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Abstract. Earlier the author gave the classification of Einstein-Kahler toric Fano

fourfolds except in one case. In the present paper, we prove the existence of

Einstein-Kahler metrics on some family of Fano manifolds including the remaining toric

Fano fourfold. In particular, we completely classify the Einstein-Kahler toric Fano

fourfolds.

Introduction. The Futaki invariant (see Futaki [2]) is known as an obstruction
to the existence of Einstein-Kahler metrics on a Fano r-fold. If a Fano r-fold is toric,
then the Futaki invariant is explicitly calculated by Mabuchi's formula [4], where a
toric Fano r-fold means an r-dimensional compact connected complex manifold, with
cx>0, admitting an effective almost homogeneous algebraic group action of an
r-dimensional algebraic torus (C*)r. In [6], the author studied Einstein-Kahler metrics
on toric Fano fourfolds. In particular, he considered the following question:

QUESTION 0.1. Does a toric Fano r-fold with vanishing Futaki invariant always

admit an Einstein-Kahler metric!

For r ^ 3 , this question was settled (cf. Mabuchi [4], Sakane [8], Siu [10], Tian
and Yau [11]). In [6], the author gave an affirmative answer to Question 0.1 for r = 4
except in one case Xu x (see Section 3) basically by using Batyrev's classification of toric
Fano fourfolds [1]. The main purpose of the present paper is to prove the existence
of an Einstein-Kahler metric for the remaining case XUί and then give an affirmative
answer to Question 0.1 in the case r^4. More generally, we shall prove in Section 2
the existence of Einstein-Kahler metrics on some P2(C)#3P2(C)-bundles over MxM,
for Kahler C-spaces M, employing NadeΓs existence theorem [5].

Finally, the author wishes to thank Professor Toshiki Mabuchi for his valuable
suggestions and constant encouragements.

1. Notation and preliminaries. Let M be a compact connected ^-dimensional
complex manifold and L a holomorphic line bundle over M. We denote by Aut(M) the
group of holomorphic automorphisms of M. We put
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wherept: MxM-+M denotes the projection to the ί-th factor, i = 1, 2, and L~ι denotes
the dual line bundle of L over M. We consider the holomorphic vector bundle

over M x M, of rank 3, where 1 M X M : = M X M X C means the holomorphic trivial line
bundle over MxM. Put E°(M, L) : = £(M, L)\(zero-section). Then £°(M,L) has a
natural scalar multiplication

for ί e C*. Let P{E{M, L)): = £°(M, L)/C* be the P2(C)-bundle over M x M associated

to £(M, L), and π: £°(M, L) -> P(£(M, L)) the natural projection. P(£(M, L)) over M x M

has three natural cross-sections Σl9 Σ2, Σ3, corresponding to the direct summands

{ 0 } Θ 1 M X M Θ { 0 } , 1 M X M Θ { 0 } Θ { 0 } ,

respectively. Let %(M,L) be a complex manifolds obtained from P(£(M, L)) by si-
multaneously blowing up three subvarieties Σu Σ2 and Σ3 above. Note that X(M,L)
over M x M is a fiber bundle with each fiber isomorphic to

by which we mean the complex surface obtained from P2{C) by blowing up three points
[1:0:0], [0:1:0], [0:0:1].

FACT 1.1 (see, e.g., Oda [7]). P2(C)#3P2(C) admits two automorphisms pu p2

induced respectively by the automorphisms

P\ - ί*o ^i *2] ->[*i : ^o : ̂ 2] ,

Pi' ixo-Xi-Xilt'+lxo1'*!1'*!1!*

on C*xC* = {lx0 : xx: x2] eP2(C); x^O for all 1} c=P2(C).

We consider the same situation in a more general context (see Lemma 1.3). Let
Eu E2 and E3 be the irreducible reduced exceptional divisors on 3E(M, L) sitting over
Σl9 Σ2 and Σ39 respectively. We also define irreducible reduced divisors D'l9 D'2, D'3 on
P{E{M9 L)) by

2);: = π({lM x M®lM x MΘ{0}}n£°(M,L)),

D'2: = π({lMxM@{0}®L}nE°(M,L))9

Df

3 : = π({{0}θlMχMθL}nE°(M, L)).

Let Dl9 D2 and D3 denote, respectively, the strict transforms of D'l9 D'2 and D'3 in
, L). Moreover, for ije {1, 2, 3} with i#Λ we put
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We define a fiberwise automorphism τ\ of P(E(M, L)) over MxM obtained by
interchanging the two factors of l M x M © 1 M x M as follows:

τ\ (π(a

with π(α©fe0c)eP(E(M, L)). We put

*0(M, L): = P(E(M, L))\(D\ u D'2 u D'3)
(1.2)

Ϊ(M KCDi u D2 u D3 u E

Then τ\ can be regarded as an automorphism of X0(M, L). Furthermore, we set
L°: = L\(zero-section). Let L(ξtη) be the fiber of L over (ξ, η)sM x M. Take an arbitrary
aeL{ξη)f)L° for each (ξ, 77)eMxM. We then define ζ^cήeiL'1)^ η) by

Therefore, it allows us to define an isomorphism

ζ1 : L°9ύίh->ζ1(α)GL~^(zero-section)

of C*-bundles over MxM. Moreover, via the identification lmxm\(zero-section) =
MxMx C*, we define an automorphism ζ2 of lmXm\(zero-section) by

ζ2(ξ, η, a) : = (ξ, η, a~ι) , (ξ, η,a)eMxMxC* .

Let i: MxMB(ξ,η)\-^(η,ξ)eM xM be the involutive automorphism ofMxM. Then
this i naturally induces two biholomorphic maps

i:

such that the following diagrams commute:

L " 1 — ί U L 1 M X

MxM >MxM, MxM >MxM ,

where all vertical arrows mean natural projections. We now define the automorphism
τ2 of ϊ o(M, L) covering the involution i on M x M by

for each π(α © b 0 c) e £0(M, L). In view of (1.2), we obtain:

LEMMA 1.3. The above τ\ and τ 2 on X0(M, L) extend naturally to automorphisms

{denoted by τ x and τ 2 , respectively) on X(M, L).

PROOF. For an arbitrary (£0, ηo)eM xM, we take in M sufficiently small open
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neighborhoods Vί and V2 of ξ0 and η0, respectively. By taking local trivializations of

L over Vl9 V2, we can regard X0(M9 L) locally as Vx C* x C * ( c FxP 2 (C)) over Ffor

V=VίxV2 or V2xV1. Then τ'x and τ'2 can be locally defined in the form

τ'2 : (£, η, [^0^1 ^ 2 ] ) ^ ( ^ £> l>o * -xϊ1 ' *i *]) ,

where (ξ, ijJeFjX K2 and [ x 0 : x 1 : x 2 ] e C * x C * ( c P 2 ( C ) ) . Therefore, we can extend

τ\ and τ 2 on X0(M, L) to automorphisms on 3E(M, L) in a manner similar to Fact 1.1.

•
Note that Ti=T2 = idX(M,L)> τ 1oτ 2 = τ 2°τ 1, and that

T i ί D ^ D ^ , , τ1(£ j) = £ v ( Λ , Ϊ , ; G { 1 , 2 , 3 } ,

τi(FktI) = F v ( l k ) f V ( I ), fc,/e{l,2,3}, with fc^/,

τ2(Dl) = £ | J τ2(Ej) = Dj9 i j e { l ,2 ,3} ,

τ 2 ( ^ j ) = ^ , f c , fc,/e{l,2,3}, with kΦl9

where v denotes the permutation of {1, 2, 3} fixing 1 and interchanging 2 and 3.

Furthermore, consider a 2-dimensional compact real torus Gx : = (7(1) x 1/(1), where

ϊ/(l): = { ί e C ; | ί | = l}. Then its complexification Gf = C* x C* acts biholomorphically

on P(E{M, D) by

for all (tί9 ί2)eGf. This Gf-action on P(E(M, L)) extends naturally to the Gf-action on

X(M, L). Note that the subvarieties Dh Ep Fkj9 with i9j9 k9 le {1, 2, 3} and fc//, are all

Gf-invariant.

In this paper, we only consider the case where M is a Kahler C-space, that is, a

simply connected compact complex homogeneous space with a Kahler metric. By a

result of Wang [12], M can be written as M = G/U, where G is a simply connected

complex semisimple Lie group and U is a parabolic subgroup of G. Recall that every

holomorphic line bundle L over a Kahler C-space G/U is homogeneous (cf. Ise [3]).

Namely, L can be written in the form L = G xpC for some 1-dimensional holomorphic

representation p : 1/->GL(1, C) = C* of £/ on C. Therefore, G acts naturally on L

inducing a (G x G)-action on X(G/U9 L). Then, for a maximal compact subgroup Gc of

G, the product Gc x Gc acts naturally on X(G/U, L). By K(G/U, L), we denote the compact

subgroup in A\xί(X(G/U, L)) generated by G1? Gc x Gc and {τ1? τ2}. Now, the following

lemma is straightforward from (1.4):

LEMMA 1.5. Any reduced K(G/U, Lf-invariant closed analytic subspace Y of

X(G/U, L), with 0φYφX(G/U, L), is one of the following seven subspaces:
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Γ3 : = Γ 1 u Γ 2 = F 2 f l u F 2

Ψx :=D2uD3uE2uE3,

2. The existence of Einstein-Kahler metrics on X(G/U, L). In this section, we shall

show the existence theorem for Einstein-Kahler metrics on X(G/U, L). Namely, we shall

prove:

THEOREM 2.1. Let G/U be a Kάhler C-space. For every holomorphic line bundle L

over G/U, the complex manifold X(G/U, L) defined in Section 1 admits an Einstein-Kahler

metric, provided the first Chern class c1(X{G/U, L)) ofX(G/U, L) is positive.

To prove this theorem, we quote the following fact on the existence of Einstein-

Kahler metrics:

FACT 2.2. (Nadel [5]). Let X be a Fano r-fold and K a compact subgroup of

Aut(X). Assume that X admits no Einstein-Kahler metrics. Then there exists a Kc-

invariant closed analytic subspace 0ΦZ<^X, called the multiplier ideal subscheme of X,

satisfying the following conditions:

(1) dimc(Hi(Z,Θz)) = 0,for all i>0, and dimc(H°(Z9Θz))=\;
(2) The logarithmic-geometric genus of X\Z vanishes.

PROOF OF THEOREM 2.1. Suppose, for contradiction, that X(G/U,L) admits no

Einstein-Kahler metrics. Then there exists a K(G/U, L)c-invariant multiplier ideal

subscheme Z of X(G/U, L) by Fact 2.2, where K(G/U, L) is the compact subgroup of

Aut(X(G/U, L)) defined in Section 1. Since Z is K(G/U, L)c-invariant, Z r e d is one of the

seven analytic subspaces Γ l 5 Γ 2, Γ 3, Ψu Ψ2, Ψ3, Ψ4 by Lemma 1.5, where Z r e d is the

reduced analytic subspace of X(G/U, L) associated to Z. By definition, Γί9 Γ2, Γ 3, Ψl9

Ψ2 and ^3 are not connected. Therefore by Fact 2.2, (1), Z r e d can be none of these

six. Hence, Zτtά=ΨAr. By Ku we denote the finite subgroup of K(G/U,L)C generated

by τ1 and τ 2 , so that Kx : = {idX{G/UiL), τl9 τ 2 , τ 1 oτ 2 } (^Z/2ZxZ/2Z). Let Jz be the

defining ideal sheaf of Z in X(G/U, L), and let

be a primary decomposition (see, e.g., Siu [9]) of Jz with primary ideal subsheaves
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0jjs of Θχ(G/u, L) We define J'Όi, J'Ep as the intersections of all ^ ' s such that the support

of Oχ(G/u,L)/^kίs contained in Di9 Ep respectively. We put

^ ^ , , i = l , 2 , 3 ,

A ^ ω

 n τ * Λ , n (τx °τ2)*^vu), j = 1, 2, 3 ,

where v is the permutation in (1.4). Then by the Λ^-invariance of «/z, JQ. and J%. are

coherent ideal subsheaves of Θ&(G/U, L) s u c r i that

Let /5I? 2?,, i,7 E {1, 2, 3}, denote the closed analytic subspaces of X(G/U, L) defined by

^Dt9 ^Ep respectively. Then Z is expressible in the form

Z = β 1 u D 2 u D 3 u £ 1 u £ 2 u £ 3 ,

and Db Ep ije{l, 2, 3}? satisfy (/5,)red = D,, (Ej)ttά = Ej, respectively. Let

Z :=D1UD2UD3UE1UE2UE3

be the disjoint union of Dh i= 1, 2, 3, and Epj=l, 2, 3, and let w: Z' ->Z be the natural

projection. Then we have a short exact sequence

(2.3) 0 -> 0 Z -> tσ,,^, -^ J^ : = (wJ9rl0z) -> 0 ,

where the support S u p p ^ ) of #" is just Γ 3 = F 2 ) 1 u F 2 ) 3 u F 1 ) 3 u F 1 ) 2 u ^3,2 u ^3,

# Ί s Xi-invariant. Note that F 2 > 3 and F 3 2 are ^-congruent, and that F2tl, F13, Flt2

and F3Λ are also ^-congruent. Moreover, all F^fs, with ije{\, 2, 3} and iφj, are

mutually disjoint. Now from (2.3), we obtain a long exact sequence

(2.4) {0} -ff°(Z> (Pz)-+H°(Z; Θz)->H°(Z, ^ ) - > / f \Z, Θz)^> - .

Since β x and Ex are X rcongruent, and since D2, D3, E2 and £ 3 are also X rcongruent,

there exist non-negative integers p, q, r and s such that

(2.5) dimc(tf °{Z', Θz)) = 2p + <\q and dimc(H°(Z, J^)) = 2r + 4s .

By (2.4) and (2.5) together with Fact 2.2, (1), we obtain 2p + 4q = 2r + 4s+l, in con-

tradiction. Thus we can conclude that X(G/U, L) admits an Einstein-Kahler metric.

3. The classification of Einstein-Kahler toric Fano fourfolds. First, we introduce

some notation. For a positive integer n, let {et i = 1, 2 , . . . , n) denote the standard basis

for Rn, and put e0 : = — (eγ + e2 H h en), i.e.,
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By viewing R2n+2 as Rn x Rn x R x R, we consider the following vectors in R2n+2:

0, 0 , - r a ) , yo: = (0,eθ9 0 , m),

* ! : = ( < ? ! , 0 , 0 , 0 ) , ^ ^ ( O , ^ , 0 , 0 ) ,

x 2 : = ( e 2 , 0 , 0 , 0 ) , ;/ 2 : = ( 0 , £ > 2 , 0 , 0 ) ,

x π : = ( ^ , 0 , 0 , 0 ) , y n : = ( 0 , e n , 0 , 0 ) ,

z x : = ( 0 , 0 , 1 , 0 ) , z 2 : = ( 0 , 0 , 0 , 1 ) ,

z 3 : = ( 0 , 0 , - l , 1 ) , z 4 : = ( 0 , 0 , - l , 0 ) ,

z 5 : = ( 0 , 0 , 0 , - 1 ) , z 6 : = ( 0 , 0 , 1 , - 1 ) ,

where m is a non-negative integer. For vectors μl9 μ 2 , . . . , μιeZ2n + 2(aR2n + 2 ) , let

<μ 1 ? μ 2, . . . , ^ > : = {aίμί+a2μ2+ ' *' + f l / ^ ; ^ e # , β ^ O for all i}

be the strongly convex rational polyhedral cone in R2n + 2 (see [7; p. 1]) generated by

μί9 μ 2 , . . . , μt. We introduce the following strongly convex rational polyhedral cones in

R2n+2 by using the notation in [7; p. 2]:

σ l , i '- = \x0i XU 9 Xi-U xi+ί9 ' ' ' J -̂ n/ ? ϊ = 0, 1, . . . , Ά ,

σ 2 , j : = < J o , ^ i ? ,yj-1,yj+i,'",yn>, 7 = 0 , 1 , . . . , n ,

σ 3 , fc : = <zfc?

 zk +1> 5 fc= 1, 2 , . . . , 6 ,

^ x : = {the faces of σx f ; ί = 0 ,1 , . . . , ή],

Δ2 : = {the faces of σ2tj; j = 0, 1,..., n} ,

J 3 : = {the faces of σ3 k ; fc=l, 2,..., 6} ,

where we set zΊ : = zί. Furthermore, define a fan Δn.m of Z2n + 2 by

Then, a fundamental result on toric varieties [7; Theorems 1.4, 1.10, 1.11] allows us

to obtain a compact connected non-singular toric (2n + 2)-fold Xn;m corresponding to

the fan Δn;m of Z2n+2. The following lemma is relevant to our purpose:

LEMMA 3.1. (a) Let H be the hyperplane line bundle over Pn(C). Then the toric

(2n + 2)-fold Xn;m is expressible as X(Pn(C), Hm)Jor all n and m.

(b) Ifm^n, then c1{Xn;m)>0, i.e., Xn;m is a toric Fano (2n + 2)-fold.

PROOF. The statement (a) is straightforward from [7; Propositions 1.26, 1.33],

and (b) also follows from [7; Lemma 2.20, (e)]. •
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REMARK 3.2. For each αe{l,2}, the automorphism τα of Xn;m = X(Pn(C), Hm)

defined in Lemma 1.3 can be interpreted as the equivariant automorphism of

Xn;m associated to the automorphism of the fan Δn.m (see [7; p. 19]) given by the next

matrix AaeGL(2n + 2, Z) (IM being the identity matrix of degree n)\

0
0

In

0

0
0

0

I*

0 . . .
o.. .

0
0

0

0

0

0

- 1
1

0

0

0

0

0
1

ι2 •

0
0

0

I.

0
0

0
0

I-

0

0
0

0

0

0

0

- 1
0

0

0

0

0

0
- 1

\

Since P\C) = SU(n+ 1)/S(U(1) x U(n)) is a Kahler C-space, Lemma 3.1 allows us

to apply Theorem 2.1 to Xn.m with m^n. We thus obtain:

THEOREM 3.3. Ifm^n, then the toric Fano (In + 2)~foldXn.m = X(Pn(C), Hm) always

admits an Einstein-Kahler metric.

In particular, for n = m = l , the toric Fano fourfold X1;ί=X(Pί(C), H) admits an

Einstein-Kahler metric. Therefore by using the notation in [6], we infer from [6] the

following classification of Einstein-Kahler toric Fano fourfolds:

THEOREM 3.4. An Einstein-Kahler toric Fano fourfold is equivarίantly isomorphic

to one of the following eleven toric Fano fourfolds:
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. χ , i θ 0 p ί x p l ( l , - 1 ) ) x P \ C ) , P\C)xP\C),

x (P2(Cβ3P2(C)), P 3 (C) x

(P2(Cβ3P2(Q) x PHO x P\C),

P2(C) x P^C) x P\C),

P^C) x P\C) x P^C) x P\C).

As a corollary to this theorem, we can give an affirmative answer to Question 0.1

for r^4. Namely, we obtain:

COROLLARY 3.5. For a toric Fano r-foldXwith r ^ 4, the following are equivalent:

(1) The Futaki invariant Fx of X vanishes;

(2) X admits an Einstein-Kάhler metric.
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