CLASSIFICATION OF EINSTEIN-KÄHLER TORIC FANO FOURFOLDS

Yasuhiro Nakagawa

(Received September 10, 1992, revised January 26, 1993)

Abstract

Earlier the author gave the classification of Einstein-Kähler toric Fano fourfolds except in one case. In the present paper, we prove the existence of Einstein-Kähler metrics on some family of Fano manifolds including the remaining toric Fano fourfold. In particular, we completely classify the Einstein-Kähler toric Fano fourfolds.

Introduction. The Futaki invariant (see Futaki [2]) is known as an obstruction to the existence of Einstein-Kähler metrics on a Fano r-fold. If a Fano r-fold is toric, then the Futaki invariant is explicitly calculated by Mabuchi's formula [4], where a toric Fano r-fold means an r-dimensional compact connected complex manifold, with $c_{1}>0$, admitting an effective almost homogeneous algebraic group action of an r-dimensional algebraic torus $\left(C^{*}\right)^{r}$. In [6], the author studied Einstein-Kähler metrics on toric Fano fourfolds. In particular, he considered the following question:

Question 0.1. Does a toric Fano r-fold with vanishing Futaki invariant always admit an Einstein-Kähler metric?

For $r \leqq 3$, this question was settled (cf. Mabuchi [4], Sakane [8], Siu [10], Tian and Yau [11]). In [6], the author gave an affirmative answer to Question 0.1 for $r=4$ except in one case $X_{1 ; 1}$ (see Section 3) basically by using Batyrev's classification of toric Fano fourfolds [1]. The main purpose of the present paper is to prove the existence of an Einstein-Kähler metric for the remaining case $X_{1 ; 1}$ and then give an affirmative answer to Question 0.1 in the case $r \leqq 4$. More generally, we shall prove in Section 2 the existence of Einstein-Kähler metrics on some $\boldsymbol{P}^{2}(\boldsymbol{C}) \# 3 \overline{\boldsymbol{P}^{2}(\boldsymbol{C})}$-bundles over $M \times M$, for Kähler C-spaces M, employing Nadel's existence theorem [5].

Finally, the author wishes to thank Professor Toshiki Mabuchi for his valuable suggestions and constant encouragements.

1. Notation and preliminaries. Let M be a compact connected n-dimensional complex manifold and L a holomorphic line bundle over M. We denote by $\operatorname{Aut}(M)$ the group of holomorphic automorphisms of M. We put

$$
\hat{L}:=p_{1}^{*} L \otimes p_{2}^{*} L^{-1},
$$

where $p_{i}: M \times M \rightarrow M$ denotes the projection to the i-th factor, $i=1,2$, and L^{-1} denotes the dual line bundle of L over M. We consider the holomorphic vector bundle

$$
E(M, L):=\mathbf{1}_{M \times M} \oplus \mathbf{1}_{M \times M} \oplus \hat{L}
$$

over $M \times M$, of rank 3, where $\mathbf{1}_{M \times M}:=M \times M \times C$ means the holomorphic trivial line bundle over $M \times M$. Put $E^{\circ}(M, L):=E(M, L) \backslash$ (zero-section). Then $E^{\circ}(M, L)$ has a natural scalar multiplication

$$
E^{\circ}(M, L) \ni a \oplus b \oplus c \mapsto t a \oplus t b \oplus t c \in E^{\circ}(M, L)
$$

for $t \in C^{*}$. Let $\boldsymbol{P}(E(M, L)):=E^{\circ}(M, L) / C^{*}$ be the $\boldsymbol{P}^{2}(C)$-bundle over $M \times M$ associated to $E(M, L)$, and $\pi: E^{\circ}(M, L) \rightarrow \boldsymbol{P}(E(M, L))$ the natural projection. $\boldsymbol{P}(E(M, L))$ over $M \times M$ has three natural cross-sections $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$, corresponding to the direct summands

$$
\{0\} \oplus\{0\} \oplus \hat{L}, \quad\{0\} \oplus \mathbf{1}_{M \times M} \oplus\{0\}, \quad \mathbf{1}_{M \times M} \oplus\{0\} \oplus\{0\}
$$

respectively. Let $\mathfrak{X}(M, L)$ be a complex manifolds obtained from $\boldsymbol{P}(E(M, L))$ by simultaneously blowing up three subvarieties Σ_{1}, Σ_{2} and Σ_{3} above. Note that $\mathfrak{X}(M, L)$ over $M \times M$ is a fiber bundle with each fiber isomorphic to

$$
\boldsymbol{P}^{2}(\boldsymbol{C}) \# 3 \overline{\boldsymbol{P}^{2}(\boldsymbol{C})}
$$

by which we mean the complex surface obtained from $\boldsymbol{P}^{2}(\boldsymbol{C})$ by blowing up three points [1:0:0], $[0: 1: 0],[0: 0: 1]$.

FACt 1.1 (see, e.g., Oda [7]). $\boldsymbol{P}^{2}(\boldsymbol{C}) \# 3 \overline{\boldsymbol{P}^{2}(\boldsymbol{C})}$ admits two automorphisms ρ_{1}, ρ_{2} induced respectively by the automorphisms

$$
\begin{aligned}
& \rho_{1}^{\prime}:\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{1}: x_{0}: x_{2}\right], \\
& \rho_{2}^{\prime}:\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{-1}: x_{1}^{-1}: x_{2}^{-1}\right],
\end{aligned}
$$

on $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}=\left\{\left[x_{0}: x_{1}: x_{2}\right] \in \boldsymbol{P}^{2}(\boldsymbol{C}) ; x_{i} \neq 0\right.$ for all $\left.i\right\} \subset \boldsymbol{P}^{2}(\boldsymbol{C})$.
We consider the same situation in a more general context (see Lemma 1.3). Let E_{1}, E_{2} and E_{3} be the irreducible reduced exceptional divisors on $\mathfrak{X}(M, L)$ sitting over Σ_{1}, Σ_{2} and Σ_{3}, respectively. We also define irreducible reduced divisors $D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}$ on $\boldsymbol{P}(E(M, L))$ by

$$
\begin{aligned}
& D_{1}^{\prime}:=\pi\left(\left\{\mathbf{1}_{M \times M} \oplus \mathbf{1}_{M \times M} \oplus\{0\}\right\} \cap E^{\circ}(M, L)\right), \\
& D_{2}^{\prime}:=\pi\left(\left\{\mathbf{1}_{M \times M} \oplus\{0\} \oplus \hat{L}\right\} \cap E^{\circ}(M, L)\right), \\
& D_{3}^{\prime}:=\pi\left(\left\{\{0\} \oplus \mathbf{1}_{M \times M} \oplus \hat{L}\right\} \cap E^{\circ}(M, L)\right) .
\end{aligned}
$$

Let D_{1}, D_{2} and D_{3} denote, respectively, the strict transforms of $D_{1}^{\prime}, D_{2}^{\prime}$ and D_{3}^{\prime} in $\mathfrak{X}(M, L)$. Moreover, for $i, j \in\{1,2,3\}$ with $i \neq j$, we put

$$
F_{i, j}:=D_{i} \cap E_{j} .
$$

We define a fiberwise automorphism τ_{1}^{\prime} of $\boldsymbol{P}(E(M, L))$ over $M \times M$ obtained by interchanging the two factors of $\mathbf{1}_{M \times M} \oplus \mathbf{1}_{M \times M}$ as follows:

$$
\tau_{1}^{\prime}(\pi(a \oplus b \oplus c)):=\pi(b \oplus a \oplus c)
$$

with $\pi(a \oplus b \oplus c) \in \boldsymbol{P}(E(M, L))$. We put

$$
\begin{align*}
\mathfrak{X}_{0}(M, L): & =\boldsymbol{P}(E(M, L)) \backslash\left(D_{1}^{\prime} \cup D_{2}^{\prime} \cup D_{3}^{\prime}\right) \tag{1.2}\\
& \cong \mathfrak{X}(M, L) \backslash\left(D_{1} \cup D_{2} \cup D_{3} \cup E_{1} \cup E_{2} \cup E_{3}\right) .
\end{align*}
$$

Then τ_{1}^{\prime} can be regarded as an automorphism of $\mathfrak{X}_{0}(M, L)$. Furthermore, we set $\hat{L}^{\circ}:=\hat{L} \backslash$ (zero-section). Let $\hat{L}_{(\xi, \eta)}$ be the fiber of $\hat{L} \operatorname{over}(\xi, \eta) \in M \times M$. Take an arbitrary $a \in \hat{L}_{(\xi, \eta)} \cap \hat{L}^{\circ}$ for each $(\xi, \eta) \in M \times M$. We then define $\zeta_{1}(a) \in\left(\hat{L}^{-1}\right)_{(\xi, \eta)}$ by

$$
\zeta_{1}(a)(b)=b / a \in C, \quad b \in \hat{L}_{(\xi, \eta)} .
$$

Therefore, it allows us to define an isomorphism

$$
\zeta_{1}: \hat{L}^{\circ} \ni a \mapsto \zeta_{1}(a) \in \hat{L}^{-1} \backslash(\text { zero-section })
$$

of C^{*}-bundles over $M \times M$. Moreover, via the identification $\mathbf{1}_{m \times m} \backslash$ (zero-section) $=$ $M \times M \times C^{*}$, we define an automorphism ζ_{2} of $\mathbf{1}_{m \times m} \backslash$ (zero-section) by

$$
\zeta_{2}(\xi, \eta, a):=\left(\xi, \eta, a^{-1}\right), \quad(\xi, \eta, a) \in M \times M \times C^{*} .
$$

Let $\imath: M \times M \ni(\xi, \eta) \mapsto(\eta, \xi) \in M \times M$ be the involutive automorphism of $M \times M$. Then this l naturally induces two biholomorphic maps

$$
\begin{aligned}
& \imath^{\prime}: \hat{L}^{-1}\left(=p_{1}^{*} L^{-1} \otimes p_{2}^{*} L\right)=\imath^{*} \hat{L} \rightarrow \hat{L}, \\
& \imath^{\prime \prime}: \mathbf{1}_{M \times M}=\imath^{*} \mathbf{1}_{M \times M} \rightarrow \mathbf{1}_{M \times M},
\end{aligned}
$$

such that the following diagrams commute:

where all vertical arrows mean natural projections. We now define the automorphism τ_{2}^{\prime} of $\mathfrak{X}_{0}(M, L)$ covering the involution \imath on $M \times M$ by

$$
\tau_{2}^{\prime}(\pi(a \oplus b \oplus c)):=\pi\left(\left(l^{\prime \prime} \circ \zeta_{2}\right)(a) \oplus\left(l^{\prime \prime} \circ \zeta_{2}\right)(b) \oplus\left(l^{\prime} \circ \zeta_{1}\right)(c)\right),
$$

for each $\pi(a \oplus b \oplus c) \in \mathfrak{X}_{0}(M, L)$. In view of (1.2), we obtain:
Lemma 1.3. The above τ_{1}^{\prime} and τ_{2}^{\prime} on $\mathfrak{X}_{0}(M, L)$ extend naturally to automorphisms (denoted by τ_{1} and τ_{2}, respectively) on $\mathfrak{X}(M, L)$.

Proof. For an arbitrary $\left(\xi_{0}, \eta_{0}\right) \in M \times M$, we take in M sufficiently small open
neighborhoods V_{1} and V_{2} of ξ_{0} and η_{0}, respectively. By taking local trivializations of L over V_{1}, V_{2}, we can regard $\mathfrak{X}_{0}(M, L)$ locally as $V \times C^{*} \times C^{*}\left(\subset V \times \boldsymbol{P}^{2}(C)\right)$ over V for $V=V_{1} \times V_{2}$ or $V_{2} \times V_{1}$. Then τ_{1}^{\prime} and τ_{2}^{\prime} can be locally defined in the form

$$
\begin{aligned}
& \tau_{1}^{\prime}:\left(\xi, \eta,\left[x_{0}: x_{1}: x_{2}\right]\right) \mapsto\left(\xi, \eta,\left[x_{1}: x_{0}: x_{2}\right]\right), \\
& \tau_{2}^{\prime}:\left(\xi, \eta,\left[x_{0}: x_{1}: x_{2}\right]\right) \mapsto\left(\eta, \xi,\left[x_{0}^{-1}: x_{1}^{-1}: x_{2}^{-1}\right]\right),
\end{aligned}
$$

where $(\xi, \eta) \in V_{1} \times V_{2}$ and $\left[x_{0}: x_{1}: \mathrm{x}_{2}\right] \in \boldsymbol{C}^{*} \times \boldsymbol{C}^{*}\left(\subset \boldsymbol{P}^{2}(\boldsymbol{C})\right.$). Therefore, we can extend τ_{1}^{\prime} and τ_{2}^{\prime} on $\mathfrak{X}_{0}(M, L)$ to automorphisms on $\mathfrak{X}(M, L)$ in a manner similar to Fact 1.1.

Note that $\tau_{1}^{2}=\tau_{2}^{2}=\mathrm{id}_{\mathfrak{X}_{(M, L)}, \tau_{1} \circ \tau_{2}=\tau_{2} \circ \tau_{1} \text {, and that }, ~(1)}$

$$
\begin{array}{lll}
\tau_{1}\left(D_{i}\right)=D_{v(i)}, & \tau_{1}\left(E_{j}\right)=E_{v(j)}, & i, j \in\{1,2,3\}, \\
\tau_{1}\left(F_{k, l}\right)=F_{v(k), v(l)}, & & k, l \in\{1,2,3\}, \text { with } k \neq l, \tag{1.4}\\
\tau_{2}\left(D_{i}\right)=E_{i}, & \tau_{2}\left(E_{j}\right)=D_{j}, & i, j \in\{1,2,3\}, \\
\tau_{2}\left(F_{k, l}\right)=F_{l, k}, & & k, l \in\{1,2,3\}, \text { with } k \neq l,
\end{array}
$$

where v denotes the permutation of $\{1,2,3\}$ fixing 1 and interchanging 2 and 3 .
Furthermore, consider a 2-dimensional compact real torus $G_{1}:=U(1) \times U(1)$, where $U(1):=\{t \in C ;|t|=1\}$. Then its complexification $G_{1}^{\boldsymbol{C}}=C^{*} \times C^{*}$ acts biholomorphically on $\boldsymbol{P}(E(M, L))$ by

$$
\boldsymbol{P}(E(M, L)) \ni \pi(a \oplus b \oplus c) \mapsto \pi\left(a \oplus t_{1} b \oplus t_{2} c\right) \in \boldsymbol{P}(E(M, L)),
$$

for all $\left(t_{1}, t_{2}\right) \in G_{1}^{\boldsymbol{C}}$. This $G_{1}^{\boldsymbol{C}}$-action on $\boldsymbol{P}(E(M, L))$ extends naturally to the $G_{1}^{\boldsymbol{c}}$-action on $\mathfrak{X}(M, L)$. Note that the subvarieties $D_{i}, E_{j}, F_{k, l}$, with $i, j, k, l \in\{1,2,3\}$ and $k \neq l$, are all G_{1}^{c}-invariant.

In this paper, we only consider the case where M is a Kähler C-space, that is, a simply connected compact complex homogeneous space with a Kähler metric. By a result of Wang [12], M can be written as $M=G / U$, where G is a simply connected complex semisimple Lie group and U is a parabolic subgroup of G. Recall that every holomorphic line bundle L over a Kähler C-space G / U is homogeneous (cf. Ise [3]). Namely, L can be written in the form $L=G \times{ }_{\rho} C$ for some 1-dimensional holomorphic representation $\rho: U \rightarrow G L(1, C)=C^{*}$ of U on \boldsymbol{C}. Therefore, G acts naturally on L inducing a $(G \times G)$-action on $\mathfrak{X}(G / U, L)$. Then, for a maximal compact subgroup G_{c} of G, the product $G_{c} \times G_{c}$ acts naturally on $\mathfrak{X}(G / U, L)$. By $K(G / U, L)$, we denote the compact subgroup in $\operatorname{Aut}(\mathfrak{X}(G / U, L))$ generated by $G_{1}, G_{c} \times G_{c}$ and $\left\{\tau_{1}, \tau_{2}\right\}$. Now, the following lemma is straightforward from (1.4):

Lemma 1.5. Any reduced $K(G / U, L)^{C}$-invariant closed analytic subspace Y of $\mathfrak{X}(G / U, L)$, with $\varnothing \neq Y \cong \mathfrak{X}(G / U, L)$, is one of the following seven subspaces:

$$
\begin{aligned}
& \Gamma_{1}:=F_{2,1} \cup F_{1,3} \cup F_{1,2} \cup F_{3,1}, \\
& \Gamma_{2}:=F_{2,3} \cup F_{3,2}, \\
& \Gamma_{3}:=\Gamma_{1} \cup \Gamma_{2}=F_{2,1} \cup F_{2,3} \cup F_{1,3} \cup F_{1,2} \cup F_{3,2} \cup F_{3,1}, \\
& \Psi_{1}:=D_{2} \cup D_{3} \cup E_{2} \cup E_{3}, \\
& \Psi_{2}:=D_{1} \cup E_{1}, \\
& \Psi_{3}:=\Psi_{2} \cup \Gamma_{2}=D_{1} \cup E_{1} \cup F_{2,3} \cup F_{3,2}, \\
& \Psi_{4}:=\Psi_{1} \cup \Psi_{2}=D_{1} \cup D_{2} \cup D_{3} \cup E_{1} \cup E_{2} \cup E_{3} .
\end{aligned}
$$

2. The existence of Einstein-Kähler metrics on $\mathfrak{X}(G / U, L)$. In this section, we shall show the existence theorem for Einstein-Kähler metrics on $\mathfrak{X}(G / U, L)$. Namely, we shall prove:

Theorem 2.1. Let G / U be a Kähler C-space. For every holomorphic line bundle L over G / U, the complex manifold $\mathfrak{X}(G / U, L)$ defined in Section 1 admits an Einstein-Kähler metric, provided the first Chern class $c_{1}(\mathfrak{X}(G / U, L))$ of $\mathfrak{X}(G / U, L)$ is positive.

To prove this theorem, we quote the following fact on the existence of EinsteinKähler metrics:

Fact 2.2. (Nadel [5]). Let X be a Fano r-fold and K a compact subgroup of $\operatorname{Aut}(X)$. Assume that X admits no Einstein-Kähler metrics. Then there exists a $K^{C_{-}}$ invariant closed analytic subspace $\varnothing \neq Z \varsubsetneqq X$, called the multiplier ideal subscheme of X, satisfying the following conditions:
(1) $\operatorname{dim}_{c}\left(H^{i}\left(Z, \mathcal{O}_{Z}\right)\right)=0$, for all $i>0$, and $\operatorname{dim}_{c}\left(H^{0}\left(Z, \mathcal{O}_{Z}\right)\right)=1$;
(2) The logarithmic-geometric genus of $X \backslash Z$ vanishes.

Proof of Theorem 2.1. Suppose, for contradiction, that $\mathfrak{X}(G / U, L)$ admits no Einstein-Kähler metrics. Then there exists a $K(G / U, L)^{C}$-invariant multiplier ideal subscheme Z of $\mathfrak{X}(G / U, L)$ by Fact 2.2 , where $K(G / U, L)$ is the compact subgroup of $\operatorname{Aut}(\mathfrak{X}(G / U, L))$ defined in Section 1. Since Z is $K(G / U, L)^{C}$-invariant, $Z_{\text {red }}$ is one of the seven analytic subspaces $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}$ by Lemma 1.5 , where $Z_{\text {red }}$ is the reduced analytic subspace of $\mathfrak{X}(G / U, L)$ associated to Z. By definition, $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Psi_{1}$, Ψ_{2} and Ψ_{3} are not connected. Therefore by Fact 2.2, (1), $Z_{\text {red }}$ can be none of these six. Hence, $Z_{\text {red }}=\Psi_{4}$. By K_{1}, we denote the finite subgroup of $K(G / U, L)^{c}$ generated by τ_{1} and τ_{2}, so that $K_{1}:=\left\{\operatorname{id}_{\mathfrak{X}(G / U, L)}, \tau_{1}, \tau_{2}, \tau_{1} \circ \tau_{2}\right\}(\cong \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z})$. Let \mathscr{I}_{Z} be the defining ideal sheaf of Z in $\mathfrak{X}(G / U, L)$, and let

$$
\mathscr{I}_{Z}=\mathscr{P}_{1} \cap \mathscr{P}_{2} \cap \cdots \cap \mathscr{P}_{r}
$$

be a primary decomposition (see, e.g., Siu [9]) of \mathscr{I}_{Z} with primary ideal subsheaves
\mathscr{P}_{k}^{\prime} 's of $\mathcal{O}_{\mathfrak{X}(G / U, L)}$. We define $\mathscr{I}_{D_{i}}^{\prime}, \mathscr{\mathscr { E }}_{E_{j}}^{\prime}$, as the intersections of all $\mathscr{\mathscr { R }}_{k}^{\prime}$'s such that the support $\operatorname{Supp}\left(\mathcal{O}_{\left.X_{(G / U, L)}\right)} \mathscr{\mathscr { F }}_{\mathfrak{k}}\right)$ of $\mathcal{O}_{\mathfrak{X}(G / U, L)} / \mathscr{R}_{\mathfrak{k}}$ is contained in D_{i}, E_{j}, respectively. We put

$$
\begin{array}{ll}
\mathscr{I}_{\tilde{D}_{i}}:=\mathscr{I}_{D_{i}}^{\prime} \cap \tau_{1}^{*} \mathscr{I}_{D_{v(i)}}^{\prime} \cap \tau_{2}^{*} \mathscr{I}_{E_{i}}^{\prime} \cap\left(\tau_{1} \circ \tau_{2}\right)^{*} \mathscr{I}_{E_{v(i)}}^{\prime}, & i=1,2,3, \\
\mathscr{I}_{\tilde{E}_{j}}:=\mathscr{I}_{E_{j}}^{\prime} \cap \tau_{1}^{*} \mathscr{I}_{E_{v(j)}}^{\prime} \cap \tau_{2}^{*} \mathscr{I}_{D_{j}}^{\prime} \cap\left(\tau_{1} \circ \tau_{2}\right)^{*} \mathscr{I}_{D_{v(j)}^{\prime}}^{\prime}, & j=1,2,3,
\end{array}
$$

where v is the permutation in (1.4). Then by the K_{1}-invariance of $\mathscr{I}_{Z}, \mathscr{I}_{\tilde{D}_{i}}$ and $\mathscr{I}_{\tilde{E}_{j}}$ are coherent ideal subsheaves of $\mathcal{O}_{\mathscr{X}(G / U, L)}$ such that

$$
\mathscr{I}_{Z}=\mathscr{I}_{\tilde{D}_{1}} \cap \mathscr{I}_{\tilde{D}_{2}} \cap \mathscr{I}_{\tilde{D}_{3}} \cap \mathscr{I}_{\tilde{E}_{1}} \cap \mathscr{I}_{\tilde{E}_{2}} \cap \mathscr{I}_{\tilde{E}_{3}} .
$$

Let $\tilde{D}_{i}, \tilde{E}_{j}, i, j \in\{1,2,3\}$, denote the closed analytic subspaces of $\mathfrak{X}(G / U, L)$ defined by $\mathscr{I}_{\tilde{D}_{i}}, \mathscr{I}_{\tilde{E}_{j}}$, respectively. Then Z is expressible in the form

$$
Z=\tilde{D}_{1} \cup \tilde{D}_{2} \cup \tilde{D}_{3} \cup \tilde{E}_{1} \cup \tilde{E}_{2} \cup \widetilde{E}_{3}
$$

and $\tilde{D}_{i}, \tilde{E}_{j}, i, j \in\{1,2,3\}$, satisfy $\left(\widetilde{D}_{i}\right)_{\text {red }}=D_{i},\left(\tilde{E}_{j}\right)_{\text {red }}=E_{j}$, respectively. Let

$$
Z^{\prime}:=\tilde{D}_{1} \amalg \tilde{D}_{2} \amalg \tilde{D}_{3} \amalg \tilde{E}_{1} \amalg \tilde{E}_{2} \amalg \tilde{E}_{3}
$$

be the disjoint union of $\tilde{D}_{i}, i=1,2,3$, and $\tilde{E}_{j}, j=1,2,3$, and let $\varpi: Z^{\prime} \rightarrow Z$ be the natural projection. Then we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Z} \rightarrow \varpi_{*} \mathcal{O}_{Z^{\prime}} \rightarrow \mathscr{F}:=\left(\varpi_{*} \mathcal{O}_{Z^{\prime}} / \mathcal{O}_{Z}\right) \rightarrow 0 \tag{2.3}
\end{equation*}
$$

where the support $\operatorname{Supp}(\mathscr{F})$ of \mathscr{F} is just $\Gamma_{3}=F_{2,1} \cup F_{2,3} \cup F_{1,3} \cup F_{1,2} \cup F_{3,2} \cup F_{3,1}$, and \mathscr{F} is K_{1}-invariant. Note that $F_{2,3}$ and $F_{3,2}$ are K_{1}-congruent, and that $F_{2,1}, F_{1,3}, F_{1,2}$ and $F_{3,1}$ are also K_{1}-congruent. Moreover, all $F_{i, j}$'s, with $i, j \in\{1,2,3\}$ and $i \neq j$, are mutually disjoint. Now from (2.3), we obtain a long exact sequence

$$
\begin{equation*}
\{0\} \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}\right) \rightarrow H^{0}\left(Z^{\prime}, \mathcal{O}_{Z^{\prime}}\right) \rightarrow H^{0}(Z, \mathscr{F}) \rightarrow H^{1}\left(Z, \mathcal{O}_{Z}\right) \rightarrow \cdots \tag{2.4}
\end{equation*}
$$

Since \widetilde{D}_{1} and \widetilde{E}_{1} are K_{1}-congruent, and since $\widetilde{D}_{2}, \widetilde{D}_{3}, \widetilde{E}_{2}$ and \widetilde{E}_{3} are also K_{1}-congruent, there exist non-negative integers p, q, r and s such that

$$
\begin{equation*}
\operatorname{dim}_{\boldsymbol{c}}\left(H^{0}\left(Z^{\prime}, \mathcal{O}_{Z^{\prime}}\right)\right)=2 p+4 q \quad \text { and } \quad \operatorname{dim}_{\boldsymbol{c}}\left(H^{0}(Z, \mathscr{F})\right)=2 r+4 s \tag{2.5}
\end{equation*}
$$

By (2.4) and (2.5) together with Fact 2.2, (1), we obtain $2 p+4 q=2 r+4 s+1$, in contradiction. Thus we can conclude that $\mathfrak{X}(G / U, L)$ admits an Einstein-Kähler metric.
3. The classification of Einstein-Kähler toric Fano fourfolds. First, we introduce some notation. For a positive integer n, let $\left\{e_{i} ; i=1,2, \ldots, n\right\}$ denote the standard basis for \boldsymbol{R}^{n}, and put $e_{0}:=-\left(e_{1}+e_{2}+\cdots+e_{n}\right)$, i.e.,

$$
\begin{aligned}
& e_{i}=(0, \ldots, 0, \stackrel{i}{1}, 0, \ldots, 0), \quad i=1,2, \ldots, n, \\
& e_{0}=(-1,-1, \ldots,-1) .
\end{aligned}
$$

By viewing $\boldsymbol{R}^{2 n+2}$ as $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R} \times \boldsymbol{R}$, we consider the following vectors in $\boldsymbol{R}^{2 n+2}$:

$$
\begin{aligned}
& x_{0}:=\left(e_{0}, \mathbf{0}, 0,-m\right), y_{0}:=\left(\mathbf{0}, e_{0}, 0, m\right) \text {, } \\
& x_{1}:=\left(e_{1}, \mathbf{0}, \quad 0,0\right), y_{1}:=\left(\mathbf{0}, e_{1}, 0,0\right) \text {, } \\
& x_{2}:=\left(e_{2}, \mathbf{0}, \quad 0,0\right), y_{2}:=\left(\mathbf{0}, e_{2}, 0,0\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& x_{n}:=\left(e_{n}, \mathbf{0}, \quad 0,0\right), y_{n}:=\left(\mathbf{0}, e_{n}, 0,0\right) \text {, } \\
& z_{1}:=(\mathbf{0}, \mathbf{0}, 1,0), z_{2}:=(\mathbf{0}, \mathbf{0}, \mathbf{0}, 1) \text {, } \\
& z_{3}:=(\mathbf{0}, \mathbf{0},-1,1), z_{4}:=(\mathbf{0}, \mathbf{0},-1,0) \text {, } \\
& z_{5}:=(\mathbf{0}, \mathbf{0}, \quad 0,-1), z_{6}:=(\mathbf{0}, \mathbf{0}, 1,-1) \text {, }
\end{aligned}
$$

where m is a non-negative integer. For vectors $\mu_{1}, \mu_{2}, \ldots, \mu_{l} \in \boldsymbol{Z}^{2 n+2}\left(\subset \boldsymbol{R}^{2 n+2}\right.$), let

$$
\left\langle\mu_{1}, \mu_{2}, \ldots, \mu_{l}\right\rangle:=\left\{a_{1} \mu_{1}+a_{2} \mu_{2}+\cdots+a_{l} \mu_{l} ; a_{i} \in \boldsymbol{R}, a_{i} \geqq 0 \text { for all } i\right\}
$$

be the strongly convex rational polyhedral cone in $\boldsymbol{R}^{2 n+2}$ (see [7; p. 1]) generated by $\mu_{1}, \mu_{2}, \ldots, \mu_{l}$. We introduce the following strongly convex rational polyhedral cones in $\boldsymbol{R}^{2 n+2}$ by using the notation in [7; p. 2]:

$$
\begin{aligned}
& \sigma_{1, i}:=\left\langle x_{0}, x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right\rangle, \quad i=0,1, \ldots, n, \\
& \sigma_{2, j}:=\left\langle y_{0}, y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n}\right\rangle, \quad j=0,1, \ldots, n, \\
& \sigma_{3, k}:=\left\langle z_{k}, z_{k+1}\right\rangle, \quad k=1,2, \ldots, 6, \\
& \Delta_{1}:=\left\{\text { the faces of } \sigma_{1, i} ; i=0,1, \ldots, n\right\}, \\
& \Delta_{2}:=\left\{\text { the faces of } \sigma_{2, j} ; j=0,1, \ldots, n\right\}, \\
& \Delta_{3}:=\left\{\text { the faces of } \sigma_{3, k} ; k=1,2, \ldots, 6\right\},
\end{aligned}
$$

where we set $z_{7}:=z_{1}$. Furthermore, define a fan $\Delta_{n ; m}$ of $\boldsymbol{Z}^{2 n+2}$ by

$$
\Delta_{n ; m}:=\left\{\sigma^{\prime}+\sigma^{\prime \prime}+\sigma^{\prime \prime \prime} ; \sigma^{\prime} \in \Delta_{1}, \sigma^{\prime \prime} \in \Delta_{2}, \sigma^{\prime \prime \prime} \in \Delta_{3}\right\}
$$

Then, a fundamental result on toric varieties [7; Theorems 1.4, 1.10, 1.11] allows us to obtain a compact connected non-singular toric $(2 n+2)$-fold $X_{n ; m}$ corresponding to the fan $\Delta_{n ; m}$ of $\boldsymbol{Z}^{2 n+2}$. The following lemma is relevant to our purpose:

Lemma 3.1. (a) Let H be the hyperplane line bundle over $\boldsymbol{P}^{n}(C)$. Then the toric $(2 n+2)$-fold $X_{n ; m}$ is expressible as $\mathfrak{X}\left(\boldsymbol{P}^{n}(\boldsymbol{C}), H^{m}\right)$, for all n and m.
(b) If $m \leqq n$, then $c_{1}\left(X_{n ; m}\right)>0$, i.e., $X_{n ; m}$ is a toric Fano $(2 n+2)$-fold.

Proof. The statement (a) is straightforward from [7; Propositions 1.26, 1.33], and (b) also follows from [7; Lemma 2.20, (e)].

Remark 3.2. For each $\alpha \in\{1,2\}$, the automorphism τ_{α} of $X_{n ; m}=\mathfrak{X}\left(\boldsymbol{P}^{n}(\boldsymbol{C}), H^{m}\right)$ defined in Lemma 1.3 can be interpreted as the equivariant automorphism of $X_{n ; m}$ associated to the automorphism of the fan $\Delta_{n ; m}($ see [7; p. 19]) given by the next matrix $A_{\alpha} \in G L(2 n+2, Z)$ (I_{n} being the identity matrix of degree n):

Since $\boldsymbol{P}^{n}(\boldsymbol{C})=S U(n+1) / S(U(1) \times U(n))$ is a Kähler C-space, Lemma 3.1 allows us to apply Theorem 2.1 to $X_{n ; m}$ with $m \leqq n$. We thus obtain:

Theorem 3.3. If $m \leqq n$, then the toric Fano $(2 n+2)$-fold $X_{n ; m}=\mathfrak{X}\left(\boldsymbol{P}^{n}(\boldsymbol{C}), H^{m}\right)$ always admits an Einstein-Kähler metric.

In particular, for $n=m=1$, the toric Fano fourfold $X_{1 ; 1}=\mathfrak{X}\left(\boldsymbol{P}^{1}(\boldsymbol{C}), H\right)$ admits an Einstein-Kähler metric. Therefore by using the notation in [6], we infer from [6] the following classification of Einstein-Kähler toric Fano fourfolds:

Theorem 3.4. An Einstein-Kähler toric Fano fourfold is equivariantly isomorphic to one of the following eleven toric Fano fourfolds:

$$
\begin{array}{ll}
\boldsymbol{P}\left(\mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}} \oplus \mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}}(1,-1)\right) \times \boldsymbol{P}^{1}(\boldsymbol{C}), & \boldsymbol{P}^{2}(\boldsymbol{C}) \times \boldsymbol{P}^{2}(\boldsymbol{C}), \\
\left(\boldsymbol{P}^{2}(\boldsymbol{C}) \# 3 \boldsymbol{P}^{2}(\boldsymbol{C})\right. & \times\left(\boldsymbol{P}^{2}(\boldsymbol{C}) \# 3 \overline{\boldsymbol{P}^{2}(\boldsymbol{C})}\right), \\
\left(\boldsymbol{P}^{3}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}),\right. \\
\left(\boldsymbol{P}^{2}(\boldsymbol{C}) \# 3 \overline{\boldsymbol{P}^{2}(\boldsymbol{C})}\right) \times \boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}), & X_{P_{1}}, \\
\left(\boldsymbol{P}_{P_{2}}=X_{1 ; 1}(\boldsymbol{C}) \# 3 \overline{\boldsymbol{P}^{2}(\boldsymbol{C})}\right) \times \boldsymbol{P}^{2}(\boldsymbol{C}), & \boldsymbol{P}^{4}(\boldsymbol{C}), \\
\boldsymbol{P}^{2}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}), & \\
\boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}) . &
\end{array}
$$

As a corollary to this theorem, we can give an affirmative answer to Question 0.1 for $r \leqq 4$. Namely, we obtain:

Corollary 3.5. For a toric Fano r-fold X with $r \leqq 4$, the following are equivalent:
(1) The Futaki invariant F_{X} of X vanishes;
(2) X admits an Einstein-Kähler metric.

References

[1] V. V. Batyrev, On the classification of toric Fano 4-folds, preprint.
[2] A. Futaki, An obstruction to the existence of Kähler Einstein metrics, Invent. Math. 73(1983), 437-443.
[3] M. Ise, Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1962), 217-252.
[4] T. Mabuch, Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math. 24 (1987), 705-737.
[5] A. M. NADEL, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. 132 (1990), 549-596.
[6] Y. Nakagawa, Einstein-Kähler toric Fano fourfolds, Tohoku Math. J. 45 (1993), 297-310.
[7] T. OdA, "Convex bodies and algebraic geometry: An introduction to the theory of toric varieties," Ergebnisse der Math. (3) 15, Springer-Verlag, Heidelberg, 1988.
[8] Y. Sakane, Example of compact Einstein Kähler manifolds with positive Ricci tensor, Osaka J. Math. 23 (1986), 585-616.
[9] Y.-T. Siv, Noether-Lasker decomposition of coherent analytic subsheaves, Trans. Amer. Math. Soc. 135 (1969), 375-385.
[10] Y.-T. Siu, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math. 127 (1988), 585-627.
[11] G. Tian and S.-T. Yau, Kähler-Einstein metrics on complex surfaces with $C_{1}>0$, Commun. Math. Phys. 112 (1987), 175-203.
[12] H.-C. WANG, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76(1954), 1-32.
Mathematical Institute
Faculty of Science
Tоноки University
Sendai 980
Japan

