivalent to the complement of a finite number of points on a closed Riemann surface \overline{S} . If the genus of \overline{S} is g and the number of deleted points is k, then we say that S has signature $(g, k; \infty, ..., \infty)$.

We say that an analytically finite Riemann surface S of signature $(q, k; \infty, ..., \infty)$ is *hyperbolic* if its universal covering surface is the hyperbolic disc. It is the case if and only if 2q-2+k>0.

A Riemann surface \hat{S} is an *Abelian cover* of *S* if there exists a regular covering $\pi: \hat{S} \to S$ with an Abelian group of deck transformations. The *homology covering* of *S*, $\pi: \tilde{S} \to S$, is the highest Abelian covering of *S*, that is, it is the covering corresponding to the commutator subgroup of the fundamental group $\Pi_1(S)$ of *S*.

THEOREM. Let S_1 and S_2 be analytically finite hyperbolic Riemann surfaces of signature $(g_1, k_1; \infty, ..., \infty)$ and $(g_2, k_2; \infty, ..., \infty)$, respectively. Suppose S_1 and S_2 have conformally equivalent homology covering surfaces. Then S_1 and S_2 are conformally equivalent.

REMARKS. The above theorem, for the class of closed hyperbolic Riemann surfaces, was proved by Maskit in [1]. Since the homology cover of a Riemann surface S, obtained by deleting one point in a closed Riemann surface \overline{S} , is the homology cover of \overline{S} minus the orbit of a (suitable) point, the above theorem for $k_1 = k_2 = 1$ is an easy consequence of Maskit's result.

I would like to thank Professor Maskit for introducing me to this problem. I also would like to thank the referee for all the suggestions and corrections.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30F20; Secondary 30F45.

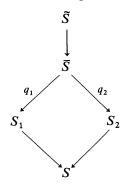
Key words and phrases. Analytically finite Riemann surfaces, Homology coverings.

R. A. HIDALGO

2. Proof of the theorem. We may assume S_1 and S_2 to have the same homology covering \tilde{S} . Let Γ_m be the group of deck transformations for \tilde{S} covering S_m ; that is, $\tilde{S}/\Gamma_m = S_m$. It is well known that \tilde{S} is conformally equivalent to none of the following Riemann surfaces: (i) the Riemann sphere, (ii) the complex plane, (iii) the complex plane with one point deleted, (iv) a torus, (v) the unit disk, and (vi) a ring domain. Hence the full group of conformal automorphisms of \tilde{S} acts discontinuously on \tilde{S} ; in particular, the group Γ of conformal automorphisms of \tilde{S} generated by Γ_1 and Γ_2 acts discontinuously on \tilde{S} . Set $S = \tilde{S}/\Gamma$.

Since S_1 and S_2 are analytically finite Riemann surfaces, they have finite hyperbolic area. Hence they are finite sheeted coverings of S; that is, both Γ_1 and Γ_2 are of finite index in Γ . It then follows that $\overline{\Gamma} = \Gamma_1 \cap \Gamma_2$ is of finite index in Γ_1 , Γ_2 and Γ .

Let $\overline{S} = \widetilde{S}/(\Gamma_1 \cap \Gamma_2)$. We have the following commutative diagram of coverings:



The covering $q_m: \overline{S} \to S_m$ is a regular (possibly branched) covering with an Abelian group of deck transformations $G_m = \Gamma_m / \overline{\Gamma}$. Note that $q_m: \overline{S} \to S_m$ can be extended to a holomorphic mapping of the Riemann surface $\overline{S} \cup \{$ the punctures of $\overline{S} \}$ onto the Riemann surface $S_m \cup \{$ the punctures of $S_m \}$.

Observe that a loop w on \overline{S} lifts to a loop on \widetilde{S} if and only if its projection to S_m is homologically trivial. Let $(q_m)_* : H_1(\overline{S}) \to H_1(S_m)$ be the induced map on homology with complex coefficients. The above observation says that $(q_1)_*$ and $(q_2)_*$ have the same kernel. Since q_m is a covering map, the map $(q_m)_*$ is a surjection. The fact that $(q_1)_*$ and $(q_2)_*$ have the same kernel now implies that $H_1(S_1)$ and $H_1(S_2)$ have the same dimension; that is,

(*)

$$2g_1 + k_1 - 1 = 2g_2 + k_2 - 1, \quad \text{if} \quad k_1 > 0 \quad \text{and} \quad k_2 > 0$$

$$2g_1 = 2g_2 + k_2 - 1, \quad \text{if} \quad k_1 = 0 \quad \text{and} \quad k_2 > 0$$

$$2g_1 + k_1 - 1 = 2g_2, \quad \text{if} \quad k_1 > 0 \quad \text{and} \quad k_2 = 0$$

$$2g_1 = 2g_2, \quad \text{if} \quad k_1 = 0 \quad \text{and} \quad k_2 = 0.$$

If X is an analytically finite (hyperbolic) Riemann surface of signature $(g, k; \infty, ..., \infty)$, we denote by $H_1^{1,0}(X, \mathbb{C})$ the complex vector space of holomorphic

1-forms on X with poles of order at most one at the punctures. The Riemann-Roch theorem implies that the complex dimension of this space is:

dim
$$H_1^{1,0}(X, C) = \begin{cases} g+k-1 & \text{if } k > 0 \\ g & \text{if } k = 0 \end{cases}$$

We have natural linear injections q_m^* : $H_1^{1,0}(S_m, \mathbb{C}) \to H_1^{1,0}(\overline{S}, \mathbb{C})$. We can regard the image $q_m^*(H_1^{1,0}(S_m, \mathbb{C}))$ as those differentials in $H_1^{1,0}(\overline{S}, \mathbb{C})$ which are invariant under G_m . Clearly, $q_m^*(H_1^{1,0}(S_m, \mathbb{C}))$ is orthogonal to the kernel of $(q_m)_*$, which we denote by $\ker((q_m)_*)$. The lemma below shows that the subspace of $H_1^{1,0}(\overline{S}, \mathbb{C})$ which is orthogonal to $\ker((q_m)_*)$ is exactly $q_m^*(H_1^{1,0}(S_m, \mathbb{C}))$. Since $\ker((q_1)_*) = \ker((q_2)_*)$, we obtain $q_1^*(H_1^{1,0}(S_1, \mathbb{C})) = q_2^*(H_1^{1,0}(S_2, \mathbb{C}))$. In particular, a form w in $H_1^{1,0}(\overline{S}, \mathbb{C})$ is G_1 -invariant if and only if it is G_2 -invariant, and these spaces have the same dimension; that is:

Now, (*) and (**) imply

(***)

$$g_1 = g_2$$
 and $k_1 = k_2$, if $k_1 > 0$ and $k_2 > 0$
 $g_1 = g_2$, if $k_1 = 0$ and $k_2 = 1$
 $g_1 = g_2$, if $k_1 = 1$ and $k_2 = 0$
 $g_1 = g_2$, if $k_1 = 0$ and $k_2 = 0$.

As observed before, if S is a closed Riemann surface and \tilde{S} is its homology cover, then the homology cover of $S - \{p\}$ is $\tilde{S} - \{\operatorname{orbit}(q)\}$, where $\pi(q) = p, \pi : \tilde{S} \to S$ is the homology covering map and $\operatorname{orbit}(q)$ is the orbit of q under the group of deck transformations. In particular, the homology cover of a closed Riemann surface and the homology cover of a 1-punctured surface cannot be conformally equivalent. As a consequence, $g_1 = g_2$ and $k_1 = k_2$.

Let G be the group of conformal automorphisms of \overline{S} generated by G_1 and G_2 . Then $S = \overline{S}/G$. Since every form in $H_1^{1,0}(\overline{S}, \mathbb{C})$ is G-invariant if and only if it is G_m -invariant, S must have signature $(g, k; \infty, ..., \infty)$ with $g+k-1=g_1+k_1-1=g_2+k_2-1$, if $k_1>0$; or $g=g_1=g_2$, otherwise.

Since $k_1 \ge k$ and $g_1 \ge g$ (by area arguments), we must have $k_1 = k$ and $g_1 = g$. In particular, S_m is conformally equivalent to S. Then S_1 and S_2 are conformally equivalent. This finishes the proof of our theorem.

Now we proceed to establish and prove the lemma we needed above.

LEMMA. Let $p: \overline{X} \to X$ be a covering (possibly branched) between analytically finite Riemann surfaces. Then

$$p^{*}(H_{1}^{1,0}(X; C)) = \{w \in H_{1}^{1,0}(\bar{X}, C); w \in (\ker(p)_{*})^{\perp}\}.$$

PROOF. Since \bar{X} and X are analytically finite Riemann surfaces, p is a finite sheeted covering. Clearly, $p^*(H_1^{1,0}(X; \mathbb{C})) \subset \{w \in H_1^{1,0}(\bar{X}, \mathbb{C}); w \in (\ker(p)_*)^{\perp}\}$.

To show the opposite inclusion, we need to recall some trivial facts.

FACT 1. If X is an analytically finite Riemann surface of signature $(g, k; \infty, ..., \infty)$, then every form $w \in H_1^{1,0}(X, \mathbb{C})$ is uniquely determined by $\int_{a_i} w, \int_{\delta_j} w, i = 1, ..., g, j = 1, ..., k-1$, where the α_i 's are g homologically independent disjoint simple loops on the closed Riemann surface (of genus g) $X' = X \cup \{\text{punctures of } X\}$ (also disjoint from the punctures), the δ_j 's are small simple loops around k-1 of the punctures and all the above loops are disjoint. Figure 1 shows loops α_i and δ_j in signature $(3, 3; \infty, \infty, \infty)$.

FACT 2. Let X be an analytically finite Riemann surface of signature $(g, k; \infty, \ldots, \infty)$. For any set of simple loops $\alpha_i, \delta_j, i=1, \ldots, g, j=1, \ldots, k-1$, as in Fact 1, there exist disjoint simple loops β_i such that $\{\alpha_i, \beta_i\}_{i=1,\ldots,g}$ form a canonical basis for the homotopy of X' and such that $\beta_i \cap \delta_j = \emptyset$, for all i and j (see Figure 2). In

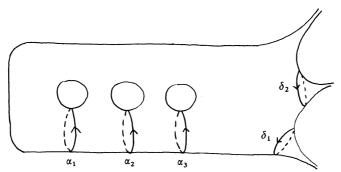


FIGURE 1. The loops α 's and δ 's in a surface of signature $(3, 3; \infty, \infty, \infty)$.

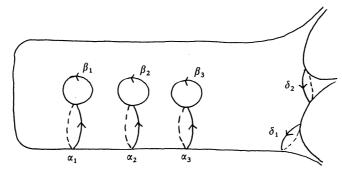


FIGURE 2. The loops α 's, β 's and δ 's in a surface of signature $(3, 3; \infty, \infty, \infty)$.

this case, $H_1(X, \mathbb{Z}) = \langle \alpha_1, \beta_1, \dots, \alpha_g, \beta_g, \delta_1, \dots, \delta_{k-1} \rangle$.

We need some notation and definitions. (1) We call a set of simple loops, as above, a canonical set. (2) Let us denote by $(g(\overline{X}), k(\overline{X}); \infty, ..., \infty)$ and $(g(X), k(X); \infty, ..., \infty)$ the signatures of \overline{X} and X, respectively.

FACT 3. On \overline{X} and X there exist canonical sets $\{\overline{\alpha}_i, \overline{\beta}_i, \overline{\delta}_j\}$ and $\{\alpha_n, \beta_n, \delta_l\}$ respectively, such that

(1) $p_*(\bar{\alpha}_i) \in \langle \alpha_n, \delta_i; n = 1, \dots, g(X); l = 1, \dots, k(X) - 1 \rangle$, (2) $p_*(\bar{\delta}_j) \in \langle \alpha_n, \delta_i; n = 1, \dots, g(X); l = 1, \dots, k(X) - 1 \rangle$.

PROOF (Fact 3). Construct a canonical set $\{\alpha_n, \beta_n, \delta_l\}$ on X. Since p is a finite sheeted covering, for any simple loop η on X there exists a positive integer m such that η^m lifts to a loop on \overline{X} . In particular, $p^{-1}(\eta)$ consists of a finite number of disjoint simple loops. Consider the family of simple loops $p^{-1}(\alpha_1), \ldots, p^{-1}(\alpha_{g(X)})$. In this family there exist a maximal set of disjoint simple loops which are homologically independent on the closed Riemann surface Y obtained by adding the punctures to \overline{X} . Now we complete them to a set of homologically independent disjoint simple loops on Y. Now consider small simple loops around $k(\overline{X}) - 1$ of the punctures of \overline{X} . We can make these loops to be disjoint from the above ones. These loops project to loops with homology in $\langle \alpha_n, \delta_l; n=1, \ldots, g(X); l=1, \ldots, k(X)-1 \rangle$. Now use Fact 2 to get a family of loops as desired.

Let \overline{V} be the complex vector space generated by $\overline{\alpha}_i, \overline{\delta}_j; 1 \le i \le g(\overline{X}), 1 \le j \le k(\overline{X}) - 1$, and let V be the complex vector space generated by $\alpha_n, \delta_l; 1 \le n \le g(X), 1 \le l \le k(X) - 1$. Then Fact 3 implies that a linear map $p_*: \overline{V} \to V$ is well defined.

Fact 1 says that its dual map is

$$p^*: H_1^{1,0}(X, \mathbb{C}) \to H_1^{1,0}(\bar{X}, \mathbb{C})$$
.

Now the lemma follows from the fact that $(\ker p_*)^{\perp} = p^*(H_{1,0}^{1,0}(X, C)).$

We obtain the following result from the proof of our theorem:

COROLLARY. Let G and H be finitely generated torsion-free Fuchsian groups of the first kind. Assume these groups to have the same commutator subgroup, that is, [G,G] = [H,H]. Then G = H.

References

[1] B. MASKIT, The Homology Covering of a Riemann Surface, Tôhoku Math. J. 38 (1986), 561–562.

Fakultät für Mathematik Sonderforschungsbereich 343 Universität Bielefeld Postfach 8640. W-4800 Bielefeld 1 Germany