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Abstract. Meromorphic functions on the complex plane which have the same
inverse images counting multiplicities for four values are Mobius transforms of each
other. The aim of this paper is to give an extension of this statement to moving targets.

1. Introduction. We say that two meromorphic functions / and g on C share
the value a if the zeros of / — a and 0 —α (I// and l/g if a— oo) are the same. Nevanlinna
[4] proved the following theorems:

THEOREM A. If two distinct nonconstant meromorphic functions f and g on C share
four values aί9..., a4 by counting multiplicities, then g is a Mobius transformation of f,
two shared values, say a3 anda4, are Picard values, and the cross ratio (αt, a2, #3, a4) = — 1.

THEOREM B. If two nonconstant meromorphic functions f and g share five values,
then f = g.

In this paper, we give an extension of Theorem A by using the results of moving
targets in [6] and [10]. An extension of Theorem B is conjectured, but the second main
theorem for moving targets corresponding to that playing the main role in the proof
of Theorem B is not proved yet.

2. Preliminaries from the value distribution theory. In this section, we define the
tools in the value distribution theory.

The complex project!ve space of dimension 1 is denoted by />1(C) and its
homogeneous coordinate system by (w0: H^). Let / be a holomorphic mapping of C
into Pl(C). A holomorphic mapping /=(/0,/ι) of C into C2 is called a representation
of / if Jφ o, where o is the origin of C2 and f(z) = (f0(z): /i(z)) for each ze C— J~ l(o).
Moreover, if J(z)φo for any zeC, it is said to be reduced. In the rest of this section,
let 7=(/0,/ι) be a reduced representation of /. Then, we identify / with the mero-
morphic function /!//0 if/0^0. Otherwise, we identify it with the constant mapping
taking the point at infinity as its value. Also, we denote by /* the holomorphic mapping
of C into Pί(C) with the reduced representation ( — fl9 /0).

Let r0 be a fixed positive number. The characteristic function of / is defined by
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(2.1) 7χr) = J- Γ \og\\f (reiθ)\\dθ-^- F" log||/(r0e
ίβ)||</0

2π Jo 2π J0

for r>r0, where ||w|| =(| w0 |
2 + | M^ |2)1/2 for w = (w0, vvx) is the norm in C2. The

characteristic function is non-negative, and if/ is nonconstant, then Tf(r)-+co as r->oo.
If /^O, we define the counting function of / for 0 by

(2.2) ΛΓ/;0(r)

for r>r0, where nf(t) is the sum of the multiplicities of the zeros of / in {z; |
Obviously, Λf/;0(r)>0. For αeC, we define the counting functions Nf.a(r): = Nf_a.0(r)

of / for a if / φ a, and Nf. ao(r): = Nί/f. 0(r) of / for oo if / φ oo . By the Poisson- Jensen

formula, we have

) = -L Γ \og\f (reίθ)\dθ-^-
2π Jo 2π J

\og\f (r0e
ίθ)\dθ .

0

If h : = 00/o + fli/! ̂  0 for a holomorphic mapping α of Cinto Pl(C) with a reduced
representation (α0, αj, then the counting function Nff0(r) of / for α is defined as Nh.0(r).

REMARK. We have defined two kinds of counting functions Nf.a(r) and Nft0(r) for

a G C: = C\J {00} which is a constant holomorphic mapping of C into P1(C). However,
i f/ is entire, then Nf.a(r) = Nf >fl*(r).

We use the notation ̂  to represent the meromorphic function field on C. For a
subfield Jf of ,̂ put Jf" — JΓu{oo}. I f / is nonconstant, we define Γf = {heJί\
Th(r) = o(Tf(r))(r^>co)} which is a field. Also, if /^oo, we define the proximity func-

tion of / for oo by

JH- (r) = -

where log+ x = log(max(l, x)) for x>Q, and if fφa for aeJί, the proximity function
of / for a is defined by mf.a(r): =m1/(/_α); ̂ (r). It is easy to see that

(2.3) Tf(r) = Nf,a(r) + mf(r) + O(l)

iffφaforaeC.
If / is nonconstant and a e Γf, then the defect of / for a is defined by

λ fv.

It follows from (2.3) and the non-negativity of characteristic functions, counting
functions and proximity functions that 0 < <5(/, a) < 1.
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We use the notation "A(r) < B(r) //" to mean A(r) < B(r) for all r e (r0, co) — E, where
E is a subset of (r0, oo) of finite Lebesgue measure. We complete this section with the
following lemma (for the proof, see [3, Chapter 3] and [9]):

LEMMA 2.1. For a nonconstant meromorphίc function h on C and j= 1,2,.. .,

(r) = o(Th(r))H as r-»oo .

3. Defect relation and BorePs lemma. Let / be a nonconstant holomorphic

mapping of Cinto P1(C) with a reduced representation /=(/0,/ι)

THEOREM 3.1. I f a l 9 ..., aqeΓf are distinct, then for ε>0

(<7-2-ε)7>(r)< £ #/iβ/r) + 0(7>
j = ι

COROLLARY 3.2. Ifa1,...,aqεΓf are distinct, then

This is an extension of Nevanlinna's defect relation and was obtained by Steinmetz
[10]. We do not give the proof for this theorem, but prove the following theorem called

BoreFs lemma:

THEOREM 3.3. Let N>2 be an integer, Fl9 . . . , FN nonvanίshing entire functions,
and al9 ...9aN meromorphic functions such that tf/^0 and

(3.1) Ta.(r) = o(T(r))H as r->oo

(\<j<N), where T(r) = Σ"=1 TF.(r). Assume that

Then, a^F^,..., aNFN are linearly dependent over C.

PROOF. Put Gj = ajFj. Assume that G l 9 . . . , GN are linearly independent over C.
Then some Gj are not constant. The Wronskian determinant W of Gί9..., GN is not

identically zero, i.e.,

G1 - - GN

W= l N

Denote the (l,7')-minors of Wby W^ Then

W χ-1

(3.3) Gj = -̂̂  —'
Gι'"Gj-ιGj+ι'
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by (3.2), where

(3.4)
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Δ =

- - 1

' " G'N/GN

and Δj are its (l,y)-minors. By (3.3) and (2.3), we get

j. » < mΔj, M + TΔ(r = mAjl
m o(T(r)) // .

By applying Lemma 2.1 to each of Δ, ΔJ9 we obtain

Also, we can easily check that £"=1 ΓG.(r)=Γ(r)(l-ho(l))//. Hence,
which is a contradiction. q.e.d.

4. Unicity Theorem. We extend Theorem A by dividing it into two parts.
Let / and g be distinct nonconstant meromorphic functions with reduced repre-

sentations (/o, /J and (0o, 0J, respectively. Let aj be distinct elements of Γf with re-

duced representations (ajQ,an) (l<y<4). We define entire functions by ̂  = ̂ 0/0 +
tfμ/i and Gj = aj0gQ + ajlgί. Then FjφO. Also, we define meromorphic functions ψj
by

(4.1) Gj = \l/jFj.

THEOREM 4.1. If all ψj are nonvanishing entire functions, then there exist A, B, C,
DeΓf such that AD-BC^O and

Af+B
(4.2) 9 = Cf+D

PROOF. By (4.1), we get

ho 031 -030^3 -031^3

\040 041 -040^4 -

/O

V / l /

0 \
0
0

\ 0 /

Since (00, gί9 /0, Λ)^(0, 0, 0, 0), the determinant of the 4 x 4 matrix above is

identically equal to zero. By expanding it, we have

(4.3) bl2^

where

=*34 = (010021 -01102
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For distinct j and k, we have

Since F,(z) = G,(z) = 0 implies /0(%1(z)-/1(z)^0(z) = 0,

AW;iW> Σ tf/..,

Hence, if #{y, fc, μ, v} >3, by (2.3) and Theorem 3.1

ZW') + TWO ̂  ΛWfeiW + NΨuiΨ. Ar

^ Σ ΛW)+ Σ Nfi

Applying Theorem 3.3 to the identity obtained from (4.3)

-+ ,3 4,4 + ,13 / + ,2 4.4 + ,1 4/ ,4 = ~ ι '

we have a shorter identity

αi2*12^1^2 + «34*34^3^4 + αi3*13^1^

where αjfc are constants not all zero. By applying Theorem 3.3 successively, we deduce
that some (b^^Kb^φi) are nonzero constants, where bjk = bkj if j>k. The conclusion
of the theorem follows from this. q.e.d.

We state the second part of our extension of Theorem A. Let A, B, C, D e Ji such
that AD-BCφQ. We define the mapping S: Jt-^Jί by

A/C (Fsoo).

For a nonconstant meromorphic function /, we define the condition P(/) by

P(/) NH; o W + #Λ; oo W = ̂ (ΓXr)) (r-* oo)

for

REMARK. The conclusion of Theorem 4. 1 is true under the weaker assumption
that all ψj satisfy the condition P(/).
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THEOREM 4.2. Assume that A, B, C, DeΓf and that

(4.5) g

Moreover, assume that all φj satisfy the condition P(/). Then, for two7, say j=3, 4, Fj

satisfy the condition P(/), and the meromorphic function of cross ratio (0*, 0*> α*> aT)
is identically equal to — I .

REMARK. Under the assumption above, the two conditions P(/) and P(#) are

equivalent.

PROOF. It follows from (4.5) that

Ψk FJ (Bakί+Dak0)f0 + (Aakΐ

For distinct j and fc, the common zeros of Fj and Fk are the zeros of a±
(^0) which satisfies P(/), and also, the common zeros of Fj and (Ba^
(Aa^4-C07Ό)/ι are the zeros of (Bajl-\-Dajo)ajl—(Aajl + Caj0)aj0. Unless

(4.7) (Λi^ + Λfl^i - (^ji + Cfl^/o = 0 ,

it satisfies P(/). Therefore, in this case, since ^/^k satisfies P(/),

(4.8) ^0(0 = 0(^(0) as r-^oo.

We conclude that at least one condition among (4.7) and (4.8) holds for each 7= 1, . . . , 4.
However, the number of /s which satisfy (4.8) and (4.7), respectively, is at most two.
Therefore, we may assume that for 7= 1, 2, (4.7) holds, but (4.8) does not, and that for
y = 35 4, (4.8) holds, but (4.7) does not. In (4.6), we consider the case 7 = 3, k= 1. Then,
we deduce that (Ba31+Da3Q)f0-\-(Aa3^ + Ca30)fί satisfies P(/). However, (4.7) does
not holds for y'=3. It follows from these and Theorem 3.1 that

(Ba3ί +Da30)a41 -(Aa3ί

Similarly, we have

(Ba41 +Da40)a3ί -(Aa41

We obtain from these two identities

(4.9) S(aϊ) = a39

Also, we have

(4.10) S(aj) = aJ (7=1,2)

by (4.8). From (4.9) and (4.10), the identity (αf, αj, αf , α})= - 1 is deduced. q.e.d.

We give an analogue of Theorem B.
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COROLLARY 4.3. Let f and g be nonconstant meromorphίc functions with reduced
representations (/0, Λ) and (00> 0ι)> respectively, and tf/ef'f distinct with reduced
representations (aj0, an) (1 <j < 5). Assume that all φj defined by (4.1) are entire functions
without zeros. Then, f = g.

PROOF. Assume that fφg. Then, it follows from Theorems 4.1 and 4.2 that for
two j in {1, 2, 3, 4}, say j= 3, 4, Fj satisfy the condition P(/). In the same way, Fj satisfy
the condition P(/) for two j in {1, 2, 3, 5}. Hence, the number of j in {1, 2, 3, 4, 5}

such that FJ satisfy the condition P(/) is three or four, a contradiction to Theorem
3.1. q.e.d.

In Corollary 4.3, Fj and Gj are required to have the same zeros counting
multiplicities. However, Theorem B does not count the multiplicities. The following
should be a complete extension of Theorem B:

CONJECTURE. We have f=g, if Fj and Gj have the same zeros for each j= 1,..., 5
(not counting multiplicities).
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