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Abstract. We investigate the heat-diffusion and Poisson integrals for expansions

with respect to three different systems of Laguerre functions. The main achievements

of the paper are the weak type (1, 1) estimates for the associated maximal functions.

1. Introduction. Muckenhoupt [Mu 1] studied Poisson integrals for Hermite

and Laguerre polynomial expansions. The aim of this paper is to go further and discuss

Poisson integrals for expansions with respect to three different systems of Laguerre

functions. More specifically, we successively consider the systems of functions /Jftx),

5£a

n(x) and φa

n{x), « = 0, 1, . . . , (cf. the beginnings of the sections that follow for the

definitions and the range of the parameter a) forming an orthonormal basis in

L 2 ( ^ + , xadx) in the first, and in L 2 ( ^ + , dx) in the second and third cases.

Muckenhoupt [Mu 1] proved that if the Poisson integral g(r, x) of a function f(x)

in L 1 ( ^ + , e~xxadx) is defined by

Jo
g(r, x) = I K(r, x, y)Ry)e^yady , 0 < r <

with the Poisson kernel

κ<r,x,y)=
o

then g(r9x) converges to f{x) almost everywhere and in ZΛnorm as r->l~ whenever

feU(β+,e~xxadx\ \<p<oo.
A similar question concerning a.e. and //-convergence may be raised when

discussing Poisson integrals for expansions with respect to a system of Laguerre

functions. One could expect an interplay between these and the Laguerre polynomial

expansion and, in fact, this is the case at least when the a.e. convergence is concerned.

To show how it goes consider, for instance, the expansion with respect to the system

/J(x), a> — 1, w = 0, 1, . . . , and for any fγ e Lp(xadx), 1 <p < oo, define its Poisson integral

1 The paper was written while the author was visiting the Department of Mathematics, University of

Georgia, during the 1990-91 academic year.
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r, x)= Γ K,{r, x, y)f1(
Jo

gi(r9 x)= I Kx(r9 x9 y)My)e-yyady , 0 < r < 1 ,

with the Poisson kernel
oo

Now, setting f(x)=f1(x)ex/2

9 by Holder's inequality / is in L\e xxadx) and the
corresponding Poisson integrals are related by

g(r,x) = ex/2g1(r,x).

Therefore, Muckenhoupt's result immediately gives ex/2g1(r9 x)^ex/2fί(x) almost every-
where and thus also gx{r, x) converges to fx(x) a.e. as r->l. It is however difficult to
imagine the existence of a similar argument when considering //-convergence (it would
be probably possible when having a suitable weighted result for the //-convergence of
Poisson integrals in the polynomial case).

The main achievements of this paper are the weak type (1,1) estimates for maximal
functions associated with the heat-diffusion and the Poisson integrals for all Laguerre
function expansions we consider. Such estimates give a.e. convergence as an immediate
by-product but at the same time they are important for its own sake. Also, as one can
note following our arguments, proving //-convergence of Poisson integrals requires
equivalent amount of efforts by using identical estimates as for the weak type (1,1)
result.

In this paper we consequently look at considered expansions through the fact that
they are spectral decompositions of a suitable second order differential operators. This
explains an apparent ambiguity between the semigroup terminology we use (the heat-
diffusion and Poisson integrals) and that used by Muckenhoupt [Mu 1] (the Poisson
and alternate Poisson integrals correspondingly). Also, we would like to emphasise that
in this paper we closely follow Muckenhoupt's ideas from [Mu 1]. However, the
polynomial case had some advantages (also some disadvantages to be fair) and therefore
considering Laguerre function cases requires additional efforts.

The weak type (1,1) estimate for the maximal Poisson function in the polynomial
case was obtained by majorizing Poisson integrals by suitable Hardy-Littlewood maximal
function. To do this Muckenhoupt used the following simple but insightful device.

LEMMA 1.1 ([Mu 1, p. 233]). Let μ be a positive absolutely continuous measure
on (0, oo) and for any f e Lp(dμ), \<p<co,let h(x) = J " K(x, y)f(y)dμ(y) with the kernel
K(x, y) making the integral absolutely convergent and satisfying the properties:

(a) \K(x,y)\<L(x,y);
(b) j Q L(x> y)dKy) ^ C with C independent of x\
(c) L(x, y) is monotone increasing in y for y<x and monotone decreasing for y > x.
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Then I h(x) \ < Cf*(x) where

(l l) /*W = juP o ([Z\Ry)\dμ{y)j[Z dμ{y)\.

Originally it was assumed that μ is a finite measure but it may be checked that

this assumption is irrelevant.

To prove the weak type (1,1) result in §2 we will use the Hardy-Littlewood maximal

function (1.1) with dμ{y)=yady, where a> — 1 is a fixed parameter. If we denote

Bε(c) = {ye(0, GO): \X —y\<s} then the measure μ satisfies the doubling condition

μ(B2E(x))<Cμ(Bε(x))

with C>0 independent of xe(0, oo) and ε>0. This implies that the maximal function,

\f\dμ
ε > 0 JBE(x)

is of weak type (1, 1). It may be also easily proved that Mf dominates / * . Therefore

we obtain:

LEMMA 1.2. Let a> — 1 and f* be given by (1.1) with dμ(y)=yady. Then

μ({x:f*(x)>λ})<^-Γ\f\dμ,
A JO

that is, f-+f* is of weak type (1, 1).

We will also need the following weak version of a density result proved by

Muckenhoupt.

LEMMA 1.3 ([Mu 2, Lemma 1]). If 1 <p<cc and d is a fixed real number, then

the functions xdexp( — x/2)P(x), P(x) being polynomial, are dense in Lp(& + , dx).

The expansions with respect to the Laguerre polynomials (as well as those of

Hermite) in some way behave very badly. For instance, not only do partial sums fail

to converge in ZΛnorm unless p — 2, which was proved by Pollard [Po], but even Cesaro

means of any order δ > 0 fail to converge unless p = 2, as proved by Askey and Hirschman

[A-H]. A deep reason for such bad behavior of polynomial expansions is due to the

fact that for/?>2, ZΛnorms of ZΛnormalized Laguerre (or Hermite) polynomials grow

exponentially. More precisely, if (n\/Γ(n + a + \))ll2La

n(x), a> — 1, is the «-th normalized

Laguerre polynomial of order a it may be read off from [Po], that for p>2 and every

\<A<p-\

1 /f°°|/ n\ Y/2 _ .
hm sup — - 1 |[ — — ) La

n(x) e xxadx ) = oo .
n->oo A \ J 0

Here are details. Assuming that for all n
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we have for any feL\e'xxadx), \/p+\/q=l,

•f
Jo

La

n(x)f(x)e~xxadx(1-2) I/(«)! =

Meanwhile, the function f(χ) = ecx, \/2<c<l/q, belongs to L\e~xxadx) and, as one
can check,

Choosing c, \\2<c<\\q, such that c/(l-c)>A we get a contradiction with (1.2).
In this paper, for any of the three systems of functions we consider, la

n(x), &a

n(x)
and φa

n{x), n = 0, 1,2,..., the ZΛnorms of corresponding Laguerre functions have
polynomial growth, as opposed to the polynomial expansion case. This, for instance,
allows us to define heat-diffusion and Poisson integrals by using series and speak about
the Abel-Poisson summability instead of convergence of Poisson integrals. In the
polynomial expansion case, for the reason described above, merely defining Poisson
integral by a suitable series is not satisfactory and an integral definition must be used.
As pointed out by Muckenhoupt, the function considered by Pollard f(x) = ecx,
\/2<c<l/q, is, for every 1 <q<2, an example of function in Lq(e~xxadx) such that for
all r< 1 sufficiently close to 1 the series ΣrnanL"(x) diverges for every x. Here

«.= „, "' , „ Γf(x)L°n(x)e-*x°dx.

Finally, we would like to note that for ranges of parameter a smaller than what
we consider, some of the results contained in this paper were proved by different authors
using different, sometimes sophisticated and involved methods (cf. remarks in the
following sections). In this paper, in each case discussed, we consider the largest possible
range of parameter a. Furthermore, purely real-variable method we use following
Muckenhoupt's ideas, is in our opinion the most elementary and straightforward.

The author would like to thank Ryszard Szwarc for a valuable remark.

2. The Laguerre functions la

n(x). Throughout this section it will be assumed that
a is a fixed number greater than — 1. The symbol | |/ | | p will be used to denote/?-th norm
of a function f(x) on (0, oo) with respect to the measure xadx. The functions

/;(*) = in l/Γ(n + a + l))1/2La

n(x)e-
χ'2 ,

« = 0, 1,..., form an orthonormal basis in L2(β+, xadx). Expansions with respect to
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this system were considered by the author in [St 1], [St 2] and by Thangavelu, for
instance, in [T2]. We will need the following estimate

(2.1) \\la

n\\p<Cn^a\

1 <p< oo, which is a consequence, after a correction, of an estimate by Markett [Ma,
Lemma 1]. More precisely, from [Ma] we have (an~bn will stand for an = O(bn) and
bn = O(an) as«->oo):
(A) Casel</?<4:

(a) Ifα>0

\<p<4(a+l)/(2a+\),

( b ) I f -

ii/αii (α+l)(l/p-l/2)
I r n l l p Λ ί

(B) Case/? = 4:

(C) Case4</7<oo:
(a) Ifα>0

(b) I f - l / 3 < α < 0

(c) I f -

||/fl|| ^ w

l l 'π l lp n

We take 0L = 2ajp and β = (l—2/p)a, 1</?<OO, in Lemma 1 of [Ma] to obtain
Case (A), Case (B) part a > 0 and Case (C) except p=oo. When /? = oo then the case a > 0
is covered by Lemma 1 of [Ma] and remaining part a<0 is proved by using exactly
the same arguments. Part (B), Case α <0, comes from our correction of Lemma 1, [Ma]
(there the second line in (2.9) withp = 4, i.e. the case β<0, should read «α/2~ 1/4(log«)1/4

rather than «α/2"1/4 only).
The function la

n is an eigenfunction of the differential operator L = xd2/dx2 +
(a+l)d/dx-x/4 with eigenvalue -(/i + (α+l)/2). The operator - L is positive and
symmetric in L2(xadx). For any function f(x) in Lp(xadx), 1 <p< oo, with the expansion
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&x), where

bH=Γ f(y)la

n(y)yady9

JJo

we define its heat-diffusion integral g(t, x), />0, by

(2.2) g{U x) =

For any fixed />0 the series in (2.2) converges uniformly. This is because KWOD <Cnε(a)

and by Holder's inequality and (2.1)

\bn\<\\f\\p\\ιa

n\\q<cn^.

Equivalently,

ί,x)= P(ί,x,.
Jo

(2.3) g(t,x)=\ P(t,x,y)f(y)y°dy,

where

P(t, x, y) =

Interchanging the order of integration and summation in (2.3) is justified by the

dominated convergence theorem, since, by (2.1)

In particular, for / equal to 1 identically, by use of

Γ(a+n+l)ϊ
J

La

n(y)e-y/2yady = (- l)w2fl

n\

(cf. [GR, p. 845]) and the fact that

oo
xz

we obtain

(2.4) f 0 0

I Pit Y

Jo ' ''
LEMMA 2.1. For every f(x) in Lp(xadx), 1 <p < oo, the heat-diffusion integral g(t9 x)

is a C00-function satisfying the differential equation
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(2.5)

PROOF. Simple calculus shows that for k= 1, 2,...

with an ε depending on k and a only. This is because

and similarly for higher derivatives. Therefore, we can differentiate the series in (2.2)
term by term with respect to the x-variable. Differentiation with respect to the t-variable
is even easier so g(t, x) is a C00-function satisfying (2.5).

It is now convenient to switch to the kernel

0<r< 1, rather than work with P(ί, x, y). A formula from [Sz, p. 102], then gives

1 1 / 1 1+r , \ τf2(rxy)1/21 1 /
R(r,x9y) = - exp (x+y))la( /

\—r (rxy)a/z \ 2 1— r J \ \—r

where Ia(x) = i~aJa(ix) is the usual Bessel function of an imaginary argument. Note
that this gives positivity of P(t, x, y). Applying Muckenhoupt's argument, [Mu 1, p.
238], then produces

cH(r9 x, y) < R(r, x9 y) < CH(r, x, y)

with positive constants c and C depending only on a where

H(r,x,y) =

1 / 1 1+r

2 \-r

expί - — •
\-r v " \-r

for ^ < (1 — r)2/4rx and ^ > (1 — r)2/4rx correspondingly.
The following lemma is crucial in what follows.

LEMMA 2.2. There exists a function L(r, x, y) satisfying the following properties:
( i ) H(r,x,y)<L(r9x,y);
(ii) for every 0 < r < 1 and x > 0, L(r, x, y) <xs a function ofy is monotone increasing

on [0, x] and monotone decreasing on [x, oo);
(iii) J * L(r, x, y)yady < C independently ofx>0 and 0 < r < 1.

PROOF. We simply define L(r, x, y) to be the least majorant of H(r, x, y) satisfying
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(ii). Therefore L(r, x, y) is the largest of H(r, x9 y) and any maxima of H(r, x91) occurring

for t on the opposite side of y from x. So we have to check (iii) only.

For fixed r, x the function H(r,x,y) is decreasing on 0 < j < ( l - r ) 2 / 4 r x and

continuous at y = (l— r)2\4rx. Therefore, if m is a point where a local maximum of

H(r,x,y) is taken then m>(\— r)2/4rx. By differentiating the second function in the

definition of H(r, x, y) one can check that possible local extrema occur at

/ (rx)1/2±(rx-(a+1/2)(1 - r 2 ) ) 1 / 2 V

{ = ^r j
By analysing the sign of the derivative we then conclude that, if exists, the single local

maximum of H{r, x, y) is taken at

(2.6) m
1+r

It is clear now that

L(r, x, y)yady < H(r, x, y)y
Jo Jo

where Io = H(r, x, 0)J* yady, and Im = H(r, x, m) \ \m

χ y
ady \ .

Using (2.4) we are now reduced to showing that /0, Im are bounded independently

of r and x. Estimating Io gives

2 1-r / / v " \l-rj Γ\ 2 1-r

which is less than a constant depending only on a. The estimate of Im is more elaborate.

We start with recalling that

(2.7) m>(l-r) 2 /4rx .

By elementary inspection one can find that this implies

(2.8) X>L1^L_

(if we assume the opposite inequality then m< 6(1 — r)/4(l +r) and together these would

give a contradiction). Consequently, (2.8) produces

rx Λ rx
-<m<9-

or, rather,

(2.9) —rx<m<9rx.
4
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A bit of calculus also shows that exp( — (1 — r)xβ{\ +r)) is the maximum value of

2 1-r 1-r

attained at y = 4rx/(l + r ) 2 . This and (2.9) now shows that Im is less than

C
(2.10)

1 1-r
•expl —— x ]\m —:

(l-r) 1 / 2 (rx) α + 1 / 2 AΛ 2 1+r

Now we need also a good estimate for \m — x\ which is

(2.11) |m-x|<C(l-r)[l+x(l-r)] .

To get this we write

α, xa) .

m —
1 + r

m —
2-v/r c

1+r(1+r)2"

and by (2.9) the first term is bounded by C(rx)1 / 2. Using (2.6) the second part is estimated

by

(rxyi2-(rx- - r 2 ) )2 ) ) 1 ' 2

1+r

\a+l/2\(l-r2)

- r 2 ) ) 1 ' 2 ]

<C
1-r

(rxW

Together this gives

Next,

m —
(1+r) 2

Ar
X — X = x

1-r

(1+r) 2

so by triangle inequality we get (2.11). Coming back to (2.10) the estimate of Im becomes

-r)x Jmax{mfl, xa}/(rx)a
Im<C{\ -

To show that the above is bounded independently on x and r we consider two cases.

Case 1: x<m. Then by (2.9) r > 1/9 and hence

fl, xa}<Cxa .

Therefore using (2.8) gives ( l - r )/x<C, so
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since the function (1 + t)exp( —1/4) is bounded.

Case 2: x>m. If a< 0 then max{mfl, xα} = ma < C{rx)a and therefore

If α>0 then max{mfl, xα} =x\ so

(i) for r>l/2, Im<C{(\-r)lrxyi2{\
(ii) forO<r<l/2, r ;c>( l- r 2 )/6>C and

This completes the proof of Lemma 2.2.

We are now ready to prove the main theorem concerning heat-diffusion integrals

for expansions we consider.

THEOREM 2.3. Let a> — \, \<p<oo and fGLp(xadx). Let g(t9x) denote its

heat-diffusion integral (2 A) and f*(x) the maximal function (1.1) with dμ(x) = xadx. Then

(2.12) \g(t, x)\<Ccxp(-t(a+l)/2)f*(x)

and, consequently, the associated maximal function is of weak-type (1,1), i.e.

μ(\x: sup | g(t, x) \ > λV\ < -^ j °° | / \dμ ,

which implies that \imt_+0 g(t9 x)=f(x) almost everywhere. Moreover

(2.13) \\g(t,x)\\p<(cosht/2)~(a + 1)\\f\\p

which gives \\g(t, x) — f(x)\\p->0 as t-+0,for 1 <p< oo.

PROOF. (2.12) is an immediate consequence of Lemma 2.2, Lemma 1.1 and the

identity

/ 14-1 \

)R(e-t

9x9y).

Then the weak type (1,1) estimate follows by Lemma 1.2. To prove (2.13) we note that

by Holder's inequality, using (2.4), we get

I g(t, x) \p < ((cosh / / 2 ) - < Λ + ^ ί °° I f(y) \*P(t9 x, y)yady .
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Integrating with respect to x and interchanging the order of integration gives (2.13),
l</?<oo. The case/? =00 is obvious. To prove a.e. and //-convergence we consider
the linear space of polynomials multiplied by e~x/2 which is dense in Lp(xadx), 1 <p < oo.
This easily follows by applying Lemma 1.3 with d=a/p. For any function of this type
the series in (2.1) is finite and converges to this function both, in ZΛnorm, 1 </?<oo,
and almost everywhere.

We now pass to the Poisson integrals. For a function f(x) in Lp(xadx), 1 <p< oo,
with the expansion Σbnl°(x) we define its Poisson integral f(t, x), ί>0, by

(2.14) /(ί,*) = Σ e x p ί - ί U + ̂ - J )bnl
a

n(x).

Equivalently,

(2.15) /(ί, χ)=Γ Q(t, x, y)Ry)yady,

Jo

where
l/2

= —j= \ P(s,x,

x/4π Jo

The last identity is obtained by using the well-known formula

ί;
Interchanging the order of integration and summation in (2.16) as well as in (2.15) is
justified by the dominated convergence theorem.

COROLLARY 2.4. Let f e Lp(xadx), 1 <p < oo, a > - 1 and f(t, x) denote its Poisson
integral. Then f(t, x) is a C00-function satisfying the differential equation

Moreover the conclusions of Theorem 2.3 are valid with g(t, x) replaced by f(t, x) and
the factors exp(-t(a+l)/2) and (cosh t/2)~ia+1) replaced by 1.

PROOF. Using (2.16) and interchanging the order of integration produces

f(t, x) = —j= ί °° s-3l2e-'2'4sg(s, x)ώ .
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This, the fact that

= Γ
4π Jo

and Minkowski's integral inequality together imply (2.12) and (2.13) in Theorem 2.3

with g{t,x) replaced by /(ί,x) and the factors exp(-ί(fl+l)/2) and (coshί/2)~(fl + 1 )

dropped.

REMARK 2.5. In case a>0 the results from Theorem 2.3 where proved by the

author in [St 1], [St 2] (cf. also [T2]) by using a generalized convolution structure

defined in L1(xadx). That approach did not allow to cover the case — 1 <a<0.

3. The Laguerre functions &a

n(x). In this section we work with the Laguerre

functions

j2?J(jc) = (/ι!/Γ(n + fl+ l))1/2La

n(x)e-χ/2xa/2 ,

forming an orthonormal basis in L2(0, oo). Since these functions belong to all ZΛspaces,

1 <p< oo, only if a>0, it will be assumed now that a is a fixed nonnegative number.

Then, by [Ma, Lemma 1],

(3.1)

4<p<oo

The symbol | | / | | p is now used to denote the p-th norm of a function f(x) on (0, oo)

with respect to the Lebesgue measure dx. The function !£a

n is an eigenfunction of the

differential operator

L-x d l d

~X~ώ^ + ~d^

with eigenvalue — (n + (a +1)/2). The operator — L is positive and symmetric in L2(0, oo).

With any f(x) in Z/(0, oo), 1 <p< oo, we associate its expansion given by the formal

series ]Γcn<£%x) where

-Γ
JoThen we define its heat-diffusion integral g(t, x), ί>0,

(3.2) flf(ί,x) = ί

or, equivalently,
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t,x)= P(t,χ,
Jo

(3.3) g(t,x)=\ P(t,x,y)f(y)dy,

where

p(u x, y)=Σ

Due to the estimate (3.1), for any fixed t>0 the series in (3.2) converges uniformly and

interchanging of order of integration and summation in (3.2) is justified by the dominated

convergence theorem.

LEMMA 3.1. Let feLp(0, oo), 1 <p<oo. Then its heat-diffusion integral (3.2) is a

C™-function satisfying the differential equation

(3.4)

PROOF. Clearly g(t, x) is differentiable with respect to the /-variable and

0 5 ) ^ . ^ x j -

Then we show that (dk/dtk)g(t, x) is differentiable with respect to the x-variable on x>ε.

This is, since

Λ ίl V / f^ fϊ\ / ~

and using (3.1) we get |(d\dx)<£a

n(x)\<Cn1'2 on (ε, oo). Therefore for fixed />0we can

differentiate the series in (3.5) term by term. Similarly for higher derivatives.

In the same way as in §2 we will work with the kernel

rather than with P(ί, x, y). This time

r - f l / 2 / 1 1-4-1- \ /?<VvvW2
λ r ( 1

R(r9x9y)=- exp - —
l \ 2

(2(rxy)1

la( / '
V 1

exp (x+y))la( /

l—r \ 2 \-r / V 1—

and

cH(r, x, y) < R(r, x, y) < CH(r, x9 y)

with



96 K. STEMPAK

(3.6) H(r,x9y) =

( 1 1+ l2

for y<(l — r)2/4rx and y>(l-r)2/4rx correspondingly.

We now show that

Γ 0 0 / α + i \
(3.7) P(t, x, y)dy<Qxp[ —t

Jo \ 2 J
with C independent of x > 0 which will follow from the estimate

(3.8) Γ R(r,x,y)dy<C
Jo

with a constant C independent of 0 < r < 1 and x>0. If 0 < r < 1/2 then using (3.1)

f
JoIf l/2<r< 1 we check, equivalently, that

(3.9) f°° H(r9x,y)dy<C.
J
f°° H(r9x,
Jo

Using the transition point (1— r)2/4rx and splitting up the interval of integration in

(3.9) into two intervals one can note that the first resulting integral is uniformly bounded.

For the uniform boundedness of the second integral we observe that on y>(l —r)2/4rx

the function H(r, x, y) is equal, up to the factor (4r)" f l/2 which is bounded on 1/2<r< 1,

to the function H(r, x, y) treated in §2 with the parameter a equal 0. Therefore, using

the results from §2 we get (3.9) and finish the proof of (3.8).

LEMMA 3.2. Let H(r, x, y) be given by (3.6). There exists a function L(r, x, y)

satisfying the following properties

( i ) H(r9x,y)<L(r,x,y);

(ii) for every 0 < r < 1 and x > 0, L(r, x, y) as a function ofy is monotone increasing

on [0, x] and monotone decreasing on [x, oo);

(iii) \™ L(r, x, y)dy <Cr~a'2 with C independent ofx>0.

PROOF. We define L(r, x, y) in the same way as in the proof of Lemma 2.2. There

are at most three points mu m2, m3 suspected to be points of local maximum for

H(r, x, y) as a function of >>-variable:

mx is a point where a relative maximum of
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occurs; m2 = (l -r)a/(l + r ) is the point where a relative maximum of

is taken; ra3 = (l — r)2/4rx is the transition point.
It is clear now that

Λoo Λoo 3

L(r, x, y)ίfy < tf(r, x, y)dy + £/,-,
Jo Jo i

where Ij = H(r,x,mj) \mj-x\. To prove (iii) we use (3.8) and show that Iγ<Cr α/2,
I2 < C, I3 < C with C independent of 0 < r < 1 and x > 0.

Estimating 7X observe that, up to the factor (4r)~a/2, the job was done in §2 in the
special case a = 0. To prove that 7 2 <C note that

1 / x \a/2 ( 1 x
H(r,x9m2)<C- exp - — -

\-r \\-r) \ 2 \-r

Now, if x<m2 then \m2 — x\<m2<C(l— r) so H(r, x, m2)\m2 — x\ is bounded, and, if
x>m2 then \m2 — x\<x so we write

/ χ y+a/2 / j χ

H(r,x,m2)\m2-x\<C[- exp - —
1-r/ V 2 1-r

which is once more bounded.
To finish the proof we check that / 3 < C . Clearly we can assume that

(1 — r)α/(l + r) = m2 > m 3 which implies m 3 < C(l — r). Since

\a/2

exp —
1 - r \ \ - r J "V 2 1-r

if x<m3 we then get

/3 < //(r, x, m3)m3 < C.

If x > m3 then

/ χ y+a/2 / I x

/3<//(r,x,m3)x<C(y-— ) expl - y —

This concludes the proof of Lemma 3.2.

We now come to the following theorem concerning the heat-diffusion integrals for



98 K. STEMPAK

expansions with respect to the functions £?a

n(x).

THEOREM 3.3. Let a>0, \<p<oo and feLp(0, oo). Let g(t,x) denote its heat-
diffusion integral (3.2) and f*(x) the maximal function (1.1) with μ being the Lebesgue
measure on (0, oo). Then

(3.10) |0(ί,x)|<Cexp(-//2)/*(x)

and, consequently, the associated maximal function is of weak-type (1, 1), i.e.

μ(\x:sup\g(t,x)\>λX\<^-Γ\f\dμ,

which implies that limt^0 g(t, x)=f(x) almost everywhere. Moreover,

(3.H)

which gives \\g(t9 x)-/(x)||p->0 as ί->0, if 1 <p< oo.

PROOF. We repeat the argument from the proof of Theorem 2.3. To prove (3.10)
we use the identity

P(t, x, y) = exp( -t ^— W " f , x, y).

In the proof of (3.11) the estimate (3.7) comes in handy. As a dense linear subspace in
Lp(0, oo) we now choose the space of polynomials multiplied bye~x/2xa/2, cf. Lemma 1.3.

In the same way as in §2, for any function f(x) in Lp(dx), \<p<co, with the

expansion £ cn5£a

n(x) we define its Poisson integral f(t, x), t>0, by

(3.12) /(ί,x) =

The corresponding result for the Poisson integrals is the following.

COROLLARY 3.4. Let f e Lp(0, oo), 1 <p<oo, and f(t, x) denote its Poisson integral
given by (3.12). Then f(t, x) is a C00-function satisfying the differential equation

Furthermore the conclusions of Theorem 3.3 are valid with g(t, x) replaced by f(t, x) and
the exponentials in (3.10) and (3.11) dropped.

REMARK 3.5. In case α = 0, 1,' 2,... the a.e. and //-convergence of heat-diffusion
integrals in Theorem 3.3 was proved by Dlugosz [Dl] by using a group-theoretic
method.
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4. The Laguerre functions φ a

n(x). In this section we consider still another Laguerre

functions

that form an orthonormal basis in L2(0, oo). Only if a> —1/2 do these functions belong

to all ZΛspaces on (0, oo), 1 <p< oo, therefore we assume throughout this section that

a is a fixed number greater than or equal to —1/2. Expansions with respect to this

system were considered by Markett [Ma] and Thangavelu [Tl ] . In particular, it was

observed in [Ma] that expansions with respect to φa

n{x) behave much better than those

with respect to the system of Laguerre functions ^a

n(x). Using once more Lemma 1 of

[Ma] together with our correction mentioned in § 1 we obtain

(4.1) II φn\\p

l<p<4,

' , P=4,

,-(!/,+1/2W6> 4<P<00.

Here the meaning of the symbol || \\p is the same as in §3. The function φ"n(x) is an
eigenfunction of the differential operator

dx2 x \

with eigenvalue -λn, λn = 4n + 2a + 2. The operator —L is symmetric in L2(0, oo) and

positive if a> 1/2. With any f(x) in Lp(0, oo), 1 <p< oo, we now associate its expansion

given by the formal series Σdnφ"(x) where

dn=\ f(y)φ°n(y)dy.

Jo

Next, we define its heat-diffusion integral g(t, x), />0,

(4.2) g(t,x)

In an equivalent form

(4.3) g(t,x)=Γ P(t9x9y)ny)dy
Jo

where

P{U x,y) = Σ oxp(-tλn)φa

n(x)φa

n(y) .
o

Uniform convergence of (4.2) and interchanging of order of integration and summation

in (4.3) is a consequence of (4.1).
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LEMMA 4.1. Let feLp(0, oo), 1 <p<oo. Then its heat-diffusion integral (4.2) is a

C™-function that satisfies the differential equation

(4.4)

PROOF. Clearly

(4.5) 4 τ β ( t , x ) = Σ(-λ»)kexp(-tλn)dnφ°n(x).

dt o
Since

A φ:(χ)= -In^φlt \{χ) + (^f±-x)φ°n(x) ,
dx \ 2x J

by using (4.1) we obtain | {djdx)φa

n{x) \ < Cn1/2 on (ε, 1/ε). Therefore we can differentiate

the series in (4.5) with respect to the x-variable term by term. Similarly for higher

derivatives.

As in previous sections we now switch to the kernel

0 < r < l . Then

) i l 2

xy

(i-r)r'- \ i v-r j \ i - r

and

cH(r, x, y) < R(r, x, y) < CH(r, x, y)

with

(
expί - — - ^ - ( x 2 + y 2 ) + — xy

for y<{\ — r)/2r1/2x and y>{\ —r)/2rll2x correspondingly. We will use the estimate

(4.7) Γ P(t, x, y)dy < C exp( - t(2a + 2))
Jo

which follows from
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(4.8) I R(t,x,y)dy<C.
Jo

To prove this note that for 0 < r < 1

(4.9) fm H(r, x, y)dy < C(x/(1 - r) 1 ' 2 )- + 1 / 2 exp( - (
Jo

where w3 = (l-r)/2r1 / 2x, and, for l/2<r<l,

(4.10)

with A = (l-r2)1/2/2r1/2x. Since wα+1/2exp(-w2/2)<C and the integral in (4.10) is
bounded independently of A>0, combining (4.9) and (4.10) gives (4.8) for l/2<r<l .
On the other hand, if 0<r<l/2, by using (4.1) we estimate

f
Jo
/o

This finishes the proof of (4.7).

To prove the main theorem of this section the following lemma is needed.

LEMMA 4.2. Let H(r, x, y) be given by (4.6). The conclusions of Lemma 3.2 are valid
if a in (iii) is replaced by 6 = max{α+1/2, 1}.

PROOF. Repeating the argument used in the proof of Lemma 3.2 and using the
estimate

Γ
Jo

H(ryx,y)dy<C

which follows from (4.8), we are reduced to proving Iί+I2 + I3<Cr b/2. Here
Ij = H(r,x, mj)\mj—x\ and mί = 2rll2x/(l +r) is the point where a relative maximum of

1 1 + r 2 2r 1 / 2

— - : r +* i O 0 : r + * y
2 1—r \—r

is taken; m2 = ((a+1/2)(1 — r)/(l H-r))1/2 is the point where a relative maximum of

occurs; m3 = (\—r)/2r1/2x is the transition point.
First we show that I1<Cr~ia + ί/2)/2 clearly assuming that mί>(l-r)/2r1/2x. We

note that l/ i^-Jc^xO-r^/O +r)( l+r 1 / 2 ) 2 and H(r,x,y) is bounded on [(1-r)/
2r1/2x, oo) by
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1 1
r(α+l/2)/2 ( 1 _

1 1-r
e x Pl - T —

Therefore It is less than

which gives the desired estimate since wexp( —w2/4), w>0 is a bounded function.
The next estimate is / 2 <Cr~ 1 / 2 and we assume that m2<(\—r)/2r1/2x. Then

f2 \(α+l/2)/2

H(r,x9m2)<C exp - -
2 1 -

and we are reduced to showing that | m2 — x \ < C((l — r)/r)1/2. If x<m2 then | m2 — x \ <
m2<C(\-r)ί/2, if x>m2 then \m2-x\<x<C((\-r)/r)112, since, from

1-r
1 / 2 1-r

we obtain x< C((l -r)/r)1 / 2.
The last estimate we prove is / 3 <C. We assume that m1<(l-r)/2r1/2x<m2 and

this produces

Therefore

(4.11) ,x,m3)<
1

(l-r)1/:

1

i r(«

1
+ l/2)/2

1

-r) 1 / 2

Estimating , - * | gives

(1-r)

1-r

1 1+r
•explF | 2 1-r

exp(-C3/r).

-—x2rι>2x

so, combining (4.11) and (4.12) proves that / 3 <C.

We are now ready to prove the main theorem concerning heat-diffusion integrals
for considered expansions.

THEOREM 4.3. Let a>-\/2, \<p<oo and feLp(0, oo). Let g(t9x) denote its
heat-diffusion integral (4.2) andf*(x) the maximal function (1.1) with μ being the Lebesgue
measure on (0, oo). Then
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(4.13)

if-\β<a<\β,and

(4.14) \g(t,x)\<Cexp(-t)f*(x)

ifa> 1/2. Consequently, for a>0 the associated maximal function is of weak type (1, 1),

i.e.

-̂  ι/ι*
^ Jo

For —1/2 <<z<0 (4.13) implies only that the local maximal function, with the supremum

over t limited above to 0<t<\, is of weak type (1, 1). This implies that lim f_o0(ί, x) =

f{x) almost everywhere. Moreover

(4.15)

which gives \\g{t, x)-f(x)\\p^0 as ί->0, if 1 <p< oo.

PROOF. Lemmas 4.2 and 1.1 immediately imply (4.13) and (4.14) if we make use

from the identity

P(t, x, y) = exp(-t(2a + 2))R(e-*\ x, y).

Minkowski's integral inequality then gives (4.15). As a dense linear subspace in

Lp(0, oo) we choose the space of even polynomials multiplied by exp(—x2/2)x f l + 1 / 2.

The density is an easy consequence of Lemma 1.3 with d=(a—\lp—\/2)/2. The proof

of Theorem 4.3 is now complete.

We now define the Poisson integral /(£, x), t>0, for any function f(x) in Lp(0, oo),

by

(4.16) f(t, x)=Σεxp(-tλιj2)dnφ°n(x),
0

where Σdnφ
a

n(x) is the expansion of f{x). The result for the Poisson integrals is given

in the following corollary.

COROLLARY 4.4. Let feLp(0, oo), 1 <p< oo, a> —1/2 and f(t, x) be its Poisson

integral given by (4.16). Then f(t, x) is a C00-function satisfying the differential equation

Furthermore, if a>0 the conclusions of Theorem 4.3 are valid with g(t, x) replaced by

f(t, x) and the exponentials in (4.13), (4.14) and (4.15) dropped. If —1/2 < a < 0 the results

of Theorem 4.3 imply only a modified version o/(4.15) and the Lp-convergence.
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REMARK 4.5. Thangavelu [Tl] proved that for a> 1/2, the Cesaro means σa

nf of
order α>l/6 for expansion with respect to φa

n converge to / both in ZΛnorm and
almost everywhere. This clearly implies the convergence results in Theorem 4.3 in case
a>\β.

Added on October 20,1993. The author has recently become aware of the paper
M. Horvath: Some saturation theorems for classical orthogonal expansions, II,
Acta Math. Hung. 58 (1991), 157-191, [MR 93g: 42020]

that partly overlaps with Section 3 of the present paper. In particular, since both are
modeled on Muckenhoupt's technique, arguments leading to the proof of the inequality
(3.8) and Lemma 3.2 in our paper are more or less identical with those from the proofs
of Lemmas 3 and 4 of Horvath's paper.
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