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Abstract. A holomorphic line bundle over a compact complex manifold is shown
to be big if it has a singular Hermitian metric whose curvature current is smooth on
the complement of some proper analytic subset, strictly positive on some tubular
neighborhood of the analytic subset, and satisfies a condition on its integral. In partic-
ular, we obtain a sufficient condition for a compact complex manifold to be a Moishezon
space.

1. Introduction. In this paper, we consider sufficient conditions for a singular
Hermitian line bundle (L, h) over a compact complex space X to be big and, consequently,
for I to be a Moishezon space. A holomorphic line bundle L is said to be big if
dim Φj L®v \{X) = dim X for some v e N, where Φ( L®v (is the meromorphic map to some PN

by means of the global sections of L<8>v. A reduced and irreducible compact complex
space JΠs said to be a Moishezon space if the transcendence degree of the meromorphic
function field of X over a complex number filed C is equal to the dimension of X. By
Moishezon [Mo], X is a Moishezon space if and only if there exists a bimeromorphic
holomorphic map from a projective manifold to X. Our problem arose from an attempt
to generalize the following theorem due to Kodaira [Ko]: A compact complex manifold
is projective algebraic if and only if there exists a positive line bundle on it. There are
several works in this direction; [De], [G-R], [Ri], [Si 1], [Si 2], [Ji 1], [Ji 2], [J-S]
and so on. The former five works are related to smooth Hermitian metrics, and their
theorems are motivated by the conjecture of Grauert and Riemenschneider: A compact
complex manifold admits a smooth Hermitian holomorphic line boundle whose
curvature form is positive definite on a dense subset of it, then it is Moishezon. However,
it is not enough to characterize Moishezon spaces by smooth metrics as is mentioned
below. Let X be a non-projective Moishezon manifold. Then there exists a proper
modification π: X^X from a projective manifold. By Kodaira, X carries a smooth
integral Kahler form ώ. Then the push-forward π^ώ is an integral Kahler current which
is smooth on the complement of some proper analytic subset of X. However, X does
not have a smooth Kahler form (by [Mo], Kahler and Moishezon imply projectivity).
On the other hand, [Ji 1], [Ji 2], [J-S] are related to singular Hermitian metrics. Ji
and Shiffman [J-S] proved the conjecture of Shiffman: A compact complex manifold
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is Moishezon if and only if there exists an integral Kahler current on it. In our Main

Theorem, which is a generalization of Demailly's theorem [De], the curvature current

of a line bundle may have singularities and negative parts.

Let M be an ̂ -dimensional complex manifold and L a holomorphic line bundle

over M with a smooth Hermitian metric h. We denote the curvature form of h by

c(L, Λ):= λ /^ϊ(2π)~ 1 SδlogA. Set M(q,L): = {meM; c(L, h) has q negative eigen-

values and n — q positive eigenvalues at m) for each q = 0,l,...,n, and put M

(<q,L): = M(0, L) uΛf(l, L)u uM(q, L). Our goal is the following:

MAIN THEOREM. Let X be an n-dimensίonal reduced and irreducible compact complex

space and let L be a holomorphic line bundle over X with a singular Hermitian metric

h. Assume that the curvature current c(L, h) is smooth on the complement of some proper

analytic subset Z^X and that c(L, h) is strictly positive on some tubular neighbor-

hood B of Z. Then J X e (< 1 > L )c(L, h)n exists, where Xτcg is the smooth locus of X. If

Lrre (<i,L)c(^> h)n>0, then L is big, and, in particular, X is a Moishezon space.

The proof is based on some lemmas; the decomposition principle, Demailly's

generalization of WeyΓs formula for the asymptotic spectrum and the absence of essen-

tial spectrum. As a corollary, we reprove a characterization of Moishezon manifolds.

COROLLARY. Lex X be a compact complex manifold. Then X is Moishezon if and

only if X has an integral Kahler current which is smooth on the complement of some proper

analytic subset of X.

The author would like to thank Professor Hajime Tsuji for many valuable comments

and suggestions during the preparation of this paper. Thanks are also due to the referee

for careful reading of the manuscript.

2. Notation and preliminaries. In this section, we recall classical terminologies

on complex spaces and Hermitian manifolds (the reader is referred to [Fu], [G-H],

[Ve] and so on).

2.1. Differential forms and currents on complex spaces. In this paragraph, we

let X be an ^-dimensional paracompact complex space.

(1) We follow the definitions of smooth differential forms and currents by Fujiki

[Fu]. The sheaf sίτ

x (resp. sίψ) of germs of C°°-r-forms (resp. C°°-(/?, g)-forms) with

direct sum decomposition stfr

x= ®p+q=r^χq and the differentials d: s#x^>srfγι (resp.

d: s/x-
q^s/x

+1-q and 3": s/ψ^stψ**) with d=d + δis locally defined as follows and

globally defined by gluing them.

When X is a subspace of a domain V in Cι = C\zu ..., z,) with the ideal sheaf

/ = / * . Then we define s/x = s/x by s/x = s/v/(/ + /)s/V9 where /={f;fe/}, J

being the complex conjugate of / . Next define the j/κ-submodule s/x of sίγ by
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where s/vdef = {Σhγdgγ;hyGjtfv and gγεf} and similarly for srfγdβ. Then put

for r>\. These naturally form as j^-graded algebra stf\. Further, define the
jaVsubmodules ^xq (P + <l = r) of srfr

x by sfx % = {ψes/XtX; there exists a \[res/fr%
inducing φ}. Then it is immediate to see that we have a direct sum decomposition
^rχ= ®p+q=rs^xq' Moreover, the usual differetial </(resρ. d and ()) on s/r

v (resp. s/^q)
induces the one on stff

x (resp. <stfx'
q) with d=d + (). On the other hand, the natural

complex conjugation on s/r

v induces a C-antilinear involution on sfr

x. In particular,
we can define the real form on X as those left fixed by this involution. Morphisms of
complex spaces / : X-> Y and g: Y-+Z induce a natural pull-back homomorphism
/ * : s/l->s/x and satisfy f*og* = (gof)*.

(2) We let C\ denote the space of smooth r-forms on X with compact support.
Then the convergence in C\ (the so-called C°°-topology) is defined as follows. Take a
locally finite open covering <% = {Ua} of X with an embedding yα: ί/α->Fα for each α,
where Va is a domain in some Cla. Let {pa} be a smooth partition of unity subordinate
to the covering °U. Taking °U suitably, we may assume that the support of pa is compact
for each α. Then we say that a sequence {φm}meN (φm e Cr

x) converges to φ0 e Cx, if the
support of φm are contained in a fixed compact set K and for each α there exists a
compact set Ka in Va and a representatives ή>ma of paφm (m>0) with support contained
in Ka such that $ma^Φoa uniformly on Ka together with all the derivatives of their
coefficients. One can see that this definition is independent of the choice of % and {pα}
as above.

(3) Next we define the space D^ of r-currents on X as the vector space of
complex-valued continuous linear functionals on Cx

n~r with the C°°-topology. The
differential d:Dr

x^Dr

x

+1 is defined by dT(φ) = (-l)r+ίT(dφ) for TGDX and φe
Cχn~r~1 By ghiing them, we can define the sheaf <£ιχ of germs of r-currents on X
and d: @x^>@x

+1. We also denote by Cψ the space of smooth (/?, #)-forms on X with
compact support. The C00-topology of Cx'

q, the space Dx

q of (p, ^-currents, the sheaves
3)pjiq and d: Dx>

q->Dp

x

+lq, δ: @p

x>
q-+@x

+Uq, 3": Dp

x

q^Dp

x

q+\ 3": φ™^®™*1 with

d=<5 + ̂ are also defined as above and as in the case of usual complex manifolds.
(4) By (1) and (3) as above, we get complexes of sheaves on X

and

Note that the sheaves stfr

x and Q)r

x (r>0) are fine, but in general, (^*, d) and (βx, d)
are not resolutions of C (or R) on X (cf. [B-H]). There are natural homomorphisms
of complexes of sheaves
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Z-+R-+C-+(s/i, d)-+{β\> d)

which induce homomorphisms of hypercohomology groups

H*(X, Z)^H*(X9 R)-+H*(X, ̂ *)^>H*(X, 9f).

By the fineness of $4\ and Q)x (r>0), the canonical edge homomoφhisms

H*(Γ(X, s/*))^H*(X, j / J ) and H*(Γ(X, 9$))-+H*(X9 9%) are isomoφhisms.

(5) The singular support of a current TεDx

q is defined as the smallest subset 5

of X such that T is a smooth form on X— S.

(6) A. real C°°-(p, p)-form ξ on X is strictly positive (resp. semipositive) if there

exists an open covering <% = {Ua} of X with, for each α, an embedding yα: ί/β-»Kβ of

Ua into a subdomain Va in C'α and a C00 strictly positive (resp. semipositive) (p, p)-form

ξα on Fα in the usual sense such thaty*ξα = ί It/̂

(7) A (p,p)-current T is real if Γ = f in the sense that T(φ) = T(φ) for all

φeCn

x~
p'n~p, and a real current T is positive when (yf^Y^TXψΛφ)>0 for all ^re

(8) A real (p, p)-current Γ on X is strictly positive if there exists a strictly positive

C°°-(p, p)-form ωp on ^ such that T—ωp is a positive current on X. T is said to be

strictly positive at a point x e ^ if there exists a neighborhood £/ of x such that T\υ is

a strictly positive current on U.

(9) A real (1, l)-current ω o n l i s said to be a Kάhler current (cf. [J-S]) if it is

^/-closed and strictly positive on X. A rf-closed (1, l)-current or a J-closed C°°-(l, l)-form

is said to be integral if its hypercohomology class is in the image of H2(X, Z) under

the map in (4).

(10) Let π : L^X be a holomorphic line bundle over X. A singular Hermitian

metric h on L is a map Λ: £-•[— oo, +oo] which is given in any local trivializa-

tion τ : π " 1 ^ ) ^ P x C by h(v) = \φ)\e-+u™v)) for ΓeTΓ" 1 ^), where ψυeL\oc(U).

The curvature current of (L, A) is the J-closed (1, l)-current c(L, h) given by

c(L,h) = yJ—lπ~1d()ψu on {/, which is independent of the choice of the local

trivialization.

(11) We give a fundamental example of positive curvature current. Let A =

{zeC; \z\<r<\}. The trivial line bundle Θ^Δ has a singular Hermitian metric

I z I ~α = exp( — α log | z |) for α e /?, and the curvature current is α ^ — 1 π " ^^ log | z | (as a

distribution). Then it is positive if and only if α > 0 .

2.2. Hermitian geometry. Let (M, ω) be an w-dimensional complete Hermitian

manifold without boundary and E a holomorphic vector bundle over M with a smooth

Hermitian metric h (we will use the Hermitian metric on M and the associated

fundamental (1, l)-form interchangeably). For an open subset Ω<=M, we denote by

C%q(E) the space of E-valued smooth (/?, g)-forms with compact support in Ω. The

length of fe C%q(E) with respect to ω and h is denoted by | /1 ( = | / |ω>Λ to be precise,

but from now on we will omit indices ω, h, Ω, E and so on if thpre is no fear of
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confusion). Let dv be the volume form on M with respect to ω and set

which is the usual ZΛnorm with respect to ω and h. The ZΛnorm | |/| | determines a
Hermitian inner product in C%q(E), which we denote by (/, g). Let S£pά\E) be the
Hubert space completion of C$q(E) with respect to the above norm. We define the
Dirichlet form Q\f to be the densely defined quadratic form on J?%q(E) obtained by
taking the form closure (cf. [R-S]) of the form

where θΛ is the formal adjoint of c). When Ω is a smoothly bounded relatively compact
domain, the Rellich lemma (cf. [We]) implies that Q\f has discrete spectrum.

Let KczM be a compact manifold with boundary and dim K= dim M or K=0.
When Ω = M—K, there is a second way of defining Q^q-K, namely, as the ^-Neumann
form: this second way turns out to be equivalent to the first due to the completeness
of ω (roughly speaking, the ^-Neumann boundary conditions get pushed to infinity).
More precisely, we replace

by its graph closure to get a closed densely defined operator cί: ^PM-K~^^VM-K (which
acts in the sense of distributions). We let df: S£vj£-K-+S£*$!£ to be the Hubert space
adjoint of fi. &% is also closed and densely defined. Then we define QMQ-K as follows:

Dom Qpΰq-κ = Dom ̂ n Dom ft n if &'_*(£).

For the equivalence of this definition with the one given above, see [Ve, Theorem 1.1];
by the completeness of ω, we show that Cfe«_κ(£) is dense in Doing ft*. κ relative to
the graph norm / i - ( | | / H 2 + I I W + ll^*/H2)1/2 Associated to the form βftL*, the
selfadjoint densely defined operator DM-K»

 t n e Laplace-Beltrami operator, is defined
by

and

It is well-known that the essential spectrum of a densely defined selfadjoint operator
on a Hubert space is stable under compact operator perturbations. The essential spec-
trum means the closure of that part of the spectrum not corresponding to discrete
eigenvalues with finite multiplicity. In our geometric case we have:

PROPOSITION 2.3 (decomposition principle). In the notation as above, the Laplace-
Beltrami operators DM and OM-K have the same essential spectrum.
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PROOF. If A is a densely defined selfadjoint operator on a Hubert space, then the
essential spectrum σess(A) may be defined as the set of λ e R for which there exists a
noncompact sequence {fn}neN in the domain of A with

| |/J = 1 for each neN and lim \\(A-λI)fn\\ = 0.

Any part of such a sequence, from which it is impossible to extract a convergent
subsequence, is called a characteristic sequence for (A, λ).

Let φ be a smooth compactly supported nonnegative function on M which is equal
to one on a neighborhood of K. If {fn}neN is an orthonormal characteristic sequence
for (ΠM> λ) for some λ>0, then we set gn=f2n—f2n-i («>!)• We see that {gn}neN is
noncompact and that limπ_> ̂  | |(ΠM — Λ7)0UI = 0 The Rellich lemma implies that {φgn}neN

is compact, since φ is compactly supported. Moreover, by passing to a subsequence of
{fn}neN, if necessary, we may assume that gn^0 in the is-valued first Sobolev space
ϊ^1(ί/, E), where U is a relatively compact neighborhood of the support of φ. Then
lim,,^^ | |(DM-.K~Λ"OO~~0)0JI=O>

 a n d consequently

fe}Bεjv with £„: = "

ifc a characteristic sequence for (DM-K> Ό SO σess(ΠΛί)c:σess(ΠM-x) We trivially have

3. An L2-Riemann-Roch inequality. In this .section, we shall prove an L2-
Riemann-Roch inequality (3.5) which is a key lemma for the proof of our Main
Theorem. The ideas are the decomposition principle (2.3), an argument due to Nadel
and Tsuji [N-T] and the absence of essential spectrum (3.4).

Let (M, ώ) be an ̂ -dimensional complete Hermitian manifold without boundary,
L a holomorphic line bundle over M with a smooth Hermitian metric h and Ω c M a n
open subset.

DEFINITION 3.1. Denote by N%«L®v(λ) the number of eigenvalues of
counted with multiplicity, which are not greater than vλ (note the factor v). If Ω is not
relatively compact, the β&,i®v need not have discrete spectrum; in that case N%«L®v(λ)
can be defined as the dimension of a certain spectral projection. However due to the
following Proposition 3.4, we need not be concerned with this extended definition.

3.2. Demailly's generalization of WeyΓs formula for the asymptotic spectrum.
When Ω is a smoothly bounded relatively compact domain in M, Demailly [De] has
already computed N%?L®v(λ) asymptotically as v->oo for λe(0, oo)\(a countable set).
We shall not need the full statement of his result. Rather, we shall be content with the
following special case:

For λ > 0, we have
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)Af{<l,L)nΩ

3.3. The Bochner-Kodaira formula for non-Kahler manifolds. We will use the
following Bochner-Kodaira formula for non-Kahler manifolds which was given by
Griffiths [Gr, (7, 14)] to show the absence of essential spectrum (3.4). We can write
locally ω = yj— X^g^dz01 Adzβ. The torsion tensor Ta

βy is given by

where (g^) is the matrix so that YJkg
ik9jk=^)' F°Γ a n y smooth compactly supported

L®v-valued (0, q)-foτm with q> 1

on M, we have
(DM/, /)= IIV/||2 + v(Θ/, /) + (£/, f),

(Rf9 /) = (Ric/, /) + 2Re((?Γ* + T*U)f, / ) -

where
( i ) V/ is the covariant differential in the (0, Indirection,
(ii) <9/= (ql)'1 Xθ^f-λir..diqd¥~ί Λ Λ d~z*~« with θ^ being the curvature tensor

of L with the first index raised,
(iii)_ (Ric/, f) is defined analogously to (Θf,f) with 0^ replaced by the Ricci

tensor R^ with the first index raised,
(IV) ^((^l j r^Γ^/^/^Λ^Λ Λ dz^,
(v) T* is the adjoint operator of T.
In the following Propositions 3.4 and 3.5, we assume the following condition (*)

on the complete Hermitian manifold (M, ώ) and the holomorphic Hermitian line bundle
(L,h).

There exists a compact manifold AΓc M with boundary and
dim K= dim M or K= 0 satisfying the following property:
there exist voeN and a positive constant α such that
R + VΘ>OLV for v>v0 on M—K.

PROPOSITION 3.4 (absence of essential spectrum). Let (M, ώ) and (L, h) be as
in 3.3 (*). Then 2M!L®V has no essential spectrum in the interval (0, αv) for v>v0.

PROOF. By the decomposition principle (2.3), it suffices to show that QM°-K,L®V

has such a property. First we look at (0, l)-forms. We claim that βM-κ,L®v(/)>αv||/||2

for v>v0 and for all / eDomgjfcLKL®v. By the completeness of ω, it suffices to verify
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the above inequality for smooth compactly supported / with the Dirichlet boundary

condition on dK. By the Bochner-Kodaira formula, we have

Then by the assumption (*), we get the assertion for (0,l)-forms. Next, if fe

Dom UM-K n ^ M - K ( ^ ® V ) we have

> αv || φ | | 2 for v > v0 by our proof for (0, 1 )-forms

= ocv{\3M-κf f) for v>v 0 .
q.e.d.

3.5. An L2-Riemann-Roch inequality. Let (M, ω) and {L, h) be as in 3.3 (*).

Let β c M b e a smoothly bounded relatively compact domain. For any λ e (0, α), g ^ L ® v

has only discrete spectrum on the interval (0, vλ] by Proposition 3.4. So we can use the

min-max principle (3.6) to get the following first inequality:

by the min-max principle (3.6)

) by (3.2)
JM(<l,L)nΩ

for all v»0. Now let Ω expand toward all of M and let λ-> + 0. Then we have

r . Γdim//(°2)(M,L®V) I f /τ ,.Λ

hm inf κ-±£- > — c{L, h)n,
v^°° v " w JM(<I,D

where 7/(°2)(M, L®v) is the vector space of ZΛholomorphic sections of L®v with respect

to ω and hv. The right hand side may not exist, but in that case, dim i/(°2)(M, L®v) = + oo.

If the right hand side is negative, then the above inequality does not make sense.

PROPOSITION 3.6 (min-max principle, cf. [R-S, vol. IV, p. 76]). Let A be a self-

adjoint operator which is bounded from below, i.e., A>cl for some c. Define

μn{A)= sup UA{φ1,...,φn.1),

where

UA{<PI> "-»<Pn-i) = inf{0A> Aφ); φeDomA, \\φ\\ = 1 and φeJ[φl9..., φn-i\L}

Then, for each fixed n, either.

(a) there are at least n eigenvalues {degenerate eigenvalues counted as often as their

multiplicty) below the bottom of the essential spectrum {which is defined as

inf{λ\λeσcss{A)} if σess{A)=£0, and as +oo if σess{A) = 0), and μn{A) is the n-th
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eigenvalue counting multiplicity

or

(b) μn is the bottom of the essential spectrum, in which case μn = μn +1 = μn + 2 =

and there are at most n—\ eigenvalues {counting multiplicity) below μn.

4. Proof of the Main Theorem. We first prove the following:

THEOREM 4.1. Let X be an n-dϊmensional compact complex manifold and let L be

a holomorphic line bundle over X with a singular Hermitian metric h. Assume that the

curvature current c{L, h) is smooth on the complement of a divisor Z with only simple

normal crossings, and that c(L, h) is strictly positive on some tubular neighborhood B of

Z. Then Jχ(< χ L) c(L, h)n exists and

v . cdimH°(X,L®v) i f /r /λM

lim inf —- > — c(L, h)n.
π \ )

If$Xi<1 L)c(L, h)n>0, then L is big, and, in particular, X is a Moishezon space.

PROOF. Let Z=YaiZi be the decomposition into irreducible components. Let ω'

be any smooth Hermitian metric on X. Then we can take

for 0 < ε0 « 1 as a smooth complete Hermitian metric on X— Z (the so-called generalized

Poincare metric), where σt is a holomorphic section of the line bundle [ZJ which

vanishes to first order on Z f, and ||<τ£||ί is the norm form of a smooth Hermitian metric

on [ZJ such that ||<T£||£< 1. Let

hε' =hY\(-l°B\\Vi\\ΪY for each 0 < ε « l
ί

be a family of smooth Hermitian metrics of L|*_ z. Then (X—Z, ω) and (L\x_z, hε)

satisfy the condition 3.3 (*) with some KczX—Z. Then by (3.5), we have

dim H°{2U(X- Z, L®v) > ^- [ c(L, hε)
n + o(vn)

for all v»0, where H(2),ε(X—Z, L®v) is the vector space of ZΛholomorphic sections of

L ® v | x _ z with respect to ω and h\. By the positivity of the curvature current on B, the

singular Hermitian metric h has a plurisubharmonic weight on a neighborhood of each

point of B, i.e. h = e~φ (locally), φ being a plurisubharmonic function. By the convexity

properties of plurisubharmonic functions, h is bounded from below by a positive con-

stant δ0 (on each coordinate neighborhood), i.e. h>δ0 a.e. on B. Hence the Poincare

growth of ω gives H°{2U{X-Z, L®x)aH°(X, L®v) Now letting ε-» +0, we have
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dim H°(X, L®v) > — I c(L, h)n + o(vn)
" ! JX(<I,L)

for all v»0, since Z is a set of measure zero. \X{<1L)c(L, h)n is bounded from below,

since c(L, h) is positive at infinity B. By the finiteness of dimH°(X, L®v) and the above

inequality, $Xi<1 L) c(L, h)n exists. If \X{<1 L) c(L, h)n>0, then L is big by [De, Theorem

5.1]. " ' ~ ' q.e.d.

PROOF OF THE MAIN THEOREM. There exists a finite sequence of blow-ups

such that

(1) π£ is the blow-up along a nonsingular center Yi_x contained in the singular

locus of Xi-ι for each />0 and

(2) Xι is smooth.

Set Ϋ0<^X1 to be the total transform of Yo. Then we can construct a smooth

Hermitian metric g of the line bundle [ F o ] ~ x whose curvature form satisfies the follow-

ing three conditions:

(3) strictly positive along the positive dimensional fibre of π 1 ?

(4) bounded on Xί9 and

(5) = 0 on A\ — (some neighborhood of Ϋo).

We consider Xl9 Lx : = %XLm'® IΫOY\ K : = π?Λ f e l®^, Z t : = πϊ\Z) and a

neighborhood B^ of Zx instead of X, L, h, Z and B. They satisfy the properties as in

the statement of the Main Theorem for all large kίeN, with appropriate choice of Bx.

Since the curvature form of g is smooth and bounded, jχ r e g(<i,L)c(^> ®" e x * s t s ^ a n c *

only if Jjr lrβ ( ί i i L ) c ( A > * i ) " exists. We can take k1 so large that J X e u l L)c(L, h)n>0

implies j X i e U 1 Li)c(Lu h1)
n>0. So inductively, we may assume that ^ i s smooth. By

the same argument as above, we may assume that Z is a divisor with only simple normal

crossings. By Theorem 4.1, the proof is completed.

The Corollary follows from our Main Theorem and the following lemma:

LEMMA 4.2 (cf. [S-S, Lemma 2.36]). Let Mbea complex manifold and η a d-closed

integral (1, \)-current of order 0 on M. Then there exists a holomorphic line bundle L on

M with a singular Hermitian metric h such that η = c(L, h).
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