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Abstract. We introduce a spectral distance on the set of compact Riemannian

manifolds, making use of their heat kernels, and show some basic properties of the

distance on a class of compact Riemannian manifolds with diameters uniformly bounded

from above and Ricci curvatures uniformly bounded from below.
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Introduction. Gromov [10] introduced a distance on the set of compact Rie-
mannian manifolds and established, among other things, a precompactness theorem
on a class of compact Riemannian manifolds with a uniform upper bound for the
diameters and a uniform lower bound for the Ricci curvatures. Various works of interest
have since appeared around the Gromov-Hausdorff distance. For example, Fukaya [9]
gave a notion of measured Hausdorff topology on the set of compact Riemannian
manifolds and discussed the eigenvalue problem for the Laplace operators. The main
result in [9] concerns the convergence of the spectra with respect to the topology in
the set of compact Riemannian manifolds with a uniform bound for the diameters and
a uniform bound for the sectional curvatures in their absolute values. It was improved
later in [12].

On the other hand, from the point of view of spectral geometry, Berard, Besson
and Gallot [3] defined a family of ditances on the set of compact Riemannian manifolds
and proved a precompactness theorem under the assumption similar to the one used
by Gromov (see also Muto [15]).

In this paper, motivated by these results, we shall introduce a new uniform topology
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on the set of compact Riemannian manifolds, making use of the heat kernels, and then
discuss some basic properties of the topology in relations with the Gromov-Hausdorff
distance under certain geometric conditions.

Now we shall explain briefly the main results of this paper. For a compact
Riemannian manifold M, we denote by pM(t9 x, y) the heat kernel of M with respect to
the normalized Riemannian measure μ5£n (i.e., the Riemannian measure divided by the
volume of M). Given two compact Riemannian manifolds M and N, not necessarily
continuous maps / : M^N and h: N^M are said to be ε-spectral approximations
between M and TV if they respectively satisfy

e-{t+m\pM(t,x,y)-PN(t,f(x),f(y))\<ε for all t>0 and χ,yeM

and

e-(t+1/t)\pM(t9h(a),h(b))-pN(t,ayb)\<ε for all t>0 and a,bεN.

The spectral distance between M and N is by definition the lower bound of the numbers
ε>0 such that they admit ε-spectral approximations. The spectral distance gives a
uniform structure on the set of compact Riemannian manifolds. Given an integer n> 1,
and constants D>0 and κ>0, we write Jί{n, D, K) for the set of compact Riemannian
manifolds of dimension n with diameter diam(M) < D and Ricci curvature > — (n— \)κ2.
Then we can show the following results:

( i ) On M{n, D, K), the topology given by the spectral distance is finer than that
of the Gromov-Hausdorff distance (cf. Theorem 3.5).

(ii) Jί(yι, D, K) is precompact with respect to the spectral distance (cf. Theorem
3.6). Moreover, a boundary element of Ji{n, D, K) in its completion with respect to the
spectral distance can be regarded as a triad (X, μ, p) of a compact length space X, a
Radon measure μ of unit total mass on X, and a positive Lipschitz function p on
(0, o o ) x l x .Jf which is the heat kernel of a C0-semigroup on L2(X, μ) (cf. Theorem 3.8).

(iii) The continuity of eigenvalues and the convergence of eigenfunctions in a
certain sense hold in Jt{rι, D, K) with respect to the spectral distance (cf. Theorem 4.5).

To prove these results, we use basically several estimates on the heat kernels obtained
by some authors (cf. §2).

As indicated later in Example 1 of §1, from the nature of the problem considered
here, we shall in fact investigate Riemannian manifolds endowed with weight functions
and the associated operators rather than Riemannian manifolds and the Laplace
operators.

1. Spectral distance. In this section we shall introduce a uniform topology on
the set of equivalence classes of compact Riemannian manifolds endowed with weight
functions.

1.1. To begin with, we recall the definiton of the Hausdorff distance on the set
of isometry classes of metric spaces introduced by Gromov [10]. Given two metric
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spaces X and Y, a distance δ on the disjoint union X U Y is said to be admissible if its
restriction to X and Y are equal to the original distances dx and dγ in X and Y9

respectively. The Gromov-Hausdorff distance HD(X, Y) is by definition the lower bound
infH^X, Y), where δ runs over all admissible distances on XL\Y and Uδ(X, Y) stands
for the Hausdorff distance in ( l U F , <5), namely, the lower bound of the numbers ε>0
such that <5(x, Y)<ε and δ(y, X)<ε for all xeX and yεY. The Gromov-Hausdorff
distance HD enjoys all the properties of a distance when it is restricted to the set of
compact metric space. Observe that if ΉD(X, Y)<ε, then there exists a map / : X-> Y
such that (i) the 2ε-neighborhood of f(X) covers Y; and (ii) \dx(x9 y) — dγ(f(x),
f(y))\<2ε for all x,yeX, and also there is a map A: Y-*X satisfying (i) and (ii).
Indeed, we take a distance δ on XL\Y such that Uδ(X, Y)<ε and then choose maps
/ : X-+ Y and h: F-> X in such a way that <5(x, f(x)) < ε and δ(a, h(a)) < ε for all x e X
and aeY. Not necessarily continuous maps / : X-+ Y and h: 7-> X satisfying the above
properties (i) and (ii) are called 2ε-Hausdorff approximations between X and Y. Let us
denote by ΉD\X, Y) the lower bound of the numbers ε>0 for which there exist
ε-Hausdorff approximations / : X-> Y and h: K-> X. Then we have

— HDXZ, 7)<HD(X, 7)<2HD'(X, 7 ) .

For this reason, HD'(X, F) induces the same uniform topology in the set of isometry
classes of compact metric spaces as the Gromov-Hausdorff distance.

1.2. Let M be a complete Riemannian manifold without boundary and w a positive
smooth function on M. Throughout this paper, manifolds are always assumed to be
connected. We consider an elliptic differential operator if w of second order defined by

i f w = - Δ M - V l o g w ,

where ΔM stands for the Laplace operator of M acting on functions, namely, AMψ =
traceVdψ. This operator <£w is associated with the quadratic form @(φ, ι/0 =
JM<Vφ, Vψ}wdvo\M on the space of smooth functions with compact support, where
dvolM denotes the Riemannian measure of M. In what follows, we write simply μw

for the (Radon) meaure wdvolM, and we denote by pw(t, x, y) the heat kernel of the
operator ί ? w in L2(M, μ j . When M is compact, by the Sturm-Liouville decomposition,
we have the eigenfunction expansion of the kernel:

pw(t,x,y)=
0

Here 0 = λo<λ1<λ2<- - yco are the eigenvalues of J£?w and {wv} is a complete
orthonormal system of L2(M, μw) consisting of eigenfunctions with wv having eigenvalue
λx.

Throughout this paper, two triads (M,μv,pv) and (N,μw,pw) are said to be
equivalent and will be identified if there is a map / : M^N which preserve the heat
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kernels, namely,

pΌ(t9x9y)=pw(t9f(x), f{y))

for all ί>0 and x,yeM. In fact, since

lim 4t logpv(t, x,y)=- dM(x, y)2

r->0

for all x, yeM and for every triad (M, μv, pv) by a theorem due to Varadhan [20] and

Cheng, Li and Yau [7], we see that dim M=dim N and the above map / : M^N is a

distance preserving map from M onto N, and hence an isometry between M and N.

Moreover for a continuous function ψ on TV,

ί φ(f(x))dμv(x) = \im f ί pw(t,f(xlb)ψ(b)dμw(b)dμv(x)
JM ^OJMJN

f
JM

Pw(t,f(χ\f(y))ψ(f(y))dμv(χ)dμw(f(y))

= lim ί f pv(t,x,y)ψ(f(y))dμυ(x)dμw(f(y))

f
JM

= f Φ(f(y))dμw(f(y)).
JM

This shows that / preserves the measures, f*μv = μw.

Given two triads τ 1 = ( M , μo,pΌ) and τ 2 = (N, μw, pw), not necessarily continuous

maps / : M^>N and h: N^M are said to be ε-spectral approximations between τ1 and

τ 2 if they satisfy

e-{t+m\pv(t, x, y)-pJLu f(χ), Ry)) I <β

e-{t+1/t)\pυ(t9 h(a), h(b))-pw(t9 a, b)\<ε

for all />0, j c j e M a n d a,beN. The spectral distance SD(τ1? τ2) between τx and τ 2 is

defined to be the lower bound of the numbers ε>0 so that they admit ε-spectral

approximations. Here we understand SD(τ l9 τ2) = oo if there are no such maps. Let us

denote by J(WtC the set of the equivalence classes of all triads (M, μv, pv) with M compact,

then obviously SD(τ1? τ2) is finite for all τγ and τ 2 G ^ w c . Moreover if SD(τ1? τ2) = 0,

then τί =τ2 in J(WyC. Indeed, by the definition of the spectral distance SD, we have a

sequence of ε(0-spectral approximations f{\ M-+N and ht\ N-+M between τx =

(M, μv, pυ) and τ 2 = (N, μw, pw) with ε(/) converging to zero as / tends to infinity. Taking

a subsequence if necessarily, we may assume that these maps f{: M^N and ht: N-*M

respectively converge to maps / : M^N and h: N^M wtiich preserve the heat kernels.

Thus JίWtC equipped with the spectral distance SD becomes a metric space.

In the above definition of ε-spectral approximations, we multiply the function
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e-(t+i/t) ky ^ differences of the heat kernels for convenience, to take the asymptotic
behavior of the heat kernels as t-+0 into account.

1.3. Before concluding this section, we shall exhibit some examples. In the rest
of the section, for a compact Riemannian manifold M, we denote simply by μj£n the
normalized Riemannian measure of M, namely, the Riemannian measure dvolM of M
divided by its volume vol(M), and also by pM the heat kernel of the Laplace operator
of M in L2(M, μ^n).

EXAMPLE 1. Let M be a compact Riemannian manifold of dimension n and w a
positive smooth function with μw(M) = 1. Take another compact Riemannian manifold
N of dimension k, and denote by Mε the warped product of M and N with warping
function εw1/k (ε>0). Letting ε tend to zero, we see that (Mε, μM*,pMε) converges to
(M, μw, pw) with respect to the spectral distance. Indeed, the canonical projection
π: Mε-*M and any section σ\M^Mε give <5(ε)-spectral approximations with
limε_>0(5(ε) = 0. We remark that the push-forward measure π^μjg" coincides with μw for
any ε.

EXAMPLE 2. Let π: E^T be a Riemannian covering over a compact flat
Riemannian manifold T and let Γ be the covering transformation group. Suppose we
have an isomertic action of Γ on a compact Riemannian manifold S, namely, we have
a homomorphism α: Γ-+Isom(S). Then we obtain a family of Riemannian manifolds
which consists of the quotient manifolds Mε = (εE)xΓS (ε>0) of the Riemannian
products (εE) x S with respect to the diagonal action of Γ. Observe that as ε tends to
zero, the triad (Mε, μJJ", pM) converges to (S/K, μ, p) with respect to the spectral distance.
Here K denotes the closure of the subgroup α(Γ) in Isom^), μ is the push-forward
measure p*μc

s

an of μ£an under the canonical projection p: S^S/K, and the pull-back
ρ*p of p is given by

00

p*p(t, x,y)=Σ e~λvtuv(x)uv(y),
v = 0

where {wv}*=o is a complete orthonormal system of eigenfunctions of S in the subspace
L2(S/K, ρ^μc

s

an) of L2(5, μ£an) which consists of ̂ -invariant square integrable functions,
and λv stands for the corresponding v-th eigenvalue of S in L2(S/K, p*μc£n). We note
that at a regular point a of the quotient space S/K, the density of the measure μ with
respect to the m-dimensional Hausdorff measure of S/K (m = dimS—dimp~1(ά)) is
equal to the ratio of the volume of the submanifold p~ι{a) to that of S.

This is a typical example of Riemannian manifolds collapsing to a lower-dimension-
al space while keeping their curvatures and diameters bounded. According to Fukaya
[9], when such a family, say {Mj, converges to a metric space with a Radon measure
with respect to the measured Hausdorff topology in his sense, the eigenvalues and
eigenfunctions of M{ converge in a certain sense. In fact, the triad (Mh μc^,pM)
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converges with respect to the spectral distance SD.

EXAMPLE 3. We consider an example in [21] of Riemannian manifolds col-
lapsing to a lower-dimensional space while keeping their curvatures bounded below
and their diameters bounded above. Let G be a compact Lie group of positive dimension
acting on a compact Riemannian manifold M effectively. Take a (/-invariant metric g
on M, and consider a G-action φ on G x M defined by φa(b, x) = (ab, a(x)). Let
π: GxM-+M, π(a,x) = a~1(x), be the projection along the G-orbits, and ω the
connection on the principal bundle (G x M, π, M) such that QxTxM (xeM) are the
horizontal spaces. We define a family of metrics gε on GxM by

gε(ξ, ξ') = g(dπ(ξ), dπ(ξ')) + ε\ω(ξ), ω(ξ')} ,

where < , > denotes a bi-invariant metric of G. Let φ be another G-action on GxM
defined by ψa(b,x) = (ba~1,x). Since gε is ι/f-invariant, gε induces a metric gf on M,
and we write Mε for (M, gf). Then Mε converges to the quotient metric space M/G with
respect to HD as ε tends to zero. Moreover if we denote by wε(x) (xeM) the volume
of Gx {x} with respect to gε and set wf(x) = wε(x)/jM wεdvo\Mε, then we see that as ε
tends to zero, the triad (Mε, μw*, pw*ε) converges to (M/G, μ, p) with respect to the
spectral distance. Here (M/G, μ, p) is given in a manner similar to Example 2.

The sequences of these examples converge to lower-dimensional spaces. See for
instance, [1], [2], [9], [11], [16] and the references therein for different kinds of
examples and related topics.

2. Bounds for heat kernels. Throughout this section, M is assumed to be an
^-dimensional complete Riemannian manifold. Let w be a positive smooth function on
M and μ the Radon measure wdvo\M as in Section 1. The purpose of this section is to
give an analog of the Bishop-Gromov inequality and then derive some geometric
estimates for the heat kernel pw(t, x, y) of if w. Our arguments are based on the methods
which have been established when w is constant. We refer the reader to Berard, Besson
and Gallot [3], Chavel [5], Davies [7], Li and Yau [13], [14], Sturm [19] and the
references therein. The results of the present section provide the basic ingredients in
proving the main theorems in this paper.

2.1. First of all, we introduce a symmetric tensor associated with a given positive
function w. For an integer k>0, we define a symmetric tensor Rwk by

wι

= R i c M dlog w (x) dlog w — Ddlog w ,
k

where RicM stands for the Ricci tensor of M. For k = 0, we set Rw 0 = RicM. In this case,
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w is always assumed to be a constant. In the case fc= 1, the tensor Rw Λ was introduced

in Setti [17], [18], where upper and lower estimates for the first nonzero eigenvalue of

j£f w, for M compact, and also those for the heat kernel of J£?w were given in terms of

a lower bound of RwΛ. In what follows, we shall explain some implications of a lower

bound for Rwk and then derive some results which will be needed later.

Let us fix any compact Riemannian manifold N of dimension k and consider the

warped product M w f c = Mxwi/k7V of M and N with warping function w1/k. We denote

by π the natural projection of MWtk onto M. Then the Ricci tensor Ric M w k of MWtk

restricted to the horizontal subspaces coincides with the pull-back of the tensor Rwk by

π. Namely we see that

(2.1) Ric M w k (X, Y) = RWfk(dπ(X)9 dπ(Y))

for all horizontal vectors X and Y of MWtk. We notice that for any smooth function φ

on an open set of M,

(i) the gradient of φ o π is the horizontal lift of the gradient of φ
(2.2)

(ii) AMχv>κ(φ o π) = {AMφ + V log w φ) o π = - (&wψ) o π .

Let r be the distance to a point JC in M and r* the distance to the fiber π~1(x) = {x}xN

in M w k . Clearly r* = roπ. Suppose that

(2.3) * w k > 2

on M, where n — dim M and K is a positive constant. Then the standard comparison

argument together with (2.1) yields the following estimate:

(2.4) AM^

on MWtk, or equivalently,

(2.40 -2
sinhfcr

on M. Because r and r* are only Lipschitz functions on the cut loci, respectively, (2.4)

and (2.4') should be understood in a generalized sense. In fact, an argument due to

Calabi allows us to assume without loss of generality that they are smooth when applying

the comparison theorem or the maximum principle (cf. [5]). Now let us put for

convenience

Then the proof of the Bishop-Gromov inequality combined with the inequality (2.4)

shows that the ratio of the volume of π " 1 ^ ^ ) ) in MWtk to Vn+kκ(t) is monotone
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decreasing in t>0, where Bx(t) stands for the metric ball of M around a point x with

radius t. Since the ratio of the volume of π " 1(Bx(t)) in MWfk to the volume of TV is equal

to the mass μw(Bx(t)) of the ball with respect to the measure μw, we obtain the following:

PROPOSITION 2.1. Let M be a complete Riemannian manifold of dimension n and

w a positive smooth function on M satisfying (2.3) for an integer k>0 and a constant

κ>0. Then

μw(Bx(r))^ Vn+kfK(r)

μw(Bx(R)) Vn+Kκ(
R)

for all xeM and 0 < r < R .

Let M, w, k and K be as above. Then it follows immediately from the proposition

that given R > 0 and ε > 0, there exists a positive integer v depending only on n, k, K,

R and ε such that the ball BX(R) around a point x of M with radius R contains at most

v disjoint balls of radius ε. Thus by virtue of Gromov's precompactness theorem [10,

Chap. 5], we have the following:

COROLLARY 2.2. Given constants n, k and K as above and given Z>>0, the set of

{isometry classes of) all compact Riemannian n-manίfolds M, each of which admits a

positive smooth function w satisfying (2.3), and the diameter of which is bounded from

above by D, is precompact with respect to the Gromov-Hausdorff distance HD.

2.2. We now derive some bounds for the heat kernel pw(t, x, y) of i f w under the

assumption (2.3). We begin with the following:

PROPOSITION 2.3. Let M and w be as in Proposition 2.1. Let u(t, x) be a positive

solution on (0, oo) x M of the equation

Tt

Then (i) for any α > 1,

| V M | 2 ut (n + k)oc2 f l (n + k-\)κ2

u2 u 2 [t 2(α-l)

(ii) for all t>0, s>0, α > l and x, yeM,

x , J t + s\in+k)a/2 focdM(x,y)2 (n + k)(n + k-l)κ2s\
u(t, x)<u(t + s, y)l exp M\'y) +^ ^ — ^ .

V t ) \ 4s 4(α-l) /

PROOF. On account of (2.1) and (2.2), this proposition follows in the same methods

as those for [14, Theorems 1.3 and 2.2]. q.e.d.

Secondly, we shall give upper bounds for the heat kernel.
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PROPOSITION 2.4. Let M and w be as in Proposition 2.1. Then the heat kernel

pw(t, x, y) satisfies

pw(t,x,y)<

for all t>0, ε>0 and x, yeM, where Cn+Kκ{έ) is a positive constant depending only on

n + k, K and ε in such a way that Cn+kκ(ε) diverges as ε tends to zero, and λ0 is the

bottom of the spectrum of the operator &w on L2(M, μw). Moreover if M is compact

and the diameter is bounded above by a positive constant D, then

i—n+k,Λ ) e χ / _ ( i _ ε ) M\x9y) + Λ

for all te(0,D2'], ε>0 and x, yeM.

PROOF. The same arguments as in [7] combined with (2.1) and (2.2) give the first

estimate, which implies the second, because of Proposition 2.1. q.e.d.

As for a lower bound of the heat kernel, we have:

PROPOSITION 2.5. Let M and w be as in Proposition 2.1. Then the heat kernel

pw(t, x, y) satisfies

pw(t,x,y)>

for all t>Q, ε > 0 and x, yeM, where C'n+kjK{ε) is a positive constant depending only on

n + k,κ and ε in such a way that Cf

n+kκ(ε) converges to zero as ε tends to zero, and

C" = (n + k-\)2κ2/4.

PROOF. This follows by the same arguments as in [19] together with (2.1) and

(2.2). q.e.d.

We notice that the Poincare inequality holds for a Riemannian manifold endowed

with a measure. Namely we have the following:

PROPOSITION 2.6. Let M and w be as in Proposition 2.1 and let f be a smooth

function on M. Then

f l/-/wJ2Φw<C1+'V f
J Bx(r) J Bx(r)

|V/ | 2 φ w ,

for all xeM and r>0, where C is a positive constant depending only on n + k and
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Pw(Bx(r)) JBx(r)

PROOF. This can be derived by the same arguments as in [4] together with (2.1)

and (2.2). q.e.d.

2.3. We have considered so far a complete Riemannian manifold M with a weight

function w. In what follows, we shall discuss the case where M is compact and derive

several estimates for the heat kernel pw and also for the eigenvalues and eigenfunc-

tions of JS?W. Let {λv:0 = λo<λ1<λ2<' •' /oo} be the eigenvalues of J£?w and {wv} a

complete orthonormal system of L2(M, μw) consisting of eigenfunctions with uv having

eigenvalue λv. Noting (2.1) and (2.2), and then applying the same methods as in Li

and Yau [13] and also Cheng [6], we are able to verify the following:

PROPOSITION 2.7. In the above notation andunder the assumption (2.3), the following

assertions hold:

( i ) An eigenfunction u of J£?w with eigenvalue λ satisfies

\VU\2<A\ v " ' *""» + (n + k-l)2κ2}(βsup\u\-u)

for any β>\.

(ii) The first nonzero eigenvalue λ1 enjoys

exp[-1 -y/l +4(n + k- \fκ2 diam(M)2]
1 - 2(n + k-l)dmm(M)2 '

(iii) The v-th eigenvalue λv satisfies

λv<Cκ2 + C-
diam(M)2

for some positive constants C and C depending only on n + k.

Let us now assume, in addition to (2.3), that the diameter diam(M) of M satisfies

(2.5) diam(M)<Z)

for a constant D>0, and further the measure μ has unit total mass

(2.6) μ w ( M ) = l .

Then the same arguments as in [3: Theorem 3] yield the following estimates:

(2.7) £ λ"ve-^\ uv(x) 11 uv(y) \ < Q(α)r α " ( w + ^ 2

v = l

for any α > 0 and for all t>0 and x, yeM, where Cx(α) is a positive constant depending
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only on n + k, D, K and α;

(2.8) λv>C2v
2/in+k)

( 2 '9 ) u2<cJκ2 + V2

\ diam(M)2

where C2 and C3 are some positive constants depending only on n+k, D and K. In
particular, letting α= 1 in (2.7), we have

(n + k)/2

(2.10) — p w ( t , χ , y )
ot <c4

i2+n+k)/2

for all t>0 and x,yeM, and hence by Proposition 2.3 (i), we obtain

(2.11) I WxPw(t, x,y)\<C5(κ2 + r ( 1 +"+*>'2)

for all t>0 and x j e M , where C 5 > 0 is a constant depending only on n + k, D and K.
Hence it follows from (2.10) and (2.11) that

(2.12) jβ9 x, y)-pjt, x\ yf

M(y9 y'))

2 Q

n + k

Now rescaling what we have obtained in (2.7), (2.8), (2.9) and (2.12), we can deduce
the following:

PROPOSITION 2.8. Let M be a compact Riemannian manifold of dimension n and w
a positive smooth function on M satisfying (2.3), (2.5) and (2.6) for some k>0, κ>0 and
D>0. Let pw(t, x, y) be the heat kernel of &w, {K}T=o the eigenvalues of j£?w written in
increasing order and repeated according <to multiplicity, and {wv} a complete orthonormal
system in L2(M, μw) of eigenfunctions with uv having eigenvalue λv. Then

( i ) for any α > 0 and for all t>0 and x,yεM,

£ λa

ve-λvt\uv(x)\\uv(y)\<C((x)dn+kra-{n+k)/2 ,
v = l

where C(α) is a positive constant depending only on α, n + k and κD;
(ii) for all s, t>0 and x, x', y, y'eλf,

\pw(s,x,y)-pw(t,xf,y')\

d ^n+k+1

<Cd[d2κ2 —y
+ C"

n + k \n + k
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(iii) for all v> 1,

(iv) for all v > 1 and x e M,

Here we put rf=diam(M), and C", C", C ( 3 ) and C ( 4 ) are all positive constants depending

only onn + k and KD.

3. A precompactness theorem. One of Gromov's theorems asserts that the set £

of isometry classes of compact metric spaces of length is complete with respect to the

Gromov-Hausdorff distance HD (cf. [10, Chap. 5]). In particular, the completion of

the set Jίc of isometry classes of compact Riemannian manifolds endowed with HD

can be realized as a subspace of (</, HD). In this section, we shall restrict our attention

to certain subspaces of Jiw^ and carry out the completion of them. More precisely,

given integers n> 1, k>0, and constants D>0,κ>0, let Jt*(n, fc, D, K) be the subspace

of Jίw,c consisting of triads (M, μw, pw) such that the dimension of M is equal to n, and

the conditions (2.3), (2.5) and (2.6) are respectively satisfied by these constants. Here

the weight function w is assumed to be equal to l/vol(M) in the case k = 0. First of all,

we shall show that the projection p of JΐWyC onto Jic which sends (M, μw, pw) to M is

uniformly continuous on the subspace Jί%(n, k, Z), K) (cf. Theorem 3.5). Hence the

restriction of the projection p to this subspace extends uniquely to a uniformly continuous

map p from the completion of the subspace into J. Then Gromov's precompactness

theorem says, as mentioned in Corollary 2.2, that the image is precompact. Actually

we shall show that the subspace Jί%{n, k, D, K) itself is precompact (cf. Theorem 3.6).

Finally, we shall be concerned with the boundary elements of Jί%{n, k, D, K) in its

completion (cf. Theorem 3.8).

3.1. Let us begin with the following:

LEMMA 3.1. Let (M, μw,pw) be an element ofJ^%(n, k, D, K). Then

I At log/7w(ί, x, y) + dM(x, y)2 | < C l ( 0

for all x,yεM and ίe(0, D2\ where zγ(t) is a positive continuous function on (0, Z>2]

depending only onn + k, D and K which converges to zero as t tends to zero.

PROOF. By Proposition 2Γ4, we first have

for all x,yeM, t e(0, D2~\ and ε>0. Let us here choose a positive continuous function

ε(t) on (0, Z>2] so that ε(t) converges to zero as t tends to zero and
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for te(0, Z>2]. Then we obtain

4t\ogpw(t,x,y) + dM(x,y)2

<4tV2 + s(t)dM(x, >;)2 + 4ε(0ί2 + 4ί{log Vn+Kκ(D)-\og Vn+Kκ

Secondly, applying Proposition 2.5, we can deduce that

4ί log/>w(ί, x, y) + dM(x, yf>-4t^-ε\t)dM(x, yf-(4ε'(t) + (n + k- \)2κ2)t2 ,

for some positive continuous function ε'(t) on (0, oo) chosen in such a way that ε'(t)
converges to zero as t tends to zero and

where C'n+Kκ(ε) is as in Proposition 2.5. The above two inequalities show the lemma.
q.e.d.

LEMMA 3.2. Let (M, μv, pv) and(N, μw, pw) be two triads ofJί%(n, k, D, K). Suppose
there are a mapping f\A-+N of a subset AofM into N and a positive number r satisfying

v(t, x, y)-pjt, /(*),

for all x,yofA and t>0. Then

\dM(x,y)-dN(f(x), f(y))\<ε2(r)

for all x, y of A, where ε2(r) is a continuous increasing function on (0, oo) with
limί_>oε2(0 = 05 which depends only on n + k, D and K.

PROOF. We first notice that

(3.1) I logpw(t, /(x), /O0)-log Λ (t, x, y) I

w(t9 f(x\ f{y))-Pυ{U x, y) I

for all x, ye A and te(0, oo), because

min{/7w(ί, /(*), f{y)\pυ(t, x, y)} > — expί j-- cΛ

by Proposition 2.5, where C l 5 C2 and C3 are positive constants depending only on n + k,
D and K. In view of the identity

dM(χ,y)2-dN(f(χ),f(y))2

= {dy(x, y)2 + 4ί logΛ(ί, x, y)} - {dN(f(x), Ry))2 + 4ί log^w(ί, f(x\

+ 4ί{log/?w(ί, /(x), /(y))-log^(ί, x, y)} ,
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it follows from Lemma 3.1, Proposition 2.1, and (3.1) that

(3.2) I dM{x9 y)2 - dN(f(x\ f(y))2 I < 8εx(0 + 4Cxrt e x p f ^ y ^ + (C3 + l

for all x, ye A and ίe(0, Z>2]. Let us choose a continuous function t{r) with ί(0) = 0
and a positive constant C4 depending only on n + k, D and K in such a way that /(r) < D 2

and

Then substituting t(r) into ί on the right-hand side of (3.2), and defining ε2(r) by

we obtain

\dM{x, y)2-dN(J(x), /GO)2 I<ε2(r)2

for all x, y eA, which implies

I rfifίx^) " dN(f(x), Ry)) I < ε2(r) .

This shows the lemma. q.e.d.

LEMMA 3.3. Let (M, μv, pv) and (N, μw, pw) be elements of Jt*(n, k, D, K) and let

A be a b-dense subset of M. Suppose there is a map / : A-^N from A into N such that

(i) f{A) is δ'-dense in N for some <5'>0;

(ii) e-«+1»\pυ(t,x,y)-pjt,f{x),f(y))\<r

for some r>0, and for all t>0 and x,yeA. Then there are r'-spectral approximations

/ : M-+N and F: N->M between (M, μv, pv) and (N, μw,pw)) satisfying

dM(x, Ho f(χ))<δ + ε2(r), dN(a9 f o JUa))<δ'

for all xeM and aeN, where r' = r + C5(δ + δ'), ε2(r) is as in Lemma 3.2, and C5 is a

positive constant depending only on n + k, D and K.

Here a subset A of a metric space X is said to be <5-dense if dx(x, A)<δ for any xeX.

PROOF OF LEMMA 3.3. From the second assumption (ii) in this lemma and Lemma
3.2, we can deduce that

\dM(x,y)-dN(f(x),f(y))\<ε2(r)

for all x, ye A. Since A is (5-dense in M, let us take a map ζ: M-+A of M into A such
that dM(ζ(x), x)<δ for all xeM, and extend the map / to a map/: M-*N by setting
/ = / ° C Then it follows from Proposition 2.8 (ii) that

v(t, x, y)-Pw(t, f(x), f(y))\<r+C6δ
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for all />0 and x,jιeM, and for some constant C 6 >0 depending only on n + k, D and
K. Now we choose a map h: f(A)^M from the image of / into M in such a way that
foh(a) = a for all aef(A), and further define a map h~\ N-*M by h~=hoη, where fy is
a map from N into /G4) satisfying dN(η(a), a)<δ' for all aeN. Then it is easy to see
that these maps/: M-+N and /Γ: N-+M give r'-spectral approximations. q.e.d.

The following lemma is an easy consequence of the theorem by Gromov mentioned
at the beginning of this section and so we omit the proof.

LEMMA 3.4. Let K be a relatively compact subset of{J', HD). Given ε>0, there
exists <5>0 such that for any pair of elements X, YeK, and for every pair of maps
f: X-> Y and h: Y-> X, the image of f and that of h are respectively ε-dense in Y and
X, provided that they satisfy respectively

\dx(x9y)-dγ(f(x),f(y))\<δ

for all x,yeX, and

\dx(h(a),h(b))-dγ(a,b)\<δ

for all a, be Y.

Now the following is clear from the above Lemmas 3.1-3.4.

THEOREM 3.5. The natural projection of (JΐWfC9 SD) onto {Jίc, HD) which sends

(M, μw, pw) to M is continuous uniformly on the subspace M%{jι, k, D, κ)fόr given integers

n>\, k>0, constants D>0 and κ>0.

3.2. We are now in a position to prove the following:

THEOREM 3.6. For given integers n>l9 fc>0, constants D>0 and τc>0, the sub-
space M%(n, k, D, K) of the uniform space (JΐWfC, SD) is prςcompaet.

PROOF. Let {(Mi9 μWi, pWi)}i= l t 2,... be a sequence in M%{n, k, D, K). We would like
to show that it contains an SD-Cauchy subsequence. Taking Corollary 2.2 into ac-
count, we may assume that Mx converges to a compact metric space X with respect
to the Gromov-Hausdorff distance, namely, there are r(/)-Hausdorff approximations
fi: Mi-*X and ht: X^Mt between Mf and X with r(/)->0. Let us consider a sequence
{q^ of functions on (0, oo) x Xx ^defined by #f(ί, a, b)=pw.(t, h^a), ht{b)). Observe first
from Proposition 2.8 (ii) that

I qt(s, a, b) - qt(t, a', b') | < CA^fr2 + (-^M + \-f=) )

M Y+ f c_M\
\JJJ \J7J
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for all s, ί > 0 and a,b9a',b'εX, where d{ stands for the diameter of M{ and C7 is a

positive constant depending only on n + k and KD. We now prove that the sequence

{qt} contains a subsequence which converges to a positive Lipschitz function p(t, a, b)

on (0, o o ) x l x l . For this, we choose a family of finite subsets Av (v= 1, 2,...) of X

such that Ay is (l/v)-dense in X. Then {#,} is uniformly bounded and equicontinuous

on [1/v, v] x Av x Av for each v. Hence we have a subsequence {/v} such that qiv converges

to a function on [1/v, v] x Av xAv as iv tends to infinity. Here we may assume that

{/V + I}c:{/V}. Then by the diagonal argument, we can assert that there exists a sub-

sequence {qj} of {qt} which converges to a function p on (0, oo) xA xA as j tends

to infinity, where we set A = (J ™= ί Av. This function p clearly satisfies

( - > - ( d \n+k+1

(3.3) \P(s9a9b)-qi(t9a'9b')\ZC7d(d2κ2 )

/ d \n+k ( d \n+k

x {dx(a, a') + dx(b, b')} + C7 - — - - — )
\yJsJ \y/tJ

for all s, ί > 0 and a,b,a',b'εA, where we set d=diam(X). Since A is dense in X, the

function p extends uniquely to a Lipschitz function on (0, oo)x Xx X, which will be

denoted by the same letter p. It is easy to see that qs(t9 a, b) converges to p(t, a, b) for

every (ί, a, b)e(0, oo)xXxX. Hence p satisfies (3.3) for all s, ί > 0 and α, b, α', b'eX;

in particular

(3.4) \p(tia9b)-l\<CΊd
2[d2κ2 + (—— +C 7

for all ί > 0 and a,beX. We claim that

(3.5) e-<'+1">|qj(t9 α, fe)-/;(ί, α, fc)\<r\j),

for all (ί, α, fc)G(0, o o ) x l x l , where {r'(y)} is a sequence of positive numbers which

goes to zero as j tends to infinity. Indeed, suppose to the contrary that there exist a

positive constant p, & sequence [tj] of positive numbers, and families of points {#,}

and {bj} of X for which the following inequality holds:

e-(tj + i/tj)lqj(h aj9 bj)_p(tj9 ap bj)\>p>0 .

Then by (3.4), we may assume that tj converges to a number τ>0, and further both Oy

and bj converge respectively to some points a and b of X, since X is compact. Hence

we see that the left-hand side of the above inequality tends to zero as j goes to infinity.

This is absurd. Thus our claim (3.5) is verified.

Now it is not hard to see that {(Mp μWj,pw.)} is an SD-Cauchy sequence. Indeed,
for any (J, k) and for every (ί, x, y) e (0, oo) x Mj x Mp we have
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e~it+ m\pWj(t, x, y)-Pwk(t, hk o fj(χ), hk o fj(

<e~(t+llt)\pWj{U x, y)-pwj(t, hjofj(χ)9 hjof.(y)) I

+ e~it+ m\pWj(t, fj(x), fj(y))-pWk(t, K o fj(x), K o fj

< CΊe~it+Wdj (djκ2 +

x)) + dMj(y, hj o fj(y))} + r\j) + r'(k)

where we have applied Proposition 2.8 (ii) and put

This implies that hkofj . M^Mk and Λ7 °/fc: Mk^Mj are r(j, fe)-spectral approxima-
tions with r(j9 k) converging to zero as j , fc^oo. Thus the proof of Theorem 3.6 is
completed. q.e.d.

3.3. Let {(Mί9 μWi,pw)}i=i,2,... be an SD-Cauchy sequence in Jΐ*(n, k, D, K). In
the rest of this section, we shall describe the limit element in the completion. By virtue
of Theorem 3.5, we see that Mt converges, as / tends to infinity, to a compact metric
space X in the topology of the Gromov-Hausdorίf distance. Moreover, it turns out
from the argument in the proof of Theorem 3.6 that there exist a Lipschitz function
p(t, α, b)on(0, oo)xlxZandr(/)-Hausdorffapproximations/£: M
with r(i) converging to zero as /->oo, which enjoy

(3.6) e " ( ί + 1 / ί W ί , x, y)-p(t, M

e-{t+m\pWi(t, hM, ht(b))-P(t, a, b)\<r(i)

for all ί>0, x,yeλfi9 and a,beX;

(3.7) dMi(x9 ht o ffa)) < r{i), dx(a, ft ° ht(a)) < K0

for all xeMi and aεX. In particular, in addition to (3.3) and (3.4), p satisfies

(3.8) p(t,a,b)<Cn+Us) K

V

for all /G(0, Z>2], ε>0 and a,beX, where CΛ+JkfK(ε) is as in Proposition 2.4.
Now without loss of generality, we may assume that the above maps ft and h{ are

all Borel measurable. As a result, we have a family of the push-forward measures /is|cμw.
on X. Each /is|cμw. has unit total mass. We claim the following:
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LEMMA 3.7. There is a measure μ on X such that as i tends to infinity, (Mh μw)

converges to (X, μ) with respect to the measured Hausdorff topology in the sense o/[9],

namely

(3.9) fi+Vwi^l* in the weak* topology.

The proof of this lemma will be postponed until the end of this section. Let us

continue the arguments. We observe that the limit measure μ also has unit total mass,

and further it satisfies

)) ^ Vn+Kκ(r)

μ(Ba(R)) ~ Vn+Kκ(R)

for all r, R with 0<r<R, and aeX, because of Proposition 2.1 and the fact that

μ(Ba(r)) = lim μWι(fr 1(Ba(r)))= lim μWi{Bhm(r)) .
i-+oo i-*oo

As a result, μ(Ω) > 0 for any open set Ω in X, which implies in particular that the space

C(X) of continuous functions on X is dense in L2(X, μ). Moreover we see that p has

the same bounds as in Propositions 2.4 and 2.5, namely,

p(t, a, b)<Cn+ktMμ(Baφ)y1/2μ(Bbφ)y^2cxp^-(l -ε)

p(t, a, b) > C'H+kt

for any ε>0 and for all />0 and a,beX, where C" = (n + k+ l)2/c2/4.

Now we can deduce from (3.3), (3.4), (3.6), and (3.7) that

(3.10) I p(t,a9b)dμ(b)=l,
Jx

p(t, a, c)p(s, c, b)dμ(c) =p(t + s, a, b).I
Thus if we set

Tt(φ)(a)=\ p(t,a,b)ψ(b)dμ(b)Γt(ψ)(a)=[ p(t,a,>
Jx

for ψeL2(X, μ), then {Tt} is a symmetric Markov semigroup on L2(X, μ). Moreover,

we can show that for any continuous function φ on X, Tt(φ) converges to φ uniformly

on X as ί->0:

(3.H) li



SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS 165

Indeed, given ε>0, we first take a positive number δ such that \φ(a) — φ(b)\<ε if

dx(a, b)<δ. Secondly, by virtue of (3.8), we can choose a positive number Γin such a

way that p(t, a,b)<ε for any t< T and all a,beX with dx(a, b)>δ. Therefore we see

that for every aeX,

\Tt(φ)(a)-φ(a)\ = \Tt(φ-φ(a))\

< ί p(t, α, b)\ φ{b)-φ{a) I φ(Z>) + ί p(t, α, b)\φ(b)-φ(a)\dμ(b)
JBa(δ) JX\Ba(δ)

Thus (3.11) is verified. As a consequence, we see that {Tt} is a strongly continuous

semigroup with kernel p on L2(X, μ). Let us denote by if p the infinitesimal generator

of {Tt}. Then 5£v has the eigenvalues {λv}™=0 written in increasing order and repeated

according to multiplicity. Let Φ = {wv} be a complete orthonormal system in L2(X, μ),

which consists of eigenfunctions of if p with uv having eigenvalue λv. Then the kernel

p has the eigenfunction expansion

v = 0

Thus we are allowed to use the notion of r-spectral approximations between two

elements in the completion of the uniform space Jί%(μ, fe, D, K) for given constants n,

k, D and K as before.

Summing up what we have observed so far, we have the following:

THEOREM 3.8. The limit element of a sequence {τi = (Mh μw.,pw)} in the uniform

space Ji%(n, fe, D, K) can be regarded as a triad τ = (X, μ,p) which consists of a compact

metric space X ,of length, a Radon measure μ of unit total mass on X, and a positive

Lips chit z function p(t, a,b) on (0, oo) x Xx X such that

( i ) X is the limit of {M^ with respect to the Gromov-Hausdorjf distance;

(ii) μ satisfies

μ(Ba(r)) > Vn+k,κ(r)

Vn+Kκ{R)

foraeX, 0<r<R;

(iii) p is the heat kernel of a strongly continuous semigroup on L2(X, μ) enjoying
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for any ε > 0 and for all t>0 and a,beX, where C = (n+k + 1 )2κ 2/4. In addition, p satisfies

\n+k+l

t

n+k / Λ \n+k

for all s, t > 0 and a,b,a',br eX, where we set d= άvam{X). Furthermore, there exist Borel

measurable r(i)-spectral approximations ft\ M^X and ht: Ar-*M/ between τt and τ

satisfying (3.7) and (3.9).

PROOF OF LEMMA 3.7. Suppose there exist two subsequences, say {/Jŝ 7} and

{Λ*μfc}> °f {f 1*1*1}> which converges respectively to measures μ and μ' in the weak*

topology. Then for any ψ e C(X), we have

I φ(a)dμ(a) = lim ί f p{t, a, b)ψ(b)dμ'(b)dμ(a)
I v t-*o I I V s / v

p(t,a,b)dμ(a)φ(b)dμ'(b)= lim[[

-ί.
This shows that μ = μ'. q.e.d.

4. Convergence of eigenvalues and eigenfunctions. Berard, Besson and Gallot [3]

defined a family of spectral distances on the set of compact Riemannian manifolds by

embedding them into the same Hubert space, the space of real-valued, square integrable

series. The embedding is built by means of the heat kernels of the manifolds, and it is

proved that the set J(%(n, 0, D, K) is precompact with respect to each of the spectral

distances in their sense. Their distances are, however, different from ours. For instance,

as we have seen in Theorem 3.5, the spectral distance SD in our sense is closely related

to the Gromov-Hausdorff distance. Moreover taking the Sturm-Liouville decomposition

of the heat kernel into account, we may consider a point of a compact Riemannian

manifold endowed with a measure as a curve in the Hubert space. This is our point of

view.

In this section we shall first define a distance on the set of equivalence classes of

elements (M, μw, pw, Φ) where (M, μw, pw) e JίWfC with μw(M) = 1 and Φ — {uv}v = 0> x is

a complete orthonormal system in L2(M, μw) consisting of the eigenfunctions of 5£w,

and discuss its properties in relations with the spectral distance SD and the

Gromov-Hausdorff distance (cf. Theorems 4.1 and 4.2). Secondly, we shall show that

when a sequence {τ{ = (Mh μWi, pw)} in Jί%{n, k, D, K) converges to an element

τ = (X, μ, /?), the v-th eigenvalue of τf tends to that of τ and moreover the eigenfunctions
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of %i also converge to those of τ in a certain sense (cf. Theorem 4.6).
4.1. Let us begin with defining two Hubert spaces l2 and hί by

We remark that the embedding hγ^l2 is a compact operator. Let us consider the space
CΌo([0> °°)> y of continuous curves y: [0, oo)->/2 such that the /2-norm |y(ί)lι2 of y(t)
tends to zero as ί->oo. This space is endowed with the distance

ί > 0

For any subset A of (^([0, oo), /2) and a positive constant r, Λ .̂01) stands for the
r-neighborhood of A, namely, J^r(A): = {yG^Cao([09 oo), l2):da0(A, y)<r}, and the
Hausdorff distance δH on the set of bounded closed subsets of the metric space
CoodO, oo), l2) is defined by

δH(A, B) = inf {r > 0: A c ^ , (5) , £ cz Λ^Λ)} .

Given a positive constant C and a nonnegative continuous function η(t) (t>0) which
tends to zero at ί->oo, if we set

K(C, η): = {ye CJtf), oo), / 2): | γ(t) \hί < η(t) for all / > 0 ,

\y(t)-y(s)\h<C\t-s\ for all ί,s>0},

then it is easy to see that K(C, η) equipped with the distance d^ becomes a compact
metric space. Here we recall a well-known fact that the set of closed subsets of a compact
metric space is compact with respect to the Hausdorff distance (cf. Federer [8, p. 183]).

4.2. Let M be a compact Riemannian manifold of dimension n and w a positive
smooth function on M which gives a positive Radon measure μw = wd volM of unit mass:
μw(M) = 1. Using the eigenvalues and the eigenfunotions of the operator i?w, we embed
M into the metric space C f̂lX), oo), l2) as follows: Let 0 = λo<λ1<λ2< • be the
eigenvalues of ifw and Φ = {uv} a complete orthonormal system of eigenfunctions of
if w in L2(M, μw) with uv having eigenvalue λv. For a point JC. of M, we. define an element

Then it turns out that the map Fφ of M into C^dO, oo), l2) given by XI-^FΦ[Λ:] gives
rise to a continuous imbedding of M. Indeed, the injectivity of the map follows from
the fact that the eigenfunctions of JS?W separate the points of M. We observe that for
all x, yeM and
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w(t, x, y)-l)

= S UPe~ ( t + m(pJt, x, x) +pjt, y, y)-2pw(t, x, y)),
r>0

where pw(t, x, y) stands as before for the heat kernel of the operator j£?w on L2(M, μw).

If we set

ί 1 1 / 2

®M,w(x, y) = i S U P e (t+m(Pw(f9 x, x) +pw(t9 y, y) - 2pw(t, x, y)) \
[t>o J

for x,yεM, then we have a distance ΘMw on M which induces the same topology of

M. This distance will play an important role when we investigate a class of compact

Riemannian manifolds endowed with measures such that no uniform lower bound for

the modified Ricci tensors Rwk exists. This topic will be discussed elsewhere.

Let us now define a pseudo-distance on the set of elements (M, μw, pw, Φ = {wv})

as above by

for α = (M, μV9 pv, Φ = {uv}) and β = (N, μw, pw, Ψ = {»,}). Notice that

SD*(α,jS)<r

if and only if there exist not necessarily continuous maps / : M^N and h: N^M such

that

(4.1) e-«+w J
v = l

for all t>0 and xeM;

(4.2) e-(t+m £ \e-
λvt/2uv(h(a))-e~Pvt/\(a)\2<r2

v = l

for all ί > 0 and aeN. Here {λv:0 = λ0<λί<λ2< ' • } and {pv:0 = p 0 < p 1 < p 2 < •}

are respectively the eigenvalues of 5£Ό and Jέfw. In particular, SD*(α, β) = 0 if and only

if there is an isometry / : M^N between M and N so that f*w = v and f*vv = uv for

all v= 1, 2, 3, In what follows, we identify such elements and denote by #U?W f C,

the set of equivalence classes of elements (M, μw, /?w, Φ = {MV}) equipped with the distance

SD*. Let α = (M, μv,pv, Φ = {wv}) and jβ = (iV, μw,/?w, !P= K } ) be two elements oϊ&Jί^

such that SD*(α, β)<r, and then take maps / : M^N and h: N^M satisfying (4.1)

and (4.2), respectively. Let pv(t, x, y) (resp. pw(t, a, b)) be the heat kernel of <£υ on M

(resp. J£?w on N). Since

Λft ^ y)-pJLt, f(χ\
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it follows that for all X J G M and ί>0,

(4.3) e-<t+1»\pv(t9 x, y)-pw(t, f(x)J(y)) \ <σr ,

where σ = sup{| Fφ[x](t) \h +1 FΨ[a](t) \h: x e M, a e N, t > 0}. In the same way, we have

(4.4) e-«+1»\pυ(t9 h(a), h(b))-pw(t, a, b)\<σr

for all a, fceNand />0.

4.3. Given positive integers n> 1, k>0 and positive constants D, K, we set

&J(%(n, fc, D, ?c) = {(M, μw, pw, Φ) e ̂ JiWiC: (M, μw, /?w) e ̂ ί ( n , fc, D, K:)} .

Then it follows from Proposition 2.8 (i) and (iii) that

for any (M, μw,pw9 Φ)e^Jΐ*(n9 fc, D, κ;), where C and η depend only on n + k, D and

K. Thus we have the following:

THEOREM 4.1. The metric space 3FJ(%(n, fc, D, K) with the distance SD* is pre-

compact.

Now if we denote by π (resp. π') the natural projection from ^JtWtC onto JίWyC

(resp. </) which sends (M, μw,pw, Φ) to (M, μw,pw) (resp. M), then by (4.3), (4.4) and

Lemma 3.2, we have the following:

THEOREM 4.2. Given constants n, k, D and K as before, both of the projections π

and π' are uniformly continuous on the space &*J(%{n, fc, D, K). TO be precise, given two

elements α = (M, μv, pv, Φ = {uv}) and β = (N, μw, pw, Ψ = {vv}) of ^M%(ji, fc, D, K), there

exist 5(SD*(α, β))-spectral approximations f: M-+N and h: N-^M between π(α) and

π(β), which are also <5(SD*(α, β))-Hausdorff approximations between π'(α) and π'(/?),

such that

e-(t+w £
v = l

for all t>0 and xeM;

v = l

for all t>0 and aeN. Hence we put r = 2SD*(α, β), λv and pv are the v-th eigenvalue of

a and β, respectively, and δ(t) is a monotone increasing continuous function depending

only on n + k, D and K with <5(0) = 0.

By this theorem, the projection π (resp. π') extends uniquely to a continuous map

π (resp. π') from the completion of !FJl%{n, fc, D, K) onto that of J(%(n, fc, D, K) (resp.

that of π\&Jt%(n, fc, D, κ)) = p(Jί%{n, fc, D, K)) in «/). Therefore Theorem 3.6 and also
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Corollary 2.2 can be derived from Theorems 4.1 and 4.2 without referring to Gromov's

precompactness theorem.

4.4 We shall now prove the uniform continuity of the eigenvalues with respect

to SD.

LEMMA 4.3. Let n, k, D and K be as before, and let D' be a positive constant less

than D. Then given a positive integer v, there exists a monotone increasing continu-

ous function εv(t) with εv(0) = 0, depending only on n + k, D, K, D' and v, such that

for all <x = (M9μΌ9pv, Φ\ β = (ΛΓ, μw9 pw9 Ψ) e J ^ * ( n , k, D, k) with diam(M)>/)' and

dmm(N)>D\

μ v - σ v | < ε v ( S D * ( α , J ? ) ) ,

where λv and σv are the v-th eigenvalues of ££\ and 5έ'w, respectively.

PROOF. Let wv and υy be the v-th eigenfunctions of S£Ό and j£?w having the

eigenvalues λv and σv, respectively, and let / : M^N and h: N-+M be as in Theorem

4.2. Then we have

e-it+ W\e-^l2uv(x)-e-°*tl2vXf(x)) \2<r2

for all />0 and xeM;

e-it+llt)\e-λ"tl2uy(h(a))-e-σ*t/2vv(a)\2<r2

for all />0 and aeN. Here we put r = 2SD*(α, β). Since $Mu2dμw= 1, there is a point

xv of M such that | MV(JCV) | = 1. Therefore we see that

e(σv-λv)t/2.

Recall that

σ v < C v , \vv(f(xv))\<Cv

for some positive constants Cv and C'v depending only on n + k, D,κ, D' and v, be-

cause of Proposition 2.7 (iii) and Proposition 2.8 (iv), respectively. Let us set

ξv(t) = exp(t+ l/t+Cvt) for simplicity and denote by Av the positive number where ξv

takes the minimum value mv, and in addition, let us take a continuous function Tv(s)

insuchaway that£v(Γv(,s)) = l/sfors< l/wvand Γv(^) = v4vfor.y> l/mv. Then we have

if r<
mv

if r*-L.
M O rnv

In exactly the same way, we get this bound for λv — σv. q.e.d.

4.5. At this stage, we shall study the boundary of &M%(n, fc, D, K) in its com-
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pletion (^Jΐ*(n, fc, D, κ))~. Let {ai = (Mi9 μw.,pWi, Φi = {ui

v})} be an SD*-Cauchy se-

quence in ^J/%(n,k,D,κ). Then {π(αί) = (Mί, μWi,pw)} is an SD-Cauchy sequence

in Jί%(n,k,D,κ). Indeed; if we set r(iJ) = SD*(oci,ocj) and r'(ij) = δ(r(ij)\ then by

Theorem 4.2, we have r'(i,j)-spectral approximations / y : M{-^M-3 and λ y : Mi-^Mi

between π(αf) and π(θy), with r'(ij) tending to zero as /,y-*oo, which enjoy (4.1) and

(4.2), namely,

for all ί > 0 and

(4.5)
v = l

for all t>0 and aeλfj9 where {λi

v:0 = λi

o<λi

1<λi

2< •} are the eigenvalues of JS?W|.

Suppose that M{ does not converge to a point, that is, the diameters of Mt are uniformly

bounded below. Let (X9μ,p) be the limit of the sequence {π(αί) = (Afί, μw.,pWι)} in

J(%(n, k, D, K). Then there exist r'(/)-spectral approximations ft: M{-+X and Af: X-^Mt

between π(αt ) and (X, μ,p), with r'(/) tending to zero as /->oo, which satisfy

(4.6)

for all aεX. Observe that

The second term on the right-hand side in this inequality is bounded from above by

2KU)2> because of (4.5). On the other hand, if we put x = hi(a) and y = hijohj(a) for

simplicity, the first term is equal to

2e-(t+1/t){pWi(t, x, x)+pWi(t, y, y)-2pWt(t, x, y)} .

Hence by Proposition 2.8 (ii) and (4.6), we see that the first term is less than Cr'(iJ),

where C is a positive constant depending only on n + k, D and K. Thus we obtain

(4.7) e-«+1"> Σ \e-^1u\(hM)-e-*l2ui(hj(ά))\2<r"{i,j),
v = l

for all />0 and aeX, where r"(ίj) converges to zero as i,j->oo. In particular, this

implies that for any fixed integer v > 0,
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(4.8) < ,

for all />0 and aeX. Since {λi

v}i=lf2,3,... for each v is a Cauchy sequence by Lemma

4.3, we have the limit, say λv. Moreover it follows from (4.8) that {wt°^f} is also a

Cauchy sequence in L^iX). Let us denote by uv the function to which ul

v°hi converges

as i tends to infinity. Then it is not hard to see that uv is a Lipschitz continuous function

on X and further it is an eigenfunction of ifp with the eigenvalue λv. Here $£\ stands

for the infinitesimal generator of the C0-semigroup {Tt} in L2(X, μ) with kernel /?(£, α, b).

Thus by putting wo = 1, we obtain a complete orthonormal system Φ = {wv}v=0,1,2,... * n

L2(X,μ) and also we have an embedding Fφ: X^C^dO, oo), /2) in exactly the same

manner as in the case of Riemannian manifolds. Clearly the image FΦ[_X~\ coincides

with the Hausdorff limit of / ^ [ M J in (^([0, oo), /2) as i tends to infinity. In other

words, oc^iλfi, μWi,pWi, Φi) converges to (X, μ,p, Φ) with respect to the distance SD*

as / tends to infinity. In particular, letting j go to infinity in (4.7), we get

for all t>0 and aeX, where r"(j) converges to zero as i tends to infinity. In addition,

the same argument as above shows that

for all />0 and xeMt. Thus we have:

THEOREM 4.4. Given constants n, k, D and K as before, the completion

(^Jt%(n, fc, D, κ))~ of^Jί%{n, k, D, K) consists of the elements (X, μ, p, Φ = {uv}), where

(X, μ,p) belongs to the completion {Jt%{rι, k, D, κ))~ of Jt%{n, k, D, K) and Φ = {uv} is a

complete orthonormal system of eigenfunctions of ££'p with uv having the v-th eigenvalue.

4.6. We are now in a position to state the main theorem in this section. For two

elements σ, τ of (J(%{ri, k, D, /c))~, we set

Γ(σ,τ) = max{SD*(α,π- 1 (τ)):αeπ- 1 (σ)},

Then given a sequence {σj and an element τ in (Jί%{n, fc, D, κ))~, we can assert that

the following three conditions are mutually equivalent:

( i ) l i m ^ ^ SD(σί5 τ) = 0, namely ut converges to τ in {Jt%{rι, k, D, κ))~;

(ii) l i m ^ ^ Γ ί ^ , τ) = 0;

(iii) l ίm^ G O β(σ ί ,τ) = 0.

In particular, for an element τ = (X, μ,p)e(Jt%(n, k, D, κ))~, if we denote by λv(τ)

the v-th eigenvalue of the operator ifp, then it follows from Lemma 4.3 that
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provided a sequence {σj converges to τ. Here we understand λv(τ) = oo for v>0, when

X is a point. In this trivial case, we set evidently p=\. We notice that if every eigen-

value of τ is simple, then the following condition (iv) is also equivalent to the above

ones (i)—(iii):

(iv) lim ί_o oΓ(τ,σ i) = 0.

Thus we obtain the following:

THEOREM 4.5. Given integers n>\, fc>0, positive constants D and K, the following

assertions hold:

(i) The v-th eigenvalue λvfor each v, which is regarded as a function on the uniform

space Jί%{n, fc, D, /c), extends continuously to the completion (Jί%(n, fc, D, κ))~.

(ii) Suppose a sequence {(Mh μWi, pw)} in Jt%{rι, fc, D, K) converges to an element

τ = (X, μ,p). Then for any complete orthonormal system Φi = {u\,}v=ίj2,... in L2(Mh μw.)

which consists of eigenfunctions u\ with u\ having the v-th eigenvalue , there exist such a

system Ψi = {v\} in L2(X9 μ), and r(i)-spectral approximations f: M^X and h{: X-+Mx

satisfying

for all ί>0 and aeX;

e-(t+w
v = l

for all />0 and xeMt. Here r(i) does not depend on the choice ofΦt and tends to zero

as /->oo.

5. Spectral convergence and resolvents. Let τ = (M, μw, pw) be a triad of JVWtC.

For a positive number σ, the inverse Rτσ of the operator J£?w + σ/in L2(M, μw) has the

kernel gτσ, called the Green function, which is given by

Jo

This holds for an element τ of the completion of the uniform space Ji%(n, fc, D, K) for

given constants n, fc, D and K as before. In this section, we describe some conditons for

the convergence of a sequence in Jΐ*(n, fc, D, K) in terms of the resolvents.

5.1. Let {τi = (Mi9 μWi, Avf)}i=i,2,... be a sequence of Jί%(n, fc, D, K) such that Mt

converges to a compact metric space X with respect to the Gromov-Hausdorff distance

as / tends to infinity. Let f: M^X and ht: X^Mi be r(/)-Hausdorff approximations

between Mi and X with r(ι) converging to zero as i tends to infinity. Without loss of
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generality, we may assume that both maps ft and ht are Borel measurable. Fix a positive

number σ. Then we have a sequence of linear maps Rf: C(X)-*B(X) of the space of

continuous functions on X into that of bounded Borel measurable functions defined by

a)=hfoRτσoff(lι/)(a)= ί gτuM(°)>
JMi

for φ G C(X) and aeX. In addition, we have a sequence of the push-forward measures

fi^μi on X. The main result of this section is stated as follows:

THEOREM 5.1. Let τι = (Mh μWi,pw), X, f, hh Rf and fi%μw. be as above. Then the

conditions below are mutually equivalent.

( i ) The maps f and h{ are r' (ι)-spectral approximations between τ{ and an element

τo0 = (X, μ, p) with l im^ „ r\ί) = 0.

(ϋ) The measure / ί s |eμw. converges as i tends to infinity in the weak* topology and,

furthermore, Irni^^ Rf(\j/)(ά) exists for any ψeC(X) and aeX.

(iii) The measure fi#μWi converges as i tends to infinity to a measure μ in the weak*

topology and further lim,-..^ $χR*(ψ)φdμ exists for any ψeC(X) and every φeB(X).

When one {and hence all) of these conditions is satisfied, for any φ e C(X) and aeX,

i-oo

5.2. We prove two lemmas for the proof of this theorem. The first is stated as

follows:

LEMMA 5.2. Let τ = (M, μw, pw) be an element of Jί%(n, k, D, K) and gτσ the Green

function of^^ + σl)'1. Then for any ε > 0 andδ>0, there is a constant y > 0 depending

only on n + k, D, K, ε and δ such that

if dM{x, y)>δ, dM(x, z)>δ and dM(y, z)<γ.

PROOF. Observe first from Proposition 2.4 (ε = 1/2) that if dM(x, y) > δ,

(5.1) fTe-*pw(t9x,y)dt<C ί f V r t - ' 2 ' 8 t + " 2 V»+k«{D}_ dt
Jo Jo Vn+kAy/O

for any T:0<T<D2, where Cx is a positive constant depending only on n + k, D and

K. Secondly by Proposition 2.8 (ii), we have

e σt{pw(t,x,y)-pw(t,x,z)}dt •ί:<C2 Γin+k+ί)/2e-σtdtdM(y, z)

for all Γ > 0 and x,y,zeM, where C 2 > 0 depends only on n + k, D and K. Hence it

follows that if dM{x, y)>δ and dM(x, z)>δ,
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<2CX [T

e-«-»l*t+ti

Jo Vn+htK(y/7)

for any Γe(0, Z>2]. Hence taking T appropriately, we see that the assertion of the

lemma holds. q.e.d.

LEMMA 5.3. In the same notation as in Theorem 5.1, suppose the first condition (i)

holds. Let ε > 0 and δ>0 be given constants. Then for sufficiently large i, one has

ifdx(a,b)>δ;

I 0τ,.σ(*. y)-0τmj

if dMi(x,y)>δ.

PROOF. Let us consider indices / so large that 2r(ί)<δ. Then for all a,bsX with

dx{a, b) > δ, we have

, ht(b))>dx{a, b)-r(i)>y δ ,

and hence by (5.1)

for any T:0<T<D2. On the other hand, since Λf is an r'(/)-spectral approximation,

we obtain

ίC
r'(/) f

JT

for all Γ>0. Thus we can deduce that for all a,beX with dx(a,b)>δ and for any

<2CΛ e-°ts>/8t

Jo
v

Jr
e-*t+t+i/tdt

vn+Kκ{JΊ)
This shows the first assertion of the lemma. In a similar way, we can verify the second

one. q.e.d.

5.3. We are now in a position to give a proof for Theorem 5.1.

PROOF OF THEOREM 5.1. (i) =>(ii) We have already shown that f^μi converges
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to a measure μ in the weak* topology (cf. Lemma 3.7). Let φ be a continuous func-
tion on X. For any ε>0, take (5>0 so small that

\φ(a)-φ(b)\<σε

if dx(a, b)<δ. Fix a point aeXand set φa = φ — φ{a). For simplicity, we write B for the
metric ball around a with radius δ and put Bc = X\B,Bi = f[1(B) and B'—
Then

(5.2) I Rf(φ)(a) - Rτ^σ(Φ)(a) I = I R?(Φa)(a) -

JBi

y)Φa(fi(y))dμWi(y) I9-(a,b)φa(b)dμ(b)

+ι I >(9,,..(Ί1(o).7)-9,,..(*ι(o).''ι /,(>'))ίιίί.c/;w)Φ.,ω

JBC

ί ^ τ £ β , σ ( α ,
JBC

- A . . ^ b)}φa(b)df^μWi(b)

b)φa(b)df^μWi(b) - 0 τ o o > , b)φa(b)dμ(b)

The first two terms on the right-hand side of this inequality are both 'bounded by ε,
since | φa \ < σε on 5. As for the third term, we observe that

for all yeMi9 and further notice that i , then

My)) >dx(fi{y\ a)- r(i) > δ -r(i)

, fi o ht(μ))- r(i)

> dx(fi(y), a) -dx(a, ft o hid))-r(ί) > δ -2r(i).

Hence taking sufficiently large / so that δ>Λr(i), and applying Lemma 5.2 to the third
term on the right-hand side of the inequality (5.2), we see that this is bounded by ε for
large i. Moreover by virtue of Lemma 5.3, we deduce that the fourth term there is also
bounded by ε for large /. Finally, since the push-forward measure /^μ,- converges weakly
to the measure μ as /->oo, it follows that the last term there converges to zero as i-+co.
Thus we have shown that

\R?(φ)(a)-Rτtσ(Φ)(a)\<5ε

for large /'.
(ii) => (iii) is trivial.
(iii)=>(i) is also clear from the arguments in the proof of Theorem 3.6 and that

of the first assertion (i) => (ii).



SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS 177

6. Further discussions. Let M be a compact Riemannian manifold of dimension

n. Given smooth functions w>0 and V on M, we consider the equation

d_

Jt
where we set

gw vf= _ Δ M / - V log w •/+ Vf .

Let us denote by pWfV(t, x, y) the fundamental solution of the above equation. We have

restricted our attention so far to the case V=0. However, it is possible to introduce

the spectral distance SD on the set of equivalence classes of triads (M, w, pwV) and

carry out the discussions similar to what we have done in the previous sections, although

some obvious changes should be made.

In fact, given integers n>\, k>0 and positive constants D, K and η, we write

M%v{n, k,D, K, η) for the uniform space of elements (M, w,pw V) as above such that

the dimension of M is equal to n, (2.3) the tensor Rwk> — (n + k— l)τc2, (2.5) the

diam(M)</), (2.6) the measure μw has unit total mass μ w ( M ) = l , and moreover V

satisfies

(6.1) \V\oo<rj2

Furthermore, let 2FJi%v{n^ k, D, K, η) be the metric space with the distance SD* which

consists of elements (M, w, pwV, Φ = {uv}), where (M, w,pw,v)e^Z,v(n> K A κ > *l) and

φ = {Wv}v=0 t 2 is as before a complete orthonormal system in L2(M9μw) of

eigenfunctions uv of JίfWfK with wv having the v-th eigenvalue λv. We remark that uv is

uniformly Holder continuous, namely,

'\uv(x)-uv(y)\<C(v)dM(x,y)a

for some α e (0,1) depending only on the given constants n, fc, D, K and fy, and a positive

constant C(v) depending only on v and the given constants in such a way that C(v) < O(y 2 ) .

This can be verified by the standard elliptic regularity theory together with the Poincare

inequality described in Proposition 2.6. Then results similar to those in Sections 3-5

can be shown to be true for these spaces Jί%v(n, k, D, K, η) and &Jί%v{jι, k, D, κ,η).

Obviously the constants and the functions there must depend also on the given constant

η, and the equality in (3.10), for example, should be read as

p{Ua,b)dμ{b)<e+*.

In addition, the components of the embedding Fφ: M-^C^iLO, oo), l2) in 4.2 should

be begun by
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where ζo(t) = Qxp(-t-l/t-ηt)/2.

Let us conclude this section with a direct application of the generalization men-
tioned above.

THEOREM 6.1. Let M be a compact Riemannian manifold of dimension n and let

w>0 and V be smooth functions on M. Suppose (2.3), (2.5) and (6.1) are satisfied

for some positive constants k, K, D and η, respectively. Then there is a constant

C= C(n + k9 D, K, η) depending only on the quantities in the parenthesis such that

x v " d i a m ( M ) 2 7

where λt (i=0, 1) are the first two eigenvalues of the operator <&WfV.

PROOF. By rescaling the metric of M and multiplying the weight function w by a
constant if necessarily, we may assume that the diameter of M is equal to one and the
measure μw has unit total mass. Moreover, replacing the given V by V— min V, we may
assume that V>0. Then the assertion follows by contradiction. Indeed, suppose to the
contrary that there exists a sequence {τj = (Mj,wj9pWjVj)} in Jΐ*v(n,k,D,κ,η) with
diam(M7) = 1 such that the gap between the first two eigenvalues of ̂ WjfVj tends to zero
as7-»oo. Then by virtue of an analog to Theorem 3.8, we may assume that this sequence
converges to an element τ = (X, μ,p) in the completion of Jt%v(n, k, D, K, η). This leads
to a contradiction, because we have an analog to Theorem 4.5, and the first eigenvalue
of τ is simple.

REMARK. In the present paper, we have focused on compact Riemannian manifolds
without boundary. However it is possible to discuss a class of complete (pointed)
Riemannian manifolds including noncompact manifolds or manifolds with boundary.
This topic will be taken up elsewhere.
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