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Abstract. We continue to study the Mordell-Weil groups of unirational
quasi-elliptic surfaces. We classify them in the case of rational quasi-elliptic surfaces in
characteristic 2 and show how to construct them from the projective plane. In the
classification, a key role is played by a theorem which guarantees that the relevant
properties of unirational quasi-elliptic surfaces are determined explicitly by the equations
of the surfaces as affine hypersurface.

1. Introduction. This is the first of a series of papers on the Mordell-Weil groups
of unirational quasi-elliptic surfaces in characteristic 2. In our previous paper [5], we
defined a group structure, which we call the Mordell-Weil group, on the set of ^-rational
points of a quasi-elliptic curve over the function field K of a nonsingular complete
curve, or equivalently, on the set of sections of a quasi-elliptic fibration over a nonsingular
complete curve. In that paper, we proved that the Mordell-Weil group of a unirational
quasi-elliptic surface is a torsion group and isomorphic to (Z/pZ)φr with r^O, and
classified the degenerate fibers of a quasi-elliptic fibration, the torsion-rank r of the
Mordell-Weil group and the Neron-Severi group in the case where the characteristic
of the ground field k is 3.

In the present paper, we continue to study the same question in the case of
characteristic 2. Considerable differences and difficulties turn out to be involved,
compared to the case of characteristic 3.

For example, the Weierstrass form of a quasi-elliptic curve in characteristic 2 is
more complicated, and more cases have to be considered in the classification. In this
paper, we treat the Weierstrass form of a quasi-elliptic curve over the rational function
field in characteristic 2 and classify the degenerate fibers, the Mordell-Weil group and
the Neron-Severi group of a rational quasi-elliptic surface in characteristic 2. The first
main theorem is Theorem 1.1 below, which generalizes a result in Miyanishi [7]. In
Theorem 5.2 we classify degenerate fibers and the torsion-rank.

THEOREM 1.1. Let k be an algebraically closed field of characteristic 2 and let
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X = k(x, y, t) be an algebraic function field of transcendence degree 2 generated by x9 y,

t over k such that y2 = x3 + φ(t)x + ιl/(t) with φ(t), ψ(t)ek[t] and either φ(t)φk[t¥ or

ψ(t)φk[t¥. Define m by

ra = max< —

where [z] signifies the greatest integer not exceeding z. Assume further that the following

conditions hold:

(1) φ{t) has no monomial terms of degree congruent to 0 modulo 4.

(2) φ(t) has no monomial terms of even degree.

(3) For every root α of φ{t)φ'{t)2 + ψ'{t)2 = 0,

minK(φ(0)-4, va(ψ(t))-6}<0,

where υa is the (t — cc)-adic valuation ofk(t) so normalized that va(t — α)= 1.

Then we have the following:

(a) Ifm = O, then J f is rational over k. Ifm^l, then J f is not rational over k and

a minimal model H exists.

(b) Ifm=l, then H is a {supersingular) A3 surface.

(c) If m>\, then pa{H)=pg{H) = m9 dim H\H, Θβ) = 0, the r-genus Pr{H) =

r{m— 1)+1 for every positive integer r, and the Kodaira dimension κ{H)= 1,

where pa is the arithmetic genus and pg is the geometric genus.

For the proof in Section 3, we use a method of double coverings as was used by

Miyanishi [7] to obtain analogous results in characteristic 3 and partially in charac-

teristic 2, but we have to look into singularities of the ramification loci more carefully.

Moreover, we exhibit the configuration of degenerate fibers of a rational quasi-elliptic

surface and its sections, and show how to obtain it from P2 by blowing up nine points

(see Section 5).

The author would like to thank Professors Masayoshi Miyanishi and De-Qi Zhang

for stimulating discussions on this subject and Professor Igor V. Dolgachev for calling

his attention to the book of Cossec-Dolgachev [4]. The author also extends his gratitude

to the referee for precious advice on the improvement of this paper.

2. The Mordell-Weil group of a quasi-elliptic surface. Let X be a nonsingular

projective surface over an algebraically closed field k of characteristic p. X is said to be

a quasi-elliptic surface if there exists a morphism / : X^C onto a nonsingular projective

curve C such that almost all fibers of / are irreducible singular rational curves of

arithmetic genus 1. The morphism / (or X itself) is called a quasi-elliptic fibration. It

is a well-known fact that such surfaces exist only if p = 2 or 3 (cf. [10]).

In the present paper, we consider exclusively the case where Z i s unirational, i.e.,

the case where C^P1 (cf. [7]), and assume that every quasi-elliptic surface has a section,
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denoted by O, which is a morphism from C to X such that / o 0 = idc.

For a quasi-elliptic ̂ surface / : A^C, we use the following notation:

Xη: the generic fiber of / : X-+C

P^ : the unique singular point of Xη (cf. [7])

K= k(C): the function field of C

E\ = Xη — PaD which is a smooth algebraic curve over K

R = {v E C; f ~ \υ) is reducible}

f~1(v) = Θv0 + Σ?=~1 μvΛΘvi: the irreducible decomposition of / " ί(v) for VGR,

where Θ y ί (0*ζi^mv— 1) are the irreducible components of Z " 1 ^ ) , ^ is the

number of the irreducible components and Θυ0 is the unique component of

f~γ{v) meeting the zero section (0).

E(K): the Mordell-Weil group, which is, by the definition, the set of all £-rational

points of E, and endowed with a natural structure of the additive group (cf.

[5]).

NS(Λf): the Neron-Severi group of X

T: the trivial lattice, which is, by definition, the subgroup of the Neron-Severi

group generated by the zero section (O) and all the irreducible components

of the fibers.

For every PeE(K), we denote by (P) the prime divisor of X which is the image

of C by the morphism C^X induced by P, and we define a map φ from E(K) to

(ΘvΛ'P)

= (P)-(0)-((P 0)-(02))F- Σ

where (P O) is the abbreviation for ((P) (O)) and Av is the negative definite matrix

((Θvi ΘvJ))ij^ί of size (mv— 1). This φ is a homomorphism and induces a natural

isomorphism

(2.1) E(K)~NS(X)/T

(cf. [5, §2]). We can define the height pairing < , > on E(K) via this isomorphism,

<P,Q>=-(φ(P) φ(Q))

for P,Qe E(K), where the right hand side is induced by the intersection pairing on

e . The explicit form of this height pairing is

O)-(P-Q)- Σ Contr^P, β ) ,
veR

where
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(p nΛ-ί
u ' y ; ~ \ ( - A ; % if (P Θt?,i)=(β ^ ) = i with / , 7 > i ,

and χ is the Euler-Poincare characteristic of X. In particular,

(2.2) <P, P> = 2χ + 2(P • 0) - £ Contr^P),

where

0 if P passes through 6>y,0

(cf. [8]).

α ' { { - A ^U if (P β Γ > f ) = i with i > i ,

3. Proof of Theorem 1.1. Assume/? = 2. As in Miyanishi [7, (1.4)], X is birational

over A: to a hypersurface in the affine 3-space A3 defined by

(3.1) y2 = x

with φ(t), ψ(t)ek[Q such that either φ{t)φk{t']2 or ψ(t)φklt]2. Let

where φ\t) and ψ'(t) are the derivatives of φ(t) and ^ ( 0 , respectively. By a birational

transformation τ = l/t, ξ = x/t2m+2 and η=y/t3m+3

9 X is also birational to the affine

hypersurface

η2 = ξ3 + Φ(τ)ξ+Ψ(τ),

where Φ(τ) = τ 4 m + 4 φ ( l / τ ) , Ψ(τ) = τ6m+6ψ(\/τ) and m = max{[degφ(0/4], [deg^(0/6]}.

We set Aa0(τ) = Φ(τ)Φf(τ)2-\-Ψ'(τ)2. By a straightforward computation, we have

(3.2.) Δx(τ)=τ12m+β

We call Δ{t) or ^^(1) the discriminant of X.

LEMMA 3.1. By a suitable choice of coordinates (x, y91), we may assume that the

following conditions are satisfied:

(1) φ(t) has no monomial terms of degree congruent to 0 modulo 4.

(2) φ(t) has no monomial terms of even degree.

(3) min{i;β(φ(0)-4, va{\j/{t))-6} < 0 for all roots α of Δ(t) = O.

PROOF. If the condition (3) Is not satisfied for some root α of A(t) = 0, divide both

sides of (3.1) by (/ + α)6 and replace the coordinates (x, y, t) by (x/(ί + α)2, y/(t + (x)3, t).

After a succession of operations of this kind, we may assume that the condition (3) is

fulfilled. Suppose φ(t) is written in the form
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with φo(t), Φi(O e ^W s u c h Λat φo(O satisfies the condition (1).
After a transformation (x, y, t)\-*(x + φ1(t)2

9y + φ1(t)x + φ1(t)3

91) we have

y2=χ3+ΦO(0*+ΦO(0ΦI(02+<K0

which satisfies the condition (3). As for the condition (2), the monomial terms of even
degree in φ(t) can be absorbed by j>-term. •

REMARK 1. The above operations to get the conditions (1) and (2) fulfilled do
not change the discriminant Δ(t).

Proof of Theorem 1.1 consists of the subsequent Lemmas 3.2-3.8. Let X be the
algebraic function field as in Theorem 1.1. We assume that φ{t) and ψ(t) in the equation
(3.1) satisfy the additional conditions in Lemma 3.1. A rough idea of our proof is, first
of all, to construct a nonsingular model H of Jf as a double covering of a rational
surface obtained from P1 x P1 by blowing-up, which turns out to be a quasi-elliptic
surface with a section, and secondly to contract all (— l)-curves contained in the fibers
of the quasi-elliptic fibration to obtain a relatively minimal model fί of H. Then, by
virtue of Miyanishi [7], it suffices to show that χ(0#) = w+ 1 with the notation as in
the statement of the theorem (cf. [7, Lemmas 1.5 and 1.6]).

LEMMA 3.2. After a change of coordinates x and y, we can rewrite the equation

(3.1) in the form

where <x(t), β(t), y(t) are polynomials in k[t~\ having no monomial terms of even degree

and the integer m defined in Theorem 1.1 is given as

w = max| — degα(/) , — degj8(/) , — degy(ί) I .

PROOF. Write φ(t) = oc(t)2 + β(t) and φ(t) = y(t) with α and β having no monomial
terms of even degree. Then the coordinate change (x, y)h->(x + α, >> + (α/?)1/2) will give
the above form with φ{t) = y{t). It is easy to find that the integer m in Theorem 1.1 is
given as above. •

Put A(x, t) = x3 + <x(t)x2 + β(t)x + y(t) as a polynomial in A:[x, £]. Consider a
hypersurface y2 = A(x, t) in the projective 3-space Pi with the affine (x, y, t) space
embedded in Pi as (x, y, t)\-+[x, y, t, 1], which is birational to a double covering of
F0\ = PlxPl. Let po : H0^F0 be the normalization of F o in Jf\ The equation A(x, t) = 0
defines a closed curve C on Fo.

Now we introduce the following notation: Consider the P1 -fibration <F: = {/α /α is
defined by t = oc} on Fo defined by the second projection p2: F0-+Pl. We denote by /^
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the fiber t = oo and by S^ the cross-section x = oo. Let σ: F^F0 be the shortest succession
of blowing-up of Fo at the singular points of C and their infinitely near singular points
such that the proper transform C=σ'(C) of C on Fbecomes nonsingular. Let S^ = σ'iS^)
and 7̂  : = σ/(/00) be the proper transforms under σ of S^ and l^. We denote by a, b, c
the degrees of α(ί), β(t), y(t), respectively.

We shall describe the configuration of C on Fo and σ " 1 ^ u Cu S^) on F.

LEMMA 3.3. (0) We distinguish the following four cases by means of the degrees
of*(t),β(t)andγ(t).

(I) a = b^c; (II) b>a, b^c; (III) c>a, c>b; (IV) a>b, a^c.
The configuration of /^uCu S^ on Fo for each case is shown in Figure 1.

(1) In the case (I), C has no singular points on l^ and S^ and σ is the identity morphism.
(2) In the case (II), we have the following three cases:

(II-1) a/2 ̂  b/4 and b = 1 (mod 4); then b = 4m +1, a ̂  2m α«rf c < 6.
(Π-2) Λ/2 < 6/4 and b = 3 (mod 4); ίΛew 6 = 4m + 3,α^2m+l and c<b.
(Π-3) a/2>b/4.
The configurations ofσ~1(laDuCuSaD) of these cases are given in Figure 2.

(3) In the case (III), we have the following three cases:

(IΠ-2) max{α/2, b/4} > c/6 and a/2 < b/4.
(IΠ-3) max{α/2, b/4} > c/6 and a/2 > b/4.
In the case (III-l), we havem = [c/6]. Hence c = 6m+l, 6m + 3 or 6m + 5. According

to the values of C, the case (ΠI-1) is divided into three subcases.
(IΠ-1-1) c = 6m+l, a^2m and b*ζ4m.
(Ill-1-2) c = 6w + 3, α<2m+l andb^4m+l.
(Ill-1-3) c = 6m + 5, a^2m+\ andbtζ4m + 3.
The configurations are given in Figure 3.
In the case (IΠ-2), we have m = [b/4]. Hence b = 4m+l or 4m+ 3. According to the

values ofb, the case (ΠI-2) is divided into two subcases.
(IΠ-2-1) b = 4m+l, a^2m andaζ6m+ 1.
(IΠ-2-2) 6 = 4m + 3, α^2m+l and
The configurations are given in Figure 3.

(i)

loo

(II) (III)

FIGURE 1.
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Case (Π-1)

Soo/

-2m

sEim-i

- 2 \

(C E2m) =

Case (Π-2)

(C-E2m+1) =

Case (Π-3)

(C - Soo) = 2a - b and (C Eb-a) = 2.

FIGURE 2.

/H ίΛe case (III-3), we have m = [al2~\. Hence a = 2m+1. In this case, we have three
subcases.

(IΠ-3-1) (c-a)/2 = c-b.
(IΠ-3-2) (c-a)/2<c-b.
(IΠ-3-3) (c-a)/2>c-b.
The configurations are given in Figure 3.
(4) In the case (IV), the configuration of σ'1^^ u C u S J is given in Figure 4.

PROOF. (0) It is easy to see that the cases (I)-(IV) exhaust all possible cases. In
each of the four cases, the configuration of /^ u C u S^ is elucidated by locating the
singular points of C and writing a local equation of C which will be treated below in
each case.

(1) Write
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Case (IΠ-1-1)

- 2

Case (IΠ-1-2)

(C E2m+2) = 2.

Case (IΠ-2-1)

-2m

(C -Fβm-c+l) = 2.

Case (IΠ-2-2)

-(2m+1)

Fβm-c-l-4) — 2.
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Case (IΠ-3-1)

Ec-b-l

(C - Soo) = 36 - 2c.

Case (IΠ-3-2)

E(c-a)/2+2
- 2

E(c-a)/2-l

(C Soo) = (3α - c)/2 and k is some positive integer.

Case (IΠ-3-3)

-(b-a)
' £c-δ+i

(C • Soo) = 2a-b.

FIGURE 3.

(C Soo) = α and k is some positive integer.

FIGURE 4.

(3.3)
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Then ξ3τaA(\/ξ, 1/τ) is written as

(3.4) τfl + (c0 + c 1τ+ +caτ
a)ξ + (dQ + d1τ+ +dbτ

b)ξ2

* * * +ecτ
c)τa~cξ3 = 0 ,

where ξ = l/x and τ=l/t, and we may assume codoeo^0. This is the equation for C
near the point Poo:ξ = 0 and τ = 0, and it can be formally (analytically) written as
ξ + τα = 0. Thus, C is smooth at the points Poΰ: = SaonlaD and meets S^ with order of
contact a and intersects /^ transversally at three distinct points. Thence we obtain the
above description for C at P^.

(2) In this case, C has a singular point at PQ0: = SO0nlO0, and C intersects
transversally /^ at the point (x, τ) = (0, 0), whre τ=l/t (see Figure 1). Indeed, C is
formally written at P^ as

where /^ and S^ are defined respectively by τ = 0 and £ = 0.
By blowing-up of P^ and (/—I) infinitely near points lying on S^ we obtain

coordinates ξl9..., ξt such that

ξ = τξl9 ξ1=τξ2,..., ξι^1=τξl9

and that the proper transform C of C is given by

provided b^2/ and b^a + l.To describe the configuration of σ~ 1(/00 u Cu S^) on Fwe
distinguish three subcases.

Consider first the case b/4^a/2. Since c^b, we have m = [6/4] by Lemma 3.2.
Noting that bφO (mod2) by hypothesis, we have either £? = 4m+l or b = Am + 3. If
b = 4m+\ then α^2m and we can take l=2m. Then C is also smooth at the point
(£2m = 0, τ = 0). This is the subcase (II-l) above. If b = 4m + 3 then α^2m+l and we
can take / = 2m+l. Then C is smooth at the points (ξ 2m+i=^ τ = 0). This is the
subcase (Π-2) above. Consider next the case b/Λ<a/2. Then m = [α/2] and α = 2m + l.
So, b^Λm+1. In this case, we can take l = b — a, and C is written at the points (^ = 0,
τ = 0)as

τ+ +Caτ
a)ξι + ξ2 = O .

Since co^0, C meets the curve Eι as two points ξz = 0 and ξι = c0. This is the subcase
(Π-3) above.

(3) The formal equation for C at P^ is given by

Thus we have (C /00) = 3 and (C 5ί

00) = c (see Figure 1).
As in Case II, the blowing-up of P^ and (r— 1) infinitely near points of P^ lying
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on S^ allows us to introduce ξί9..., ξr such that

ξ = τξl9 ί i = τ ξ 2 , . . . , ξr_1=τξr

and that proper transform C of C is defined by

provided c^3r, c^α + 2r and
We further distinguish three cases.
Consider the case (IΠ-1), where m = [c/6] by Lemma 3.2. Then we can take r = 2m,

r = 2m+l and r = 2m+l according as c = 6m+l, c = 6m + 3 and c = 6m + 5. In the case
c = 6m + 5, i.e., the case (IΠ-1-3), the equation for C is equivalent to

where τ^ 2 (or τ^1) stands for a monic monomial in τ of degree ^2 (or ̂  1). So, we
have to blow up the point (ξr = 0, τ = 0) to desingularize C. The other cases can be
handled similarly.

Consider the case (ΠI-2), where m = [b/4]. Then, for r = c — b, we have

where 3b — 2c>0 and 2fc — α — c>0 under the hypothesis. So, Cmeets the last exceptional
curve Ec_b at two points (ξr = 0, τ = 0) and (ξr = dθ9 τ = 0), where the latter point is a
smooth point of C. Near the point (ξr = 0, τ = 0), the equation for C is formally equiva-
lent to

Introduced, . . . , ζ s by

ζ = τζl9...9 C s - i = τ ζ s .

Then the equation becomes

provided 3b-2c-2s^0 and 2b-α-c-s^0. If fc = 4w+l, i.e., the case (ΠI-2-1), put
/=3m_(c-l)/2 and 5 = 2/. Then

3b-2c-2s=l and 2b-a-c-s = 2m+l-a^l.

So, the proper transform C of C after these .s blowing-up is smooth. If b = 4m + 3, i.e.,
the case (IΠ-2-2), put / = 3m-(c-3)/2 and 5 = 2/4-1. Then

3fc-2c-2s=l and 2b-a-c-s = 2m + 2-a^l .

Hence C is also desingularized.
Consider the case (ΠI-3), where m = [α/2]. Looking at the equation
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+ + dbτ
b)τc~b-rξ^ξf = O

for C, we can now compare the τ-degrees of the second and third terms and distinguish
three cases:

(III-3-2) c-α-2r = 0andc-ί>-r>0,
(IΠ-3-3) c-a-2r>0 and c-b-r = 0.

The desingularization process for C at P^ is more or less similar to those treated above.
We only note that we need more attention in the case (IΠ-3-2).

(4) This case can be treated in a similar fashion. Note that C meets /<*, at two
points (£ = 0, τ = 0) and (x = 0, τ = 0) when a>c, (x = eo/co, τ = 0) when a = c, using the
same notation (3.3), (3.4) in the case I, where the latter point is a singular point (Figure
1). The desingularization is as illustrated in Figure 4. •

We may write (σ*A) uniquely in the form (σ*A) = B—2Z, where B is a divisor
whose coefficient at each prime divisor is 0 or 1 and where Z is some divisor. Let D be
an effective divisor whose support is contained in the union $ of the exceptional curves
which arise from the blowing-up at the singular points and their infinitely near points
of C in the affine part A\ = F0 — S^ul^. Let Dx and D2 be the divisors determined
uniquely by the conditions that D x is an effective divisor whose coefficient at each prime
divisor is 0 or 1, Z>2^0, D1 + 2D2 = D and SuppC^ uZ)2)cz(£\ We note that in the
previous configuration of σ~1(loovCuSoo), an irreducible component is drawn by an
unbroken (resp. broken) line if it is contained in Supp B (resp. not contained in Supp B).
We consider four cases separately.
Case I. a =

Case II.
(Π-l)

(Π-2)

(Π-3)
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a > + (

2b-a-ί _ - x 2b-a+l _
Eb_a-D2 .

Case III. c>a,c>b
(IΠ-1-1)

+E2m+Dί

2+ • • • +E2m)-D2 .

(Ill-1-2)

+ Ei+E2+- -+E2m+ί+D1

(IΠ-1-3)

B=C+To0 + S(D + E1 + E2+ • • • + £ 2 m + 1 + ΰ !

+ 4)E2m+2-D2

(IΠ-2-1)

F4+ • • • +F6m_c+1

(IΠ-2-2)

• • • +F6m_c+3

(ΠI-3-1)

c+ί _ _ _
(/ + £ + £ + • +Ec_b)-D2.
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(IΠ-3-2)

+Ek+D1

S a ΰ + (

2c-g-2k+l
+ j

where A: is some positive integer.
(IΠ-3-3)

Case IV.

where A: is some positive integer.

REMARK 2. In the above configurations of components and decompositions of

(σ*A) into B and Z, we cannot explicitly determine the number of exceptional curves in

Case (IΠ-3-2) and Case IV. The following lemma enables us to deal with the situation:

LEMMA 3.4. Let τ=l/t and ξ=l/x. Suppose that the C has a singularity at the

point τ = ξ = O which is locally defined by the equation

where either U(τ, ξ) = U0(τ)ek[τ] with UQ{0)φ0 or U (τ, ξ) = u2(τ)ξ2 + τhu1(τ)ξ + uo(τ)

with ui(τ)ek[τ']9 Mf(0)^0 (/=0,1,2) and h^s, and where V(τ), W(τ)ek[τ] with

V(0)' W(O) φϋ. Then one can resolve its singularity by a finite succession of blowing-up at

the singular point and its infinitely near singular points. Furthermore, the dual graph of

the configuration of the exceptional divisors is as given in Figure 5, where k is a positive

integer and the components belonging to B in the decomposition (σ*A) = B—2Z are

FIGURE 5.
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indicated as black vertices.

PROOF. By blowing-up at τ = ξ = 0 and its infinitely near singular points, the lemma

can be proved by induction on s. •

Let σ: F-*F be the shortest succession of blowings-up of F such that if one writes

{(σσ)*A) in the form ((σσ)*A) = B — 2Z with divisors B and Z uniquely determined as

above, every irreducible component of B is a connected component of Supp(2?), that

is, Supp(i?) is nonsingular.

LEMMA 3.5. Let H be the normalization of F in Jf\ Then H is nonsingular.

PROOF. Let p denote the normalization morphism H-^F. Let Q be a point of H

and P = ρ(Q)eF. If σσ(P) is not a singular point of C, then Q is a simple point by the

same method as in [7, (2.1)]. Suppose σσ(P) is a singular point of C which lies on the

fiber over t=co. Since we have the configuration of ( σ σ ) ' 1 ^ u Cu S^) one can show

by the same argument as in [7, (2.6.2)] that Q is a simple point. The case where σσ(P)

is a singular point of C n Λ* = C n ( i^ - {x = 0} u {/ = oo}) can be treated similarly. •

In subsequent arguments we need the following well-known lemma (cf. [1]).

LEMMA 3.6. (1) Let Du D2 be divisors on F. Then

(2) If D is an irreducible curve contained in the support of B, then p~ί(D) = 2A,

where A is a nonsingular curve on H. Moreover, if D = P£, then Δ=P\.

Now let q: =p2σσp: H^Pl, C: = σ'(C), §„ : = σ'(SJ. Since C, 5* c Supp(5) we

have C, §„ aSupp(5). Thus we can write p~\C) = 2Γ and p" 1( t? o o) = 22;oo with

nonsingular curves Γ and Σ^ on H.

Let l={t = y} be a general member of J^, and let ΐ=(σσ)'{l). Then p " 1 ^ ) -

p " X(Γ) n Σ^ is easily shown to be isomorphic to a curve y2 = A(x, y) and pa(p~ 1(ΐ)) = 1.

Thus we obtain:

LEMMA 3.7. q: H-+P\ is a quasi-elliptic fibration with a regular cross-section Σ^.

Let us illustrate the weighted graph of ^" 1 (oo)u2' 0 0 . In Figure 6, a white (resp.

black) vertex corresponds to a component of q~1(co)\jΣo0 which is not contained in

Supp(2?) (resp. contained in Supp(i?)). The weight at a vertex is the self-intersection

number of the corresponding component. Two vertices are joined by a single (resp.

double) edge if the corresponding components meet each other transversally at one

point (resp. touch each other at one point with multiplicity 2). If omitted, the weight

of a vertex is — 2.

Now contract all (— l)-curves contained in tf'H00)to obtain the minimal form of

(Figure 7). Note that no (— l)-curves appear in Cases I and IV.
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Case I. a = b > c

? 2 α - l
-(m + 1) I , * v

• o i o o-

Case II. b > o, 6 ^ c

(Π-1)

9 2m
-(m + 1) , ^~

Γoo -4 -1 -4 -4 -1

(Π-2)

2m
-(m + 1) ϊ ,

• o i o o •--4 -1 -6 -1 -4 -1 -1 -4 -1

(Π-3)

2 ( 2 α - 6 ) - l 9 b-a

-(-vt2uLί=^:
Σoo -4 -1 -4 -1 -4 -1

Case III. c> a, c> b

(IΠ-1-1)

9 4m + 1

- ( w ^ . o . o 1 o o . c . • - ^ ^ ^ ^ i
Γoo -3 -1

(IIM-2)

4 m + 2

"'V1!) Y ό 0 •—O

Σoo -3 -1

(IΠ-1-3)

? 4 m + 3

-("L+1L I . : Λ 1 ^ 1

• o o o — o——
Zoo -6 -1 -4 -1
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(IΠ-2-1)

I 6m - c + 1 9
,—:—r*-——i I _—7-

o— o o i o •-

2(c-6)

-4 -1

(IΠ-2-2)

9 6m-c + 4 9 2(c-b)

-(m + 1) I > Λ , I , Λ s
• b i o •• o i o o
Σoo -4 -1 -6 -1 -1 -4 -1

o -4 -1 -6 -1

(IΠ-3-1)

"3 - o——
-1(IΠ-3-2)

9 3α - c - 1

- K + i l 1 ^ , Λ ri
• o 4 o o- -3 *

(ΠI-3-3)

2 ( 2 α - 6 ) - l 9

2(c-6)

Case IV. a> b, a^ c

2(α + k) - 1

FIGURE 6.

To complete the proof of Theorem 1.1, we need the following lemma.

LEMMA 3.8. If q~1(y) is a reducible singular fiber lying over the point t = y with

y#oo, then y is a solution of A(t) = O, and the contraction of the (—l)-curves contained

in q~x{y) does not affect the self inter section number of Σ^.

PROOF. We may assume that C has a singularity at the point JC = / = O after a

change of variables (x, t)\-+(x + β(γ)1/2

9 t + y), and that C is defined locally by the equa-

tion x3 + (x(t)x2 + β(t)x + 7(0 = 0 with t dividing α(ί), β(t) and y{t). Then, blowing-

up the singular point x = t = 0 and its infinitely near singular points, taking the nor-

malization of Fo in JΓ as before and contracting all (— l)-curves in the fiber of q so

obtained, one can easily find that the component of the singular fiber of q over / = 0
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Case II. b > α,

(II-l)

-(m + 1)

• o

(Π-3)

Case III. O a, Ob

(IΠ-1-1)

H. ITO

1
(Π-2)

-(™ + l ) g

Zoo

-(-vtiuL^:
2 ( 2 α - 6 ) - l

-(m + 1)

• o o o—4——oZoo

(IΠ-2-1)

(IΠ-1-2)

Zoo

(IΠ-2-2)

(IΠ-1-3)

irreducible curve
with a cusp

-(m + 1)

Zoo

(IΠ-3-1)

-(m + 1) ϊ ,
• o έ C3 •-

Zo<

(ΠI-3-2)

- ( m ^ + 1)Q

Zoo

(ΠI-3-3)

-(m + 1)

3α - c - 1

2fc + 4α - 2c - 1

-o •-

2(2α - 6) - 1

FIGURE 7.

which intersects 1"̂  cannot be contracted by the blowing-down of all (—l)-curves in
q~\0). We leave the details to the reader. See also [7]. •

Therefore we have (Σ^)= —(m+1).
Let q: H^P\ be the quasi-elliptic fibration which is obtained from q: H^>P{ by

contracting all (— l)-curves contained in the fibers. Let ί^ denote the proper transform
of Σ^ under this contraction. Lemma 3.8 thus means that (Σ^)= —(m+1).
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Meanwhile, the canonical divisor formula for a quasi-elliptic fibration (see, e.g.,

[3]) implies

where F is a general fiber of q. Since Σ^ is a cross-section of q, Σ^ is isomorphic to

Pi. Then, applying the arithmetic genus formula to Σ^, we obtain

whence χ(0#) = m + 1 . By virtue of the arguments in [7], we then complete the proof

of Theorem 1.1.

Let & = R%0& Then degJ^= -χ(Θβ)= - ( m + 1 ) . Hence deg(JS?β (-1 2 )®ω%2) =

\2(m+1) — 4 = 12m+ 8. By the remark given before Lemma 3.1, we have

This implies that {Δ{t\ AJf)} gives rise to a section of Γ(P\, J^® (~1 2 )(x)ωfi2), which

we call the discriminant of the quasi-elliptic fibration q: H-+P\.

Thus we have an equality

(3.5)

where (A) is the divisor on P1 corresponding to the section {A(t)9 ^oo(τ)} of Γ(P\,

4. Reducible singular fibers and the torsion-rank. In this section, we consider

reducible singular fibers which appear in a quasi-elliptic fibration in characteristic 2

and give the conditions for a combination of reducible singular fibers to exhaust all

degenerate fibers of a quasi-elliptic fibration.

To analyze the reducible singular fibers, we consider a Weierstrass equation in the

local case, that is, C =

LEMMA 4.1. Let f: X - ^ C ^ Spec &[[/]] be a quasi-elliptic surface with a section

defined by

with φ(0, Ψ(t)ek[[t]] and either φ(t)φk[_[tj\2 or ψ(t)Φk[[tj]2. Then the equation of

X can be put into a form

(4.1) y2 = x3 + (oc*t2s +

such that

(4.2) j ϊ # 0 or
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(4.3) s=l or I*ζm*ζ3 or

where each of(x, β, y is either a unit in A:[[ί]] or a zero, and each of s, m, k is a positive

odd integer (resp. zero) if the corresponding coefficient α 4, β2, y2 is not equal to zero

(resp. is equal to zero).

PROOF. By Lemma 3.1 we may assume that φ(t) and φ(t) satisfy the conditions

(1), (2), (3) in Theorem 1.1. Note that Lemma 3.1 holds also for fc[[ί]] instead of k[t].

Hence we can write

Σ βj*2j+ί, <K0= Σ y

Let i o :=min{/ with α f #0} if 0^/0 for some / and ι o = — 1 otherwise; lety o :=min{y

with βjφύ} if βj¥=O for some j a n d 7 0 = — 1 otherwise; let A:0: = min{A: with ykφ0} if

yk7^0 for some k and ko= — 1 otherwise.

We set α = α;o + α'io + 1 ί + and J = 2I O + 1 if i o > 0 , β = β'jo + β'jo+it+ and

w = 2/0 + l if jo>0, y = y'ko + y'ko + ίt+' * , and k = 2ko+l if fco^0, where α; = α? / 4,

β'j = β}/4 and y'k = yl/4. Otherwise, we set α = s = 0 if ι o = - l , β = m = 0 ifjo=-l or

y = k = 0 if ko= — 1, respectively. Then the conditions of the assertion are satisfied in

view of Lemma 3.1. •

Using this local Weierstrass equation, we can classify the reducible singular fibers

as follows:

PROPOSITION 4.2 (cf. [4, (5.5.10)]). Let f: X-+C be a quasi-elliptic surface defined

by (4.1), (4.2) and (4.3) in Lemma 4.1. Then the fiber over t = 0 is determined as

(1) m

type
II
I*

II*

^kΦO of

v(A)

0

4

8

2fe-2

- w = 0

Jfc
1

3

5

>5

s

>0

^ 0

# 1
1

(2)

type

III

III*
i*m_

k>mφ\$ or
v(A)

1

7

4 2w

fc = 0

m

1

3

^ 3
7^1

1

Here v denotes the valuation ofk[[tj] with v(t)= 1 and A stands for the polynomial A(t).

Now, let us return to the global situation, i.e., C is the projective line P1. By the

above classification, we know all possible types of the reducible singular fibers of X,

and we have relations among the Euler-Poincare characteristic, the number of the

reducible singular fibers of respective types and the torsion-rank. Let v{S) denote the

number of singular fibers of type S (cf. the classification by Kodaira [6]). Then, from

the equality (3.5) and Proposition 4.2, we have:

PROPOSITION 4.3. Let f: X^C be a unirational quasi-elliptic surface with section
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in characteristic 2. Then

(4.4) 12χ-4 = £ (2A: + 4)v(Iffc) + 8v(Π*) + v(ΠI) + 7v(III*) ,
fcs*O

where χ is the Euler-Poincarέ characteristic of X.

Let T be the trivial lattice generated by the zero section and all the irreducible
components of the fibers. We have a natural decomposition

veR

where Tv is the lattice generated by all the irreducible components of f'1^) except the
irreducible component meeting the zero section (O). Hence,

J_+ rp FT J + rp r\ Y 2v(l2k) + V(III) + V(III*)
ClCl 1 — — YY U.CL 1 v — — Δ *-(**su

 5

veR

since the lattice Tv for the fiber of type II* is unimodular. Note that the exponent of
det T is an even integer by (4.4). By (2.1), we have

(4.5) det NS(^) = det T/\ E(K) \2 .

Since the right hand side of (4.5) has even exponent as remarked above, we can write

(4.6) detNS(A r)=-22 σ o with σ o e Z , <τo^0.

By comparison of the exponents of (4.5) and (4.6), we have:

PROPOSITION 4.4. Let the notation be as in Proposition 4.3. Then

• ' ) v
2 I k^i

where r is the torsion-rank of the Mor dell-Weil group (cf. the Introduction).

REMARK 3. The above invariant σ0 is called the Artin invariant when A" is a
supersingular K3 surface and takes a value between 1 and 10. It plays a very important
role in the theory of moduli space of supersingular K3 surfaces (cf. Artin [2]).

PROPOSITION 4.5. For a section P (ΦO), we have

4
2

PROOF. For a torsion point PeE(K), we have <P, P} = 0 where < , > is the height
pairing on E(K) defined in Section 2 (cf. Shioda [9]). Thus, the assertion is a conse-
quence of (2.2) and straightforward computations of Contτv(P). •

In the next section, we use this proposition to check whether two sections are
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intersect each other.

5. Rational quasi-elliptic surfaces. In this section, we study the relationship be-

tween reducible singular fibers of rational quasi-elliptic fibrations and their Mordell-

Weil groups and look into the configurations of sections and reducible singular fibers

on rational quasi-elliptic surfaces. Let / : X^P1 be a rational quasi-elliptic surface with

a section O. Then by virtue of Theorem 1.1 we may start with an affine expression

for X:

+ a\tΊ + a2a\t6 + axalt5 + b\t* + a{a3t
3 + a\a2t

2 + a\

(5.1) y2 = x3

where φ{t)φk[f\2 or ψ(t)φk[tl2. To determine the reducible singular fibers, we look

as the discriminant A(t) of X, given as

(5.2)

Set

The following formulas suggest how du d2 and d3 are incorporated into concrete

computations:

(3) t + a2a3t + b

+ a2b2/a2,AίQa1/a3) = d2, if dx=0.

(4) A(t) = (t2 + aJa3)^(tlA2(t) = b 2 2

Moreover A2(yJa1/a3) = 0 if and only if d3 = 0.

By virtue of Proposition 4.3 we have a list of all the possible types of re-

ducible singular fibers in the case of rational quasi-elliptic surfaces:

PROPOSITION 5.1. There are seven possible patterns of reducible singular fibers

in terms of their types:

(a) one II*,

(b) one It

(c) one III and one III*,

(d) two \fs,

(e) one If and two Ill's,

(f) one IJ and four ILYs,

(g) eight Ill's.

PROOF. Since X is assumed to be rational, we have χ = 1. Hence the right hand

side equals 8 in the formula in Proposition 4.3. Now it is easy to list up all possibilities.

D
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TABLE 1.

The pattern of
reducible fibers.

(a)

(b)

(c)

(d)

(e)

(0

(g)

The defining equation.

y2 = χ3 + t5

y2=χ3 + t2χ + t5

y2 = χ3 + t3χ

y2 = x3+at2x+t3

with aek

y2 = χ3 + (t3 + t)x

y2 = χ3+(t3+at2 + t)x
with aek*

y2 = x3 + (t3 + at2 + bt)x + t3

with aek and bek*

r

0

1

1

2

2

3

4

nonzero section

(ί2 + M 3)

(0,0)

(M/,0) with w3 + αw+l=0

(0, 0)
(/+l,/2 + l)

(0,0)
(α^^'V + O)
(α-1 / 2(/2 + fl/+l),α-3/4(/3 + (α+l)/2 + (α+l)/+l))
(w-1/2 + Mί,M-3/2(r3 + α1/2i//2 + M20)
(Mί + M- 1 ,M 1 / 2 (/ 2 + fl1/2M-1r + M-2))

with w2 + α 1 / 2w+l=0

(uί,W1/2(/2 + 61/2/))
(M-1/2 + M/ + 6M- 1,M- 3 / 2(/ 3+(6 + flM2)1/2/2

+ (&2 + 0&W2)/ + &3/2)) With M3+0M+1=O
( i Γ ^ + ϋ t . i Γ ^ + β ^ ^ + ^ ' V / ) )
(i>ί + torSιΓ3'Vί2 + fl1/2δ1/2»ί + fc3/2))

with t;4 + αι;2 + t; + & = 0
(ί2/(/2 + b\ (aιl2t* + /3 + all2bt2)/(ί + 61/2)3)

Now we state a classification theorem by means of the given equation for X.

THEOREM 5.2. (1) The types of reducible singular fibers are classified into seven

cases (a)-(g) as follows:

(1) Suppose φeK2. Then necessarily have d1=0. Ifd2 = d3 = 0 then the type is (a);

ifd2 = 0 andd^φQ then the type is (b); if d2Φθ then the type is (d).

(ii) Suppose φφK2.Ifdί=d2 = d3 = 0 then the type is (c); ifdί=d2 = 0 andd3φQ

then the type is (e); ifd1=0 and d2ΦQ then the type is (f); if d^φQ then the

type is (g).

(2) The torsion-rank is determined uniquely by the type of reducible singular fibers

as in Table 1.

PROOF. (1) To determine the type of the reducible singular fibers, we look at

the discriminant divisor A on P1 which corresponds to the polynomial Δ(t) (cf. (5.2)).

By Proposition 4.2, one can find out easily that the possible types of the divisor A are
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as follows:
(7Ί) 8 Λ •••(a),(b)
(Γ 2 ) 7 Λ + ^2 •••(c)

•••(d)
•••(e)

(Γ 5) 4/>

1 + P 2 + P 3 + i )

4 + /)

5 •••(f)
(Γ 6) /»1 + P2+•••+*»„ ---(g)

where Plf P2,..., P8 are distinct points of P 1 .
We start from the equation given in (5.1). We consider also the equation

(See the paragraph below Lemma 3.1 in Section 3.) Moreover, note that bl9 b3, b5

cannot be simultaneously zero, for otherwise X is singular.
(1) Suppose first φeK2, i.e., a1=a3=0. Then φ' = 0 and ψ^O. Thus dί=0 and

A(t) = ψ'(t)2 = (b1

5

l2t2 + b1

3i
3t + b{/2)4. Clearly the type of A is (7\j if and only if b3 = 0

while the type of A is (T3) if and only if b3ΦQ. If 63 = 0, then Λ=8/γ Hence the
reducible singular fiber over Pί is II* if a2 = 0 and I*, if α 2 ^ 0 by Proposition 4.2. Here
note that d2 = b\ and ί/3 = αl in this case. If b3φ0, then A=4P1 + 4P2 and the re-
ducible singular fibers over P1 and P 2

 a r e °f type IJ.
. (ii) Next, suppose φφ K2. The possibilities for the type of A are (T2), (Γ4), (Γ5)

and (Γ6). We can show that dx φθ if and only if the roots of zJ(/) = O are all simple.
Hence, if d1 / 0 the type of A is (Γ6). By the formula given before Proposition 5.1, the
type of A is (Γ5) if ^ = 0 and d2φ0, (Γ4) if dί = d2 = 0 and d3φ09 and (Γ2) if
^ = ^ = ^3 = 0.

(2) When we pick up one standard form among the rational quasi-elliptic sur-
faces having the same fiber type, we make frequent use of the following lemma.

LEMMA 5.3. Suppose X is defined by an ajfine equation

(5.3) ^ 2 = x 3 V /

with φo(t), ^ o ( O e ^ [ O and ak fyφO. If2lφ3k, then X is isomorphic to the one defined
by the same equation as (5.3) with ak — bι=\.

For the proof of this lemma, one can easily check that two surfaces given in the
statement are isomorphic to each other by a suitable change of variables as in [5,
Lemma 3.6].

The calculation of rational points in Table 1 is based on the method to be explained
in Section 6. The last statement of the theorem is clear by Proposition 4.4, since σo = 0
for rational surfaces. •

In the rest of this section, we describe how the reducible singular fibers and sections
intersect each other for each of the types classified in Theorem 5.2. For each of the
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p

ί = 00

FIGURE 8.
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type (c) type(d)

FIGURE 9.

types (a), (b), (c), (d) and (e) in Table 1, the configurations are simple (cf. Figure 8),
and we can easily find out how they are constructed from P2 by blowing up nine points.

REMARK 4. By the blowing-down of the nine Pus which are drawn as bold lines
in each figure, one can obtain the configuration of curves in P2 for each of the types
(a), (b), (c) and (d) as in Figure 9, where Ca, Cb are curves of degree 3 with cusp, Cc is
a conic, L# and Γ are lines, and the intersection of these curves are described as

In the case of the type (e), we can easily check that we obtain a configuration of four
lines, a conic and a cubic with cusp in P 2 , which we do not give here.

The cases (f) and (g) are more complicated. In the case (f), the reducible singular
fibers are of type III over t = 0, oo, α1? α2, where αx and α2 are two solutions of the
equation t2 + at + 1 = 0 with aφO and I o over /= 1. We name their components as in
Figure 10.

Then the configuration is as in Table 2.
In Table 2, i\ = (0,0), P2 = (a1/2, a1/4(ί2 1/22 3 / V

)) (/=1, 2) are all sections, where ut (i= 1, 2) are the two roots
of the equation u2 + a1/2u+1=0.
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FIGURE 10.

TABLE 2.

©7,0

©7,1

Sections intersecting

Θβ,o

Sections intersecting

β = 0

O,R2

RuPz

PuQi
P2,Qt

0=00

O,Q2

P3,Qi

PuRi
Ri,P2

β = «l

O,Q2

R^P2

Pχ,R2

P3,Qi

β=a2

O,R3

P»Qi

Λ.&
Ri,P3

Sections intersecting Θy0

Sections intersecting ΘyΛ

Sections intersecting Θy2

Sections intersecting Θγ3

V = l

O,Pt

Q2,R3

P2,Λ,

QI,P3

EXAMPLE 1. After blowing down the sections and irreducible components of the

fibers (for example, Ql9 Rί9 Q2, R2, P2> ^3» P\9 &i,u θ1A in this order), one can obtain

a configuration of curves in P2 which consist of four conies corresponding to ΘβΛ for

β = 0, oo, α 1 ? α2, and eight lines corresponding to Θβ0 for β = 0, oo, α l 5 α2, O, Θ1Λ,

ΘU2 and <9 1 3 .

In the case (g), there are eight reducible singular fibers of type III over the seven

roots of the equation Δ(t) = O and / = oo. Since the torsion-rank r is 4 in this case, there

are sixteen sections whose configuration together with an example of a single reducible

singular fiber (the fiber over / = 0), say, is shown in Figure 11.

In Figure 11, the seven sections Au A2i. , AΊ are those which intersect the same

component of the fiber as the zero section. T is a unique section intersecting O. Here,

each section intersects only one other section. Hence one can divide sixteen sections
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FIGURE 11.

into eight pairs, each consisting of two mutually intersecting sections.
Concretely, for the equation given in Table 1, we can put

T=

(/= 1, 2, 3)

j j ϊ j j 0=1,. . . ,4),

where u{ (/ = 1, 2, 3) are the three roots of the equation u 3 + au +1 = 0 and Vj (j = 1,..., 4)
are the four roots of the equation v* + av2 + v + b = 0. The same situation occurs on the
other reducible singular fibers. If one names the fiber components in Figure 11 as in
Figure 10 (the fiber on the left hand side), one can blow down the following nine sections
and components so that one obtains a configuration on P2 consisting of O, Aί9

A2,. ., A6, T+AΊ, Θ01 in this order.

REMARK 5. The sections are all disjoint except in the case (g).

This is an immediate consequence of the formula in Proposition 4.5.

6. Calculation of the Mordell-Weil group. We introduce a method of calculating
the Mordell-Weil groups in characteristic 2. We start with an equation

(6.1) y2 = x3 + φ(t)x + ψ(t) with φ{t\φ{t)sk[t'] and either φ(t)φK2 or φ(t)φK2

which satisfies
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(6.2) minK(<K0)-4, υJίψ(t))-6}<0

for any root α of A (t) = 0, where va is the (/ — α)-adic valuation with va{t — α) = 1. Suppose
/(0> 0(0 a n d A(0 a r e polynomials in k[t~\ such that (f(t)/h(t), g(t)/h(t)) is a solution
of (6.1) and gcd(/(0, 0(0, *(0) = l Substituting it into (6.1), we obtain

(6.3) g2h = f3 + φfh2 + ψh3 .

Here and in what follows /, g, h, φ, ψ, etc. stand for /(ί), g(t), h(t), φ(t), φ(t) etc., for
the sake of simplicity of the notation. First, we have

* = *?, / = / A with A^ΛefcM and gcd(/1,Λ1)=l

in the same way as in characteristic 3 (cf. [5, §5]). Hence we have

In view of (6.2) and Theorem 1.1, one gets

(6.4) deg φ(t) < 4χ , deg φ(t) < 6χ ,

where χ = χ(Θx) for a quasi-elliptic surface A'defined by the equation (6.1). Now, let us
consider an equation in the form

(6.5)

where F(t), G(t), Φ{t\ T{t)sk\jf]9 Φ(t)φkltγ or Ψ(t)φkltγ.
Then we have the following:

LEMMA 6.1. (i) IfF'ΦO then

deg F<max< deg Φ — 1, — deg Ψ

deg G =ζ — max{3 deg F, deg Φ + deg F, deg Ψ} .

(ii) IfF' = 0then,

F=G = 0 when Ψ' = 0,

degFίζdegίF-l when Ψ'ΦO.

PROOF. Differentiating both sides of (6.5), we have

(6.6) F2F' + (ΦF)r + Ψ' = 0.

Thus F2 divides (ΦF)'+ Ψ', which implies

2 deg i ^ maxjdeg Φ + deg F-1, deg Ψ - 1 } , whenever F' φ 0 .
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So we obtain (i). If ^ ' = 0, (6.6) becomes

Φ'-F+Ψ' = 0.

We are done by the assumptions on Φ and Ψ. •

Now applying this lemma to F=fl9 G = g,Φ = φh4', Ψ = ψh^, and making use of

(6.4), we have

where d=deghί. Note that a bound for d can be obtained by looking at the configura-
tion of reducible singular fibers. More precisely, we have the following:

LEMMA 6.2. Let P {Φ0)be a rational point of the form (/i(0/Ai(02> 0(O/*i(O3)
on an affine open set and let d=degh1. Then the following inequality holds:

8

PROOF. Suppose (P) and (0) intersect each other on the fiber over veP1. Then
the x-coordinate /i(0/*i(02 °f ^ m u s t have a pole at t = υ if Moo, since the section
(0) is taken as the section at infinity of the affine open set. Let v be a root of h1(t) = O.
Then, since (JΊ(t), h1(t))=\, the x-coordinate fiiO/h^t)2 of P has a pole of order equal
to the multiplicity of a root v in Λx(ί)2 = 0, and (P) intersects (0) on the fiber over t = v
with multiplicity equal to the multiplicity of the root υ in Λ1(/) = 0. Thus we have the
inequality d*ζ(P O). The inequality in the statement follows from this with the formula
in Proposition 4.5 taken into account. •
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