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Abstract. Generic conditions for the occurrence of a parabolic subgroup of given

type in a reductive algebraic group are described. Especially the notion of a generic

splitting field of a reductive algebraic group is investigated. The given theory generalizes

and unifies other investigations of various authors for special algebraic structures such

as Azumaya algebras and quadratic forms.

Introduction. The "degree of splitting" of a connected semisimple algebraic group

G over a field k is essentially determined by the types of parabolic A>subgroups of G.

For example, G is anisotropic if G itself is the only parabolic ^-subgroup, G is quasi-split

if it contains a Borel subgroup, and G is split if it contains parabolic subgroups of

every possible type.

We now assume that G is a connected reductive linear algebraic group over k. One

of our main goals is to describe generic conditions for a field extension K of k, which

guarantee the existence of a parabolic subgroup of Gκ of a prescribed type, where

Gκ = GxkK denotes the algebraic group over K obtained from G by scalar extension.

Let Ic denote an algebraic closure of k. It is known that G% splits and that the

conjugacy classes of parabolic subgroups of G% are in one-to-one correspondence with

the subsets of the vertices A of the Dynkin diagram of G%. The subset Θ ^ A corresponding

to the class of a parabolic subgroup P of G% is called the type of P. The set A itself is

the type of G^ and the empty set 0 is the type of a Borel subgroup of G%.

In §3 we show that the occurrence of parabolic subgroups of given type is preserved

under ^-specializations. More precisely, in 3.9 we prove, for any field extension L of

k: If there is a parabolic subgroup of type Θ in GL, then there is a parabolic subgroup

of type Θ in Gk> for every ^-specialization Id of L, that is, for every field extension k'

such that there is a fc-place L -> k u {oo}.

This leads us to the definition of a generic β-splitting field of G for any subset

Θ c A. A field K is called a Θ-splitting field of G if Gκ contains a parabolic ^Γ-subgroup

of type Θ, and a 6>-splitting field F of G is called generic if every Θ-splitting field of G
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is a ^-specialization of F. Especially a (generic) quasi-splitting field of G is a (generic)

0-splitting field of G.

In order to find a generic (9-splitting field of G, we study, in §3, the quotient variety

VΘ : = G%/P for a parabolic subgroup P of G% of any type Θ. Since P is self-normalizing,

Vθ can be identified with the conjugacy class of P in G%. It is known that the variety

V0 is always defined over k, and we will see in 3.11 that its function field k(V0) is a

generic quasi-splitting field of G. We show, more generally, that Vθ is defined over a

"small" finite and separable field extension kθ of k, which is the smallest extension of

k such that the so called *-action of the Galois group Gal(ks/kθ) on A leaves Θ invariant.

(By ks we denote the separable closure of k contained in £ ) Hence kθ = k in most cases.

Especially this is always true for groups of inner type. We will see in 3.16 that, for any

(9, the function field kθ(Vθ) is a generic Θ-splitting field of G. Any (9-splitting field of

G contains a copy of kθ, arid the 6>-splitting fields K of G are—as field extensions of

kθ—characterized by the condition that K(VΘ) is a purely transcendental extension of

K(cf. 3.10, 3.16).

A (9-splitting field K of G splits G "partially" in the sense that the rank of Gκ is

greater than or equal to the rank of G, but is not necessarily equal to the maximal

possible value, in which case AT would be a splitting field of G (cf. 1.7 and 1.10 below).

If AT is a splitting field of G, then the semisimple part of Gκ is a group of Chevalley type.

Another main goal of this paper is to exhibit subsets Θ of A such that a corresponding

generic 0-splitting field is a generic splitting field of G. Similarly as above, a splitting

field F of G is called generic if every splitting field of G is a ^-specialization of F.

Our theory of generic <9-splitting fields of reductive groups unifies several other

investigations of similar kind for different special algebraic structures.

The earliest example of a generic splitting field has been given by Witt [37, 1935],

who constructed a generic splitting field for a quaternion skew field D over k. Here

splitting of course means the splitting of D into a full 2 x 2 matrix ring. We will show

that the generic splitting field constructed by Witt is precisely the function field k(V0)

for the algebraic fc-group G = SL1(D) (cf. 3.20). Witt's result has been generalized to

central simple A -algebras by Amitsur [2, 1955]. The varieties which occur in this context

are the Severi-Brauer varieties over k which can be described as the fc-forms of projective

space. A different approach to this construction making use of non-abelian Galois

cohomology has been given by Roquette [23, 1963], [24, 1964]. These results occur as

particular cases in our discussion of the partial generic splitting of the algebraic group

G = SLr+ί(D) for a finite dimensional central skew field D over k and r > 0 (cf. 4.9

below). Moreover, Roquette proved [23, Th. 4, p. 413] that the function field of the

Severi-Brauer variety related to the full matrix ring Mr+1(D) over D is a purely

transcendental extension of that of the Severi-Brauer variety of D. Translated into our

theory, this becomes a particular case of the fact (cf. 3.18, 3.19 below) that the generic

6>-sρlitting field k( Vθ) of G is a purely transcendental extension of a certain corresponding

<9an-splitting field of the semisimple anisotropic kernel Ga n of G (cf. 1.8 below).
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To the best of our knowledge the first who had the idea of studying partial generic
splitting instead of just total generic splitting was Knebusch in the 70's. He investigated
partial generic splitting of quadratic forms [16, 1976], [17, 1977], thereby introducing
his generic splitting towers. Then his student Heuser [12, 1976] studied partial generic
splitting of central simple algebras, using the function fields of generalized Severi-Brauer
varieties of prescribed level. It turned out that the splitting behavior of central simple
algebras is much more uniform than that of quadratic forms (cf. 4.8 (ii) and 5.8 below).
As we were told, Knebusch, puzzled by this phenomenon, suggested already then to
study partial generic splitting of linear algebraic groups.

Recently, also Blanchet [4,1991] and Schofield/v. d. Bergh [26, 1991], [27, 1992]
studied the partial generic splitting of central simple algebras by means of generalized
Severi-Brauer varieties. As we point out in §4 these generalized Severi-Brauer varieties
are the quotients of G by arbitrary maximal proper parabolic subgroups of G = SLr+1(D)
(here Θ consists of Δ minus one element).

Similarly, the layers of a generic splitting tower of a quadratic form q are, in our
theory, achieved by the function fields of the quotients of G — SO(q) modulo its various
maximal proper parabolic subgroups. This is discussed in §5.

Another uniformizing approach which establishes and generalizes the results of
Amitsur and Knebusch above and which uses the techniques and terminologies of
Jordan algebras and Jordan pairs has been given independently by Petersson [21, 1984]
and by Jacobson [14, 1985] (for a survey, see [15, 1989]). Especially [14, §7, p. 591]
gives results on generic splitting of involutorial simple associative algebras which can
be transformed into special cases of our Theorem 6.1.

The authors want to express their gratitude to Manfred Knebusch who enthu-
siastically encouraged them to investigate partial generic splitting of algebraic groups.

We now briefly describe the contents of the various sections of this paper.
In § 1 we collect some facts about varieties, splitting fields, reductive linear algebraic

groups and their anisotropic kernels.
In §2 the generic splitting of algebraic tori is discussed.
In §3 we set up the framework of reductive groups and the rational theory of

parabolic subgroups in order to prove the main results: Theorem 3.6 describes how to
obtain a generic splitting field from a generic quasi-splitting field, Theorem 3.10 describes
the fundamental properties of the varieties Vθ (becoming rational exactly over
specializations of their function fields). 3.11-3.17 prove the existence and describe the
properties of generic Θ-splitting fields, 3.18-3.19 relate the general results to the
respective anisotropic kernel. We conclude this chapter with the discussion of Witt's
first example (3.20) of generic splitting, namely the generic splitting of quaternion
algebras.

In §4 we describe the generic (9-splitting of groups of type 1An. We show how
several essential results on generic splitting fields obtained by Amitsur, Roquette, Heuser,
Blanchet and Schofield/v.d. Bergh can be deduced from our theory by taking proper
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maximal subsets Θ of A.

In §§5 and 6 we assume char(fc)/2. In §5 we discuss the partial and total generic

splitting of quadratic forms including its relations to the work of Knebusch. In §6 we

describe the generic Θ-splitting of the classical groups of types 2An, Bn, Cn,
 1Dn and 2Dn.

In §7 we give, for all characteristics, generic splitting and quasi-splitting fields of

arbitrary almost simple groups including the groups of exceptional types.

1. Some basic definitions and lemmas. Let k be field and Ic an algebraic closure

of A:.

In this paper, a fc-variety V is an absolutely reduced quasi-projective scheme over

k. Any algebraic fc-group is supposed to have a fc-variety structure in this sense. For

any field extension k! of k, we denote the set of fc'-rational points of V by V{k') =

Homfc_scheme(Specfc', V) and we write Vk. : = Vxkk' for the λ '-scheme obtained from

V by base extension with k.

1.1 LEMMA. If V is an absolutely irreducible k-variety, then k is algebraically closed

in the function field k(V) and k(V) is separably generated over k.

For the proof see [20, Chap. II, §4, Prop. 4, p. 142].

Recall that a finitely generated field extension kf of k is said to be regular if R and

k! are linearly disjoint or, equivalently, if A: is algebraically closed in k', and k' is separably

generated over k, cf. [36, Chap. 1.7, Th. 5, p. 18]. If V is an absolutely irreducible

λ> variety, then, by 1.1, for any field extension k! of k, the free composite kk(V) is

uniquely determined up to fc-isomorphism [13, Chap. IV, Cor. 1, p. 203, Th. 26,

p. 209] and is isomorphic to k{Vk) [36, Chap. 1.7, Th. 5, p. 18].

1.2 DEFINITION. A field extension k! of k is a k-specialization of an extension L

of k if there is a fc-place L -• k! u {oo}.

1.3 LEMMA. Let V be an absolutely irreducible projective k-variety. Let L, kf be

field extensions of k such that k' is a k-specialization of L. Then V(L) φ 0 implies

V{k')Φ0.

PROOF. There is a homogeneous ideal / in the polynomial ring k[X0,..., JΓJ for

a suitable n together with a bijection of sets

for every field extension K of k.

Let φ: L-*fcΊj{oo} be the A -place describing k' as a ^-specialization of L, and let

Θφ denote the valuation ring of φ.

Let x = (x0:...: xn)eV(L). We choose je {0,...,«} such that the principal ideal

XjΘφ is maximal among the ideals xβ^ This is possible because Θφ is a valuation ring,

cf. [9, Chap. VI, §1, No. 2, Th. Id].
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Clearly, we have Xj Φ 0, whence x = (x'o:...: x'n) with x\: = x( /xj e Θφ for all i = 0,..., n

and x}= 1, and it follows that (φ(xf

0):...:φ(x'n))eV{k). Π

Let G be a connected affine algebraic &-group. This implies that G% is ̂ -connected

[11 I, Exp. VI2, Prop. 2.1.1, p. 296].

1.4 THEOREM. G has a maximal k-torus.

For the proof see [11 II, Exp. XIV, Th. 1.1, p. 296] or [6, Th. 18.2, p. 218].

We assume for the rest of this paragraph that G is reductive.

1.5 DEFINITION. Let K be a field extension of k.

( i ) K is a splitting field of G if Gκ has a maximal K-torus which splits over K.

(ii) K is a quasi-splitting field of G if G x has a Borel subgroup defined over K.

(iii) A splitting field (resp. quasi-splitting field) K of G is said to be generic if

every splitting field (resp. quasi-splitting field) of G is a ^-specialization of A'.

For the notion of a split connected reductive affine algebraic group compare [6,

18.6, 18.7, p. 220ff] and [7, 8.1, 8.2, p. 481ff].

1.6 REMARK. Obviously two generic splitting fields of G are ^-equivalent to each

other in the sense that they are ^-specializations of each other. We shall show in 3.9

(iii) that every ^-specialization of a splitting field of G is also a splitting field of G. So

we have the following result: If K and K' are ^-equivalent field extensions of k and if

one of them is a generic splitting field of G, so is the other. In particular, A' is a generic

splitting field of G if this is true for some purely transcendental extension K({Xi}ieI) ofK.

1.7 REMARK. ( i ) A field extension K of k is a splitting field of G if and only

if rank(Gx) = rank(G£) holds. We write rank(G) for the fc-rank of the fc-group G, that

is, the dimension of a maximal A -split fc-torus of G (cf. [8, 4.21, p. 93]).

(ii) If k is finite then G is quasi-split (cf. [6, 16.6, p. 211]), and the semi-simple

groups over k are completely classified (cf. [30], [31]). Therefore we will always assume

that the base field k is infinite except in §§ 1 and 2.

(iii) It is known that G has a splitting field which is finite and separable over k.

This follows from 1.4 and the fact that any A -torus has such a splitting field [6, 8.11,

p. 117]. However, if K is a generic quasi-splitting field of G, then K does nof split any

nontrivial anisotropic £-torus of G (cf. Cor. 3.12 below).

1.8 DEFINITION, (i) G is isotropic if it contains a non-trivial λ>split A:-torus and

is anisotropic if rank(G) = 0.

(ii) If S is a maximal fc-split fc-torus of G and &(S) its centralizer in G, then the

derived group ^^(S) is called a semisimple anisotropic kernel of G. If Z a n is the maximal

anisotropic fc-subtorus of the center of ϋ?(S), then SJ^{S)'ZΛn is called a reductive

anisotropic kernel of G.
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Our notion of an (an-)isotropic group seems to be standard now, as it is used in

[5, 6.4, p. 13], [32, 2.2, p. 39], [8, 4.23, p. 93] and [6, 20.1, p. 224]. It differs, however,

from the definition in [29, 6.5, p. 476], where G is said to be anisotropic if its split

fc-subtori all are central.

1.9 PROPOSITION. ( i ) The semisimple anisotropic kernels of G are precisely the

subgroups occurring as derived groups of Levi k-subgroups of minimal parabolic

k-subgroups of G. Any two such are conjugate under G(k).

(ii) The anisotropic kernels of G are anisotropic k-groups.

(iii) G is quasi-split if and only if its semisimple anisotropic kernel is trivial.

PROOF. ( i ) If S is a maximal A>split λ -subtorus of G, then Jf(5) is a Levi

A -subgroup of a minimal parabolic A -subgroup P of G by [8, 4.15, 4.16, p. 91].

Conversely, if P is a minimal parabolic fc-subgroup, then the Levi A -subgroups of P

are the centralizers of maximal fc-split fc-tori of G (contained in the radical of P), [8,

4.16, p. 91]. This proves the first assertion of (i). The second follows from the fact that

all maximal Λ>split λ -tori are conjugate over k by [8, 4.21, p. 93] or [6, 20.9, p. 228].

(ii) It suffices to prove the statement for semisimple anisotropic kernels. Let S

be a maximal fc-split λ -torus of G. Being reductive, &(S) is an almost direct product of

its maximal semisimple subgroup ^JΓ(S) and the identity component of its center which

contains S (cf. [8, 2.2, p. 64]). The maximality of S now asserts that @&(S) does not

contain any nontrivial fe-split fc-torus.

(iii) By definition, G is quasi-split if and only if it contains a Borel fc-subgroup.

Hence the statement follows from (i). •

1.10 COROLLARY (cf. [8, 4.17, p. 92]). G contains a non-central k-split k-torus if

and only if it contains a proper parabolic k-subgroup.

2. Generic splitting of algebraic tori. Let A: be a field and let T be an algebraic

λ -torus (i.e., there is a field extension K of k such that Tκ^Gm xκ- x x G m , where the

multiplicative X-group Gm is defined by Gm(K) = K*).

2.1 LEMMA. Let L be afield extension ofk which splits T. Then the subfield ίc of

L of elements which are separable algebraic over k also splits T.

PROOF. Let ρ: T^GL(W) be a faithful A -rational representation on a finite

dimensional linear fc-space W. By assumption there is an L-basis of W®kL such that

every te T(L) is described by a diagonal matrix with respect to this basis [6, 8.2 Prop,

(d), p. 112]. Hence, for every t e Γ(£), the minimal polynomial mt(X) e H[X] decomposes

into pairwise distinct linear factors

d{l)), with αf>eL.
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It follows that the αj° are separable over ίc, hence over k. Therefore every teT(ίc) is

diagonizable over k. Since T(ίc) is commutative, there is a £-basis of W®kk which

diagonalizes T(£). •

2.2 PROPOSITION. Let Lbe a splitting field of T. Then any k-specialίzation k of L

is a splitting field of T.

PROOF. Let φ: L -• k u {00} be the place describing k as a ^-specialization of L.

By 2.1, the subfield k of separable algebraic elements of L over k splits T. By [38, Cor.

1, p. 13], the restriction of φ to k is injective, hence k splits Γ. •

2.3 THEOREM. An algebraic k-torus T has an algebraic generic splitting field, say

F, which is unique up to k-isomorphism and is a finite Galois extension ofk. Every splitting

field of T contains a subfield isomorphic to F.

PROOF. Let k denote an algebraic closure of k, and define

F: = () {L\k^L^lc9 L splitting field of T) .

Then F is a finite separable field extension of k because T has a finite separable splitting

field (cf. [6, 8.11, p. 117], [7, Cor. 8.3, p. 482]).

Let K be a splitting field of T. By 2.1, the subfield k^ K of elements separable over

k splits T. Then k contains a subfield isomorphic to F by the definition of F.

We have to show that F splits T. Then it will follow from the above that F is a

generic splitting field of T. Let A = k[T~\ be the affine coordinate ring of T. Let kx be

any extension of k. Then the set &(Tkί) of characters of T defined over kx are the

fci-group homomorphisms Tkί -* Gm. These are in one-to-one correspondence with the

set of fci-algebra homomorphisms k^X, X~1~\-j»Ά®kk1 with an indeterminate X or

equivalently, using restrictions, to the A>algebra homomorphisms k[X, X~x] -• A ®kk±.

Let now ku k2 be extensions of k both contained in a field k3. Then any character

defined over k3 which, by restriction, gives a character defined over both kί and

k2, will also give a character over k1nk2, as its associated fc-homomorphisms

k\_X, X~ *] -• A ®kkι will map AΊnto both A (g)kkt for i = 1,2 and hence into A ®k(k1 n k2).

Now since any extension L c £ o f k is a splitting field of Γif and only if &(TL) = £{Td

[6, 8.2, Cor., p. 112], it follows that the intersection of two splitting fields of T which

are contained in Ic is also a splitting field of T. Hence F splits T. Since the same then

is true for all the conjugates of F it follows from the definition of F that it is a Galois

extension of k.

2.4 EXAMPLE. Let char(fe)/2 and aek*. Define a A -torus by

Then it is easily checked that T splits over some field extension K of k if and only if
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ae(K*)2 and that kQ a ) is a splitting field of T. In fact, it is just the generic splitting

field F of T described in 2.3.

Let G be a connected affine algebraic λ -group.

2.5 COROLLARY. Suppose G is reductive and quasi-split, and T is a maximal k-torus

of G contained in a Borel k-subgroup B of G. Then the generic splitting field FofT is a

generic splitting field of G, and every splitting field of G contains afield isomorphic to F.

PROOF. Clearly F is a splitting field of G, since it splits one of its maximal tori.

Let k' be a splitting field of G. Then Gk> contains a maximal λ '-torus which splits. This

is contained in some Borel fc'-subgroup of Gk and since this is conjugate in Gk, to Bw,

the torus Tw splits. Hence kf is a splitting field of T and therefore contains F, by 2.3.

This clearly implies that F is a generic splitting field of G. •

3. Parabolic subgroups. In this section k is an infinite field, ks is the separable

closure in an algebraic closure k of k, and G is a connected reductive affine algebraic

λ -group.

Let K be a splitting field of G (for example K=Ic). Choose a maximal .K-torus T

of Gκ which splits over K (cf. Definition 1.5). We denote by %(T) the character group

Hom(Γ,GJ.

Let ΦK = Φ(GK, T)^&(T) be the set of roots of Gκ with respect to T. For every

oceΦκ there is a connected unipotent subgroup Ua of Gκ such that TUa=UaT. Also,

there is a ^-isomorphism xa: Ga -• Ua, where the additive X-group Ga is defined by

Ga(K) = K+, such that

1 = xa(tau) (V W eK, ί e

(cf. [8, 2.3, p. 64] or [6, 18.6, p. 221]).

We choose an ordering of Φ κ , denote the set of positive roots by Φ£, and let

4 c Φ j be the basis (or the set of simple roots) of Φκ with respect to that ordering.

For every subset Θ^AK we have the so-called standard parabolic subgroup Pθ of

Gκ (with respect to T) defined by

pθ: = (T, Ua\oceAκ or -αe<9> .

It is known that the standard parabolic subgroups are in one-to-one correspondence

with the conjugacy classes of parabolic subgroups of Gκ [8, 4.6, p. 87]. Obviously we

have PΔκ = Gκ, and B \ = P0 is the standard Borel subgroup of Gκ. More generally,

there is the following description of Pθ,cf. [8,4.2, p. 85f] or [6, Prop. 14.18, p. 197].

3.1 REMARK. We denote by H° the connected component of the identity element

in an algebraic group H. Let Γ θ = (f | α e β Ker(α))°, let &(TΘ) be its centralizer in Gκ

and Uθ = < Ua | α e uθ} where uθ is the set of all oceΦ^ which are not linear combinations

of elements of θ. Then PΘ = ̂ (TΘ)UΘ is the Levi decomposition of Pθ with reductive
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part ^(Tθ) and unipotent radical @U(PΘ)=UΘ. If U^ = <£/α |αewe> where u# is the

set of all OLGΦK\Φ^ which are not linear combinations of elements of Θ, then

PQ=££{T^)UQ is, analogously, the Levi decomposition of the parabolic subgroup of

Gκ containing T which is opposite to Pθ.

3.2 LEMMA. Let P be a parabolic k-subgroup ofG. Then the unipotent radical @U(P)

is, as a k-variety, isomorphic to an affine k-space, and G/P is a rational variety over k.

IfPκ is conjugate to Pθfor Θ^AKr then the dimension of G/P equals that of 0tu{P) which

is given by the number of elements ofuθ.

PROOF. Let P~ be a parabolic A:-subgroup of G which is opposite to .P. From [6,

14.21 (iii), p. 198f] we deduce that the product map in G induces a ^-rational map

&u(p~hx ZpZ onto a £-open subvariety of Gh By [6, 21.11, p. 233f and 21.20, p. 240]

we find that 3tu(P) and @lu{P~) are affine λ:-spaces, and that G/P is a rational A>variety. It

follows that dim G/P = dim &U(P~) which equals the cardinality of u# and hence of uθ. •

Let A denote the set of vertices of the Dynkin diagram of G% and let i = ικ: A -*> Δκ

denote the natural one-to-one correspondence.

3.3 DEFINITION. Let k be a field extension of k contained in K and Θ^A. A

parabolic subgroup P of Gk> is said to be of type Θ if Pκ is conjugate to Pι(θ) in Gκ.

3.4 REMARK. ( i ) The type of a parabolic subgroup is independent of the choice

of the splitting field K. To see this, let Kx be another splitting field of G which contains

k. Then any free composite K of K, Kx over kf is a splitting field of G as well. Hence,

if 7\ is a maximal split Λ^-torus of GKi, then Tg and (T^g are conjugate over K by

[8, Th. 4.21, p. 93]. This conjugation induces an isomorphism ί: X{T^)^X({T^K^.

Hence we obtain an ordered root system Φ(GKl, Tx) as the image of Φκ under /, with

basis i(Aκ) as a set of simple roots of GKί with respect to Tl9 and we have ιKί = i°ικ.

(ii) For i = 1,2, let kt be two field extensions of k, and let Pt be parabolic subgroups

of Gki. Then Pl9 P2 are of the same type if and only if they are conjugate over some

free composite of kl9 k2. This follows from (i) by using splitting field extensions K^ki

of G and from [8, Th. 4.13 (c), p. 90].

(iii) Because of (i), we will henceforth identify Δκ with A. By (ii), there is a

one-to-one correspondence of the subsets Θ ^ A and the conjugacy classes of parabolic

subgroups of Gκ for any splitting field K.

(iv) Following [32, 2.3, p. 39] we define the *-actiori of the Galois group Γ =

Gal(fcs/fc) on A = Aks as follows. As G splits over ks, parabolic subgroups of every type

are defined over ks and hence Γ operates on the set of their conjugacy classes. Via (iii)

we get an induced action on A, if we restrict this operation to the conjugacy classes of

maximal parabolic subgroups of Gks which are in obvious one-to-one correspondence

with the elements of A: The element corresponding to Pθ is the unique one in A\Θ.

This gives the wanted *-action. The permutation of A corresponding to yeΓ will be
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denoted by y*. The group G is of inner type if the *-action is trivial on A and of outer

type otherwise.

(v) Let S denote a maximal split fc-subtorus of G contained in a maximal A:-torus

T of G. By (i) we may assume that Φ = Φ(Gks, Tks). The set of roots of A which vanish

on S is usually denoted by Ao, and the set of nontrivial restrictions of elements of A

to S is kA. Hence we have the restriction map resk: A -• kA u {0} with res^ x(kA) = Λ\/l 0 .

The set Ao is the set of simple roots of Θ^(S). By 1.9 (iii) G is quasi-split if and only

if ^^f(S) is trivial, which obviously is equivalent to Ao = 0. On the other hand, the

pre-images of single elements of kA under resk are precisely the equivalence classes of

elements of Λ\Λ 0 under the *-action of Γ [32, 2.5.1, p. 40]. Hence we can conclude:

If G is of inner type, then the map resk, restricted to ^ \ Λ 0 , is injective. Moreover, if

G is of inner type and quasi-split, resfc: A -> kA is a bijection, hence the derived group

of G is split.

3.5 LEMMA. There is a finite Galois extension kinn of k which is unique up to

k-isomorphism with the following properties:

(i) The group Gkirίa is of inner type.

(ii) Every field extension ψkf of k such that Gk> is of inner type contains a subfield

isomorphίc to kinn.

PROOF. Clearly the subgroup Γ' = {γeΓ\y* = id} is normal of finite index in

Γ = Gal(ks/k). Hence its fixed field kinn is a finite Galois extension of k such that Gk i n r i

is of inner type. Let k's be a separable closure of kr containing ks. If Gv is of inner type,

then the *-action of the Galois group Gal^/fc') on A is trivial. Hence (cf. 3.4 (iii), (iv))

the *-action of GdΛ(kfkJkf) ^ Gal(ks/(k' n fcs)) is trivial as well, which implies kinn czk'n ks.

D

3.6 THEOREM. Let fcalg be the composite in ks ofkinn and the generic splitting field

of the maximal central torus of G (cf 2.3).

(i) The free composite of kalg and a generic quasi-splitting field of G is a generic

splitting field of G.

(ii) Any splitting field of G contains a subfield k-isomorphic to kalg.

PROOF. Let F be a field obtained from a generic quasi-splitting field L of G as

in (i). Since Gfcalg is, by 3.5, of inner type and since it has a split maximal central torus,

it follows from 3.4 (v) that F is a splitting field of G k a l g and hence of G. Let A7 be a

splitting field of G. Then there is a λ -place φ: L-*k'\j{co}. Since kΛlg is algebraic over

k and since kaϊg is contained in k by 3.5 (ii) and 2.3 we have a trivial A:alg-place

^ a i g - ^ u ί 0 0 } [38, Chap. VI.4, p. 13]. Thus φ can be extended to a fcalg-place

F=L kiΛg-*k'u{oo}. This implies that Fis generic and also proves (ii). •

3.7 LEMMA. (1) IfΘ^A is ^-invariant, then there is a uniqueprojective k-variety

Vθ with the following property: For any field extension k' ofk and any parabolic subgroup
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P' ofGk. of type Θ one has Vθxkk'^Gk,/F.

(2) For arbitrary Θ^A the following conditions (i)—(iii) are equivalent.

( i ) There is a parabolic subgroup of G of type Θ.

(ii) Θ is ^-invariant and Vθ(k)Φ0.

(iii) Θ is ^-invariant and Θ^AO = {OCEA\ resk(α) = 0} (cf. 3.4 (v)).

PROOF. (1) Let V denote the ks-variety given by the conjugacy class of parabolic

subgroups of Gks of type Θ. By [8, 6.2 (3), p. 104], Θ is *-invariant if and only if V(ks)

is Γ-stable. By [7, 8.4, p. 482], the Γ-stability of V(ks) implies that Kis defined over k.

For any field extension k' of fc, let k' denote an algebraic closure of k'. Then, by [7,7.2 (b),

(i), p. 474], the set M = V(ΐcr) is a homogeneous (G, fe)-set represented by a fc-variety Vθ.

Hence M is a homogeneous (Gk,, /c')-set represented by the fc'-variety Vθxkk' (cf. [7,

7.3, p. 475]). Let now F be a parabolic subgroup of Gk, of type <9. Then Vθxkk
t^ Gk./F,

since parabolic subgroups are self-normalizing. The uniqueness of Vθ now follows from

[7, 7.5 (i), p. 475].

(2) If (i) holds then clearly Θ is *-invariant. Hence to prove the equivalence of

(i), (ii), (iii) we may assume the *-invariance of Θ. For any field extension k! of fe, the

set Vθ(k') is the set of parabolic subgroups in Gw of type Θ. This follows from [7, Prop.

7.6, p. 476] applied to the homogeneous (G, fc)-set M above. Therefore (i) is equivalent

to (ii). The equivalence of (ii) and (iii) follows from [8, 6.3 (1), p. 105] and [8, 6.8,

p. 107]. . •

3.8 COROLLARY. G is quasi-split if and only if G contains a parabolic k-subgroup

of type Θ for every ^-invariant subset Θ of A, and G is split if and only if it contains

parabolic subgroups of every type and its maximal central torus splits.

PROOF. We recall from 3.4 (v) that G is quasi-split if and only if Ao — 0. Hence

the equivalence of (i) and (iii) in 3.7 says that every parabolic subgroup of *-invariant

type occurs in the quasi-split case. The converse is trivial, as 0 is *-invariant and the

type of a Borel subgroup.

If G is split, then its maximal central torus splits and the *-action is trivial. It

follows by the above that G has parabolic subgroups of every type. Conversely, if this

is true, then certainly the *-action is trivial, G is quasi-split and therefore split by 3.4

(v) if its maximal central torus splits. •

REMARK. Let Θ <^Δ be *-invariant. For a parabolic subgroup P of Gκ of type Θ

the quotient GjJP is a projective irreducible K-variety which defines, by 3.7, a k-variety

Vθ such that Vθ xkK^Gκ/P. We will say that Gκ/P is defined over k in spite of the

fact that P is not necessarily defined over k. Note that Vθ does not depend on the

choice of the splitting field K.

3.9 COROLLARY. Let k! and L be two field extensions of k such that k' is a

k-specialization ofL. IfP is a parabolic subgroup ofGL, then there is a parabolic subgroup
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of Gw of the same type as P. Moreover we have the following:

( i ) rank(GfcO > rank(GL).

(ii) Anίsotropic reductive k-groups remain anisotropίc under purely transcendental

extensions ofk.
(iii) Every k-specialization of a splitting field of G is a splitting field of G.

PROOF. By assumption, we have a A:-place φ: L-+k'u{co}, and V(L)Φ0 with V

being the quotient L-variety GL/P. Clearly the type Θ of P is *-invariant with respect

to the action of Gal(Ls/L). Since Gal(Lfcinn/L)^Gal(fcinn/(Lnfeinn)), we find that Θ is

•-invariant with respect to Gal^/fc^, where kί : = Ln/c inn. Therefore Kis defined over

kγ by 3.7. The field kί is finite separable over k and consequently it is mapped

isomorphically by φ onto a subfield of k'. Identifying this subfield with kι we obtain

that φ is a A^-place, hence k' is a kγ-specialization of L. By 1.3 we obtain that V(kf)φ0,

hence Gk> contains a parabolic subgroup of type Θ.

We now prove (i). Since G is an almost direct product of its maximal semisimple

subgroup ^(G) and a torus [8, 2.2, p. 63], it suffices to prove that assertion for tori

and for semisimple groups. The statement for tori follows from 2.2 by induction on

the dimension. If G is semisimple and P a minimal parabolic subgroup of GL we find

by the above that Gk. contains a parabolic subgroup of the type of P and hence a fc'-split

/c'-torus whose rank equals rank(GL) (cf. [6, 20.6, p. 225]) which proves the inequality.

(ii) and (iii) are immediate consequences of (i). •

3.10 THEOREM. Let Θ ^ A be ^-invariant and let V: = Vθ denote the corresponding

k-variety as described in 3.7. Then the function field k(V) is a regular extension ofk, and

for every field extension k! ofk the following statements are equivalent:

( i ) V(k')Φ0.

(ii) The free composite ofk1 and k(V) is a purely transcendental extension ofk'.

(ii') There is a k-linear embedding k(V) <=-> kf(Xl9..., Xm) of k(V) into a finitely

generated purely transcendental extension ofk'.

(iii) k' is a k-specialization ofk(V).

PROOF. It follows from 1.1 that k(V) is regular.

"(i) => (ii)": If V(k')φ0, then there is a parabolic subgroup Q of Gk. of type θ by

3.7. By 3.2 the fc'-variety Vk^Gk/Q is rational over k' which implies (ii).

Clearly (ii) implies (ii').

"(ii') =>(iii)": There is a fe'-place k'(Xu ..., Xm) -• k' u {oo}, whose restriction to k(V)

gives a fc-place /c(K)->fc'u{oo}, hence (iii).

"(iii)=i>(i)": k(V) is the residue field at the generic point of V and hence V(k(V))Φ

0 (cf. [20, Chap. II, §6, p. 161]). The assertion (i) now follows from 1.3. •

3.11 THEOREM. The function field F: = k( V0) is a generic quasi-splitting field of G.

If G is semisimple of inner type, then F is a generic splitting field of G.
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PROOF. Clearly 0 ^ A is *-invariant, and 0 is the type of a Borel subgroup B of

G x . Hence V0 is a fc-variety such that Gκ/B^ V0 xkK by 3.7. Since V0(F)^0, the

field F is a quasi-splitting field of G. If fc' is a quasi-splitting field of G, then K0(fc') / 0

(by 1.5 (ii)), hence fc' is a fc-specialization of JP by 3.10. Consequently F is a generic

quasi-splitting field of G. By 3.4 (v), every quasi-splitting field of an inner type semisimple

group is a splitting field of that group. •

3.12 COROLLARY. Let Lbea generic quasi-splitting field ofG. Then k is algebraically

closed in L, and L does not split any nontrivral anisotropic k-torus of G.

PROOF. Let F be the generic quasi-splitting field of G as defined in 3.11. If L is a

generic quasi-splitting field of G, then there is a fc-place L-+FΌ{CO} by Definition 1.5

(iii). Since any algebraic extension of k in L possesses only trivial fc-places (cf. [38,

Chap. VI, §4, p. 13]) and since k is algebraically closed in F by 1.1, it follows that k is

algebraically closed in L. If L splits some fc-torus T of G, then, by 2.1, the fc-algebraic

elements of L already form a splitting field of T. Π

We now generalize the notion of a quasi-splitting field.

3.13 DEFINITION. Let F be a field extension of k and let Θ^A.

( i ) F is a Θ-splitting field of G if GF contains a parabolic subgroup of type Θ.

(ii) A 6>-splitting field F of G is said to be generic, if every <9-splitting field of G

is a fc-specialization of F.

3.14 REMARK. It follows from 3.9, that every fc-specialization of a <9-splitting

field of G is a Θ-splitting field of G.

3.15 EXAMPLES, ( i ) A (generic) quasi-splitting field is a (generic) 0-splitting

field.

(ii) The field fc is a generic A -splitting field of G.

(iii) For any *-invariant subset Θ^A the function field k(VΘ) with Vθ as in 3.7

is a generic (9-splitting field of G as follows from 3.10.

3.16 THEOREM. Let Θ^A be any subset. Then there is a finite separable field

extension kθ ofk, contained in the field fcinn of 3.5, with the following properties:

( i ) Every Θ-splitting field of G contains a subfield isomorphic to kθ.

(ii) Θ is invariant with respect to the *-action of the Galois group Gal(fcs/fcβ).

(iii) If Vθ denotes the kθ-variety defined in 3.7, then the function field Fθ :=kθ(Vθ)

is a generic Θ-splitting field of G.

(iv) The field Fθ is regular over k if and only if k = kθ, hence if and only if Θ is

invariant with respect to the ^-action of Gal(ks/k).

PROOF. Let Γθ = {ye Gal(fcs/fc) | γ*(Θ) = Θ} and let kθ be its fixed field. Since fcinn

is the fixed field of Γ = {yeGal(fcs/fc)|y* = id} and Γ^ΓΘ it follows that kθ^kinn.

( i ) Let fc' be a (9-splitting field of G. Let k's be a separable closure of k' containing
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ks. By assumption Gal(fc;/fc') leaves Θ *-invariant. Hence Ga\(k'kjk') ^ Ga\(kJ(k' n ks))

leaves Θ *-invariant, which implies kθ^k'nks.

(ii) This follows from the construction of kθ.

(iii) Since VΘ(Fθ)=έ0, Lemma 3.7 implies that Fθ is a <9-splitting field of Gk&

and hence of G. Let k! be a (9-splitting field of G. By (i) we may assume that k! is a

field extension oϊkθ. Thus 3.10, "(i)=>(iii)", implies that k' is a /^-specialization of Fθ,

hence also a ^-specialization of F β . This proves (iii).

(iv) By 1.1, the field Fθ is regular over kθ. Since kθ is algebraic over k, the first

statement follows. If k = kθ, then <9 is invariant with respect to the *-action of Gal(fes//c)

by (ii). If the latter is true, then, by 3.7, the variety Vβ is defined over k, and the function

field k(Vθ) is a Θ-splitting field of G. By (i) it contains kθ, which implies k = kθ, since

/c(Kβ) is regular over k. D

The following corollary illustrates the functorial behavior of the map Θ i—• Fθ.

3.17 COROLLARY. Let Θ'^Θbe a pair of subsets of A. Then the following is true.

( i ) If k! is a Θ'-splitting field ofG, then kΘk' is a k^-specialization of Fθ.

(ii) IfFθ is a Θ'-splitting field ofG and ifkθ^kθ>, then Fθ is a generic &-splitting

field of G.

(iii) IfΘ is ^-invariant and if FΘ is a quasi-splitting field of G, then it is a generic

quasi-splitting field of G.

(iv) If Fθ is a splitting field of G, then it is a generic splitting field of G.

REMARK. The assumption that Θ is *-invariant in 3.17 (iii) is necessary. See the

example after 5.4.

PROOF OF 3.17. ( i ) After replacing k by kθ we may assume that Θ is *-invariant,

hence kθ = k. By 3.7, "(i) =>(iii)", we have Ao : = {α e A \ res r(α) = 0} ^ <9'. Since <9'^<9,

it follows that k! is a Θ-splitting field of G by 3.7, "(iii) => (i)". Thus k! is a ^-specialization

o f F β b y 3.15 (iii).

(ii) Let kf be a <9'-splitting field of G. Then kθ^kθ^kf by assumption and 3.16

(i). So (i) implies that k! is a ^-specialization of Fθ.

(iii) This follows from (ii) and 3.16 (iv) for Θ' = 0.

(iv) Let k! be a splitting field of G. By 3.6 (ii), k! and especially Fθ both contain

a copy of the Galois extension fcalg of k. Replacing k by kaϊg we may assume that G is

of inner type by 3.5. Hence we may apply (iii) to find that k! is a ^-specialization of

Fθ which yields (iv). •

It seems to be natural to expect that ^-splitting of any group G can be achieved

by the corresponding <9an-splitting of the anisotropic kernel Ga n of G, where <9an is the

appropriate set of vertices of the Dynkin diagram of (Gan)£. The precise meaning of

this statement is given in 3.18, 3.19. It essentially is reflected by the fact that the generic

6>-sρlitting field of G is a purely transcendental extension of the corresponding
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<9an-splitting field of Ga n, hence these two fields are obviously equivalent in the sense

that they are ^-specializations of each other. The reason for this is that Ga n is given—

up to a torus part, cf. 1.9—by a Levi-subgroup of a minimal parabolic subgroup Q of

G and that G/Q is a rational λ -variety. This explains and generalizes an observation

made by Roquette [23, Th. 4, p. 413], which will be discussed in 4.10 below.

3.18 THEOREM. Let Q be a parabolic k-subgroup of G of type A'^A and let 5£ be

a Levi k-subgroup of Q. Consider A' as a root basis of 3?ks. Let Θ be a ^-invariant subset

of A. Let V (resp. V) denote the projective k-varieties associated to Θ (with respect to

G) (resp. to Θ' (with respect to <=£?)) according to 3.7. Then k(V) is isomorphic to a purely

transcendental extension ofk(V).

PROOF. In $£ we choose a maximal fc-torus T of G containing a maximal fc-split

fc-torus S of G, such that aT(S)έJί? (cf. [6, 20.6, p. 225]). In Gks we choose a Borel

subgroup B such that Tks<=B^Qks and a parabolic subgroup P^Gks of type Θ with

β ς P . We identify A with the basis of a root system Φ(Gks, Tk) such that the parabolic

subgroups of Gks containing B are those which are in standard position. Hence especially

Qks and P are standard parabolic subgroups ofGks. By [6, 21.13, p. 235], the subgroup

Bse\ = Bΐ\ ££ks is a Borel subgroup of <£ks which we will use to define the standard

position of parabolic subgroups of J£ks.

Since Q is defined over k, its type A' and hence also & is *-invariant. Pn !£ks is a

parabolic subgroup of 5£ks by [6, 21.13, p. 235]. It is obviously in standard position.

From [8, 5.20, p. 102] it follows that its type is Θ'. We have Vks:=Vxkks^GkJP and

V;s: = Vfxkks^^kJ(Pn^ks)^Qks/(PnQks). The /c-embedding* J^->G induces a ks-

embedding i: Vks-+Vks by g(Pn&ks)\-+gP for ge&(ks). By construction, P = Pθ in Gks

and Pnj£?k =PΘ, in Ά .

We show that i is Gal(/cs/A:)-equivariant: For σeGal(ks/k) there is a unique wσ in

the Weyl group of Φ{Gks, Tk) such that wσσ(A) = A. For any root oceA we then have

wσσ(α) = σ*(α) (cf. [32, 2.3, p. 39]). Let nσ be a representative of wσ in the normalizer

of T(ks) in G(ks). The orders defined on 3C(Tk) by A and by σ(A) induce the same order

on %(Sk). Therefore it follows from [8, 6.6, p. 107] that nσe&(S)(ks)ag>(ks). Thus
σPθ = nσPσ*(θ)n~ί and σPθ, = nσPσ*(ΘΊn~1. Since the conjugacy class gPg~* identifies with

the coset gP in V and similarly for V we obtain by the *-invariance of Θ and Θ' that

ι(σ(gPθ)) = ι(σgnσPθd = σgnσPΘ = σgσPθ = σ(gPθ) = σ(iθPθ')) for any ge<?(ks) which

proves the Gal(fcs/fe)-equivariance of i.

Hence i is defined over k [6, AG. 14.3, p. 31], i.e., it is obtained by base extension

from a ^-embedding i: V -> V. Let Q~ and P~ denote parabolic subgroups of G (resp.

Gks) which are opposite to Q and P.

By [6, 14.21, p. 198], the product maps

xks(Pn <?k) -+ <?ks

induce ^-isomorphisms of their pre-images onto open dense subvarieties of Gks and
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<£ks. Hence we obtain morphisms of ^-varieties

which are ^-isomorphisms of their pre-images onto open dense subvarieties of Vks and

Vk's. Also the product map

is an isomorphism of ks-varieties which can be seen as follows: By 3.1, we have

where u# is the set of all negative roots which are not linear combinations of elements

of Θ, and where <zΓ> is the set of roots which are linear combinations of elements of

A'. It follows from [6, 21.9 (ii), p. 232] that the three groups above are the direct span

of their respectively generating groups UΛ since each of their underlying sets of roots

α is closed in the sense that it contains the sum of each two of its elements if this sum

itself is a root. Therefore, as varieties, each of the above three groups is A:s-isomorphic

to an affine space (cf. [6,21.20 (i), p. 240]) and the product map induces a /^-isomorphism.

Hence we obtain the following commutative diagram of A;s-morphisms, each of

which is an isomorphism onto an open dense subvariety.

Here the latter horizontal map is just given by (#, h(Pn^ks))\->ghP.

Let φ = u^\{A'}, so that Λ t t(P~)n# t t(Q£) = < l / α | α e ^ > as above. As Θ and A

are both *-invariant, ^ u (P~)n^ u (β f c ~) is Gal(fes/fc)-invariant and hence defined over

k (cf. [6, AG. 14.4, p. 32]). Therefore we have a fc-subvariety U of @U(Q~) such that

Uxkks = &u(P~)n&u(Qks). The image of φ under resk (cf. 3.4 (v)) is a closed set of roots

of G over k. Hence we conclude using [6, 21.20 (i), p. 240] that U is isomorphic, as a

A:-variety, to an affine £-space. Thus we obtain a morphism of Λ>varieties t/x k K'-> V

which is an isomorphism onto an open and dense λ -subvariety. Therefore k(V)^

k(U)®kk(V), and since U is isomorphic to an affine A -space, the theorem is proved. •

Let Q be a minimal parabolic ^-subgroup of G, with Levi subgroup S£ and type

A0^A (cf. 3.4 (v)). Then, by 1.9, the derived group Gan of i f is a semisimple anisotropic

kernel of G. Let Θ^A be *-invariant. As above, Θan : = ΘnA0 is *-invariant and can

be considered as a set of roots of 5£ks and of (Gan)ks. If P is a parabolic subgroup of Gks
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of type Θ then P# : = P n <£ks and Pan : = P n (G a n) k s are parabolic subgroups of type 6>an

of !£ks (resp. (Gan)fcs). Consequently, the associated quotient varieties GkJP, J?kJP#,

(Gan)kJPan are defined over k by 3.7. We denote the respective ^-structures by Vθ,

V&,san> Vean- Since $£ is the product of its maximal central torus and Ga n, the natural

^-embedding G a n -»i? defines a /^-isomorphism (Gan)kJPan^^kJP^ which is

Gal(fcs/λ:)-equi variant. Therefore it induces a ^-isomorphism of the λ>varieties

^e.n~*^,β«» (c^ P>> ^ G . 1 4 3 ' P 3 1 ^) Hence fc(Fβan) is naturally isomorphic to

k(V#θar). β y 318 w e find that k(Vθ) is purely transcendental over k(V#tθtu). Hence

we conclude:

3.19 COROLLARY. For any ^-invariant Θ^A, the generic Θ-splitting field k(Vθ)

ofG is a purely transcendental extension of the corresponding induced generic θ^splitting

field k(Vθan) of the semisimple anisotropic kernel Ga n of G.

3.20 EXAMPLE (Witt [37]). We first consider the case char(fe)^2 which has been

investigated by Witt and which is the origin of the theory of generic splitting.

Let a,bek* be such that D = (α, b) is a quaternion algebra over k, that is, an

Azumaya algebra over k of fc-dimension 4. One can choose a λ -basis {1, w, υ, uv} of D

such that the multiplication in D is given by u2 = a, v2 = b, vu= —uv. Let G = SL1(D) be

the kernel of the reduced norm 7Vred of D over k restricted to the group GL^D) of

invertible elements. G is an anisotropic A:-form of (SL2)k if D is non-split. The Dynkin

diagram of G^ consists of a single vertex only, hence the only conjugacy class of proper

parabolic subgroups is given by the class of Borel subgroups, which can be represented,

over k, by the fc-group B of upper triangular matrices of determinant 1.

Now G operates λ>morphically and A -linearly on the affine fc-space D by conjugation.

This operation gives an operation on the prQJective A>space P[D)k^Pk. Let V denote

the fc-subvariety of nilpotent lines of P(D)%. It is easily checked that G(£) operates

transitively on V(k) and that B is the stabilizer subgroup of the nilpotent line of V(K)

represented by the matrix

Hence V^G%/B. By 3.7 we know that V is defined over k, but we here will give an

elementary argument for this fact which will give us the equation with coefficients in k

defining the complete curve V. If x = ξ + ηxu + η2v + η3uvED, then the reduced norm

Nred and the reduced trace S r e d are given by the formulae Nτed(x) = ξ2 — η2a — r\\b + r\\ab

and Sτed(x) = 2ξ. The variety of nilpotent elements of D% is defined by the equations

Nred(x) = Sτed(x) = 0. These are equivalent to ξ = 0 and η2a + r\\b = r\\ab. Hence a defining

equation for k(V) is given by X2a+ Y2b = ab. This is the function field associated to

D = (a, b) by Witt [37, p. 464].

The field k(V) is isomorphic to F: = k(Z)(y) with an indeterminate Z and y — y/aZ2 + b

(with' X = b/y, Y = aZ/y, and y = b/X, Z = bY/aX). If D splits over k, then clearly F is
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a splitting field of G. So let D be non-split. Since Dk(Z) ^ ( - a/b, aZ2 + b), we may assume

that Fis a maximal commutative subfield of Dk(Z). We then obtain a maximal anisotropic

fc(Z)-torus T in Gk{Z) defined as the kernel of NormF / f c ( Z ) (restricted to the invertible

elements) (cf. 2.4). The torus T is not defined over k. It splits over F and hence F is a

splitting field of G.

Every splitting field of G is a splitting field of D and vice versa. If now L is such

a splitting field, then, over L, the element b is a norm from the L-algebra L[X~\I(X2 — a)

(cf. [19, Th. 15.7, p. 149]), hence there are elements ξl9 ξ2εL such that ξ2 = aξ% + b.

We then have a A -place φ: F-+Lu{co} with φ(Z) = ξ2 and φ(y) = ξ1^ Hence F is a

generic splitting field of G.

We now assume char(fc) to be arbitrary. Then for a9bek with bφO we obtain a

quaternion fc-algebra Z> with fc-basis {1, w, υ, uv} and multiplication defined by u2 = w + a,

v2 = b, vu = (l—u)v which is a full 2x2-matrix ring over k if and only if the equation

b = ξ2 + ξη — aη2 has a solution ξ, ηek [1, Th. 26, p. 146], or equivalently, if b is a norm

from the separable extension k[X'\l(X2 — X — a).

It is easily checked that the reduced norm and trace of D for x = ξ -Vη1u-\- η2v +

η3uveD is given by the formulae Nτed(x) = ξ2 + ξηί—η2a — (η2

2 + η2

rl3 — rl3a)b and

5'red(x) = 2<i;-l-f/1. As above, we get the variety V^G%/B of nilpotent lines of D% by the

equations A^red(x) = 5'red(x) = 0.

If char(/c) = 2, these equations are equivalent to the A -equation ξ2b + η2

2 + η2η3 +

η2a = 0. By [28, XIV, §5, Example, p. 221] this is the homogeneous equation defining

the Severi-Brauer variety associated to D.

4. Generic splitting of Azumaya algebras over fields. Let A be an Azumaya algebra

over an infinite field k, that is, A is a finite dimensional central simple /r-algebra, and,

by Wedderburn's theorem, there is a unique integer r > 0 and a central division algebra

D over k which is unique up to fc-isomorphism such that A^Mr+1(D). Let d = ind(A)

denote the index of A (that is, dimk D = d2), and let n be defined by

Then the semisimple fc-group G : = SLr+1(D) has the A -rank r and the absolute rank n

(cf. [6, 23.2, p. 2540).

Let A: be a splitting field of G. We then have Gκ^SLn + ί κ, and a maximal A -̂split

torus T of Gκ is given by the set of diagonal matrices

ί h 0

0 ί,

0 \

0

\ 0 0

withdet(ί)=l .
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FIGURE 1.

A basis A of the root system Φ(GK, T) is given by the ^-rational characters αf(ί): = VΓΛ»

for i = 1,..., n, and its Dynkin diagram is given by Figure 1.

Since G is of inner type 1An we have a fc-variety Vθ for any subset Θ^A by 3.7.

The function field Fθ = k(Vθ) has the properties described in 3.10 and is a generic

(9-splitting field of G by 3.16.

4.1 THEOREM. Let {α ί l ?..., αfl} = A\Θ for Θ^A. Then, for every field extension

k' ofk, we have Vθ(k')φ0 if and only if'md{A ®kk') divides gcd(d, il9..., it).

PROOF. It suffices to show the equivalence for the case k! = k. Using the description

of the relative Dynkin diagram of γAn as given in [32, Table II, p. 55] we see that

A\A0 = {<xd, α 2 d , . . . , 0Lrd) with Ao as in 3.4 (v). It follows that d \ gcd(d, il9..., /,) if and

only if A\Θ^A\A0. However, the latter condition is equivalent to VΘ(k)Φ0 by 3.7,

"(ϋi)o(ϋ)'\ D

4.2 COROLLARY. ( i ) Let L and k! be two field extensions ofk such that kf is a

k-specialization of L. Then indiA®^) divides ind(A®kL).

(ii) Ford=ind(A)andi1,..., iιθsin4Λ wehaveind{A®kFθ) = gcd(d, il9..., /z).

(iii) Let i divide d. Then there is a parabolic subgroup P of Gks such that V=GkJP

is defined over k and that ind(A ®kk(V)) = i. Every field extension k' ofk with ind(A ®kk
f)

dividing i is a k-specialization ofk(V). A possible choice is P=PΔ.for Ai = A\{(xi}.

PROOF. ( i ) For i = 1,..., n let Vt: = VΔ. with Δt = Λ\{α f}, and let Ft: = k(Vi). It

follows from 4.1 that, for any extension kx oϊk, the set of ally e {1, ...,ή] with V^k^) Φ0

consists precisely of the multiples of ind(A ®kkί). Applying this to the fields L, k' yields

(i), since Vj(L)Φ0 implies V}{k') = 0 by 1.3.

(ii) We have Vθ(Fθ)Φ0 which implies ind(A®kFθ)\g : = gcd(d, il9..., it) by 4.1.

Let p be a prime dividing g and ps the highest power of p which divides g. It suffices

to show that ps divides ind(A®kFθ). There is finite separable field extension k' of k

such that/7s = ind(^®fcA:/) (cf. [22, 14.4, Lemma b, p. 260]). Thus 4.1 and 3.10 yield

that k! is a ^-specialization of Fβ. Now (i) implies that/?5 divides ind(A®kFθ).

(iii) For P=PΔi the first statement follows immediately from (ii). The second

statement follows from 4.1 and 3.10. Π

The generic splitting field k(V0) of G (cf. 3.11) is of transcendence degree n(n +1)/2

(apply 4.4 below with Θ = 0). If n>\, then there are generic splitting fields of G of

smaller transcendence degree, as follows from 4.3 and 4.4.

4.3 COROLLARY. If the greatest common divisor of il9..., ix and d is 1 then the

function field Fθ: = k( Vθ) is a generic splitting field of G — SLr + X(D).
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PROOF. By 4.2 (ii) we find that Fθ is a splitting field of A and hence of G. Cor.

3.17 (iv) now implies that Fθ is a generic splitting field of G. Π

4.4 PROPOSITION. For Θ<^Δ, let Vθ be the corresponding k-variety as defined in

3.7. If {α f l,..., och} = A\Θ with /*!<•••< it and if i0 : = 0, then

i

j=ι

Moreover, VθxkK is isomorphic, as a K-variety, to the projective variety Flagβ(X" + 1)

of flags of subspaces of the (n + \)-dimensional affine K-space {0} = UoczU1ci czUi

with ά\mκ Uj = ijforj=0,...,/.

PROOF. Let {eu . . . , en + 1} denote the standard basis of Kn+1. The group

Gκ^(SLn+ί)κ operates A'-morphically and transitively on Flagβ(jKπ+1), and the stabi-

lizer subgroup P of the flag

{0} = [/ ocί/ 1cz-- c:[/ I, Uj = Ke1®--®Keij^Kn+1 , for 7 = 1 , . . . , /

is defined by the matrices in SLn+ι(K) of shape (Ajr)jj, = 1 i + 1 . Here Ajr is an

(ij—ij-Jxiij' — /^.J-matrix for j,j' = l,..., Z+l, where we define iι+1: = n + l9 and

Ajr = 0 for j>jf. Since P contains the Borel subgroup B of Gκ defined by the upper

triangular matrices, it is a parabolic subgroup of Gκ. The dimension of its unipotent

radical $U{P) is equal to the sum of the number of entries of all matrices Ajr for j<f.

By 3.2, this yields the right hand side of the formula for the dimension of Vθ.

By 3.1, the reductive part of Pθ is the centralizer &(TΘ) in Gκ of the A:-torus

TΘ = [ ΓΊ Ker(αv)

Hence TΘ(K) consists of diagonal matrices

i 1 ? •> Uχ9 ti2,..., ti2,..., tij+1,

iι times Ϊ2~ii times iι + ι~U t i m e s

with det(ί)= 1 and iι + ί =n+1. Now it is easily checked that the Levi subgroup of P is

the centralizer &{TΘ) of Tθ in Gκ. Therefore we obtain

by 3.1. Hence P = P β , which proves 4.4, since G κ /P^Flag β (X w + 1 ) . Π

We now restrict our attention to proper maximal subsets of A. Set

e : = 4 : = d\{ α ί }, Vt=VAi9 Ft: = KVd

for i e {1,...,«}. The following corollary is a direct consequence of 4.4.

4.5 COROLLARY. For / = ! , . . . , « we have dim F t = i(n + 1 — ί)? #«d ^ w, as <z
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K-variety, isomorphic to the Graβmann variety Grass ί(Kπ + 1).

4.6 COROLLARY. For i=l,...,nthe equality mά(A ®kFi) = gcd(d, i) holds, and for

every field extension kf of k we have Vι{k')Φ0 if and only if ind(A(g)kk') divides i. In

particular, Fjd is a purely transcendental extension ofkforj= 1,..., r.

PROOF. The equality holds by 4.2, the rest of 4.6 follows from 4.1 and 3.10. •

As it was mentioned in [4, p. 103], the generalized Severi-Brauer varieties described

there are precisely the A;-forms of the Graβmann varieties from 4.5, except in the case

21 (n +1) and i = (n+1)/2, where also an outer form of Grass/(k/I+1) exists. This will

naturally occur in the theory of the generic splitting of special unitary groups of type
2An which will be discussed in §6 (cf. 6.5).

4.7 COROLLARY. For every field extension L of k, the following statements are

equivalent:

( i ) L is a splitting field of G.

(ii) VxxkL^Pl

(iii) V1(L)Φ0.

The statements (i), (ii), (iii) remain equivalent if Vγ is replaced by Vn in (ii) and (iii).

PROOF. The statement (i) implies (ii) by 4.4. Obviously, (ii) implies (iii). If (iii)

holds, then dL : = ind(̂ 4 ®kL) 11 (resp. n) by 4.6. Since dL | (n +1), it follows in both cases

that L is a splitting field of A and hence of G. D

4.8 REMARK, (i) Since the separable closure ks is a splitting field of G (cf. 1.7

(iii)) it follows from 4.7 that Vt xkK = Pks f°Γ *'= 1> π, hence Vx and Vn are ^-dimensional

Severi-Brauer varieties over k [28, Chap. X, §6, p. 168]. More generally, all Vt for

ΐ = l , . . . , n are isomorphic to "generalized Severi-Brauer varieties" introduced in 1976

by Heuser (for /1 (n+1)), [12, p. 30, 46], and later (1991) for all i by Blanchet [4, p. 100,

102] and Schofield/v.d. Bergh [26]. The generalized Severi-Brauer varieties are the

varieties W{ of rank / left ideals of A in [12] and [26] (and right ideals in [4]). Using

the isomorphism A <g)kK^Mn+ί(K), one verifies similarly as in the proof of 4.4 that Gκ

operates transitively on W{ and that PΔ. stabilizes a rank / left ideal of Mn+ί(K) under

left multiplication. Hence Wi^GK/PA. = Vi, for i— 1,...,«. (Note that PΔ. are precisely

the proper maximal parabolic subgroups of Gκ.) It follows that the fields Ft are the

generic partial splitting fields of A, introduced by Heuser [12, Def. 7, p. 22 and p. 63],

Blanchet [4, Def. 3 and Th. 2, p. 103] and Schofield/v. d. Bergh [26, Sec. 3]. The

statement ind(^ ® f c ^) = gcd(d, i) and the equivalence of 4.6 was proved by Heuser [12,

p. 73, p. 43], Blanchet [4, Th. 3, p. 104, Prop. 3, p. 103] and Schofield/v. d. Bergh [27,

Th. 2.5]. Blanchet and Schofield/v.d. Bergh also proved the equivalence of "(i)" and

"(ii)" of 3.10 for the special case V= Vt.

(ii) The assertion mά(A (χ)fci<V) = gcd(d. i) with F~k{V^ in 4.6 shows a significant

difference in the behavior of the generic splitting of Azumaya algebras and that of
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quadratic forms as discussed in the next paragraph (cf. 5.8).

4.9 REMARK. Taking i= 1 (or I = Λ) we obtain from 4.6, 4.7 and 3.10 the results

of Amitsur [2, 9.1, p. 26] (see also [3, Th. 2, p. 1]), which were later proved by Roquette

[23, Th. 2, p. 413] with methods from Galois cohomology and which generalize the

result of Witt on quaternion algebras (cf. Example 3.20).

Amitsur also showed that the automorphism group of F over k is isomorphic to

A*/k*. This can be shown in the following way: The automorphism group of Vx is

certainly a fc-form of the group (PGLn + 1)k which is isomorphic to (GLn+1)k modulo its

center #((GLM+1) fc). Obviously it contains the group GL^Ay^iGL^A^^GL.+ ^D)/

^(GLr+ί(D)) which is a fc-form of the group above. For dimension reasons, this is

already the full automorphism group of V1. But its fc-rational points are just given by

The corollary in [3, p. 3] characterizes splitting fields K of A by the condition that

k(V{) is contained in a purely transcendental extension of K. This condition is, by 3.10,

equivalent to Vx(K)φ0, hence the assertion of the corollary follows from 4.6.

4.10 REMARK. In [23, p. 424f], Roquette associates to every Galois-2-cocycle

γ G i/2(Gal(K/fc), K*) (where K is a finite Galois extension of fc), and every multiple m

of its Schur index d a "Brauer field" Fm(y) of transcendence degree m — \ over k.

In our terminology, the cocycle y defines a central /c-division algebra D of index

d9 the multiple m of d is just n+1 =(r + \)d. These data define the semisimple group

G = SLΓ+1(D), and the Brauer field Fm(γ) defined by Roquette is precisely the function

field kiV^, where Vx is a Severi-Brauer variety satisfying Gκ/PΔi = Vx xkK. Clearly we

hereby obtain an infinite series of generic splitting fields of D as r ranges over all

non-negative integers. It can easily be deduced from 3.18 that, for m'<m, the field Fm(y)

is a purely transcendental extension of the field Fm,(y), which is the content of [23, Th.

4, p. 413]. In particular, all the fields Fm(y) are purely transcendental over the smallest

one, Fx(y), which is isomorphic to the generic splitting field of Ga n as constructed in

3.19, since the semisimple anisotropic kernel of <SLr+1(D) is a direct product of r + 1

copies of SLX(D).

5. Generic splitting of quadratic forms. Let k be an infinite field with char(fe) φ 2

and let (M, q) be a regular quadratic fc-space of dimension m, that is, M is an m-dimen-

sional λ>vector space and q is a quadratic form with nondegenerate associated bilinear

form ( , ) such that q(x + y) = q{x) + q(y) + (x, y) holds for all x, yeM. The discriminant

d(M) of (M, q) is defined to be the square class ( - l) [m/2]det((Mί, Uj)iJssltmm.tJk*2ek*lk*2.

(Here {uu ..., um} denotes a A:-basis of M.) We have a Witt decomposition of M into

mutually orthogonal subspaces

= i
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where Ht is a hyperbolic plane for i = 1,..., r and (M a n, qan) with qan : = # | M β n is a maximal

anisotropic subspace of (M, <?) which is unique up to A -isometry and is called an

anisotropic kernel of the quadratic space (M, q). The integer r > 0 is the Witt index of

(M, q), and we have m = 2r + dim k M a n and d(M) = d(MΛn). It is convenient to choose a

λ -basis {e 1 ? . . ., em} of M as follows. For ί = 1, . . . , r, let {eί? e m _ ί + 1 } c M b e a basis of

^ such that q(ei) = q(em_i+1) = 0, (ei9 em_i + 1)= 1, and let {έ?,| / = r + 1, . . . , m - r } be any

basis of (M a n, # a n). A basis like this we will call a W7tt basis of (M, g). We mention that

{eί9..., er} (as well as {em_ r + 1,.. ., em}) generate a maximal totally isotropic subspace

of (M,q).
Let G : = SO(q) be the special orthogonal group of (M, g). If m = 2, then G is a

fc-torus and its generic splitting field is described in 2.3 and 2.5. Hence we now assume

m > 3 . This implies that G is semisimple. The following proposition is obtained from

[6, 23.4, p. 256f] and Definition 1.8.

5.1 PROPOSITION. Let (M, q) be a regular quadratic k-space of Witt index r. Then

r is the rank of G = SO(q), and a maximal k-split k-torus S of G is given, with respect to

a Witt basis {ef} of (M, q), by the diagonal matrices

5 = d i a g ( s l 5 . . . , s r , 1 , . . . , Us'1,.. .,s^ι)eGUM), su ...,srεk* .

A reductive anisotropic kernel of G is given by Gan = SO(qΛn), where (M a n, qΛn) is the

anisotropic kernel of(M, q). More precisely, we have £?(S) = S x k Ga n, and Ga n is semisimple

if and only */dimk M a n > 3, and is an anisotropic k-torus of rank 1 if and only ϊ/dimk M a n = 2,

in which case G is quasi-split but not split. G is split over k if and only if diτnkMan< 1.

Let Kbe any splitting field of G. Then the rank of Gκ is n : = [m/2]. We modify the

Witt basis given above over k into one over K by setting e\ = e{ for iφ { r + 1 , . . . , m — r)

and by replacing the basis et of M a n for ΐ = r + l , . . . , m — r by a Witt basis e\ of

(Man®kK,qan®kK)suchthatq(ed = q(ef

m-i+ί) = O,(e[,^

T be the A^-torus of Gκ which is given with respect to the new basis by the diagonal

matrices

ί = diag(ί ! , . . . , / „ , ί ,^ 1 , . . . ,/Γ 1 )GGL(M® f c X), tl9..., tneK* .
Λ

(Here the symbol 1 means that the component 1 occurs (resp. does not occur) in the

middle according as m being odd (resp. even).) Then, by the above, T is a maximal

torus of Gκ which splits completely and contains Sκ.

A basis A of the root system Φ = Φ(GK, T) is given by the A-rational characters

α f(ί): = tit[+\, for i = 1,..., n — 1, and, in addition,

f tn, if m is odd, i.e., G is of type Bn

! / „ _ ! / „ , if m is even, i.e., G is of type Dn.

The Dynkin diagram of Gκ is, respectively, given by Figure 2.
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FIGURE 2.

If m is odd or d(M)=l9 then G is of inner type, while G is of outer type 2Dn for

m even and d(M)# 1 [32, 2.3, p. 39 and Table II, p. 56f].

For i = 1,...,«, define standard parabolic subgroups of G κ by

. = p J ? where ^ : =
^dXία.} if G is of inner type or i<n — 2

zf\{αn_ l 9 αM} if G is of outer type and i = n— 1 .

(Intentionally, we leave />„ undefined in the outer type case.) Then Pt is, for every /, a

proper parabolic subgroup of Gκ such that G ^ / P ^ F ^ A Γ for some k-variety Vt

and such that Pt is maximal with this property. This follows by 3.7, since in the outer

type case, the subset {a n _ l 9 a M }cJ is the only equivalence class under the *-action

which contains more than one element [32, Table II, p. 57]. Also we have

PiiDB = P0 = (T,Ua\oceAy, and B is the stabilizer of the complete isotropic flag of

Λ^-spaces given by Uι = Ke\ © 0 Ke\ for i = 1,..., n.

5.2 LEMMA. Letiε{\,..., n] if G is of inner type, and /e{l,..., n—1} otherwise.

(i) If the Witt index of(M, q) is at least i, then G operates transitively over k on

the set of totally isotropic subspaces U of M of dimension i with stabilizers isomorphic

to Pt unless G is of inner type Dn and i>n—l, in which case we have two orbits with

stabilizers isomorphic to Pn-ι and Pn.

(ii) Conversely, if there is a parabolic k-subgroup of type Δi9 then there is a totally

isotropic subspace U of M of dimension greater than or equal to i, hence the Witt index

of(M, q) is at least i.

PROOF, (i) The statement on the operation follows by Witt's cancellation

theorem on quadratic forms.

For the Witt basis {e l 9 . . . , em}, the /c-subspace U=ke1 0 © ket of M is totally

isotropic and U®kK=Uh hence the stabilizer subgroup Pv of U is a fc-subgroup of G

such that Pv K^>B. Therefore it is a parabolic A -subgroup of G.

The group Pv(k) consists of matrices (An)hr = lt2,3 where All9 A33 are i x /-matrices,

while A22 is an (m-2i) x (m - 2i)-matrix and Ajr = 0 for j>f. From the definition of the

Witt basis, we conclude the identities A33 = IA^Ί and 6 = ̂ 226^22- Here / denotes

the i x /-matrix with Γs in the antidiagonal and zero elsewhere, while Q is the matrix

describing the bilinear form on the subspace Mo generated by ei + ί,..., em_i. This
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implies that A32 is uniquely determined by A11eGLi(k) with det(^ 3 3 ) = det(y411)
 x and

that A22 e G0(k), where Go : = SO(M0, q\Mo). Hence Pυ has a Levi λ -subgroup isomorphic

to GLt x Go given by the matrices

4 n 0 0

0 Λ 2 2 0

0 0 L4iYJy

The torus Γd. = (f l α 6 j .Ker(α)) 0 is a A:-torus and given by the diagonal matrices

with /j = =/. except when G is of type Dn and ί>n— 1, in which case 7^. is given

by the matrices

diag(rl9 ...,tn-ί9 *, •, CΛ, , h1)

with tx= = tn~1, where *, * denotes entries which show up as diagonal elements

only over a splitting field of G and which otherwise have to be replaced by 2 x 2 matrices

which represent an anisotropic torus.

Now it is easily checked that, in any case, the Levi subgroup of Pv is the centralizer

of TΛi in G. Hence Pv,κ = mTA)®u(Pu))κ = nτA)κ B = &(TAι)κ ®u(Pi) = Pi by 3.1.

This proves (i).

(ii) Applying the arguments above to the pair K, K instead of k, K we find that

the existence of a parabolic fc-subgroup of type At implies the existence of a totally

isotropic A>subspace U of dimension / in M. •

By 3.15 (iii) the function field F~k{V^ is a generic Arsplitting field of G.

5.3 THEOREM. Let i e {1,...,«} ifG is of inner type, and ze{l , . . . ,«— 1} otherwise.

The field Fi = k(Vi) is a generic field for splitting off at least i hyperbolic planes from the

underlying quadratic space. Namely, (M ®kFh q®^d has the Witt index >i, and for

every field extension L of k the quadratic space (M ® fcL, q®kL) has the Witt index >i

if and only if L is a k-specialization of Ft.

PROOF. Since Vi(F^)φ0 it follows from 5.2 (ii) that (M®kFhq®kF^ has the
Witt index >/. By 5.2 and 3.10 we have: (M®kL,q®kL) has the Witt index>i if and
only if Vi(L)^0, and the latter holds if and only if L is a ^-specialization of Ft. Q

If G is of outer type, there is no regular extension of k which splits (M, q) totally

(that is, gives the maximal Witt index); this follows from 3.5.

5.4 COROLLARY. It G is of inner type, then k(V0) and Fn are generic splitting

fields of G. IfG is of inner type and m is even, then also Fn_x is a generic splitting field

of G. IfG is of outer type, then k(V0) and Fn^.1 are generic quasi-splitting fields of G,

and the fields kQd(M))'Fn_ί and kQd(M))-k(V0) are generic splitting fields ofG.
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PROOF. It follows from 3.11 that k(V0) is a generic quasi-splitting field of G and

that this is a generic splitting field if G is of inner type. In that case also Fn is a generic

splitting field which is obvious from 5.1, 5.3, and* 3.17 (iv). If G is of inner type and m

is even, then the discriminant of (M, q) is 1. Hence if L is a field extension of k such

that the Witt index of (M(g)fcL, q®kL) is >n-1, then M®kL^H±M' with a hyper-

bolic L-space H and a regular L-space M' of dimension 2 and discriminant 1, which

therefore is a hyperbolic plane. Hence GL splits. The last statement follows from 3.6 in

combination with 3.17, since for n>3 the field fcalg of 3.6 coincides with k(yfd(M)). •

EXAMPLE. TO clarify the situation in the case of a non-*-invariant Θ we take m

even and θ = {aί, ...,xn-1}. This is, in the outer type case, not *-invariant, and

Fβ^kθ = k(yJd(M)) (cf. 3.16). Clearly Gkθ is of inner type, Fθ is a splitting field of Gk<9

by 5.4 and hence also of G. Of course Fθ is then a fortiori a quasi-splitting field of G.

However, it is not a generic quasi-splitting field of G by 3.12, since k is not algebraically

closed in Fθ.

5.5 COROLLARY. The transcendence degree ofFt is given by the following formulae:

i(4n-3Ϊ +1)/2 if m is odd, \<i<n;

i(4n —3i—1)/2 ifmiseven,l<i<n — 2;
trαeg F; =

n(n —1)/2 */ m is ei en, G is of inner type, n—l<i<n;
(tt + 2)(n—1)/2 i/m is even, G is of outer type, ί = n—l;

n(n— 1) I/JW

w α« increasing sequence of (non-canonical) k-linear embeddίngs

r = « or /i— 1 according as G is inner or not.

PROOF. By 3.2, the dimension of Vt is the cardinality of uΔi. This can be computed

by using the explicit descriptions of the root systems of types Bn and Dn as given in

[10, p. 252 and p. 256] or [33, p. 30, p. 35]. (Note: The description of positive roots

of Dn in [10, p. 256] is erroneous. For a correct description cf. [33, p. 35].)

By 5.3, Fi+1 splits off at least i+1 hyperbolic planes of (M, q). Hence Vi(Fn+1)^0

by 5.2. Thus, by 3.10, there is a fc-linear embedding of Ft into a purely transcendental

extension of Fi+ί. By the above we have trdegF i + 1 >trdeg/ Γ

i , hence it follows from

[24, Lemma 1, p. 209] that there is a fc-linear embedding Ftc^Fi+i. A similar argument

gives the A -linear embedding Fn. c=-+k(V0). Alternatively, we here can use the natural

map induced by the inclusion B c_> Pn, for a proper choice of a Borel group B. •

5.6 COROLLARY. We have Fx =k(V1)^k{q)0, where k(q)0 is a generic zero field as

defined by Knebusch [16, 3.2, p. 69, and p. 71].
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PROOF. VX is, by 5.2, the variety of the isotropic lines in M, which can be defined

by the equation q(x) = 0 for x e M. •

5.7 COROLLARY. Let i= 1, . . . , ri where ri = [m/2] or [m/2] — 1 according as G is

of inner or outer type. Assume L is an arbitrary field extension ofk. Then (M®kL, q®kL)

is of index >i if and only if the free composite i y L is purely transcendental over L. In

particular, (M, q) is of index > i if and only ifFt is a purely transcendental extension ofk.

This follows from 5.3 and 3.10. Corollary 5.7 was obtained by Knebusch for /= 1

[16, 3.8 and 3.10, p. 72].

5.8 REMARK. It is easily seen that a suitable subsequence {F^} of the sequence

{Fj in 5.3 is a so-called generic splitting tower as originated by Knebusch [16, §5,

p. 78]: Let ή = n if G is of inner type and let ri = n—l otherwise. We define ij induc-

tively. Let io = 0 and Fio :=k. If ij<ri is defined let ij+ί e {1, . . . , ri} be the smallest

number such that the Witt index of (M®kFij+ί,q(g)kFij+i) is bigger than that of

{M®kFip q®kFij). I n t n e inner case the sequence Fij9j> 1, is a generic splitting tower.

If G is of outer type and F: = Fijf is the last element of this sequence, then the anisotropic

kernel of (M®kF, q®kF) is a binary form, hence its special orthogonal group is an

anisotropic F-torus which is generically split by the field F(yJd(M)) (cf. 2.4). In this

case we define Fijl + ί : =F(N/d(M)) as the last element of the sequence.

Knebusch gives in [16, Example 5.7, p. 80] an example of an anisotropic form of

arbitrary dimension together with a generic splitting tower {Kt} such that every layer

splits off precisely one hyperbolic plane. Clearly, for such a form, the sequence {Fj is

also a generic splitting tower. We have Kί=Fί, however, for / > 1 , the transcendence

degree of Kt exceeds that of Ft by ί(ί-1)/2 if m is odd or ί<n — 2, and if m is even and

i = n— 1, by (n— l)n/2 in the inner case and by (n— l)(n — 2)/2 in the outer case.

On the other hand it is easy to see that there are forms for which the sequence

{Fj degenerates completely in the sense that Fί already is a generic splitting field of

SO(φ). For example, any Pfister form φ has the property that it is hyperbolic already

if it is isotropic [25, 4, Cor. 1.5, p. 144]. This implies that all the associated fields Ft

are ^-specializations of each other. Since the special orthogonal group SO(φ) is of inner

type if the dimension of φ is > 4 (the discriminant of a Pfister form of dimension > 4

is 1), it follows from 3.17 (iii) that the Ft are all generic splitting fields of SO(φ).

As has also been observed by Knebusch, a generic zero field of any orthogonal

summand ψ of a Pfister form φ with dim ψ = (dim φ)/2 + 1 is a generic splitting field of

SO(φ).

This seems to indicate that in general it might be difficult to find a generic splitting

field with minimal transcendence degree for an arbitrary reductive group.

As a consequence of Theorem 5.3 we obtain a corollary which can be also derived

from [16, Th. 3.3, p. 69] by using a generic splitting tower of Knebusch (cf. [25, 4.

Cor. 6.10, p. 160]).
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5.9 COROLLARY. Let L be an arbitrary field extension of k. If i>0 ist the Witt
index of(M®kL, q®kL), then i is the Witt index of(M®kFbq®kF^).

PROOF. The field L is a ^-specialization of Ft by 5.3. However, L is not a

^-specialization of Fi+1, for otherwise the Witt index of (M(g)kL, q®kL) would be at

least i-h 1 by 5.3. Thus the result follows from 5.3. D

6. Generic splitting of the classical groups. In §§4 and 5 we studied the generic

splitting of groups of type ίAn, Bn, and certain cases of type 1Dn and 2Dn (namely, those

for which the underlying central A>division algebra is k itself).

In this section we investigate the generic β-splitting of G for arbitrary *-invariant

subsets Θ of A and G of types 2An, Bn, Cn,
 1Dn,

 2Dn in a uniform manner. This is

possible because all these groups are special unitary groups of certain (skew-) Hermitian

forms over some finite dimensional division algebras over k.

Let k be an infinite field of char(fc)#2. Suppose E is a field extension of degree 1

or 2 over k and D is a central division 2s-algebra of degree d over E. Let σ: D^>D,a\->aσ

9

be an involution on Z>, so that σ is ^-linear, of order < 2 and (ab)σ = bσaσ for all α, be D.

Assume that M is an m-dimensional right Z>-vector space and that h: MxM^D is a

non-degenerate ε-σ-Hermitian form on M with ε = ± 1. In particular, we have

h(xa, yb) = aσh(x, y)b, h(y, x) = εh(x, yf for x, yeM, a, beD. The pair (M, h) is called an

ε-σ-Hermitian space.

Let now G : = SU(h) be the special unitary group of (M, h). Then the index r of

(M, h) is the fc-rank of G (cf. [6, 23.9, p. 266]).

If G is of type 2An, then the involution on D is of second type, hence E is separable

of degree 2 over k. In this case we let n > 1. If G is of type Bn, then d = 1 and D = E = k

and we may assume n > 2. If G is of type Cn or Dn, we have E = k. We may then assume

n>3.

Let K be a splitting field of G (for example, K is a separable closure of k). The

group G x is isomorphic to (SLn+1)κ (resp. (SO2 n + 1)κ, (Sp2n)κ, (SO2n)κ) if G is of type
2An(resp.Bn,Cn9Dn).

Then the absolute rank n of G is the rank of Gκ and is given by the formulae

n + 1 =md in case 2^4Π and n = [md/2] in the other cases.

In the case 2An we take the maximal AΓ-split X-torus T given by

^ d i a g ^ , . . . , / n + 1 ) e G ( K ) , tl9..., tn+ί eK*

and the basis A from §4 for the root system Φ = Φ(GK, T), which is given by α f(ί): = Vi +1>

for / = 1 , . . . , «.

In the cases i?n, Cπ, Z>π we proceed as follows. Similarly as in §5 we can use a Witt

basis of the underlying bilinear ^Γ-space Kmd to embed Gκ into (SLmd)κ. Then a maximal

AΓ-split X-subtorus ToϊGκ is defined by the set of diagonal matrices (cf. [6, 23.9, p. 266])

/ = diag(ί1, . . . , / „ , ί, t~\ . . . , tϊι)eG{K), tu...,tneK* .
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Λ

(Here the symbol 1 means that the component 1 occurs (resp. does not occur) in the

middle according as G is of type Bn or not.) A basis Δ = {<χl9..., α j of the root system

φ = Φ(GK, T) is given by α t(ί): = ίfa +\, for i = 1, . . . , n — 1, and in addition,

tn9 if G is of type Bn;

t2, if G is of type Cn;

tn-itn, if G is of type Dn

(cf. [33, p. 30, 32, 35] and [10, p. 252, 254, 256]).

If deg(£//c) = 2, then for a field extension k! of fe, the fc-algebra D ®kk! is an Azumaya

£®fcfc'-algebra if E®kk' is a field, or it is a direct sum of two copies of an Azumaya

fc'-algebra A' if E®kk ^k' ®k'. In Theorem 6.1 below we use the following notation:

ind(D ®kk>): = j
(indfc,(,4') otherwise.

We now prove a theorem corresponding to 4.1 for special unitary groups G. If G

is of outer type, we have to replace the set Δ\Θ occurring in 4.1 by a suitable set of

representatives in Δ\Θ of *-orbits. The function field Fθ:^=kθ(Vθ) is a generic

<9-splitting field of G by 3.16. It has the equivalent properties listed in 3.10 if Θ is

•-invariant.

6.1. THEOREM. Let G be of type 2An, Bn, Cn,
 xDn or 2Dn. For each ^-invariant subset

ΘczΔ let {α£ l,..., α f j be the set of representatives of *-orbits of Δ\Θ such that

iv e {1, . . . , n — 1} in case 2Dn and iv e {1,..., [(n + 1 )/2]} in case 2Am and let

{α f l,..., αfί} = Δ\Θ otherwise. If Vθ is the k-variety associated to Θ according to 3.7,

then for every field extension k! ofk we have Vθ{k')Φ0 if and only if d! :=ind(D(χ)fc/c/)

divides gcd(d, il9..., it) and max(ΐ 1 ? . . . , /f)<d' rank(GλO

PROOF. If Gk. is of inner type ίAn the equivalence follows from 4.1, since the last

condition in 4.1 implies the condition max( i l 5 . . . , it)^d' τanί(Gk'). Therefore it suffices

to show the equivalence for the case kr = k. Namely, we have to show: The index d = ind(D)

divides gcd(d, il9..., /,) and max( i l 9 . . . , h)<dr if and only if Vθ(k)Φ0.

A maximal A:-split tortis 5Όf G is given, with respect to a Witt basis {et } of (M, h),

by the diagonal matrices ^ = diag(s 1 ? . . . , ^Γ, 1, . . . , 1, s'1,..., S^^GMJ^D) with SjGk*

for7= 1,. . . , r (cf. [6, 23.9, p. 266]). Let ks be a separable closure of k.

Using a Witt basis over ks we may obtain an embedding Gks c_> (SLmd)ks such that

a maximal fcs-torus Tks of Gks is, respectively, described by matrices diag(ί 1 ? . . . , tn+ί)

in case 2An and diag(ί 1 ? . . . , tn, 1, t~x,..., i f x ) otherwise with tl9..., tn+ x e kf, and Skt,

as a subtorus of Tks, is given by the following matrices

s = d i v L g ( s l 9 . . . , s l 9 . . . 9 s r 9 . . . 9 s r 9 1 , . . . , 1 , s r - 1

9 . . . 9 s r - 1

9 . . . 9 s ϊ 1

9 . . . 9 s ϊ 1 )

d times d times (m — 2r)d times d times d times
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with sl9 ...,sr as above.

We first evaluate the cases Bn, CM, Dn. If G is of type Bn, then d= 1 and we find,

for ί e { l ? . . . , « } ,

if i = r<n

Φ) = sis

t

1

r+\ if l < ϊ < r

if Ϊ > r .

If G is of type Dn and n = rd+l, then d < 2 and απ_ ^s) = αn(s) = sr. Hence G cannot

be of inner type in this case and is necessarily of type 2Dn.

We find in case d > 1

Φ)= <

1

if i = rd<n

if i = r d = n

if i=jίί,

if d/pi or

for is {1 , . . . , n— 1} if G is of type 2Dn and ie {1 , . . . , n} otherwise.

If d = 1 and G is of type Z>π we have the same formula with the exception that

Φ) = sn-isn> if i = r = n.

If d= 1 and G is of type Cπ, then r = n (cf. [35, §91, p. 31]), and we find that α { | s

is not trivial for all i = 1,..., r = n.

In the case 2An we obtain similarly, for i= 1 , . . . , [(n+1)/2],

sr if i = rd<(n+1)/2

1 if djfi or i

Using the notation of 3.4 (v) we now see that

{otjd, ocn+ί-jd\j= 1,.. , r] in case 2An

{oίμ \j= 1 , . . . , r) u {αw} in case 2Dn, if d<2 and n =

{ajd I y = 1 , . . . , r} otherwise

for d > 1. It follows that d \ gcd(d, il9..., it) and max (il9..., ί,) < rd if and only if J \ β c

r). The latter condition is equivalent to Vθ(k)φ0 by 3.7, "( i i i )o(i i)" . Π

For any αt G J let At be the maximal *-invariant subset of Δ which does not contain

αf. It follows from [34, Table II, p. 55ff] or also from the above calculations that all

those sets can be described as follows.
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Δ\{θLi9 «„+!_,} if G is of type 2An and i e { l , . . . , [(n+1)/2]};

J \ { α f } if G is of type i?w, Cπ or */)„ or i<n— 1;

zl\{αn_ 1 ? α j if G is of type 2Z>Π and i = n — \ .

We emphasize that, in case 2An, the set At is always of order n — 2 except if 2 | (n+1)

and i = (n +1)/2, in which case it is of order n — 1 since αi = α l l + 1 _ ί .

In all cases, let Vt: = VΔ. be the fc-variety associated to Δi according to 3.7, and let

F{ = fe( V() be its function field. Applying 6.1 for (9 = A{we obtain the following corollary.

6.2 C O R O L L A R Y . Let ie{\,..., [ ( n + l ) / 2 ] } ifG is of type 2An9 let ie{\,...,«} if

G is of type Bn, Cn or ίDn, and ie{l,...,«-1} ifG is of type 2Dn. Then for every field

extension k! of k we have Vlk')Φ0 if and only if d' : = ind(D® f cfc') divides i and

l<iAf<rank(Gk/>.

We now list generic (quasi-)sρlitting fields of G with low transcendence degrees.

Most, but not all of them, are defined by maximal proper *-invariant subsets Θ of Δ.

For G of type Bn this is discussed in 5.4.

6.3 COROLLARY. Let the notation be as in 6.2.

( i ) Let G be of type 2An and let ή = [(n + 1 )/2]. Ifgcά(ή, d) = 1, then Fn, is a generic

quasi-splitting field of G. More generally, let n " e { l , . . . , n'} be some integer such that

gcd(n', n", </)= 1 and let Θ: = A\{un,, αB», ocn+ί _„<, (xn+1 _„-}. Then k(Vθ) is also a generic

quasi-splitting field of G. Moreover, the fields EΈn> and E'k(Vθ) are generic splitting

fields of G, respectively.

(ii) Let G be of type Cn. Then every (generic) splitting field of D is a (generic)

splitting field of G. For every odd ie {1,...,«} the field Fi = k(V^ is a generic splitting

field of G.

(iii) Let G be of type 1Dn. Then Fn_x is a generic splitting field of G. Ifn is odd

or d— 1, then Fn is also a generic splitting field of G.

(iv) Let G be of type 2Dn. Ifn is even or ίfd — 1, then Fn_1 is a generic quasi-splitting

field of G. Ifn is odd and Θ = J\{α M _ 2 , α π _ 1 ? α n } , then k(Vθ) is a generic quasi-splitting

field. Ifd(M) denotes the discriminant of the Hermitian space (M, h), then a generic splitting

field is given by k(yJd(M) ) Fn_ίifn is even ord=l and by k(^Jd(M)) k( Vθ) ifn is odd.

PROOF. We recall once and for all that, by 3.17 (iv) (resp. (iii)), some field Fθ is

a generic splitting field (resp. quasi-splitting field) of G if it is a splitting field (resp.

quasi-splitting field) of G.

( i ) Let kx be either Fn, or k( Vθ). Then it follows from 6.1 or 6.2 that rank(Gfcl) > nr.

Therefore Gkί is a special unitary group (SUn+1)kί of maximal rank and hence quasi-split.

Now it follows from 3.6 that E-kί is a generic splitting field, since E is isomorphic to

the field fcalg.

(ii) If d= 1, then G splits [35, §91, p. 31]. Hence the first assertion follows. Since
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and d is a power of 2, it follows from 6.1 that inά(D®kF^=\ for odd /.

Thus GF. splits.

(iii) Since V^F^) Φ 0 we have dt: = ind(D ®kF^ | gcd(d, ϊ) by 6.1. If n is even, then

dn _! = 1, and if « is odd, then dn = 1, since d is a power of 2. Hence if n is odd we obtain

«<rank(GF n) from 6.1, therefore GFn splits.

We have (n- l)/dn_ι ^ r a n k ί G ^ ^ ) by 6.1. Therefore, if dn_ί = 1, then GF n_ t is the

orthogonal group of a quadratic form of dimension 2rc with discriminant 1 and of Witt

index >n— 1. Hence the form is hyperbolic, which implies that GFnί splits.

It remains to show that dn_1 = 1 for odd n. If n is odd, then d<2, because d\2n

and d is a power of 2. Hence rfn_ x 12. Assume Jπ_ x = 2. Then the rank rπ_ x of GFn_ t is

at least (n—1)/2 which implies n = r π _ 1 J π _ 1 + l. This is impossible since G is of inner

type 1Dn (cf. [32. Table II, p. 56]). Hence necessarily dn_1 = l.

(iv) If n is even or d=l9 then, as above, dt :=ind(D®kFi)=\, hence GFn_ι is the

orthogonal group of a quadratic form of dimension In over Fπ_ γ with Witt index « — 1

and discriminant d(M)Φ\, since F n _ x is regular over k. Hence GFnί is quasi-split. If

n is odd, then d<2 (cf. the proof of (iii)). Obviously Θ is *-invariant. Hence we may

apply 6.1 to find that d' = ind(D®kFΘ)=\ and n— 1 <rank(GFjg>). Therefore GFθ is of

rank n— 1 which means that it is quasi-split. Since G is semisimple, we have k(^/d(M)) =

kalg where £ a l g is given by 3.6. The rest of the statement follows from 3.6. •

6.4 REMARK. For groups of outer type there are other non-regular generic splitting

fields with possibly lower transcendence degrees: Let ΘaA be any not necessarily

•-invariant subset. By 3.16 there is a generic <9-splitting field Fθ = kθ(VΘ) of G. Applying

the results of §4 (resp. §5) to Gk& for special proper maximal subsets Θ we obtain for

example:

(i) In case 2An: Let 6) = J \ { α 1 } . Then kΘ = E and Vθ is an ^-dimensional

Severi-Brauer variety over E and the function field E(VΘ) is a generic splitting field of

G E β , and hence of G.

(ii) In case 2Dn: Let β = J \ { α π _ 1 } . Then kθ = k(y/d(M)) and Vθ is an

n(n— l)/2-dimensional variety (cf. 5.5) over kθ and the function field kθ(Vθ) is a generic

splitting field of Gkθ by 6.3 (iii), and hence of G.

6.5 REMARK. In case 2An and 2 | ( n + l ) we find an outer form of a generalized

Severi-Brauer variety as discussed in §4: Let i: = (n+l)/2 and J ^ J N ^ α J . Then Δt is

•-invariant, hence the associated variety VΔ. is defined over k (cf. 3.7). This is the outer

form of GmsSi(kn + 1) mentioned after 4.6.

7. Generic splitting of almost simple groups. In this paragraph we will give generic

splitting and quasi-splitting fields of the absolutely almost simple ^-groups including

the exceptional groups and groups over fields of characteristic 2 which have been

excluded in §§5 and 6. We emphasize that the notions of quasi-splitting field and splitting
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field coincide in the case of semi-simple groups of inner type, as it follows from the last

statement of 3.4 (v). In the outer type case, one may obtain generic splitting fields out

of generic quasi-splitting fields by applying 3.6. Therefore, in this case we only give

quasi-splitting fields. But the same method can also be used to construct generic splitting

fields directly.

Let G be any almost simple fc-group. Let T be a maximal fc-torus of G. Let

A = {α 1 ? . . . , απ} be the set of simple roots of G% with respect to 7> and some ordering

of the root system. We assume that the roots are named as indicated in Figure 3.

We will give generic splitting or quasi-splitting fields of G in terms of its Dynkin

diagram (over a splitting field) by describing the maximal subsets Θ of A such that Fθ

is a generic splitting or quasi-splitting field. We will use the abbreviations Ai = A\{oci}

7.1 LEMMA. Let Θ c A. Then resF θ(α)/0/θA all OLEA\Θ.

PROOF. AS Fθ contains kθ9 we may assume that k = kθ. Hence we may assume

that Θ is * :invariant. Then our claim will follow from 3.7, "(i)=>(iii)", applied to Fθ

instead of k. •

In the following, we will indicate how to use 7.1 together with 3.17 (iii) or (iv) and

the information encoded in the index of G as described in [32, §2, p. 38ff] just for the

particular case 1An9 since the considerations in all the other cases are quite similar.

Case An. Generic splitting fields in case 1An are given by Ft for any / which is

coprime to the index doϊ the underlying central A -division algebra D (cf. 4.3). In order

to see this, let G denote an almost simple fc-group of type ίAn and let k' be a field

extension of k.

We will verify that, for any ie {1,...,«} coprime to d, the condition resfc,(αf)#0

implies that Gk, is split. It follows from the description of the index of Gk- in the sense

of [32, §2, p. 38ff] that res r (α f )#0 if and only if i is a multiple of d' : = ind(D®fcfc').

As ά divides both d and z, and since gcd(d, i) = 1 by assumption, we find d'= 1, which

implies that Gk, is split.

In particular, for k' = Fh it follows from 7.1 that r e s ^ α ^ O . By the above, GF.

splits, and 3.17 (iii) or (iv) proves that Ft is a generic splitting field of G.

For 2An, we use the notation of [33, p. 55] or of §4 and let ρ = [(n +1)/2]. Generic

quasi-splitting fields in case 2An are given by Λ\{αρ, απ + 1_ρ} if gcd(ρ, d)=l and by

^ \ { α ρ , α π + 1 _ ρ , α ρ _ 1 , α Λ + 2_ρ} if gcd(ρ,d)^l (cf. 6.3 (i)).

Case Bn. Generic splitting fields are given by An (cf. 5.4).

Case Cn. Generic splitting fields are given by A{ for any ί which is coprime to the

index of the underlying division algebra. As this is a power of two, /just has to be odd

in this case (cf. 6.3 (ii)).

Case Dn. Generic splitting fields for 1Dn are given by An_1 (cf. 6.3 (iii)). For the

outer case we again use the notation of [33, p. 57] which is consistent with §§5 and 6.
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Generic quasi-splitting fields for 2Dn are given by Λ\{αn_ l9 α j if </ = 1 or 21 n and

by J \ { α π _ 2 , α n _ l 9 απ} if n is odd (which implies that ά<2 since dis a power of 2 and

divides 2ri) and d = 2 (cf. 6.3 (iv)).

Case 3Z)4,
 6Z)4. A generic quasi-splitting field is given by Θ = {α2}.

Case E6. Generic quasi-splitting fields are given in case 1E6 by Δ2, A4, in case
2 £ 6 b y z l \ { α 2 , α 4 } .

Case EΊ. Generic splitting fields are given by A3, A5, AΊ.

Case E8. Generic splitting fields are given by A4, A5, A6, A8.

Case F 4 . Generic splitting fields are given by A2, A3, A4.

Case G2. Generic splitting fields are given by Aί9 A2.
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