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Abstract. The author shows the existence of a smooth projective uniruled but not
separably uniruled variety in positive characteristic satisfying the numerical condition
of Miyaoka and Mori. It is a counterexample to a problem which Miyaoka and Mori
posed.

In this paper we make a remark on a criterion for a projective variety to be
(separably) uniruled in positive characteristic p.

Let Xbc an ^-dimensional variety defined over an algebraically closed field k which
is uncountable. X is said to be uniruled if there exist an (n— l)-dimensional Λ>variety
Wand a dominant rational map f:PixlV » X . Xis said to be separably uniruled if
the morphism / can be chosen to be separable.

Miyaoka and Mori [Mi-Mo] gave the following numerical criterion for uni-
ruledness:

THEOREM (Miyaoka and Mori [Mi-Mo]). Let X be α smooth projective variety
over the complex number field C. Then the following two conditions are equivalent:

(UR) X is uniruled.
(NC) There exists a non-empty open subset UaX such that for every xeU, there

is an irreducible curve C through x with (KX C)<Q.

In positive characteristic, the implication (NC) => (UR) holds good but the converse
(UR)=>(NC) does not hold as was pointed out by [Mi-Mo]. They asked if (NC) is
equivalent to

(SUR) X is separably uniruled.
In this paper we first consider a criterion for a variety to be separably uniruled

and show in Corollary 1.2 that a separably uniruled and srtiooth projective variety has
the property (NC). Next we study a counterexample to the implication (NC) => (SUR)
in positive characteristic. Without assuming the smoothness of the variety A^in question,
we can construct Xvery easily by using P(Tpn) with two projective space bundle structures
and the Frobenius morphism of the base projective space Pn. Since the resolution of
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singularities is not known yet in positive characteristic, however, it does not seem to
be easy to get a smooth variety. Thus to overcome the obstacle we must make several
preparations as in §2 and §4. Moreover by virtue of the theory of toroidal embedding,
we have:

THEOREM (positive characteristic). For an odd integer m (>3) there is an m-
dimensional smooth projective variety X enjoying the following properties'.

(1) X is defined over an algebraically closed field k whose characteristic p (>0) is
less than (ra + 3)/2.

(2) X is uniruled but not separably uniruled.
(3) X has the above property (NC).

Note that a smooth projective surface X with κ(X) = — oo is ruled by the clas-
sification theory of algebraic surfaces. Therefore, the implication (NC) => (SUR) holds
good for such surfaces.

Basically we use the customary terminology in algebraic geometry. For a smooth
variety X, Tx denotes the tangent bundle of X. When E is a vector bundle on a variety,
P(E) (resp. V(E)) means Proj (resp. Spec) of the symmetric algebra of E. E means the
dual vector bundle of E. For a variety Y and a closed subscheme Z in Y which is locally
a complete intersection, NZ}Y denotes the normal bundle of Z in Y. (9pn(\) means the
line bundle corresponding to hyperplanes of the projective space Pn. When F is a
coherent sheaf on P", F(ά) denotes F® &pn(\)®a. k* denotes fc-{0}.

From now on the characteristic p of the ground field k is assumed to be positive.
The author would like to thank to the referees for useful advice.

1. Separable uniruledness. First we give a criterion for a projective variety to be
separably uniruled.

PROPOSITION 1.1. Let X be an n-dimensional projective variety and consider the
following two conditions'.

(1) X is separably uniruled.
(2) There is a smooth open subset U in X and a non-constant morphism f: P * -> U c X

such that /* Tυ is generated by global sections.
Then (2) implies (1).
Moreover, assume that X is smooth. Then the two conditions are equivalent to each

other.

PROOF. Let us show that (2) implies (1). Let ΓczP1 x X be the graph of /.
Obviously, Γ is contained in the smooth part X in P1 x X and the normal bundle ( = N)
of Γ in X is isomorphic to /* Tυ. Now take the Hubert scheme Hr in P1 x X of Γ. By
the condition (2), the first cohomology group of /* Tυ vanishes^ from which it follows
that H' is smooth at the point y corresponding to the curve Γ. Thus we can take the
irreducible component H of H' containing the point y. Let W be the universal scheme



UNIRULEDNESS IN POSITIVE CHARACTERISTIC 449

corresponding to the Hubert scheme H and s, t be the second and third projections
from WCL P1 x X x H to X and H, respectively. Then since Γ \y) = Γ x γ (~ P1) and H
is smooth at y, we infer that the morphism t is a smooth morphism around the fiber
t~l(y), that is, there is a smooth open set H0 (97) in H so that t~l(H^)-+HQ is a P1-
bundle over H0. Since ,<Γ x y)c t/ and therefore s^CΓ-ί/) n t~l(γ) = 0, there is an
open subset 7/0 0y) in #0 such that s(W)<=U with H^= f ~ l(Hr

0). Thus for the natural

homomorphism s: Tw^>s*Tv, the restriction of the homomorphism s to t~l(y) is the
one induced by the canonical isomorphism from HQ(Pl, f*Tx) to the Zariski tangent
space THoy of H0 at 7. Therefore we see easily that s is generically surjective. This
implies that the morphism s: W^Xis dominant and separable. The first property of As-
says that X is uniruled.

Secondly by virtue of [G, Theorem 8.2], there is a variety V and an etale morphism
h:V-+H'0 with γeh(V) which induces a F-isomorphism i: WXH,Q V (= W)~Pl x V.
Therefore letting h: W-+ W to be the morphism induced by the morphism h: V^>H'0,
we infer that h s P1 x V^X is separable. Thus we see easily that there exists an
(n— l)-dimensional closed subvariety V in Ksuch that the induced map P1 x V'-+Xis
dominant and separable. Therefore X is separably uniruled.

As for the latter statement in Proposition 1.1, we have only to show the following:

CLAIM. Let Y be a variety and f:P1xY +Z a dominant rational map with

dim Y+ 1 =dimZ. Assume that / is separable and there is a smooth open subset Y0

in Y and a smooth open set Z0 in Z with /(P1 x 70)cιZ0. Namely, let FczP1 x Yx Z
be the graph of the map / with s: V-+P1 x Y the natural projection which is a birational
morphism, and t: V-+Z the third projection. Then t(s~ί(Pί x Y0)) is contained in Z0.
Hence there is a projective rational curve CcZ0 so that φ*TZo is generated by global

sections, where φ :P1^C is the normalization.

Indeed, shrinking Y0 to an open subset Yί in Γ, we see that (su)~1Yl-^Y1 is a
P1-bundle over Yl with the natural projection w P1 x Y-+Y. Since, (su)~lYl (=K0)
is smooth, the morphism t gives a homomorphism Γ: TVo^>t*TZo between the tangent
bundles of F0 and Z0. On the other hand, we can easily check that for every point y
in Yl9 TyQ\su- ιω is isomorphic to <V(2) θ (0Pι)

θfl with α = dim 7, and hence is generated
by global sections. The assumption that / is separable means that Γ is generically
surjective, which implies that for a general point y in Yl9 t*TZo\su-ί(y} is generated by
global sections. Letting C=t(su~l(y)) and φ the normalization P1-+C, we see that
φ*ΓZo is generated by global sections as required.

Thus we complete the proof of this proposition.

The proof of the latter part in Proposition 1.1 shows:

COROLLARY 1.2. A separably uniruled and smooth projective variety has the prop-
erty (NC).
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2. Non-uniruledness of a hypersurface. Let {Cj}jeN be an infinite sequence of

elements Cj in k where for each pair / and j (iφj), ct is not equal to Cj.

For each / let Ft be a homogeneous polynomial Π;=ι (^ί~cj^o) w^ a positive
integer d{.

Now for each n consider the following homogeneous polynomial equation of

degree

(2.1)

where s1=d1 — ̂  and for « > 2, sw = d[n\ — Π "= i e\
From now on we assume that

(2.2) dι = (p + l)αί +1 and et = (p+ l)αί with a positive integer 0f > 2 .

Let Ψ, Y0, Yl9 - - -, Yn be homogeneous coordinates of Pn+1 and let us consider a

hypersurface ^4Π in />n+1 defined by the equation (2.1) with the property (2.2).

Then we show:

PROPOSITION 2.3. For each n, An is not uniruled.

PROOF. We prove this lemma by induction n. When /ι=l, the normal com-

pactification A± of Aί is a branched covering over Pl with at least d1 branch points.

Moreover, the covering is separable, because p does not divide e±. Thus Hurwitz's

theorem yields an inequality 2g(A1) — 2>e1(2 x 0 — 2)-\-d1 >0, which says that Aί is of

genus > 1.
Next on the affine open subset { Y0 φ 0} let us consider a rational map φ : A n +1 *

A2 from the («+l)-dimensional affine space to the 2-dimensional aifine space given

by sending a ^general point (yl9 - 9yn9z) in An + 1 to the point (yn, z) = (yn, z*°/

Y[n.~^Ft(l, Yif*) in A2 where ei = ]YJ~l+1ej and e n _ x = 1. Then we remark that φ(An)

is contained in the curve defined by the equation zβn = Fn(l, yn), which is not a rational

curve. By the induction assumption, the fiber of φ is not uniruled. Thus An is not

uniruled either. q.e.d.

The above proposition yields:

COROLLARY 2.4. A generic hypersurface of degree d\ri] (>«+!) in Pn + ί is not

uniruled. In particular if d\ri\ linear forms L1? -, Ld[n] with respect to variables

Y0, — -,Yn are in general position (which means that each n+l forms L ί l? , Lin+ί of

{A }ι<i<d[n] are linearly independent over the field k), then the hypersurface defined by
the equation YfrWά™-* = ]\?*\Li is not uniruled.

PROOF. Since the uniruledness is an open condition, the former part is obvious.
As for the latter, consider a hypersurface in pdw(n + 1)χpn+1 defined by the following

multi-homogeneous polynomial with indeterminates A, Λj's, 7/s, W, V\



UNIRULEDNESS IN POSITIVE CHARACTERISTIC 451

- ΛJ λ 3
i=l\j=Q

where A, A] (l<i<d[_ri],Q<j<n) are homogeneous coordinates of pdM<»+ι> an(j

W,Y09' ', Yn are those of Pn+1. Now suppose that the conclusion does not hold. In
order to get a contradiction it suffices to show the following:

SUBLEMMA. Let G and H be projective varieties and f:G^H a surjective morphism.
Assume that a fiber f~ 1(Λ)red is uniruledfor a general point in H. Then every fiber f~l(h)
is uniruled.

PROOF. By the countability of the Hubert polynomial, we have only to prove that
f~l(h) is covered by rational curves. Now considering the Hubert scheme of rational

curves on G, we see that there are a Hubert polynomial P and a component / of Hi\bP(t)X
satisfying the following: When h: M-*J is the universal scheme of /, a generic fiber of
h corresponds to a rational curve in some fiber of /, which implies that the support of
every fiber of h consists of rational curves and that the canonical projection g:M-+G
is surjective.

Therefore we infer that for every point x in G, there is a rational curve C in X

and a point a in / so that C is the image of a component of h~l(a) via the morphism
g and C passes through the point x. Thus by continuity, such rational curves are
contained in some fiber of h. Thus we complete the proof of the sublemma.

3. The structure of P(Fr(r}*(Tpn( -1))). Let

Y— <(Ύ ' •-• r W f ι ; •••Λ — < (XQ . , , . Xn) X ^jy0 . , , .

I
where P?~Pn with /= 1, 2 and a (resp. b) is the first (resp. second) projection. Let

with q=pr, where p is the characteristic of the base field k and Ps~Pn.

REMARK 3.1. (1) X is isomorphic to P(Tpn(-1)).

(2) Regarding the above projection a as the canonical projection P(Tpn(— 1))-*PΠ

induced by the natural projection Tpn(— l)->Pn, we can say that the projection b is the
morphism induced by the tautological line bundle of Tpn(— 1).

(3) X(q) is isomorphic to />(Fι (r)*(ΓPn(-l))) where q=pr, Fr.P^Pl is the
Frobenius map and Fr(r) = Fro oFr (r-times). We identify Fr(0) with the identity
morphism. Then we have the following diagram:
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P n nn
3 ——* * ι -

Let H be a hyperplane in P" and H' the reduced part of (Fr(r))~l(H), which is a
hyperplane in P£ as a set F°Γ a vector bundle E on PJ, 1£(9) denotes the pull-back
Fr(r}*(E) of E via the morphism Fr(r) where q=pr. Then we get:

PROPOSITION 3.2. /« fλe αZwve notation, we have a splitting on the hyperplane H:

(1) (*) Tpn(-\)\H=Tpn-.(-\)®Θpn-..

Consequently, we get a splitting on H'

(**) (Γι-(-l))jt = (ϊ>.-ι(-l))(β)Θ^-ι

Lei fλe quotient trivial line bundle of (#) and (##) correspond to some fiber Z of b

and the reduced part Z' of a fiber ofb', respectively. Then Z as well as Z' are isomorphic

toPn~l.
(2) The normal bundle NZ.,B is (Ωpn- ι(l))(ί) with H= (a'Γ\Hf).

PROOF. (1) is trivial. Remark 3.1.3 and (1) yield (2).

Now for the inclusions Z1 aH^X(q) of subvarieties, we have an exact sequence

of normal bundles

(3-3) 0 -> NZΊβ -> NZ,IX(Ά} -+ NjJiχ(q)\Z' -* 0 .

In this sequence, (NB/X(q})\r is isomorphic to ®pn-ι(\).
Let L be a line in Z' and let us calculate the intersection number (KX(q) L). The

inclusion Z' c: X(q) yields an exact sequence

(3.4) Q^Tz.^(TX{ώ\z ^NZΊX{Λ}^Q.

Thus we see that -( (̂4) L) = deg(Γ^))|L = deg(Γz, L) + deg(7VZWg))|L. Note that

(^z')|L^^(2)θ(^(l))θn-2.
Moreover by Proposition 3.2, (2),

(#zva)|L^Oi--i(l)|f^(fl^^^

Hence we infer that —(KX(q) L) = n — q+ 1 by (3.3).

Hence we have:

PROPOSITION 3.5. In X(q) let L be a line on a fiber of b' OP""1 as a set). Then
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Let C be a rational curve in Z' and φ : P1->C (cZ') the normalization of C. Then
by (3.4) we have an exact sequence

(3.6) 0 -> φ* Γz. -* φ* Γ,(β) - φ*Nz./XM-+0 .

PROPOSITION 3.7. Le/ α morphism φ:P1-^C be as in (3.6). Assume that φ*TX(q}

is generated by global sections. Then q=\, that is, the characteristic of the base field is
zero.

PROOF. By assumption and the exact sequence (3.6) we have a generic isomor-
phism on P1

By taking the «-th exterior product of (#), we get an injective homomorphism

Opί-*/\nN. On the other hand, since Λ/l~1(βpπ-ι(l))(4) = ̂ P«-ι(-^r) and therefore
y\nWZ7;w = 0p»-i(l-#) by (3.3), we see that /\nN=Θpί((l-q)degC\ which yields

q=l. q.e.d.

4. The desingularization of some divisor in P(Tpn). Let ^: = P"xPn, where

(w0,..., MM) is the homogeneous coordinate of the first P", while (t?0,..., vn) is the
homogeneous coordinate of the second P". Let

n

7 = 0
X(p): = <(w0? - - - , Ό x Oo, >

as stated in §3 and let {^}o<i<m be a collection of hyperplanes in the first Pn with
m>n— 1.

Moreover, let us consider the following condition:

(4.0) For all w-tuples ι'0, ι l 9 . . . , ΪB_! of elements in (0, 1,..., m}, dim f|"Io ^Λ = ̂
holds in the first P".

Let Dt: = d-l(Hi)nX(p)9 where d:0>-+Pn is the first projection.
Then our aim in this section is to study the following:

(4.1) Under the condition (4.0), what kind of modification σ: ̂ -»^ should one

take for the reduced structure of the closed subscheme σ~1[Ar(/7)]nσ~1(U^=0Z) ί) to

have only normal crossing in the proper transform σ~l[_X(py] of X(p) via σ?
For the study of the above problem, it suffices to consider the case m = «— 1. By

a suitable linear transformation of the base space we can express each Htj of the above
n hyperplanes as {M7 = 0}.

Hence without loss of generality, we assume that D~{u~Q}f\X(p) for i=

0,...,«-!.
(4.2) In this section we fix the coordinates w/s and t /s used above. Utj denotes

the affine open subset {̂ 1^0} in & which is isomorphic to A2n. Thus ^ is covered
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with affine open set Utj which are affine spaces.

REMARK 4.2.1. The canonical coordinate of the above affine space is determined
by the original homogeneous coordinates of ̂ .

(4.2.2) As for the canonical coordinate of Uij9 we should, strictly speaking, use

ujui and vjvj (α = 0, 1, . . . ,/ , . . . ,«) or denoted simply ΰai and vap respectively. As the
notation for the coordinates for Utj in this section, however, we adopt the same notation
wα's and ι;α's without the suffices i and j, since no confusion would arise.

(4.3) We introduce a terminology: Let As be an s-dimensional affine space with

coordinates Xί9...9Xs. When M is a closed subscheme defined by a part of the
coordinates, i.e. Xil9 . . . , Xir9 M is said to be of type L "with respect to the coordinate
system Xl9 . . . , X". Usually, we omit the part in quotation.

(4.3.1) We remark that the variety obtained by blowing up As along the above
M is covered by finitely many affine spaces obtained canonically.

Let us return to ̂ .

(4.4) Let S be a smooth, closed subscheme in 0> and B= {0, ...,«}.
Assume that for any ίJeB, Snί/y is of type L with respect to the canonical

coordinate (Remark 4.2). Then take the blowing-up σ:^*1-^ of ̂  along S. We see
easily that

(4.4.1) ^ is covered by the affine open sets which are affine spaces in a canonical

way and the coordinate system for each affine space induced by the coordinates of &
is the natural one for the affine space (see Remarks 4.2 and 4.3.1).

Moreover, given a smooth subscheme S1 of ^>1 so that on each affine open set

(which is an affine space) the restriction of S1 is of type L, we make the same modification
of έPl along S1 to get ̂ 2. Then we infer that ̂ 2 has the same property as above (4.4.1).
We then repeat the same procedure.

(4.4.2) Thus the word "the affine open set" in this section is used in the sense of
the restricted affine spaces by which each of the ambient spaces ,̂ 0>1

9 . . . , 0** defined
below is covered. As in 4.2.1, we do not explicitly describe the difference between the
coordinates of affine open sets in 0>{ and those in ^ί+1 obtained by blowing up &

along S1"1 if there is no fear of confusion.

Before considering blowing-ups of 9 we first study those locally. Let us begin with
the following:

(4.5) Let A2m be a 2m-dimensional affine space with the canonical coordinates
uί9 . . . , wm, υl9 . . . , vm. For # = α, β, y let V$ be the closed subvariety in A2m defined by
polynomials uil9 . . . , uis (s<m—\) and F$9 where 1 <i1 < </s, a<m and F% is as
follows:

(β)
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Here F^ for tt = α, /?, 7 is said to be of type ft.
Let /={/Ί, . . . , 4}. For a scheme W, SW means the singular locus of W. Then we

have:

LEMMA 4.5.1. In the situation as above, assume that i1>2. Then we have:
(1) Fα is smooth.
(2) Ifiί>2, then Vβ is smooth. Ifiί=2, then Vβ is singular and the defining ideal

of SVβ is generated by the u?s with ieJ and by the vfs wiίhje {2, 3, 4, . . . , a} —J.
(3) Vy is singular and SVy is defined by the same ideal as in (2).

From now on, we restrict ourselves to the case m = n, and consider the 2n-
dimensional affine space A(ϊta, vb) with the canonical coordinate wf's and i /s. Here i
runs through 0</<« with iφa andy through Q<j<n withy^ή.

Let r be a non-negative integer. Then we let

for

Σ Όfut for hj(r<hj<ή).
i>r*j,h

For # = α or β, D$(Q, . . . , r— 1) denotes the subvariety in the 2«-dimensional affine
space A(ύp vh) defined by w0, M I ? . . . , w r_ ί and ̂ (r), where ̂ (r) is FΛ(r) ifj=h and /^(r)

if jφh. Here if r = 0, /)*((), . . . , r- 1) is defined by F^O). Note that /)*((), . . . , r- 1) is
smooth and (2n — r— l)-dimensional.

(4.5.2) ¥ork>r,letDs(k): = Ds(Q,...,r-l)n{uk = Q}.
(1) DΛ(k) is of type α.
(2) If k + h, Dβ(k) is of type β.lfk = h, Dβ(k) is of type y.
Thus in view of the suffices of the coordinates, we easily get:

PROPOSITION 4.6. Let the notation be as above. Then we have:
(1) DΛ(k) is smooth (in A(up VjJ)for any k (>r).
(2) Dβ(h) is singular in A(up vh) and the ideal of SDβ(h) is generated by n+\

monomials UΛ'S (α = 0, 1, . . ., r— 1, h) and vβ's (β = r, r+1, ..., h— 1, Λ + l, ..., ή).
Therefore SDβ(h) is smooth and of dimension n — 1 .

(3) Dβ(k) is smooth in A(up vh)for kφh and k>r. Hence SDβ(k) n SDβ(K) is empty
in A(up vh)for k, £>r (^h).

(4.7) Let us fix the affine space A(UJ, vh) for r<A, j<n and hΦj and we let
σ:A-^A(ύp vh) be the blowing-up along singular locus SDβ(h) in Proposition 4.6.

A is covered by n + 1 affine open sets Aa = Spec Ra where a runs through the set
{0, 1, . . . , n}. Here each Ra is a polynomial ring over k with 2n variables:
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. . . , M r - ! W f l , Wr, . . . , W ; _ l 9 W j

ι>0, . . . , ι?Γ_ 15 ι?Γ/wβ, . . . , ι?Λ_ ι/wβ, ι>Λ + ι/w

where

(4.8) We study the total transform σ~ 1(Dβ(h)) of Dβ(h) via σ whose ideal / in Ra

is (MO, w1 ? . . . , M r _ 1 ? MΛ, Fβ(r))Ra.

When 0<α<r-l or α = A, /is

((w0/wα)wα, . . . , wα, . . . , (wΛ/Mα)wα, Fβ(r))Ra = (ua, Fβ(r))Ra in ^(w7 , ί;h) .

When α>r and α^Λ,

and therefore

(4.8.0) J=(uθ9 ul9..., ι/ r _ l 5 uh, Fβ(r))Ra

( r,uί9...,ur_ί,uh,(v? + X Φi

in" Ra (written as A(upVh) according to Remarks 4.4.1 and 4.4.2) where G =

(Vj/VaY + Σi>r*Hj(Vi/VaYUi With ί<j<Π.

Thus we see that σ~1[Dβ(hy] nAa is empty if 0<α<r— 1 or a = h, and it is defined

by the ideal (w0, ul9 . . . , w r _ι, MΛ, G) if r<a<n aΦh, where

1+ Σ viuί witn i^j^n if ^=7

with ϊ

(Note that Aa = A(uj9 %)).
Summarizing the above results, we have:

PROPOSITION 4.8.1. Let σ: A-+A(up vh) be the blowing-up along the singular locus

SDβ(h). Then A is covered by n+\ affine open sets Aa. The proper transform
Z)(0,. . . , r— 1, h) (h>r) of Dβ(h) is a (2n — r — Ί)-dimensional smooth subvarίety in A.

More precisely, it is defined, on each Aa, by a unit, or polynomials MO, uί9..., w r _ 1 ? uh
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and F$(r)for # = α or β. Finally the reduced structure of the total transform of Dβ(h) via
σ is set-theoretically a union of Z)(0,..., r — 1, h) and a smooth exceptional divisor E

defined by va, and E intersects Z>(0,..., r — 1, h) transversally.

Pasting together the local description obtained so far, we now globally describe

the blowing-up.
(4.9) We can inductively define the blowing-up σ^.^1-^^1 of P* along the

subscheme Si of &* as follows:
When /=0, we let ̂ ° = ̂  and S°: = (J *~* SDt. Now let us assume that the blowing-

up σa:0>a+ί^0>a is defined for 0 = 0,...,/-! (/>!). Denote σ(a-l): = σa_1σi_2 ...

σ0:0>a^0>°. For 0<fc0< ••• <ki<n-\, D(k^ ..., fc^fϊ =0

σO'- O"1 CAJ is a
closed subscheme of &* of dimension (2n-2 — j), where D(k) = Dk and S" denotes the
disjoint union of SD(kQ,...,k^ (see (2) and (3) in Proposition 4.6) for 0<
k0 < -" <ki<n. Then σt :0>i + l -+&{ of & is defined as the blowing-up of »l along the
subscheme Sl of 0". Moreover, we set Xl\ = a(i-1)'1^/?)] for /> 1 and X°: = X(p).

Then we have:
(1) D(k0,..., ki) is a singular subvariety in Z^ SD(kQ,..., kt) is an («—!)-

dimensional smooth subvariety and the defining ideal for its restriction on each of
the aίfine open sets in 0>l is generated by w f c o , . . . , uki, vki + ί,..., vkn if it is non-empty.

(2) X* is a smooth irreducible divisor in 0>\

(3) σ(i— l)"1^] is a smooth divisor in X1 and the divisors σ(i— I)"1 [/>*,]
(7 = 0, 1,..., /— 1) intersect transversally.

If i=n— 1, then Z>(0,...,«—!) is of dimension «— 1 and is defined by the ideal

(MO, ...9un-i9v%) in Λ(tίπ, #n_ι). Thus it is non-reduced and therefore the support of
D(0,...,«-!) coincides with that of SD(0,..., n -1).

Finally we take the blowing-up σn_1 :^
)n-^π~1 of ^)Π~1 along the reduced part

of SD(Q,...,«-!).
Thus letting σ: Xn-+X(p) the restriction of σ(n-1):^n->^ to Arπ, we have:

PROPOSITION 4.10. Let the situation be as in (4.0). Assume that m = n. Then for
each z, we have the following:

(1) Xn is a smooth irreducible divisor in £Pn.
(2) (σ)"1^] is a smooth irreducible divisor in Xn.

(3) (σ) ~ x [Z)t ] n (σ) ~1 [D ]̂ w empty for any pair i andj.

Finally (σ)~1(U"=o A) ̂  set-theoretically a normal crossing in Xn.

If we begin the above argument in (4.9) with divisors Dl9..., Dm of (4.0) instead
of the above divisors D/s, we can naturally get a blowing-up σ^^^1^^'
(z' = 0,..., n— 1) in the same way as in 4.9. Therefore we immediately obtain an answer
to Problem 4.1.

COROLLARY 4.11. Let the situation be as in (4.0), σ^.^^-^^ the blowing-up

(ι = 0,.. ., n—'l) in the same manner as in (4.9) and σ(n— l): = σ n _ 1 σ π _ 2 * σ0:0
>n-+0>.
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Then the proper transform Xn\ = σ(n—\)~1[X(pJ] of X(p) via σ(n — l) is a smooth
irreducible divisor in £Pn. Moreover, let σ : Xn-+X(p) be the restriction ofσ(n— 1) : ̂ n->^
to Xn. Then (σ)~1((J^==0/)ί) is set-theoretically a normal crossing in Xn.

Furthermore, if X(p) in the above condition is replaced by X(q) with q=pr, the same
conclusion as above holds.

5. The proof of the Theorem. We construct a smooth project! ve variety as follows :
(1) Take d{n] which is divisible by d[n\ — sn ( — (p + l)α), choose d\n\ linear forms

L l5 . . . , Ld[n] with respect to the variables 70, . . . , Yn which are in general position as
stated in Corollary 2.4 and consider a hypersurface S of degree d[ri] in Pn defined by

the equation Π?=ιA = 0.
(2) Take a modification σ: Xn->X(q) to make (bf)~ί(S) of X(q) having normal

crossing as in Corollary 4.11.
(3) Let M : = (σbf)*Φpn(S) be a line bundle on Xn, which yields a canonical effective

divisor B=\JaiDi, where each Z>£ is a component of the set-theoretic pull-back of
effective divisors (σb')~l(S) via σb' and at is a positive integer. Note that \jDt has
normal crossing.

(4) Take the branched cyclic covering θ:X'^Xn of degree d[rί]— sn along the
locus B. Then X' is canonically contained in V(M) as a divisor and let π : X-*X' be the
normalization of X'.

Then we have:

CLAIM. X is a toroidal embedding without self-intersection.

Let U* = X(q)-(b'Y\S} and U=(πθΓ\U*). As shown in §4 Xn is a hypersurface
in the smooth projective variety P which is obtained by blowing up Pn x Pn along
smooth subschemes succesively and is covered by affine open sets Aλ each of which is
isomorphic to the 2«-dimensional affine space. Moreover note that Xn is covered by
Zariski open subsets Vλ which are closed smooth hypersurfaces in Aλ respectively. Now
in view of (4.9) and (4.10), the defining equation of θ~ 1(FA) is locally as follows: letting

w, xl9 x2, . . . , x2n be a local coordinate of A2n + 1,

where 1 <s<2n and m{ is a non-negative integer. Furthermore we see that for each λ,
there exists / so that mt is / or p by (4.8.0), which implies that / is irreducible for each
λ. Since π : Θ~\U*)-+X* is etale, θ~l(U*) is a smooth open set in X'9 hence equals U.
Let V : = (πθ) ~ i( V). To show that t/c ̂ is a toroidal embedding without self-intersection,

it suffices to show that
(1) (ί/n F)c= V is a torus embedding.
(2) V— (Fn U) is a union of normal irreducible divisors in F.
Let Fand T be hypersurfaces in (k*)2n and A2n defined by the above polynomial
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/, respectively. Then Y is an open set in Ύ' . Moreover, Y is an algebraic group and Y'
is invariant under the coordinatewise multiplication of the elements of Y. Since / is
irreducible, Y' contains the open set Y which is canonically a (2n— l)-dimensional
algebraic torus T2n~l. Thus T2n~ 1 acts canonically on the normalization ΫofY'. Hence

we see that Ya Y is a torus embedding and Ϋ— Y is a union of normal divisors in Ϋ
by virtue of the theory of torus embedding. Therefore we can show that U^X is a
toroidal embedding without self-intersection. Finally by virtue of Theorem 11* in
[KKMS] we get a projective birational morphism γ : X^X from a smooth complete

variety X to the projective variety X, where the induced morphism γ : y~ 1(C/)-> U is an
isomorphism. Thus we have constructed a smooth projective variety.

In the sequel we will show that this X is a variety which we want.

Consider a non-uniruled hypersurface Y of degree d[ri] in Pn + 1 defined by the
equation YQnWd[n]~Sn = Y[f"\Li as shown in Corollary 2.4 and a dominant rational
map g : Y — ->PΠ obtained by the projection (W\ Y0 : , . . . , : Yn) I --- >(Y0 : , . . . , : Yn). The
rational map g is separable, generically finite and defined except at the point

(1 : 0 : , . . . , : 0). Let Y° : = Y-(\ : 0 : , . ... , : 0), g0 = g\YQ and let g:X(q) x pnY°-+X(q) be
the canonical morphism induced by g0. Then there is a canonical birational map

Thus we have the following diagram:

γO 9o pn

Ί
a

Letting S to be the total transform σ"1^')"1^)) of (δ')"1^) via σ, we note that
X— (γπθ)'ί(S) is canonically contained in both Xand X(q) x pnY° under the birational
map /. Hence we infer that a general rational curve on X is contained in some fiber of
rj by the non-uniruledness of Y.

Now since X is uniruled, there exist a variety T with dim Γ+1 = dim X and a
dominant rational map φ: P1 x T >X.

In order to complete the proof of the theorem, it suffices to show the following
two steps.

STEP 1. q = 1, // X is separably uniruled.

PROOF. By taking a small smooth open set Ϋ in g$ ^(P^ — S), we see that the
restriction of the morphism g0: Ϋ^P^ to Ϋ is an etale morphism and X0 : = X(q) x pnΫ

is a smooth open subscheme in X(q)XpnY° which is canonically contained in X.
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Thus there is a smooth open subset Tί in T where φ is denned as a morphism on
P1 x TI and ^(P1 x 7\) is contained in X0. Since 0 is separable, the claim in Proposi-
tion 1.1 asserts that there exist a point y in F and a rational curve Ca X0 in the fiber
of (fi)~l(y) such that φ*TXo is generated by global sections with the normalization
φ:Pl^C. On the other hand, noting that g is etale on X0 we have a natural iso-
morphism TXo(^g*(TX(q))\Xo. Consequently φ*TXo~φ*TX(q), where φ\Pl^g(C) is the
normalization of g(C) induced by φ. Thus we infer that φ*TX(q} is generated by
global sections, and therefore q= 1 by Proposition 3.7.

STEP 2. Lef L be a line in the fiber rj~l(y) for yeΫ. Then we have -(KX L) =
n-pr+\.

PROOF. Since g\Xo : XQ^>X(q) is etale and LczF'XF), we get (Kx L) = dεgKXo\L =
(g*KX(q} L)==(KX(q) g(L)) deg^|L. Then note that g\L is an isomorphism and g(L) is a
line in (bf)~1(g0(y)). Thus we infer that — (Kx L) = n— pr+ 1 by Proposition 3.5.

q.e.d.
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