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Abstract. Earlier the author gave the classification of Einstein-Kéhler toric Fano
fourfolds except in one case. In the present paper, we prove the existence of
Einstein-Kihler metrics on some family of Fano manifolds including the remaining toric
Fano fourfold. In particular, we completely classify the Einstein-Kdhler toric Fano
fourfolds.

Introduction. The Futaki invariant (see Futaki [2]) is known as an obstruction
to the existence of Einstein-Kéhler metrics on a Fano r-fold. If a Fano r-fold is toric,
then the Futaki invariant is explicitly calculated by Mabuchi’s formula [4], where a
toric Fano r-fold means an r-dimensional compact connected complex manifold, with
¢; >0, admitting an effective almost homogeneous algebraic group action of an
r-dimensional algebraic torus (C*)". In [6], the author studied Einstein-K&hler metrics
on toric Fano fourfolds. In particular, he considered the following question:

QUESTION 0.1. Does a toric Fano r-fold with vanishing Futaki invariant always
admit an Einstein-Kdhler metric?

For r<3, this question was settled (cf. Mabuchi [4], Sakane [8], Siu [10], Tian
and Yau [11]). In [6], the author gave an affirmative answer to Question 0.1 for r=4
except in one case X, ., (see Section 3) basically by using Batyrev’s classification of toric
Fano fourfolds [1]. The main purpose of the present paper is to prove the existence
of an Einstein-Kéahler metric for the remaining case X, and then give an affirmative
answer to Question 0.1 in the case r<4. More generally, we shall prove in Section 2
the existence of Einstein-Kéhler metrics on some P%(C)#3P%(C)-bundles over M x M,
for Kahler C-spaces M, employing Nadel’s existence theorem [5].

Finally, the author wishes to thank Professor Toshiki Mabuchi for his valuable
suggestions and constant encouragements.

1. Notation and preliminaries. Let M be a compact connected n-dimensional
complex manifold and L a holomorphic line bundle over M. We denote by Aut(M) the
group of holomorphic automorphisms of M. We put

L:=ptL@p3L~ ',
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where p;: M x M — M denotes the projection to the i-th factor, i=1, 2, and L™ ' denotes
the dual line bundle of L over M. We consider the holomorphic vector bundle

E(M, L):=1MXM@1MXM(‘DE

over M x M, of rank 3, where 1), 5 :=M x M x C means the holomorphic trivial line
bundle over M x M. Put E°(M, L) :=E(M, L)\ (zero-section). Then E°(M, L) has a
natural scalar multiplication

E°M,L)sa®b@c—ta®tb®tce E°(M, L),

for te C*. Let P(E(M, L)) := E°(M, L)/C* be the P*(C)-bundle over M x M associated

to E(M, L),and n: E°(M, L)— P(E(M, L)) the natural projection. P(E(M, L)) over M x M

has three natural cross-sections X, X,, X5, corresponding to the direct summands
e eL, (Ol w®{0}, Lu®{0}®{0},

respectively. Let X(M, L) be a complex manifolds obtained from P(E(M, L)) by si-
multaneously blowing up three subvarieties X, £, and X; above. Note that ¥(M, L)
over M x M is a fiber bundle with each fiber isomorphic to

P*(C)#3P*(C),
by which we mean the complex surface obtained from P2(C) by blowing up three points
[1:0:0],[0:1:0], [0:0:1].
Fact 1.1 (see, e.g., Oda [7]). P2%(C)#3P?(C) admits two automorphisms p, p,

induced respectively by the automorphisms
Py [xo:xy 1 x ] [xy 1 x0: 5],
Py [xo:xy 1] [xg tixy tixy 1],
on C* x C*={[xy:x,:x,]€ P*(C); x;#0 for all i} = P*(C).
We consider the same situation in a more general context (see Lemma 1.3). Let
E,, E, and E; be the irreducible reduced exceptional divisors on X(M, L) sitting over
2, 2, and X5, respectively. We also define irreducible reduced divisors D}, D), D’ on
P(E(M, L)) by
Drl :=n({1MxM® IMXM®{O}} nEO(M, L)) s
Dy i=n({ly @ {0} ®L}nE°(M, L)),
D :=n({{0}® 1y y®L}nE(M, L)).
Let Dy, D, and D, denote, respectively, the strict transforms of D), D, and D% in

X(M, L). Moreover, for i, je {1, 2, 3} with i#j, we put
Fi,j:=DiﬂEj.
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We define a fiberwise automorphism t; of P(E(M, L)) over M x M obtained by
interchanging the two factors of 1,,, @D 1, » as follows:

T (a@b®c):=nbPa®c),
with n(a® b ® c)e P(E(M, L)). We put
Xo(M, L) :=P(E(M, L))\(Dy uD; uD3)
~X(M, L)\(D,uD,uD;UE, UE,UE;).

(1.2)

Then 1), can be regarded as an automorphism of X,(M, L). Furthermore, we set
L° :=L\ (zero-section). Let lf(g, o be the fiber of L over (¢, )€ M x M. Take an arbitrary
aeI:(ﬁ,,,,nl‘,O for each (&, n)e M x M. We then define Cl(a)e(l:"l)@,,,) by

{y(a(b)=b/acC, beLg,.
Therefore, it allows us to define an isomorphism
¢, L°sa{,(a)e L ~'\(zero-section)

of C*-bundles over M x M. Moreover, via the identification 1,,,,\ (zero-section) =
M x M x C*, we define an automorphism {, of 1,,,,,\ (zero-section) by

CZ(é, , a) :=(£> r,’a—l), (éa n, a)GMXMXC* .

Leti: M x M3(& n)—(n, &)e M x M be the involutive automorphism of M x M. Then
this 1 naturally induces two biholomorphic maps

VLN (=ptLT ' ®psL) =1L~ L,
l“: IMXM=I*1MXM_’1MXM7

such that the following diagrams commute:

’ ”

A 1 A 1

L™t — L IMXM - lMxM
MxM —MxM, MxM —MxM,

where all vertical arrows mean natural projections. We now define the automorphism
75, of X,(M, L) covering the involution 1 on M x M by

T (Ma@b®c)) :=n((1" L) (@)D (1" L)B) D (1= {1)(C))
for each n(a ® b @ c)e Xo(M, L). In view of (1.2), we obtain:

LeMMA 1.3.  The above ' and T, on Xo(M, L) extend naturally to automorphisms
(denoted by 1, and t,, respectively) on X(M, L).

ProoF. For an arbitrary (&,, )€ M x M, we take in M sufficiently small open
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neighborhoods V' and V, of £, and #,, respectively. By taking local trivializations of
L over V,, V,, we can regard Xy(M, L) locally as V' x C* x C*(< V x P*(C)) over V for
V=V,xV,or V,xV,. Then 7} and 7, can be locally defined in the form

r,l : (ﬁa n, [xo L Xy :xZJ)H(éy n, [xl :XO:xZJ) )

TlZ: (éa r’a [x03x1 :x2])H(’19 éa [X(;l :xl—1 :x2_1]) B

where (&, n)e V,; x V, and [x,: x; : X,] € C* x C*(< P*(C)). Therefore, we can extend
77 and 75, on X4(M, L) to automorphisms on X(M, L) in a manner similar to Fact 1.1.

[ |
Note that 1§ =1} =idxy, 1), T,°T,=T,°7,, and that
73(D)=D, , 7,(E)=E,;, i,je{l,2,3},
(1.4) T (Fi, ) =F 0. va) » k,1€{1,2,3}, with k#/,
7,(D)=E;, 1,(E)=D;, i,je{l,2,3},
T(Fe)=F 4, k,1e{1,2,3}, with k#I,

where v denotes the permutation of {1, 2, 3} fixing 1 and interchanging 2 and 3.

Furthermore, consider a 2-dimensional compact real torus G, : = U(1) x U(1), where
U(1) :={te C;|t|=1}. Then its complexification Gf = C* x C* acts biholomorphically
on P(E(M, L)) by

P(EM,L)sm(a®@b®c)—na®@t,bDt,c)e P(E(M, L)),

for all (¢,, t,) € GE. This Gf-action on P(E(M, L)) extends naturally to the G€-action on
X(M, L). Note that the subvarieties D;, Ej, F, ;, with i,j, k, [ {1, 2, 3} and k#, are all
G¢-invariant.

In this paper, we only consider the case where M is a Kédhler C-space, that is, a
simply connected compact complex homogeneous space with a Kdhler metric. By a
result of Wang [12], M can be written as M =G/U, where G is a simply connected
complex semisimple Lie group and U is a parabolic subgroup of G. Recall that every
holomorphic line bundle L over a Kidhler C-space G/U is homogeneous (cf. Ise [3]).
Namely, L can be written in the form L=G x,C for some 1-dimensional holomorphic
representation p: U - GL(1, C)=C* of U on C. Therefore, G acts naturally on L
inducing a (G x G)-action on ¥(G/U, L). Then, for a maximal compact subgroup G, of
G, the product G, x G, acts naturally on X(G/U, L). By K(G/U, L), we denote the compact
subgroup in Aut(¥(G/U, L)) generated by G,, G.x G, and {,, t,}. Now, the following
lemma is straightforward from (1.4):

LEMMA 1.5. Any reduced K(G/U, L)*-invariant closed analytic subspace Y of
X(G/U, L), with 3 #Y £ X(G/U, L), is one of the following seven subspaces:
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Iy:=F, UF, 3UF, ,uF;,,

Iy:=F, 3UF;,,
I'y:=I'vl,=F, UF, 3UF, 3UF, ,uF; ,uF; ;,
Y, :=D,uD;UE,UE;,

¥Y,:=D,UE,,
Yy:=¥Y,ul,=DUE,UF, 3UF;,,

Y, =¥Y,u¥,=D,uD,uD;UE,UE,UE;.

2. The existence of Einstein-Kihler metrics on X(G/U, L). In this section, we shall
show the existence theorem for Einstein-Kahler metrics on ¥(G/U, L). Namely, we shall
prove:

THEOREM 2.1. Let G/U be a Kdhler C-space. For every holomorphic line bundle L
over G| U, the complex manifold ¥(G/U, L) defined in Section 1 admits an Einstein-Kdhler
metric, provided the first Chern class ¢,(¥(G/U, L)) of ¥(G/U, L) is positive.

To prove this theorem, we quote the following fact on the existence of Einstein-
Kahler metrics:

Fact 2.2. (Nadel [5]). Let X be a Fano r-fold and K a compact subgroup of
Aut(X). Assume that X admits no Einstein-Kdihler metrics. Then there exists a K°-
invariant closed analytic subspace S+ Z < X, called the multiplier ideal subscheme of X,
satisfying the following conditions:

(1) dim¢(HY(Z, 0)=0, for all i>0, and dimc(H%(Z, 0,))=1,;

(2) The logarithmic-geometric genus of X\ Z vanishes.

ProOF OF THEOREM 2.1. Suppose, for contradiction, that X¥(G/U, L) admits no
Einstein-Kahler metrics. Then there exists a K(G/U, L) -invariant multiplier ideal
subscheme Z of X(G/U, L) by Fact 2.2, where K(G/U, L) is the compact subgroup of
Aut(¥(G/U, L)) defined in Section 1. Since Z is K(G/U, L)*-invariant, Z, 4 is one of the
seven analytic subspaces I'y, I',, I'5, ¥, ¥,, V3, ¥, by Lemma 1.5, where Z_, is the
reduced analytic subspace of ¥(G/U, L) associated to Z. By definition, Iy, I',, I'5, ¥4,
¥, and ¥, are not connected. Therefore by Fact 2.2, (1), Z,.4 can be none of these
six. Hence, Z,.4=¥,. By K,, we denote the finite subgroup of K(G/U, L)° generated
by 7, and t,, so that K, :={idx/u, 1) T1» T2> T1°T2} (2 Z/2Z x Z|2Z). Let .9, be the
defining ideal sheaf of Z in ¥(G/U, L), and let

Ig=PAnHHn---nP

be a primary decomposition (see, e.g., Siu [9]) of £, with primary ideal subsheaves
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#’s of OxGu, - We define Sy, F; , as the intersections of all s such that the support
Supp(Ox6u, L)/A) of Ox/u, L)/% is contained in D;, E;, respectively. We put

Ip, =Ip, 01t Ip, N3 I 0 (T 0T)* Iy s i=1,2,3,

It = I NI NI Nt T, =123,

where v is the permutation in (1.4). Then by the K-invariance of .#;, 5, and g, are
coherent ideal subsheaves of O,y 1, such that

Iz=Ip5,nIp5,NIp NI N Ip NIk .

Let D~i, Ej, i,je{1, 2, 3}, denote the closed analytic subspaces of ¥(G/U, L) defined by
45, JE,, respectively. Then Z is expressible in the form

Z=51U52U53UE1 UE2UE3 P
and D, E, i,je{1, 2, 3}, satisfy (D,);ca=D;, (E));ca=E;, respectively. Let
Z' :=D,ub,ub,uE,uE,luE,

be the disjoint union of 5i, i=1,2 3, and Ej,j= 1,2, 3, and let w: Z’' — Z be the natural
projection. Then we have a short exact sequence

2.3) 0-0;,-50,0,->F =w,0,/0;)-0,

where the support Supp(#) of & is just I'3=F, ;UF, 3UF; 3UF; ,u F3,UF;,, and
Zis K,-invariant. Note that F, ; and F, , are K;-congruent, and that F, ;, F, 5, F; ,
and F,, are also K,-congruent. Moreover, all F, /s, with i,je{1, 2, 3} and i#j, are
mutually disjoint. Now from (2.3), we obtain a long exact sequence

2.9 {0}>H%Z,0,)->HZ,0,)>H%Z, F)>H'Z,0;)—>" -

Since D, and E, are K,-congruent, and since D,, D,, E, and E, are also K,-congruent,
there exist non-negative integers p, ¢, r and s such that

(2.5) dimc(H%Z', 0,)=2p+4q and dimc(H%Z, F))=2r+4s.

By (2.4) and (2.5) together with Fact 2.2, (1), we obtain 2p+4q=2r+4s+1, in con-
tradiction. Thus we can conclude that ¥(G/U, L) admits an Einstein-Kéhler metric.

3. The classification of Einstein-Kiihler toric Fano fourfolds. First, we introduce
some notation. For a positive integer n, let {e;; i=1, 2, ..., n} denote the standard basis
for R", and put e; : = —(e; +e,+ - - +e,), i.€.,

e,=(,...,0,1,0,...,0), i=1,2....n,
eo=(—1,—1,..., —1).
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By viewing R?"*2 as R" x R" x R x R, we consider the following vectors in R?"*2;
Xo:=(ey,0, 0,—m), yo:=(0,eq, 0, m),
x,:=(e;,0, 0, 0), y,:=(0,e;,, 0, 0),
xy:=(e;,0, 0, 0), y,:=(0,e,, 0, 0),

x,:=(e,,0, 0, 0), y,:=(0,e,, 0, O0),
z,:=(0,0, 1, 0), z;:=(0,0, 0, 1),
z3:=(0,0,—-1, 1), z,:=(0,0,—-1, 0),
zs:=(0,0, 0, —1), zg:=(0,0, 1, —1),
where m is a non-negative integer. For vectors u,, iy, ..., e Z2"*2(cR?"*?), let
s Mgy oo os gy i={ayp +agu,+ - - +ayu; a;€ R, a;20 for all i}
be the strongly convex rational polyhedral cone in R*"*? (see [7; p. 1]) generated by
Ui Has -« -5 iy We introduce the following strongly convex rational polyhedral cones in
R?"*2? by using the notation in [7; p. 2]:
01, =KXy Xy ooy Xim s Xig 1o v o5 Xn) » i=0,1,...,n,
02, =V0s V1> -3 Vim1sVjt1s s Vn) s j=0,1,...,n,
031 =2 Zk+1) > k=1,2,...,6,
4, :={the faces of 6, ;;i=0,1,...,n},
4, :={the faces of 0, ;;j=0,1,...,n},
Ay :={the faces of 03 ,; k=1,2,...,6},
where we set z, :=z,. Furthermore, define a fan 4,,,, of Z*"*2 by
Apm:={0"+0"+0" ;0 €l,,0"€d,,6"€4;}.

Then, a fundamental result on toric varieties [7; Theorems 1.4, 1.10, 1.11] allows us
to obtain a compact connected non-singular toric (2n+ 2)-fold X,.,, corresponding to
the fan 4,,,, of Z*"*2. The following lemma is relevant to our purpose:

LEmMMA 3.1. (a) Let H be the hyperplane line bundle over P"(C). Then the toric
(2n+2)-fold X,,,,, is expressible as X(P"(C), H™), for all n and m.
(b) If m<n, then c¢\(X,,,)>0, ie, X,., is a toric Fano (2n+ 2)-fold.

Proor. The statement (a) is straightforward from [7; Propositions 1.26, 1.33],
and (b) also follows from [7; Lemma 2.20, (e)]. [ ]
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ReMARk 3.2. For each a€e{l, 2}, the automorphism 7, of X,.,=XP"(C),H™)
defined in Lemma 1.3 can be interpreted as the equivariant automorphism of

X,. associated to the automorphism of the fan 4,,,, (see [7; p. 19]) given by the next
matrix 4,e GL(2n+2, Z) (I, being the identity matrix of degree n):
0 0
I, | 0
0 0
A, = 0 0 ,
0 | I, :
0 0
0 0/0---0 —1 0
0 0(0---0 1 1
0 0
0 | I,
0 0
A2 L= 0 0
I, | ©
0 0
0---0]0---0] O —1

Since P*(C)=SU(n+1)/S(U(1) x U(n)) is a Kéhler C-space, Lemma 3.1 allows us
to apply Theorem 2.1 to X, ,, with m<n. We thus obtain:

THEOREM 3.3. Ifm<n, then the toric Fano (2n+2)-fold X, ,,= X(P"(C), H™) always
admits an Einstein-Kdhler metric.

In particular, for n=m=1, the toric Fano fourfold X, =X(PY(C), H) admits an
Einstein-Kéhler metric. Therefore by using the notation in [6], we infer from [6] the
following classification of Einstein-Kéahler toric Fano fourfolds:

THEOREM 3.4. An Einstein-Kdhler toric Fano fourfold is equivariantly isomorphic
to one of the following eleven toric Fano fourfolds:
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P(Opixp1 @ Opi i pi(1, —1)) x PY(C), P*C)xP*C),
(PHC)#3P*(C)) x (PHC)#3P*(C)), P C)xP'(C),
(PA(C)#3P*(C)) x PX(C)x PY(C),  X,p,,
(PXC)#3P2(C)) x PX(C), Xp,=X\.1,
P%(C)x P}(C)x P(C), P4C),
P(C) x P1(C) x P1(C) x P'(C) .

As a corollary to this theorem, we can give an affirmative answer to Question 0.1

for r <£4. Namely, we obtain:

(1]
[2]
[3]
[4]
[5]

6]
[7]

[8]
[9]
[10]
[11]

[12]

COROLLARY 3.5. Foratoric Fano r-fold X withr <4, the following are equivalent:
(1) The Futaki invariant Fy of X vanishes;
(2) X admits an Einstein-Kdhler metric.
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