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CONJUGATE EXPANSIONS FOR ULTRASPHERICAL FUNCTIONS

KRZYSZTOF STEMPAK

(Received April 7, 1992, revised August 17, 1992)

Abstract. We define and investigate the Hubert transform for expansions with
respect to the system of ultraspherical functions. Using deep estimates done by
Muckenhoupt and Stein in the polynomial expansion case we prove the existence of
boundary values of the conjugate Poisson integrals of integrable functions. The limit
function then satisfies usual Lp and weak type (1,1) estimates.

1. Introduction. Thirty years ago in their classical paper [6] Muckenhoupt and
Stein investigated the ultraspherical expansions from the harmonic analysis point of
view. One of the main results they proved was that the conjugacy mapping /H->/ is a
bounded operator on Lp, 1 <p < GO . Here the definition of conjugacy is insightfully
introduced in such a way that the Poisson integral and the conjugate Poisson integral
corresponding to / are related by suitable Cauchy-Riemann equations. More specifically,
if feLl((Q, π), (sinθ)2λd0), 1>0, has the expansion ^«ΠP^(cosθ) then its conjugate /
is formally defined by

Then the Poisson integral

/(r,

and the conjugate Poisson integral

21

satisfy

— ((rsinθ)2A7)=-r2A-1(sinfl)2A^,
dr dθ

— ((rsmθ)2λ?) = r2λ+1(smθ)2λ^-.
dθ dr

In [4], [5] Muckenhoupt proved Lp conjugate function theorems for Hermite and
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Laguerre expansions and the definition of conjugacy this time was done according to
a general principle given by Stein [7]. In all these cases only polynomial expansions
were discussed. Parallelly to such expansions it is natural to consider expansions with
respect to the system of corresponding orthonormal functions that arise by multiplying
polynomials by the square root of appropriate weight function. This approach was
undertaken by Gosselin and Stempak in [3] where they discussed conjugacy for
expansions with respect to Hermite functions. The main objective of this paper is to
develop conjugacy theory for ultraspherical functions. By these we mean

φλ

n(θ) = d(λ, n)Pλ

n(cosθ)(smθ)λ ,

where

d(λ, n) = 2λ-ί

and P*(t) is the «-th ultraspherical polynomial of type λ>0. The system (φ^(θ)} is a
complete orthonormal system in L2((0, π), dθ) and was discussed in the literature for
instance by Askey and Wainger [1], [2].

In [7] Stein suggests the following definition of the Hubert transform associated
with a general Sturm-Liouville operator

(1.1)
dx2 dx

acting on an interval (αl5 α2): if {<?„}, «>0, is a complete orthonormal set of
eigenf unctions of L with eigenvalues { — λ2} then a formal integration by parts shows
that the functions {λ~ldφjdx} form an orthonormal set again and thus the proposed
Hubert transform would provide the mapping φn\-^λ~1dφjdx. In the situation we

consider the functions φn(θ) are eigenfunctions of the differential operator

(1.2)
dθ2 sin20

with eigenvalues { — μ2}, μn = n + λ. The operator (1.2) is no longer of the form (1.1).

However the following result motivates our definition of Hubert transform that follows.

PROPOSITION 1.1. Let {φn} ,n>Q,bean orthonormal set of functions in L2((0, π), dθ)
consisting of eigenfunctions of the differential operator (1.2) with eigenvalues — μ2 (precise
values of μ^s are not important here). Suppose also that φn's are of sufficient decay at
0 and π: Iimθ^0>πφπ(0)φm(θ)cot0 = 0 and limβ^0>πφ^(0)φm(0) = 0, say. Then the set
{ψn}, n>\, where

is also an orthonormal system in L2((0, π), dθ).

PROOF. We have from the decay at 0 and π



/ o

Therefore
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0 = | (φnφmcotθγdθ= \ (φ'nφm + φnφ'Jcotθdθ-\ φ^-^—dθ.
Jo Jo Jo sm20

= | (φ'n-λcotθφj(φ'm-λcotθφjdθ
Jo

Γπ Γπ
= (φn<Pm + λ2cot2θφnφm)dθ — λ (φf

nφm-\-φnφ'm)cotθdθ
Jo Jo

_ f " „ 2 2 f * 1

Jo " Jo sin2 0

= (μ2

n-λ2)δnm,

which finishes the proof of the proposition.

It may be easily verified by using differential properties of the ultraspherical poly-
nomials that (d/dθ-λcotθ)φϊ(θ) = -Jn(n + 2λ)φ*±l(θ). This and the explicit form of

μw's suggests that the Hubert transform for the ultraspherical functions can be defined
by the mapping

However, the same argument we used defining conjugate functions for the Hermite
function expansions [3] forces us to define the Hubert transform for ultraspherical
functions by

(1.3) φλ(θ)>-+ ^~V ) Ψn^ ) n + λ -rn-^-.

Then, if f(θ)eL1 has the expansion ^bnφ^(β), defining the Poisson integral o f/ by

(1.4) f(t,θ)=Σe-'^

and its conjugate Poisson integral by

(i.5) 7(*,0)=Σ *~'<Π+'
«=ι

one can easily verify that they are related by the differential equation
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(1.6)v dt
Note that (1.3) maps an orthonormal set into only an orthogonal set but due to the

factor in front of φ^~ \(θ) we have (1.6) that will be crucial in what follows.
The main goal of the paper is to prove the existence of boundary values of the

conjugate Poisson integrals of integrable functions. In §2 we discuss the Poisson integrals
and prove their convergence at the boundary both almost everywhere and in Lp norms,
1 <p< oo. §3 is devoted to the study of conjugate Poisson integrals. When studying the
Poisson and conjugate Poisson integrals the main problem is of course a good estimate

for corresponding kernels or their derivatives that arise. It occurs, fortunately, that we
can take a profit from deep estimates done by Muckenhoupt and Stein in the polynomial
case. While it is quite straightforward when dealing with the Poisson kernel, a

modification must be done in the conjugate case. The fact that unweighted case is
considered explains that the estimates and arguments we use are somehow simpler than
in the (weighted) polynomial case. As usual the letter C will denote a constant varying

from line to line.

2. Poisson integrals. Rather than working with the Poisson integral of / given

by (1.4) we will use the following more convenient version of it. Given f(θ)eL1 with
the expansion £ bnφ*(θ) the Poisson integral of / is defined by

(2.1) /(r,β)=Σ rnt>nφ
λn(θ)

n = 0

Then the Poisson kernel

(2.2) P(r,θ,η)=Σ rn

n = 0

differs from the Poisson kernel associated to polynomial ultraspherical expansions only
by the factor (sinθsin^)λ. Therefore, due to the fundamental estimate given by

Muckenhoupt and Stein, [6, Lemma 1, p. 27], we have the following.

LEMMA 2.1. The Poisson kernel P(r, θ, η) satisfies

(2.3) P(r, θ,η) < C "

where C is a constant independent ofQ<r<l and Q<θ,η<π.

Note that the estimate (4.1) in [6] is essentially given for l/2<r<l but the in-
equality

(2.4) \φλ

n(θ)\<Cn 2Λ-1
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shows that P(r, 0, ή) is uniformly bounded for 0<r < 1/2. Also positivity of the Poisson

kernel follows from a well known formula

(2.5)

v 7 - 7 ι/ \ y \ i x i , Λ

π Jo (1-

The inequality (2.4) allows us to write

|
Jo

= P(r9θ,η)f(η)dη
o

as well as to differentiate (2.1) term by term to check that /(r, 0) is a C°°-function. In

the polynomial expansion case the Poisson kernel has the integrals equal to one. In the

case we consider we do not know the exact values of the integrals ^P(r, Θ9 η)dη but

all we need to know is the uniform estimate

ί"Jo
(2.6) P(r,θ,η)dη<C

)o

that follows from (2.3).

In what follows by /* we denote the usual Hardy-Littlewood maximal function

of /, a locally integrable function on (0, π), and by ||/||p we mean the ZΛnorm of /

with respect to the Lebesgue measure. The estimate (2.3) leads to the following result.

THEOREM 2.2. Let feLl((Q9 π), dθ) and let /(r, θ) denote the Poisson integral of

f given by (2.1). Then

(a) supr<1|/(r,0)|<C/*(0),

(b) /(r, θ)-*/(θ) a.e. as r-+l.

Moreover, iffeLp, !</?<oo, then

(c) l l/ fcθJI
(d) \\f(r9θ)

PROOF. Almost everywhere convergence of Poisson integrals is clearly a conse-

quence of the estimate (a) and the fact that the linear space spanned by the functions

φ J, n = 0, 1, 2, . . . , is dense in Z/((0, π), dθ), l<p<co. The inequality in (a) follows

easily from (2.3). The estimate in (c) is implied by (2.6) and then (d) also follows.

Note that almost everywhere convergence in (b) may be obtained from the

corresponding result for the polynomial expansions (but this is not the case of norm

convergence in (d) or the weak- type (1,1) estimate for the maximal function in (a)).

More precisely, ΊΐfeL\dθ) then f(θ)(smθΓλeLl((sinθ)2λdθ) and

θ) ~ \ Pλ

n(cos 0)>L2((sin θ)2Λdθ)Pn

λ(cos θ) -» /(θ)(sin 0) ~ λ
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almost everywhere as r->l by [6, Theorem 2, p. 31]. Hence

a.e. as r->l.

3. Conjugate Poisson integrals. Since for technical reasons we decided to work
with the Poisson integral given by (2.1) rather than by (1.4) we now define /(r, 0), the

conjugate Poisson integral of f(θ)~Σbnφ*(θ) by

(3-D f(r,θ)=

Thus (1.6), satisfied by /(£, 0) and /(ί, θ), transforms to the differential equation

(3.2) A( r γ ) = _ r A-/J—λcotθj f

with f(r, θ) and /(r, θ) involved. Let

(3.3) Q(r,θ,η)=Σ r" ±
n=l

so that

Then (3.2) gives

(3.4) β(r, 0, ιy)= -r~λ ^ - - — Acotβ 0,r, 0, ιy)= -r~λ Γ ̂ -̂ -1—
Jo \ w

where P(ί, 0, ή) is the Poisson kernel (2.2). To obtain LP theorems for conjugate functions
we need good estimates for the kernel Q. In the case of polynomial expansions
Muckenhoupt and Stein doing a careful analysis received a sophisticated estimate of
conjugate kernel (cf. [6, Lemma 4 of §7]). Even if we cannot use this estimate directly
(conjugate kernels does not differ by the factor (sin0sinτ/)λ as it was in the case of
Poisson kernels), it occurs that we do rely on their work after a reduction is made. The
estimate of Q is the following.

LEMMA 3.1. Let 0<0<π, 0<η<π/2. Then
L) if 2θ<η,
L) if'θ>2η.

Ifθ/2<η<2θthen
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l-cos(θ-η)

PROOF. Differentiating (2.5) shows

( d ι /Λn, /, x A(λ+l) „ ... . . . Λ , f" iίsinτ)"-1 _,
λco\.θ]P(t,θ,η)= -t(l-t2)(smθsmηΫ '-—- eh,

\dθ ) π Jo (l-2fl/ + /2)A+2

where

α = cos θ cos ^ + sin θ sin 77 cos τ

and

b = 2(sin θ cos η — cos θ sin η cos τ).

Thus, (3.4) and the elementary identity

ίA(l-/ 2)
-—— aι =

)Q ^l—^Ul^Γl ) λ+l (1 ~

give

(3.5) β(r, θ, η) = ̂ -(smθsmη)λ f * -̂

where

Z> = 1 — 2r(cos θ cos 77 + sin θ sin 77 cos τ) + r 2 .

This is the point where we simply take the profit from hard estimates of Muckenhoupt
and Stein. Denoting

firJo I1 ~~

R(r,θ,η)=\ DeD-λ-l(ύκτ)
Jo

we see that R(r, θ, η), up to an ignorable factor, is the kernel considered by the fore-
mentioned authors in (7.4) of [6] for which the following estimates hold:

(3.6) R(r,θ,η) = 0((ύnηY2λ-1} if 2θ<η ,

(3.7) R(r,θ,η) = 0((smθΓ2λ-1) if θ/2>η .

Therefore, in the case 2θ<η, multiplying (3.6) by (sin0sinτ7)λ and using I/sin η<
C(l/sin0) we get

Consider now the second case when θ > 2η. If 0 < θ < π/2 then sin η < sin θ and multiply-
ing (3.7) by (sin0sin*7)A gives
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If π/2 < θ < 3π/4 then \Dθ\<Csinη and

/ 0_
sin2 - - >C(sinθsinf/)λ+1

hence R(r, θ, η) = O(smη/(sinθsmη)λ+1) which gives the required estimate for Q. The
case 3π/4<0<π is trivial since then Dλ + 1>C. In the most critical range, θ/2<η<2θ
we only note that the error term O(\ sin(θ — η) \(rsmθsinη)~λ~1) on the second line on
p. 38 of [6] may be changed to O(sin η/(sin θ sin η)λ + 1) and the error term on the seventh
line on p. 38 is exactly what we need to get our estimate for R(r, θ, η) that implies the
required estimate for Q. This concludes the proof of the lemma.

The estimates of Lemma 3.1 are crucial to prove the main results of this section.

THEOREM 3.2. The conjugate maximal operator is of weak-type (1, 1) which means
that

LJES

where

dθ< —
s

s = {0e(0,π): sup \?(r,θ)\>s
I 0 < r < l

PROOF. It suffices to follow line by line the proof of Theorem 4 in [6, p. 38] using
the estimates of Lemma 3.1 instead of those from Lemma 4 in [6, p. 35]. Clearly we
also use the classical weak-type result for the conjugate maximal operator for trigono-
metric series.

COROLLARY 3.3. Let f(θ)EL1((0, π), dθ) and let Σ™=0bnφϊ(θ) denote the expan-
sion of f with respect to the ultraspherical functions φ*, « = 0, 1, Then the limit
limr^ίf(r, θ), denoted byf(θ), exists almost everywhere and

dθ<— I I / I U .
>s] S

Moreover, if /(0)eLp, !</?<oo, then ||/||p<Cp||/||p, /(r, θ) converges in Lp norm to
as r-> 1 andj(θ) has the expansion

n = i n + λ

PROOF. The existence of the boundary value /(0) follows from the estimate for
the conjugate maximal operator and the fact that the linear space generated by the
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functions φλ

n is dense in LP

9 1 <p< oo.
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