
Tόhoku Math. J.
46 (1994), 1-12

ON THE CLASS NUMBER ONE PROBLEM FOR
NON-NORMAL QUARTIC CM-FIELDS

STEPHANE LOUBOUTIN

(Received July 14, 1992, revised June 14, 1993)

Abstract. We give explicit upper bounds for the discriminants of the non-normal

quartic CM-fields with class number one, and for the discriminants of the dihedral octic

CM-fields with class number one. These upper bounds are too large to enable us to

achieve the determination of these number fields. Nevertheless, whenever a real quadratic

number field k is fixed, we can explain how to determine the non-normal quartic CM-

fields or the dihedral octic CM-fields with class number one and with real quadratic

subfield k.

1. Introduction. Uchida [17, Theorem 2] proved that there exist only finitely
many imaginary abelian number fields with class number one. In fact, the class number
one problem for imaginary abelian number fields has lately been settled by Yamamura
[20], and it is now known that there are exactly fifty-four imaginary abelian quartic
number fields with class number one, that forty-seven of them are bicyclic biquadratic
(see [1]) and that seven of them are cyclic quartic (see [14]). Hence, it is time to move
on to the determination of the non-abelian or even non-normal CM-fields with class
number one since Uchida [17, Remark 1] also proved that there exist only finitely many
CM-fields of fixed degree with class number one. Here, we are interested in the lowest
degree cases, i.e. in the non-normal quartic and normal dihedral octic cases. The aim
of this paper is to get reasonable upper bounds for the discriminants of these number
fields and to explain why these upper bounds would eventually make it possible to
determine these number fields thanks to a reasonable amount of numerical class number
computations.

Theorem A shows that a dihedral octic CM-field has relative class number one if
and only if it is a normal closure of a non-normal quartic CM-field with relative class
number one. Theorem B provides a lower bound for the relative class numbers h*(K)
of non-normal quartic CM-fields K. From this lower bound, we get an upper bound
for the discriminants of the non-normal quartic CM-fields K with relative class number
one, together with an upper bound for the discriminants of their real quadratic subfields
k. Then, Theorem C provides much better upper bounds for the discriminants of the
non-normal quartic CM-fields with relative class number one which are quadratic
extensions of a fixed real quadratic number field. Theorem D provides us with a strong
necessary condition for a CM-field to have class number one, and enables us to sieve
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the non-normal quartic CM-fields which are quadratic extensions of a fixed real quadratic
subfield, with only few number fields remaining. At present, the techniques we have
developed here enable us to find the non-normal quartic CM-fields or the dihedral octic
CM-fields with class number one which are extensions of a fixed real quadratic number
field. For example, in Theorem E we show that there are exactly six non-isomorphic
non-normal quartic CM-fields with class number one, and exactly five dihedral octic
CM-fields with class number one which are extensions of Q(>J 5).

We would like to thank the referees for careful reading of the previous versions
of this paper and for valuable suggestions for improvements. Moreover, we point out
that thanks to Theorem B the author and R. Okazaki have lately managed to determine
all these non-normal quartic CM-fields with class number one: there are thirty-seven
non-isomorphic such number fields (see [11]).

2. Lower bounds for relative class numbers of dihedral octic CM-fields and of
non-normal quartic CM-fields. The normal closure of a non-normal quartic CM-
field is a dihedral octic number field. To clarify the relationship between these number
fields, we first consider the relationship among the subfields of a general dihedral octic
number field. Now, let TV be a dihedral octic number field, so that its Galois group is
the dihedral group Z)4 of order 8 with the generator-relation presentation Z>4 =
<r, s; r4 = s2 = Id, srs = r3}. Then, N has five quartic subfields and three quadratic
subfields. Let N+ be the unique normal quartic subfield of N and let k+ be the quadratic
subfield of 7V+ such that N/k + is cyclic. The lattice of subfields is as in the Figure
with

Gal(N/k2) = {Id,

Ga\(N/K'2) = {Id,
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Kί9 K'ί9 K2 and K2 are the four non-normal quartic subfields of TV, and kί9 k2 and k+

are the three quadratic subfields of TV. Moreover, K[=r3(K1) is isomorphic to Kx and

K2 = r3(K2) is isomorphic to K2.

THEOREM A (see [19, Corollary]). Let the notation be as above. We denote by K

any one of the four non-normal quartic subfields of TV and by k its quadratic subfield.

Then we have the following relations for Dedekind zeta functions, discriminants and relative

class numbers'.

(a) Uί)=ί«1ωf«2ωί*t/cβω2.
(b) ζN(s)/ζN+(s) = (ζκ{s)/ζk(s))2.

(c) d(N)/d(N+) = (d(K)/d(k))2- Hence, d ^ d ^ ) = d(K2)/d(k2).

(d) N is a CM-field if and only if K is a CM-field. Moreover, if N is a CM-field

then N+ is the maximal totally real subfield of N and

h*(N) = QN(h*(K))2/2.

Here 2^6(1,2} is Hasse's unit index of N. Hence, h*(K1) = h*(K2). In particular,

h*(N) = 1 if and only if h*(Kx) = h*(K2) = 1.

PROOF. The eight elements of D4 fall into five conjugacy classes:

C2 = {r2}, C3 = {r,r3}, C^ = {s,sr2} and C5 = {sr,sr3}.

Hence, there are five irreducible characters. Let \j/i9 1 <i<4 be the four characters of

degree one and let φ0 be the character of degree 2. As in [13, pp. 52-53], the irreducible

characters of D4 are as in Table 1.

Let M be an intermediate number field between TV and Q. Let //=Gal(TV/M).

Let χ0 be the principal character of H and let χM = X* be its induced character of Z)4.

Hence,

( * ) —

TABLE 1.

Ψo

Φl

Φl

Ψl

c1

2

1

1

1

1

c2

-2

1

1

1

1

c3

0

1

1

- 1

- 1

c4

0

1

- 1

1

- 1

c5

0

1

- 1

- 1

1
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TABLE 2.

XN

XN +

χk+

XK,

χkι

Xκ2

χk2

XQ

Q

8

4

2

4

2

4

2

1

c2

0

4

2

0

2

0

2

1

0

0

2

0

0

0

0

1

Q

0

0

0

2

2

0

0

1

c5

0

0

0

0

0

2

2

1

Then, ζM(j) = L(j, χ0, N/M) = L(s, χM, Λ/β). Now, from (*) we get Table 2.
Hence, we get (a) and (b) from the following factorizations:

XN+ = and ζN+ = Lφ1Lψ2Lφ3Lφ4,

and ζk+=LψιLψ2,

and ζKl = LψQLψ1Lψ3,

and ζkί = Llj,ίLψ3,

h 1/̂4 and CK2 = L^QL^XL^A,

and ζfc2 = LψίLψ4,

XQ — ΦI
 a n d Cβ = ^ i

(c) follows from (b) and the functional equations satisfied by the four Dedekind
zeta functions ζN, ζ N + , ζ κ and ζk. Indeed, set

Λ_ d{N)d{k)2

d(N+)d(K)2 '

Then, there exist integers m and n (such that m + In = 0) which depend on the numbers
of real and complex embeddings of k, K, N+ and N such that
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f(s) :=AsΓ(s/2r(Γ(S)/2γ

= A 2Γ(s/2)m(Γ(s)/2)n (thanks to Theorem A(b))

satisfies f(s)=f(\ — s), hence is holomorphic in the whole plane. Looking at the value

at s= — l we get « = 0. Looking at the value at 5 = 0 we then get m = 0. Hence,

f(s) = As = A1~s=f(l — s) implies A = \. Let rx(M) denote the number of real

embeddings of any number field M. We note that we have

Now we prove the first part of (d). Assume that TV is a CM-field. Then, the complex

conjugation c commutes with any element of the Galois group Z)4 of N. Hence, c = r2

and N+ is totally real. Thus, k is a real quadratic number field and (*) yields 0 = — 2r1{K).

Hence, K is a totally imaginary quartic number field that is a quadratic extension of

the real quadratic number field k. Thus, K is a CM-field. Conversely, assume that K is

a CM-field. Then Kis totally imaginary and A: is a real quadratic number field. Hence,

N also is totally imaginary. Thus, r1(7V) = 0, r1(k) = 2 and rx(K) = 0. Then (*) yields

Γl(7V+) = 4. Thus, ./Vis a CM-field.

The second part of (d) follows from (b), (c) and the analytic class number formulas,

since + 1 are the only roots of unity in N and since Lemma 1 below provides Qκ = 1.

LEMMA 1. Let K be a non-normal quartic CM-field which is a quadratic extension

of a real quadratic number field k. Then, the roots of unity in K are — 1 and + 1, and

the fundamental unit εo(JΓ) of K may be taken to be to the one εo(Λ)> 1 ofk, i.e. Qκ=l.

PROOF. There exist non-zero integers n and ή such that εo(k) = ± (εo(K))n and

NN/k(ε0(K)) = (ε0(k))n\ and we may choose εo(K) so that n is positive. Hence,

(εo(k))2 = Nκ/k(ε0(k)) = (Nκ/k(ε0(K)))n = (εo(k))nn'. Hence, n= 1 or n = 2. If we had n = 2

then, as yj ±εo(k)ek, we would have K=k(yJ ±εo(k)) and K would not be totally

imaginary if we had + = + , or if we had + = — and Nk/Q(ε0(k)) = -1, while it would

be normal if we had + = — and Nk/Q(ε0(k))= + 1 .

LEMMA 2 (see [5, Lemma 2] and [15, Lemma 3]). Set c = (3 + 2JΎ)/2. Let

MφQ be an algebraic number field. Then, ζM has at most one real zero in the interval

[1 — (1/c log(| d{M) I)), 1 [ if such a zero exists, it is simple.

COROLLARY 3. Let the notation be as in Theorem A. Set Aκ/k = d(K)/d(k), which

does not depend on the choice of K by Theorem A(c). Set /c = [ l— (l/4clog(^4K/Jc)), 1[.

Note that ζK[ = ζKi and ζκ>2 = ζKr

(a) At least one ofζKί(s) and ζKl(s) has no real zero in the interval Ic.

(b) If ζk(s) has no real zero in the interval Ic, then ζκ(s) also has no real zero in

this interval.
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PROOF. The first assertion follows from Lemma 2 (with M=N) and Theorem
A(a), and the second assertion follows from Lemma 2 (with M=N) and Theorem A(b),
thanks to Theorem A(c) which provides

LEMMA 4 (see [8, Proposition A(a)]). Let K be a totally imaginary number field
of degree IN such that ζκ(

so)^^for some soe[(l/2), 1[. Then,

THEOREM B. Let K be a non-normal quartic CM-field with real quadratic subfield
k. Set Am = d(K)ld(Jc). Then, we have:

h*(K)>— \ A κ i k if Aκlk>3 \05

200 \og2(Aκ/k)
 Klk-

andh*(K)>\ ifAm>5 \09. Hence, h*(K)>l ifd(k)>25 \08 or if d(K)> 13Ί0ls.

PROOF. The analytic class number formula and Lemma 1 show

H*(K) Ress=1(Cft) (2π)2 v ""•"" Res s = 1(ίk) 2π2

We now estimate Ress=1(£κ) and Ress=1(ζfc) from below and above, respectively.
Let TV be the normal closure of K. Then TV is a dihedral octic CM-field and therefore

by Theorem A(c) and Corollary 3(a) we may assume that ζκ(s) has no real zero in the
interval [l-(l/4clog(^4K/k)), 1[. Hence we can apply Lemma 4 to K with s o = l -
(l/4clog(^κ/fc)). Thus, thanks to 5Aκ/k<d(K)<(Aκlk)

2, we get

4π

On the other hand, if we denote by χ the primitive character associated to k, then
we have (see [10])

Ress=1(C*) = Al, χ)<y \og(d(k)) + 2 + 7~^og(4π)< 1 log(^κ/fc).

Here, y is the Euler constant, (2 + y-log(4π))/2 = 0.023 <log(2)/2 and d(k)<Aκ/k/2
for K/k is ramified at least one finite place (see [11]). Hence, we get the desired lower
bound from the following lower bound:
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(5Aκ/kY^J\og2(Aκ/k)'

Finally, thanks to Aκ/k>2d(k) and Aκ/k>yj2d(K), we get the last assertion.

Even though this upper bound for the discriminants of the non-normal quartic

CM-fields with class number one seems too large to enable us to find all such number

fields, it is reasonable to expect to achieve the determination. Indeed, thanks to Theorems

C and D below, we will show that whenever k with class number one is fixed, only very

few number fields K can have class number one, and the determination of these

number fields does not require a great amount of computation. Let us note that this

upper bound for d(K) is more satisfactory than the ones given in [16].

THEOREM C. Let K be a non-normal quartic CM-field with real quadratic subfield

k. Whenever h*(K)=l and d(K)>lβd(k)2, we have

481 V d(K)ιiy\og(d(K))'

where eo(k)> 1 and h(k) are the fundamental unit and class number of k, respectively.

In particular, the non-normal quartic CM-fields K which are quadratic extensions of

β(V 5 ) and which have class number one satisfy d(K)<3Ί0Ί.

PROOF. From [8, Theorem 1] we get that ζk has no real zero on ]0,1 [. By Lemma

1, the regulator Reg(JΓ) of K equals 2 log(ε0(Λ)). By Corollary 3(b), we can apply Lem-

ma 4 with so = l—(l/4clog(d(K))), so that we get the desired result from

(2π)2h(K) Reg(iίΓ) 4π2h(k) Iog(ε0(*))

4cell8c\og(d(K))

3. The non-normal quartic CM-fields with class number one which are quadratic

extensions of a given real quadratic number field.

THEOREM D. Let K be a CM-field of degree IN with maximal totally real subfield

k. Let d(K) and d(k) be the absolute values of the discriminants of K and k. If K has

class number one, then for any prime ideal P in K which is not inert in K/k we have

PROOF. Let Rk and Rκ be the rings of algebraic integers of the number fields k

and K. Since K has class number one, k also has class number one, so that there exists
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α in Rk which is square-free in Rk such that K=k(yJ— α). Here, α is totally, positive.
Moreover, there exist a and b in Rk such that Rκ = Rklω] w ^ h ω = (a + bj — (x)/2.

P being principal, we have P= (z) for z = x+yω e Rκ with x and y in /?fc. Moreover,
), for otherwise P would be inert in K/k. Now, we have

NKIQ(P) = Nm(NKlk(z))=-1 iVk/Q(Z2 + £2 72α)

with Z = 2 x + a j and Γ=j>. Hence, k being totally real and α being totally positive, we
get

Nm(P) > -L (Nk/Q(X)2 + NklQ( YfNklQφ20i)) > -1- Nk/Q(b2«) .

On the other hand,

d(K) = d(k)2Nk/Q((ω-ω')2) = d(k)2Nk/Q(b2(x),

where ω' is the complex conjugate of ω, so that we get the desired result.

REMARK. The inequality in Theorem D can be written as

NKIQ(2P)>NklQ(d(K/k)),

where d(K/k) denotes the relative discriminant of K/k. Thus, this inequality probably
does not hold for d(K/k) large, hence might be useful for the class number one problem.

For example, let K be an imaginary cyclic quartic number field with class number
one associated to a quartic odd Dirichlet character χf. In 1972 Uchida proved in [18,
Proposition 6] that their conductors are less than 50000. At that time, he did not wish
to carry out the required computations of the possible number fields up to such a large
upper bound for these conductors, until he had a much better upper bound. It was
Setzer who did these computations eight years later and showed that there are seven
such number fields. We would like to show that if Uchida had come up with this
Theorem D, then he could have obtained the seven such number fields with only little
numerical computation, computations which could have easily been done on the
computers at this time.

Indeed, we may suppose that the conductor / of K is a prime p such that /? = 5
(mod 8), so that d(K)=p3 and d(k)=p. If q is a prime such that χp(q)= + 1 , then q
splits in K/Q. Hence, Theorem C provides us with the lower bound q>p/\6. Now,
numerical computations show that there are only 10 primes p = 5 (mod 8) less than
50000 such that χp(q)Φ + 1 for any prime q with 2 <#</?/16, namely

pe{5, 13, 29, 37, 53, 61, 157, 173, 197, 373} .

Let us note that χp(q)= + 1 if and only if ^ ( p ~ 1 ) / 4 = 1 (mod/?). Hence, the computation
of the relative class numbers of these ten number fields would have provided him with
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the desired result.

Now, we do not want to dwell at length on the characterization of the non-normal

quartic CM-fields Kwith odd class numbers which contain Q(y/ 5 ) (see [3] and [11]).

One could show that any such number field K is isomorphic to some

with α = — — —

where q=\ (mod 4) is a prime which splits in Q(yJ 5 ) such that the class number of

the real quadratic number field Q(^5q) is 2 modulo 4, and where xq and yq are any

positive integers such that 4q = xq—5yq. Moreover, d(K5q) = 52q, and K5q and K5q>

are isomorphic if and only if they are equal, and they are equal if and only if q = qf.

Finally, using a straightforward generalization of [9, Theorem 5] to compute the quad-

ratic symbols which govern the decomposition in the quadratic extension

K/k = K/Q(yJ 5 ) of the prime ideal P of Q(y/ 5 ) lying above an odd prime /, we get

that Theorem D implies:

COROLLARY 5. Let q=\ (mod 4) be a prime which splits in Q(yJ 5). If K5q has

class number one, then the following two conditions are satisfied:

(a) For all odd primes with I — I = — 1 and I2 <q/\6, we have ( — I = — 1.
\ / / \qj

(b) For all odd primes with I — 1=1 and l<q/\6, we have I — 1= 1.

\ / / \qJ
THEOREM E. There exist exactly six non-isomorphic non-normal quartic CM-fields

with class number one which contain Q(yJ 5 ), namely:

K5t61 =

= fliV-(21+V5)/2), * 5 , 1 4 9 =

" (41 + 5 V 5

There exist exactly five dihedral octic CM-fields with class number one which contain

Q(yJ 5 ) and have class number one; namely the normal closures ofK5Aί; KSt6ί; K5 ί09;

^5,149; and ^5,389- They are also the narrow Hilbert class fields for the real quadratic

number fields ά V ^ ί ϊ ) , CXVTβί), ^(V^TO^), QiJJ^ΪW) and 7 ^

REMARK. The normal closure of K52β9 > which is also the narrow Hilbert 2-class

field for the real quadratic number field Q(>J5-269), has class number three. This field

has relative class number one, while its maximal real subfield Q^J 5 , >J269) has class

number three.
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PROOF. We wrote a program to sieve the primes # = 1 (mod 4) which split in
QϋyfJ) such that d(K5fq) = 52q<3 l0Ί, i.e. such that #<12 105 and that (a) and (b)
of Corollary 5 are satisfied. We found that there are nine such values of #, namely:
#e{29,41,61,89, 101, 109, 149,269, 389}. Now, only six of these values satisfy
A(GC\/5ί)) = 2 (mod 4), namely:

# G { 4 1 , 6 1 , 1 0 9 , 1 4 9 , 2 6 9 , 3 8 9 } .

It remains to prove that the six corresponding quartic number fields have class number
one. We first note that thanks to Minkowski's theorem, it suffices to prove that the
prime ideals L of K such that Nκ/Q(L)<(3/2π2)y/d(K) are principal, i.e. it suffices to
prove that the prime ideals P of k = Q(yJ 5 ) such that NklQ(P)<(\5/2π2)y] q are inert

in K/k, i.e. satisfy —— = — 1. Let us note that 2 is inert in k/Q and remains inert in

K/k provided that # = 5 (mod 8). Indeed, thanks to [4, Theorem 119], the prime ideal
(2) of k splits or remains inert in K/k according as x2 = — α (mod 23) has a solution in
Rk or not. Taking norms, we get that if this equation has a solution, then x2 = q (mod 8)
also has a solution in Z. Now, the reader would easily verify that this holds whenever
#6(109, 149, 269, 389}, but does not hold for qe (41, 61} since the prime ideal (2) of
k = Q(s/ 5 ) splits in K/k for # = 41, while the ramified prime ideal (V 5 ) of k lying
above 5 splits in K/k for # = 61. Nevertheless, in both cases we get that K has class
number one, for if # = 41, then

is such that Nκ/k(β) = 2

(so that the prime ideals of K lying above the prime ideal (2) of k are principal); and
if # = 61, then

(so that the prime ideals of K lying above the prime ramified ideal (V/
Γ5~) of k are

principal). Let us note that from [12] we also check that K5A1 and K561 have class
number one. Hence, we get the desired first result. The referee pointed out to us that
one can find the values of the class numbers of the previous nine K5q

>s in [2].
Finally, let TV be the_normal closure of K5q. Then in the notation of Theorem A

we have N+ = Q(J 5 , V # ). Since
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KQίy/T,

provided thatpφ3 (mod 4) and qψ3 (mod 4) are distinct primes such that the funda-

mental unit εpq of the real quadratic number field Q(yjpq) satisfies TV ,— (εpq)= +1

(see [6]), we get the desired last result.

4. Conclusion. In order to determine all the non-normal quartic CM-fields and
the non-abelian normal octic CM-fields with class number one it would be worth
developing an efficient analytic method for computing relative class numbers of non-
normal quartic CM-fields (see [9] for such an efficient method in the case of non-
normal quartic number fields which are quadratic extensions of imaginary quadratic
number fields with class number one). We have lately settled this problem (see [7]).
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