Tôhoku Math. J. 46 (1994), 125–133

CLASSIFICATION OF EINSTEIN-KÄHLER TORIC FANO FOURFOLDS

YASUHIRO NAKAGAWA

(Received September 10, 1992, revised January 26, 1993)

Abstract. Earlier the author gave the classification of Einstein-Kähler toric Fano fourfolds except in one case. In the present paper, we prove the existence of Einstein-Kähler metrics on some family of Fano manifolds including the remaining toric Fano fourfold. In particular, we completely classify the Einstein-Kähler toric Fano fourfolds.

Introduction. The Futaki invariant (see Futaki [2]) is known as an obstruction to the existence of Einstein-Kähler metrics on a Fano *r*-fold. If a Fano *r*-fold is toric, then the Futaki invariant is explicitly calculated by Mabuchi's formula [4], where a toric Fano *r*-fold means an *r*-dimensional compact connected complex manifold, with $c_1 > 0$, admitting an effective almost homogeneous algebraic group action of an *r*-dimensional algebraic torus (C^*)^{*r*}. In [6], the author studied Einstein-Kähler metrics on toric Fano fourfolds. In particular, he considered the following question:

QUESTION 0.1. Does a toric Fano r-fold with vanishing Futaki invariant always admit an Einstein-Kähler metric?

For $r \le 3$, this question was settled (cf. Mabuchi [4], Sakane [8], Siu [10], Tian and Yau [11]). In [6], the author gave an affirmative answer to Question 0.1 for r=4except in one case $X_{1;1}$ (see Section 3) basically by using Batyrev's classification of toric Fano fourfolds [1]. The main purpose of the present paper is to prove the existence of an Einstein-Kähler metric for the remaining case $X_{1;1}$ and then give an affirmative answer to Question 0.1 in the case $r \le 4$. More generally, we shall prove in Section 2 the existence of Einstein-Kähler metrics on some $P^2(C) \ddagger 3\overline{P^2(C)}$ -bundles over $M \times M$, for Kähler *C*-spaces *M*, employing Nadel's existence theorem [5].

Finally, the author wishes to thank Professor Toshiki Mabuchi for his valuable suggestions and constant encouragements.

1. Notation and preliminaries. Let M be a compact connected *n*-dimensional complex manifold and L a holomorphic line bundle over M. We denote by Aut(M) the group of holomorphic automorphisms of M. We put

$$\hat{L} := p_1^* L \otimes p_2^* L^{-1}$$
,

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C25; Secondary 14M25, 32C10, 53C55.

where $p_i: M \times M \to M$ denotes the projection to the *i*-th factor, i = 1, 2, and L^{-1} denotes the dual line bundle of L over M. We consider the holomorphic vector bundle

$$E(M, L) := \mathbf{1}_{M \times M} \oplus \mathbf{1}_{M \times M} \oplus \dot{L}$$

over $M \times M$, of rank 3, where $\mathbf{1}_{M \times M} := M \times M \times C$ means the holomorphic trivial line bundle over $M \times M$. Put $E^{\circ}(M, L) := E(M, L) \setminus (\text{zero-section})$. Then $E^{\circ}(M, L)$ has a natural scalar multiplication

$$E^{\circ}(M, L) \ni a \oplus b \oplus c \mapsto ta \oplus tb \oplus tc \in E^{\circ}(M, L),$$

for $t \in C^*$. Let $P(E(M, L)) := E^{\circ}(M, L)/C^*$ be the $P^2(C)$ -bundle over $M \times M$ associated to E(M, L), and $\pi : E^{\circ}(M, L) \to P(E(M, L))$ the natural projection. P(E(M, L)) over $M \times M$ has three natural cross-sections $\Sigma_1, \Sigma_2, \Sigma_3$, corresponding to the direct summands

$$\{0\} \oplus \{0\} \oplus \hat{L}, \quad \{0\} \oplus \mathbf{1}_{M \times M} \oplus \{0\}, \quad \mathbf{1}_{M \times M} \oplus \{0\} \oplus \{0\}$$

respectively. Let $\mathfrak{X}(M, L)$ be a complex manifolds obtained from P(E(M, L)) by simultaneously blowing up three subvarieties Σ_1 , Σ_2 and Σ_3 above. Note that $\mathfrak{X}(M, L)$ over $M \times M$ is a fiber bundle with each fiber isomorphic to

$$P^2(C)$$
 #3 $\overline{P^2(C)}$,

by which we mean the complex surface obtained from $P^2(C)$ by blowing up three points [1:0:0], [0:1:0], [0:0:1].

FACT 1.1 (see, e.g., Oda [7]). $P^2(C)$ #3 $\overline{P^2(C)}$ admits two automorphisms ρ_1 , ρ_2 induced respectively by the automorphisms

$$\begin{aligned} \rho_1' &: [x_0 : x_1 : x_2] \mapsto [x_1 : x_0 : x_2], \\ \rho_2' &: [x_0 : x_1 : x_2] \mapsto [x_0^{-1} : x_1^{-1} : x_2^{-1}], \end{aligned}$$

on $C^* \times C^* = \{ [x_0 : x_1 : x_2] \in P^2(C); x_i \neq 0 \text{ for all } i \} \subset P^2(C).$

We consider the same situation in a more general context (see Lemma 1.3). Let E_1 , E_2 and E_3 be the irreducible reduced exceptional divisors on $\mathfrak{X}(M, L)$ sitting over Σ_1 , Σ_2 and Σ_3 , respectively. We also define irreducible reduced divisors D'_1 , D'_2 , D'_3 on P(E(M, L)) by

$$D'_{1} := \pi(\{\mathbf{1}_{M \times M} \oplus \mathbf{1}_{M \times M} \oplus \{0\}\} \cap E^{\circ}(M, L)),$$

$$D'_{2} := \pi(\{\mathbf{1}_{M \times M} \oplus \{0\} \oplus \hat{L}\} \cap E^{\circ}(M, L)),$$

$$D'_{3} := \pi(\{\{0\} \oplus \mathbf{1}_{M \times M} \oplus \hat{L}\} \cap E^{\circ}(M, L)).$$

Let D_1 , D_2 and D_3 denote, respectively, the strict transforms of D'_1 , D'_2 and D'_3 in $\mathfrak{X}(M, L)$. Moreover, for $i, j \in \{1, 2, 3\}$ with $i \neq j$, we put

$$F_{i,j} := D_i \cap E_j$$
.

126

We define a fiberwise automorphism τ'_1 of P(E(M, L)) over $M \times M$ obtained by interchanging the two factors of $\mathbf{1}_{M \times M} \oplus \mathbf{1}_{M \times M}$ as follows:

$$\tau'_1(\pi(a \oplus b \oplus c)) := \pi(b \oplus a \oplus c) ,$$

with $\pi(a \oplus b \oplus c) \in \mathbf{P}(E(M, L))$. We put

(1.2)
$$\mathfrak{X}_{0}(M,L) := \mathbf{P}(E(M,L)) \setminus (D'_{1} \cup D'_{2} \cup D'_{3})$$
$$\cong \mathfrak{X}(M,L) \setminus (D_{1} \cup D_{2} \cup D_{3} \cup E_{1} \cup E_{2} \cup E_{3}).$$

Then τ'_1 can be regarded as an automorphism of $\mathfrak{X}_0(M, L)$. Furthermore, we set $\hat{L}^\circ := \hat{L} \setminus (\text{zero-section})$. Let $\hat{L}_{(\xi,\eta)}$ be the fiber of \hat{L} over $(\xi, \eta) \in M \times M$. Take an arbitrary $a \in \hat{L}_{(\xi,\eta)} \cap \hat{L}^\circ$ for each $(\xi, \eta) \in M \times M$. We then define $\zeta_1(a) \in (\hat{L}^{-1})_{(\xi,\eta)}$ by

 $\zeta_1(a)(b) = b/a \in \boldsymbol{C}, \qquad b \in \hat{L}_{(\xi,\eta)}.$

Therefore, it allows us to define an isomorphism

$$\zeta_1: \hat{L}^\circ \ni a \mapsto \zeta_1(a) \in \hat{L}^{-1} \setminus (\text{zero-section})$$

of C*-bundles over $M \times M$. Moreover, via the identification $\mathbf{1}_{m \times m} \setminus (\text{zero-section}) = M \times M \times C^*$, we define an automorphism ζ_2 of $\mathbf{1}_{m \times m} \setminus (\text{zero-section})$ by

$$\zeta_2(\xi,\eta,a) := (\xi,\eta,a^{-1}), \quad (\xi,\eta,a) \in M \times M \times C^*.$$

Let $\iota: M \times M \ni (\xi, \eta) \mapsto (\eta, \xi) \in M \times M$ be the involutive automorphism of $M \times M$. Then this ι naturally induces two biholomorphic maps

$$\iota': \hat{L}^{-1}(=p_1^*L^{-1}\otimes p_2^*L) = \iota^*\hat{L} \to \hat{L},$$
$$\iota'': \mathbf{1}_{M \times M} = \iota^*\mathbf{1}_{M \times M} \to \mathbf{1}_{M \times M},$$

such that the following diagrams commute:

where all vertical arrows mean natural projections. We now define the automorphism τ'_2 of $\mathfrak{X}_0(M, L)$ covering the involution ι on $M \times M$ by

$$\tau'_2(\pi(a \oplus b \oplus c)) := \pi((\iota'' \circ \zeta_2)(a) \oplus (\iota'' \circ \zeta_2)(b) \oplus (\iota' \circ \zeta_1)(c)),$$

for each $\pi(a \oplus b \oplus c) \in \mathfrak{X}_0(M, L)$. In view of (1.2), we obtain:

LEMMA 1.3. The above τ'_1 and τ'_2 on $\mathfrak{X}_0(M, L)$ extend naturally to automorphisms (denoted by τ_1 and τ_2 , respectively) on $\mathfrak{X}(M, L)$.

PROOF. For an arbitrary $(\xi_0, \eta_0) \in M \times M$, we take in M sufficiently small open

neighborhoods V_1 and V_2 of ξ_0 and η_0 , respectively. By taking local trivializations of L over V_1 , V_2 , we can regard $\mathfrak{X}_0(M, L)$ locally as $V \times \mathbb{C}^* \times \mathbb{C}^* (\subset V \times \mathbb{P}^2(\mathbb{C}))$ over V for $V = V_1 \times V_2$ or $V_2 \times V_1$. Then τ'_1 and τ'_2 can be locally defined in the form

$$\begin{aligned} &\tau'_1: (\xi, \eta, [x_0:x_1:x_2]) \mapsto (\xi, \eta, [x_1:x_0:x_2]) \,, \\ &\tau'_2: (\xi, \eta, [x_0:x_1:x_2]) \mapsto (\eta, \xi, [x_0^{-1}:x_1^{-1}:x_2^{-1}]) \,, \end{aligned}$$

where $(\xi, \eta) \in V_1 \times V_2$ and $[x_0 : x_1 : x_2] \in C^* \times C^* (\subset P^2(C))$. Therefore, we can extend τ'_1 and τ'_2 on $\mathfrak{X}_0(M, L)$ to automorphisms on $\mathfrak{X}(M, L)$ in a manner similar to Fact 1.1.

Note that
$$\tau_1^2 = \tau_2^2 = id_{\mathfrak{X}(M, L)}, \ \tau_1 \circ \tau_2 = \tau_2 \circ \tau_1$$
, and that
(1.4)

$$\tau_1(D_i) = D_{\nu(i)}, \qquad \tau_1(E_j) = E_{\nu(j)}, \quad i, j \in \{1, 2, 3\}, \quad \text{with } k \neq l, \quad t_1(F_{k, l}) = F_{\nu(k), \nu(l)}, \quad k, l \in \{1, 2, 3\}, \quad \text{with } k \neq l, \quad \tau_2(D_i) = E_i, \quad \tau_2(E_j) = D_j, \quad i, j \in \{1, 2, 3\}, \quad \text{with } k \neq l, \quad t_2(F_{k, l}) = F_{l, k}, \quad k, l \in \{1, 2, 3\}, \quad \text{with } k \neq l, \quad t_2(F_{k, l}) = F_{l, k}, \quad t_2(F_{k,$$

where v denotes the permutation of $\{1, 2, 3\}$ fixing 1 and interchanging 2 and 3.

Furthermore, consider a 2-dimensional compact real torus $G_1 := U(1) \times U(1)$, where $U(1) := \{t \in C; |t|=1\}$. Then its complexification $G_1^c = C^* \times C^*$ acts biholomorphically on P(E(M, L)) by

$$\mathbf{P}(E(M, L)) \ni \pi(a \oplus b \oplus c) \mapsto \pi(a \oplus t_1 b \oplus t_2 c) \in \mathbf{P}(E(M, L)),$$

for all $(t_1, t_2) \in G_1^c$. This G_1^c -action on P(E(M, L)) extends naturally to the G_1^c -action on $\mathfrak{X}(M, L)$. Note that the subvarieties D_i , E_j , $F_{k,l}$, with $i, j, k, l \in \{1, 2, 3\}$ and $k \neq l$, are all G_1^c -invariant.

In this paper, we only consider the case where M is a Kähler C-space, that is, a simply connected compact complex homogeneous space with a Kähler metric. By a result of Wang [12], M can be written as M = G/U, where G is a simply connected complex semisimple Lie group and U is a parabolic subgroup of G. Recall that every holomorphic line bundle L over a Kähler C-space G/U is homogeneous (cf. Ise [3]). Namely, L can be written in the form $L = G \times_{\rho} C$ for some 1-dimensional holomorphic representation $\rho: U \to GL(1, \mathbb{C}) = \mathbb{C}^*$ of U on \mathbb{C} . Therefore, G acts naturally on L inducing a $(G \times G)$ -action on $\mathfrak{X}(G/U, L)$. Then, for a maximal compact subgroup G_c of G, the product $G_c \times G_c$ acts naturally on $\mathfrak{X}(G/U, L)$. By K(G/U, L), we denote the compact subgroup in Aut($\mathfrak{X}(G/U, L)$) generated by $G_1, G_c \times G_c$ and $\{\tau_1, \tau_2\}$. Now, the following lemma is straightforward from (1.4):

LEMMA 1.5. Any reduced $K(G/U, L)^c$ -invariant closed analytic subspace Y of $\mathfrak{X}(G/U, L)$, with $\emptyset \neq Y \subseteq \mathfrak{X}(G/U, L)$, is one of the following seven subspaces:

$$\begin{split} &\Gamma_{1} := F_{2,1} \cup F_{1,3} \cup F_{1,2} \cup F_{3,1}, \\ &\Gamma_{2} := F_{2,3} \cup F_{3,2}, \\ &\Gamma_{3} := \Gamma_{1} \cup \Gamma_{2} = F_{2,1} \cup F_{2,3} \cup F_{1,3} \cup F_{1,2} \cup F_{3,2} \cup F_{3,1}, \\ &\Psi_{1} := D_{2} \cup D_{3} \cup E_{2} \cup E_{3}, \\ &\Psi_{2} := D_{1} \cup E_{1}, \\ &\Psi_{3} := \Psi_{2} \cup \Gamma_{2} = D_{1} \cup E_{1} \cup F_{2,3} \cup F_{3,2}, \\ &\Psi_{4} := \Psi_{1} \cup \Psi_{2} = D_{1} \cup D_{2} \cup D_{3} \cup E_{1} \cup E_{2} \cup E_{3}. \end{split}$$

2. The existence of Einstein-Kähler metrics on $\mathfrak{X}(G/U, L)$. In this section, we shall show the existence theorem for Einstein-Kähler metrics on $\mathfrak{X}(G/U, L)$. Namely, we shall prove:

THEOREM 2.1. Let G/U be a Kähler C-space. For every holomorphic line bundle L over G/U, the complex manifold $\mathfrak{X}(G/U, L)$ defined in Section 1 admits an Einstein-Kähler metric, provided the first Chern class $c_1(\mathfrak{X}(G/U, L))$ of $\mathfrak{X}(G/U, L)$ is positive.

To prove this theorem, we quote the following fact on the existence of Einstein-Kähler metrics:

FACT 2.2. (Nadel [5]). Let X be a Fano r-fold and K a compact subgroup of Aut(X). Assume that X admits no Einstein-Kähler metrics. Then there exists a K^{c} -invariant closed analytic subspace $\emptyset \neq Z \subsetneq X$, called the multiplier ideal subscheme of X, satisfying the following conditions:

(1) $\dim_{\mathbf{C}}(H^{i}(Z, \mathcal{O}_{\mathbf{Z}})) = 0$, for all i > 0, and $\dim_{\mathbf{C}}(H^{0}(Z, \mathcal{O}_{\mathbf{Z}})) = 1$;

(2) The logarithmic-geometric genus of $X \setminus Z$ vanishes.

PROOF OF THEOREM 2.1. Suppose, for contradiction, that $\mathfrak{X}(G/U, L)$ admits no Einstein-Kähler metrics. Then there exists a $K(G/U, L)^{c}$ -invariant multiplier ideal subscheme Z of $\mathfrak{X}(G/U, L)$ by Fact 2.2, where K(G/U, L) is the compact subgroup of Aut($\mathfrak{X}(G/U, L)$) defined in Section 1. Since Z is $K(G/U, L)^{c}$ -invariant, Z_{red} is one of the seven analytic subspaces $\Gamma_1, \Gamma_2, \Gamma_3, \Psi_1, \Psi_2, \Psi_3, \Psi_4$ by Lemma 1.5, where Z_{red} is the reduced analytic subspace of $\mathfrak{X}(G/U, L)$ associated to Z. By definition, $\Gamma_1, \Gamma_2, \Gamma_3, \Psi_1$, Ψ_2 and Ψ_3 are not connected. Therefore by Fact 2.2, (1), Z_{red} can be none of these six. Hence, $Z_{red} = \Psi_4$. By K_1 , we denote the finite subgroup of $K(G/U, L)^{c}$ generated by τ_1 and τ_2 , so that $K_1 := \{ \mathrm{id}_{\mathfrak{X}(G/U, L)}, \tau_1, \tau_2, \tau_1 \circ \tau_2 \} (\cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$. Let $\mathscr{I}_{\mathbb{Z}}$ be the defining ideal sheaf of Z in $\mathfrak{X}(G/U, L)$, and let

$$\mathscr{I}_{Z} = \mathscr{P}_{1} \cap \mathscr{P}_{2} \cap \cdots \cap \mathscr{P}_{r}$$

be a primary decomposition (see, e.g., Siu [9]) of \mathcal{I}_Z with primary ideal subsheaves

 \mathscr{P}_k 's of $\mathscr{O}_{\mathfrak{X}(G/U, L)}$. We define $\mathscr{I}_{D_i}, \mathscr{I}_{E_j}$, as the intersections of all \mathscr{P}_k 's such that the support $\operatorname{Supp}(\mathscr{O}_{\mathfrak{X}(G/U, L)}/\mathscr{P}_k)$ of $\mathscr{O}_{\mathfrak{X}(G/U, L)}/\mathscr{P}_k$ is contained in D_i, E_j , respectively. We put

$$\begin{split} \mathscr{I}_{\tilde{D}_i} &:= \mathscr{I}_{D_i}' \cap \tau_1^* \mathscr{I}_{D_{\nu(i)}}' \cap \tau_2^* \mathscr{I}_{E_i}' \cap (\tau_1 \circ \tau_2)^* \mathscr{I}_{E_{\nu(i)}}', \qquad i = 1, \, 2, \, 3 \, , \\ \mathscr{I}_{\tilde{E}_j} &:= \mathscr{I}_{E_j}' \cap \tau_1^* \mathscr{I}_{E_{\nu(j)}}' \cap \tau_2^* \mathscr{I}_{D_j}' \cap (\tau_1 \circ \tau_2)^* \mathscr{I}_{D_{\nu(j)}}', \qquad j = 1, \, 2, \, 3 \, , \end{split}$$

where v is the permutation in (1.4). Then by the K_1 -invariance of \mathscr{I}_Z , $\mathscr{I}_{\tilde{D}_i}$ and $\mathscr{I}_{\tilde{E}_j}$ are coherent ideal subsheaves of $\mathscr{O}_{\mathscr{X}(G/U, L)}$ such that

$$\mathcal{I}_{Z} = \mathcal{I}_{\tilde{D}_{1}} \cap \mathcal{I}_{\tilde{D}_{2}} \cap \mathcal{I}_{\tilde{D}_{3}} \cap \mathcal{I}_{\tilde{E}_{1}} \cap \mathcal{I}_{\tilde{E}_{2}} \cap \mathcal{I}_{\tilde{E}_{3}}.$$

Let \tilde{D}_i , \tilde{E}_j , $i, j \in \{1, 2, 3\}$, denote the closed analytic subspaces of $\mathfrak{X}(G/U, L)$ defined by $\mathscr{I}_{\tilde{D}_i}$, $\mathscr{I}_{\tilde{E}_i}$, respectively. Then Z is expressible in the form

$$Z = \tilde{D}_1 \cup \tilde{D}_2 \cup \tilde{D}_3 \cup \tilde{E}_1 \cup \tilde{E}_2 \cup \tilde{E}_3 ,$$

and $\tilde{D}_i, \tilde{E}_j, i, j \in \{1, 2, 3\}$, satisfy $(\tilde{D}_i)_{\text{red}} = D_i, (\tilde{E}_j)_{\text{red}} = E_j$, respectively. Let
$$Z' := \tilde{D}_1 \sqcup \tilde{D}_2 \sqcup \tilde{D}_3 \sqcup \tilde{E}_1 \sqcup \tilde{E}_2 \sqcup \tilde{E}_3$$

be the disjoint union of \tilde{D}_i , i = 1, 2, 3, and \tilde{E}_j , j = 1, 2, 3, and let $\varpi : Z' \to Z$ be the natural projection. Then we have a short exact sequence

(2.3)
$$0 \to \mathcal{O}_{Z} \to \varpi_{*}\mathcal{O}_{Z'} \to \mathscr{F} := (\varpi_{*}\mathcal{O}_{Z'}/\mathcal{O}_{Z}) \to 0,$$

where the support Supp(\mathscr{F}) of \mathscr{F} is just $\Gamma_3 = F_{2,1} \cup F_{2,3} \cup F_{1,3} \cup F_{1,2} \cup F_{3,2} \cup F_{3,1}$, and \mathscr{F} is K_1 -invariant. Note that $F_{2,3}$ and $F_{3,2}$ are K_1 -congruent, and that $F_{2,1}$, $F_{1,3}$, $F_{1,2}$ and $F_{3,1}$ are also K_1 -congruent. Moreover, all $F_{i,j}$'s, with $i, j \in \{1, 2, 3\}$ and $i \neq j$, are mutually disjoint. Now from (2.3), we obtain a long exact sequence

(2.4)
$$\{0\} \to H^0(Z, \mathcal{O}_Z) \to H^0(Z', \mathcal{O}_{Z'}) \to H^0(Z, \mathscr{F}) \to H^1(Z, \mathcal{O}_Z) \to \cdots$$

Since \tilde{D}_1 and \tilde{E}_1 are K_1 -congruent, and since \tilde{D}_2 , \tilde{D}_3 , \tilde{E}_2 and \tilde{E}_3 are also K_1 -congruent, there exist non-negative integers p, q, r and s such that

(2.5)
$$\dim_{\boldsymbol{c}}(H^{0}(Z', \mathcal{O}_{Z'})) = 2p + 4q \quad \text{and} \quad \dim_{\boldsymbol{c}}(H^{0}(Z, \mathscr{F})) = 2r + 4s$$

By (2.4) and (2.5) together with Fact 2.2, (1), we obtain 2p+4q=2r+4s+1, in contradiction. Thus we can conclude that $\mathfrak{X}(G/U, L)$ admits an Einstein-Kähler metric.

3. The classification of Einstein-Kähler toric Fano fourfolds. First, we introduce some notation. For a positive integer n, let $\{e_i; i=1, 2, ..., n\}$ denote the standard basis for \mathbb{R}^n , and put $e_0 := -(e_1 + e_2 + \cdots + e_n)$, i.e.,

$$e_i = (0, \dots, 0, \overset{i}{1}, 0, \dots, 0), \quad i = 1, 2, \dots, n,$$

 $e_0 = (-1, -1, \dots, -1).$

130

By viewing \mathbb{R}^{2n+2} as $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$, we consider the following vectors in \mathbb{R}^{2n+2} :

$$x_{0} := (e_{0}, \mathbf{0}, 0, -m), \quad y_{0} := (\mathbf{0}, e_{0}, 0, m),$$

$$x_{1} := (e_{1}, \mathbf{0}, 0, 0), \quad y_{1} := (\mathbf{0}, e_{1}, 0, 0),$$

$$x_{2} := (e_{2}, \mathbf{0}, 0, 0), \quad y_{2} := (\mathbf{0}, e_{2}, 0, 0),$$

$$\vdots$$

$$x_{n} := (e_{n}, \mathbf{0}, 0, 0), \quad y_{n} := (\mathbf{0}, e_{n}, 0, 0),$$

$$z_{1} := (\mathbf{0}, \mathbf{0}, 1, 0), \quad z_{2} := (\mathbf{0}, \mathbf{0}, 0, 1),$$

$$z_{3} := (\mathbf{0}, \mathbf{0}, -1, 1), \quad z_{4} := (\mathbf{0}, \mathbf{0}, -1, 0),$$

$$z_{5} := (\mathbf{0}, \mathbf{0}, 0, -1), \quad z_{6} := (\mathbf{0}, \mathbf{0}, 1, -1),$$

where *m* is a non-negative integer. For vectors $\mu_1, \mu_2, \ldots, \mu_l \in \mathbb{Z}^{2n+2}$ ($\subset \mathbb{R}^{2n+2}$), let

$$\langle \mu_1, \mu_2, \dots, \mu_l \rangle := \{ a_1 \mu_1 + a_2 \mu_2 + \dots + a_l \mu_l; a_i \in \mathbf{R}, a_i \ge 0 \text{ for all } i \}$$

be the strongly convex rational polyhedral cone in \mathbb{R}^{2n+2} (see [7; p. 1]) generated by $\mu_1, \mu_2, \ldots, \mu_l$. We introduce the following strongly convex rational polyhedral cones in \mathbb{R}^{2n+2} by using the notation in [7; p. 2]:

$$\begin{split} \sigma_{1,i} &:= \langle x_0, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \rangle, \qquad i = 0, 1, \dots, n, \\ \sigma_{2,j} &:= \langle y_0, y_1, \dots, y_{j-1}, y_{j+1}, \dots, y_n \rangle, \qquad j = 0, 1, \dots, n, \\ \sigma_{3,k} &:= \langle z_k, z_{k+1} \rangle, \qquad k = 1, 2, \dots, 6, \\ \Delta_1 &:= \{ \text{the faces of } \sigma_{1,i}; i = 0, 1, \dots, n \}, \\ \Delta_2 &:= \{ \text{the faces of } \sigma_{2,j}; j = 0, 1, \dots, n \}, \\ \Delta_3 &:= \{ \text{the faces of } \sigma_{3,k}; k = 1, 2, \dots, 6 \}, \end{split}$$

where we set $z_7 := z_1$. Furthermore, define a fan $\Delta_{n:m}$ of \mathbb{Z}^{2n+2} by

$$\Delta_{n:m} := \{ \sigma' + \sigma'' + \sigma'''; \sigma' \in \Delta_1, \sigma'' \in \Delta_2, \sigma''' \in \Delta_3 \}.$$

Then, a fundamental result on toric varieties [7; Theorems 1.4, 1.10, 1.11] allows us to obtain a compact connected non-singular toric (2n+2)-fold $X_{n;m}$ corresponding to the fan $\Delta_{n;m}$ of \mathbb{Z}^{2n+2} . The following lemma is relevant to our purpose:

LEMMA 3.1. (a) Let H be the hyperplane line bundle over $P^n(C)$. Then the toric (2n+2)-fold $X_{n:m}$ is expressible as $\mathfrak{X}(P^n(C), H^m)$, for all n and m.

(b) If $m \leq n$, then $c_1(X_{n;m}) > 0$, i.e., $X_{n;m}$ is a toric Fano (2n+2)-fold.

PROOF. The statement (a) is straightforward from [7; Propositions 1.26, 1.33], and (b) also follows from [7; Lemma 2.20, (e)].

REMARK 3.2. For each $\alpha \in \{1, 2\}$, the automorphism τ_{α} of $X_{n;m} = \mathfrak{X}(P^n(C), H^m)$ defined in Lemma 1.3 can be interpreted as the equivariant automorphism of $X_{n;m}$ associated to the automorphism of the fan $\Delta_{n;m}$ (see [7; p. 19]) given by the next matrix $A_{\alpha} \in GL(2n+2, \mathbb{Z})$ (I_n being the identity matrix of degree n):

<i>A</i> ₁ :=		I _n	0	0 0	0 0	
		0	I _n	0 0	0 0	
		$\begin{array}{ccc} 0 \cdots 0 \\ 0 \cdots 0 \end{array}$	$\begin{array}{c} 0 \cdots 0 \\ 0 \cdots 0 \end{array}$	-1 1	0 1)
<i>A</i> ₂ :=		0	I _n	0 0	0 0	
		I _n	0	0 0	0 0	
		$\begin{array}{ccc} 0 \cdots 0 \\ 0 \cdots 0 \end{array}$	$0 \cdots 0$ $0 \cdots 0$	1 0	0 -1	

Since $P^n(C) = SU(n+1)/S(U(1) \times U(n))$ is a Kähler C-space, Lemma 3.1 allows us to apply Theorem 2.1 to $X_{n;m}$ with $m \le n$. We thus obtain:

THEOREM 3.3. If $m \leq n$, then the toric Fano (2n+2)-fold $X_{n;m} = \mathfrak{X}(\mathbf{P}^n(\mathbf{C}), H^m)$ always admits an Einstein-Kähler metric.

In particular, for n=m=1, the toric Fano fourfold $X_{1;1} = \mathfrak{X}(\mathbf{P}^1(\mathbf{C}), H)$ admits an Einstein-Kähler metric. Therefore by using the notation in [6], we infer from [6] the following classification of Einstein-Kähler toric Fano fourfolds:

THEOREM 3.4. An Einstein-Kähler toric Fano fourfold is equivariantly isomorphic to one of the following eleven toric Fano fourfolds:

$$\begin{split} P(\mathcal{O}_{P^{1} \times P^{1}} \oplus \mathcal{O}_{P^{1} \times P^{1}}(1, -1)) \times P^{1}(C) , & P^{2}(C) \times P^{2}(C) , \\ (P^{2}(C)^{\sharp}_{3}\overline{P^{2}(C)}) \times (P^{2}(C)^{\sharp}_{3}\overline{P^{2}(C)}) , & P^{3}(C) \times P^{1}(C) , \\ (P^{2}(C)^{\sharp}_{3}\overline{P^{2}(C)}) \times P^{1}(C) \times P^{1}(C) , & X_{P_{1}} , \\ (P^{2}(C)^{\sharp}_{3}\overline{P^{2}(C)}) \times P^{2}(C) , & X_{P_{2}} = X_{1;1} , \\ P^{2}(C) \times P^{1}(C) \times P^{1}(C) , & P^{4}(C) , \\ P^{1}(C) \times P^{1}(C) \times P^{1}(C) \times P^{1}(C) . \end{split}$$

As a corollary to this theorem, we can give an affirmative answer to Question 0.1 for $r \leq 4$. Namely, we obtain:

COROLLARY 3.5. For a toric Fano r-fold X with $r \leq 4$, the following are equivalent:

- (1) The Futaki invariant F_X of X vanishes;
- (2) X admits an Einstein-Kähler metric.

References

- [1] V. V. BATYREV, On the classification of toric Fano 4-folds, preprint.
- [2] A. FUTAKI, An obstruction to the existence of Kähler Einstein metrics, Invent. Math. 73 (1983), 437–443.
- [3] M. ISE, Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1962), 217–252.
- [4] T. MABUCHI, Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math. 24 (1987), 705-737.
- [5] A. M. NADEL, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. 132 (1990), 549–596.
- [6] Y. NAKAGAWA, Einstein-Kähler toric Fano fourfolds, Tohoku Math. J. 45 (1993), 297–310.
- [7] T. ODA, "Convex bodies and algebraic geometry: An introduction to the theory of toric varieties," Ergebnisse der Math. (3) 15, Springer-Verlag, Heidelberg, 1988.
- [8] Y. SAKANE, Example of compact Einstein Kähler manifolds with positive Ricci tensor, Osaka J. Math. 23 (1986), 585–616.
- [9] Y.-T. SIU, Noether-Lasker decomposition of coherent analytic subsheaves, Trans. Amer. Math. Soc. 135 (1969), 375–385.
- [10] Y.-T. SIU, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math. 127 (1988), 585–627.
- [11] G. TIAN AND S.-T. YAU, Kähler-Einstein metrics on complex surfaces with $C_1 > 0$, Commun. Math. Phys. 112 (1987), 175–203.
- [12] H.-C. WANG, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1–32.

Mathematical Institute Faculty of Science Tohoku University Sendai 980 Japan