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Abstract. We show that the automorphism group of a certain class of bounded

Hartogs domains of infinite type of dimension two is compact.

1. Introduction and statement of results. An automorphism of a domain Ω in Cn

is a biholomorphic mapping from Ω onto itself. The set of all automorphisms of Ω

makes a group under composition. This group is called the automorphism group of Ω

and denoted by Aut(Ω).

The study of automorphism groups of domains in Cn has been attracting much

attention lately in relation to the characterization of domains in C . In 1977, Wong

[Won] proved that any bounded strongly pseudo-convex domain in Cn with noncom-

pact automorphism group is biholomorphically equivalent to the unit ball in Cn.

The noncompactness of Aut(Ώ) means that there exist points pedΩ and qeΩ and a

sequence {Fn} in Aut(Ω) such that Fn(q) -• p as n -• oo (p is called an orbit accumula-

tion point). Rosay [Ros] removed the hypothesis of global strong pseudo-convexity

and showed that Wong's theorem is true if dΩ is strongly pseudo-convex at p. For

weakly pseudo-convex domains, Bedford and Pinchuk [BP] used the scaling technique

to show that any bounded pseudo-convex domain of finite type is biholomorphically

equivalent to a domain {{zu z2)eC2: \zί \2 + \z2 \2m< 1} for some integer m provided

that the automorphism group of the domain is noncompact.

If we remove the a priori assumption of being finite type in Bedford-Pinchuk's

result, the scaling technique does not work. So, it is natural to ask whether dΩ can be

of infinite type at the orbit accumulation point. That dΩ is of infinite type at p means

that the Levi form for Ω vanishes at p to the infinite order in the complex tangential

direction (see the next section for a precise definition of infinite type). In this paper,

we consider the following special kind of Hartogs domains

(1.1) EP = {{zl9z2)eC2:\z1\
2

where P is a subharmonic function with P(0) = 0. We show that if the domain EP is of
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infinite type, the Aut(£P) is compact. If P(z2iz2) = φ{\z2\\ then EP is a Reinhardt

domain and we can give a complete classification of the automorphism group by

exploiting the circularity of the domain (cf. [Kan] [GK]).

Let us state the main result of this paper more precisely. Let P(z) = P(z, z) be a

smooth function satisfying the following conditions:

(Cl) P ( z ) > 0 i f z ^ 0 ,

(C2) (da+βP/dz*dzβ)(0) = 0 for any non-negative integers α and /?, and 0 is the only

point with this property.

Assume that EP is a bounded pseudo-convex domain. The pseudo-convexity of EP is

equivalent to the subharmonicity of P in a neighborhood of EP. The condition (C2)

implies that EP is of infinite type along the points (eiθ, 0) e dEP and (eiθ, 0) are the only

points in dEP where EP is of infinite type (see the next section). Among functions

satisfying the above conditions are P(z) = Cexp(—l/|z|2) as a radial function and

P(z) = Cexp(—l/(|z|2-Hε9ί(z2))) as a nonradial one where C (resp. ε) is a large (resp.

small) constant.

THEOREM. If EP is as above, then any automorphism of EP fixes the origin.

COROLLARY. If EP is as above, then Aut(£p) is compact.

Note that unlike the radial case, EP does not have a circularity. Proofs in this

paper will consist of the following steps. Because of the invariance of type under

automorphisms, we first show that certain directional derivatives of all orders of

automorphisms of EP vanish at the point of infinite type (Lemma 3.1). We then show

that the rate of approach to the orbit accumulation point should be uniform if there

exists any orbit accumulation point (Lemma 3.2). Finally we give some global arguments

to finish up the proof. It is our hope that the arguments in this paper can be extended

to a more general class of domains.

ACKNOWLEDGEMENT. I wish to thank the anonymous refree for valuable comments

on this paper.

2. Infinite type. In this section, we review Kohn's definition of type in [Koh].

Let Ω be a bounded domain in C2 with a smooth boundary and let r be a defining

function for Ω, i.e., r is a smooth real-valued function in a neighborhood U of Ω and

Vr(z)^0 if zedΩ, and Ω = {zeU: r(z)<0}. Define a holomorphic tangent vector field

Lby

(2.1) dr δ 3r d

dz2 dz1 δzx dz2

The L is a basis for the maximal complex subspace of the tangent space to dΩ at each

point. The Levi function λ for Ω is defined to be function such that S£(L, L) = λ\L\2,

where & is the Levi form for Ω. Kohn showed that if dΩ is of finite type at a point
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pεdΩ, then

for some α l 9 . . . , αm, where each α, is either 0 or 1, while L° = L and LX=L. Therefore,

we take the following definition for infinite type.

DEFINITION. dΩ is said to be of infinite type at p e dΩ if

(2.2) (Lα i Z

for any α x , . . . , αm and for any m = 0, 1, 2,..., where each α,- is either 0 or 1, while L° = L

Note that in the definition we may use any nonvanishing smooth complex tangent

vector field instead of L since L generates such a vector field.

For our domain EP = {(z1? z2)eC2:\zί | 2 + P(z2, z2) < 1},

(2.3)

and the Levi form is given by

(2.4)

dP d d
z,dz2 dz1 dz2

<£ =
1 0

0 ΔP(z2)/4

Hence we see, by straight forward computation, that the Levi function λ(zu z2) at (z1? z2)

is

(2.5) Zl,*2) =

dP

dz2

(z2)

dP

dz2

2

I

-(z2)

l-AP(z2)\Zl\
2

2

Note that because of (Cl) and (C2)

(2.6) (L" • • -L*>"l)(eie, 0 ) = ( - l)me ί( dmλ
β , 0 ) ,

dz\d^-k

where k is the number of α/s such that αy = 0 . It then follows from (Cl) and (C2) that

for any α l 5 . . . , αm and for any m = 0,1, 2, Hence EP is of infinite type at points

(eιθ, 0) for any θ. Moreover, (eιθ, 0) are the only points of infinite type.

We now prove a preliminary lemma regarding infinite type.

LEMMA 2.1. Let ψ be a smooth increasing function on (0, ε)for some ε. Ifφ vanishes

at 0 to infinite order, then for any c>\,
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(2.7) lim sup I^LL = oo .
K } t^oy φ(ή

PROOF. Suppose that (2.7) does not hold. Then, there exist to>0 and A> 1 such

that φ(ct)<Aφ(t) for any t<t0. Hence, if m is large enough, then

φ(t) 1 φ(ct) cm φ(ct) φ(ct)
> = > -tm A tm A (ct)m (ct)m

By repeating this inequality, we have

Φ(t) > Φ(cnt)

tm (cnt)m

for any positive integer n as long as cnt<t0. In particular, we have

φ(to/cn) > φ(t0)
it //*"v /•"'

Letting n -+ oo, we have

which contradicts our hypothesis. This completes the proof.

3. Proofs. We now give a proof of the main theorem of this paper. Each lemma

corresponds to a step for the proof. As before, we let P be a smooth function satisfying

the conditions (Cl) and (C2) such that P is subharmonic in a neighborhood of EP where

Then, EP is a pseudo-convex domain; of infinite type along (eiθ, 0) 6 dEP and of finite

type elsewhere. We let W= {(eiθ, 0): | θ | <π} . One can observe that any automorphism

F of EP maps W onto itself. In fact, since EP is a complete Hartogs domain, the

Bergmann projection on EP maps C*°(EP) into C^iEp) (cf. [BS, main theorem]). So,

by a well-known theorem of Bell-Ligocka, any automorphism of EP can be extended

to a diffeomorphism of EP. We denote the extension also by F. This extended

automorphism F maps W onto W.

LEMMA 3.1. Any Fe Aut(£P) is of the form

F{zl9 z2) = (μm(z1)9 z2h(zl9 z2)),

where m is a Mδbius transformation of the unit disc Δ inC,\μ\ = \,and h is a holomorphic
function on EP.
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PROOF. Let F(z) = (f(z), g(z)) be an automorphism of EP. F(W)= W implies that

g(zu 0) = 0 if I z'i | = 1. By the maximum principle, we have g(zu 0) = 0 if | zx | -< 1.

Moreover, f(zί9 0) is an automorphism of A. Hence, f(zί9 0) = μm(z1), where m ^ ) is a

Mόbius transformation of A and | μ \ = 1. It remains to show that/is independent of z2.

Let r(z1,z2) = \z1 \2 + P(z2)— 1. Then roF is also a defining function for EP, since F

can be extended to a diffeomorphism of EP. For notational convenience, we put

Q(z) = (Pog)(z). Note that

(3.1) -—^r
dz"2dz%

for any α>0 and β>0, since P vanishes to infinite order at 0 and g(eiθ, 0)=0. In terms

of the defining function roF, the Levi function for EP is given by

p 2

φ(z)

(3.2)

where

λ(z) = -
δz2

'•θ(z)

dp

ψ(z) =
df

δz2

and Aj is the Laplacian with respect to z},j= 1, 2. Since EP is of infinite type along W,

we have

for any nonnegative integer n. Recall that

L =
dP d

Zγ
dz2 dzx δz2

It follows from (Cl), (C2) and (3.1) that

0 = ((LLγλ)(eiβ,0) = 4-"(ι θ, 0) =

for any n = 0,1,2, It then follows from the maximum principle that/is independent

of z2. This completes the proof.
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LEMMA 3.2. Let F{zί9 z2) = {μm{z1\ z2h{zu z2)) be an automorphism of EP. Then,

\h(eiθ

90)\ = lforanyθ.

PROOF. Since r and r o F are defining functions for EP, there exist positive constants

A and B such that

Ar(z)<(roF)(z)<Br(z)

for all z near dEP. Recall that r(z1,z2) = | z 1 | 2 + P ( z 2 ) - 1 . Fix θ and let z1 = ew. Then,

for any z2 near 0, we have

(3.3) AP(z2)<P(z2h(eiθ, z2))<BP(z2).

Suppose that | h{eiθ

9 0) | > 1. Then, by the second inequality in (3.3), we have

ί P(z2h(eiθ, z2))dV(z2)<B f
J|z2|<^ J|

z2))dV(z2)<B f P(z2)dV(z2)
J

for any δ small enough. We make a change of variables w = g(eiθ, z2) = z2h(eiθ, z2) and let
Z2 = 9~1(w) be its inverse. Then, the real Jacobian | J^'1 \ of the change of variables

z2 = g ~ 1(w) is bounded below by a positive constant C for | z2 | < δ if δ is small enough.

Therefore, we have

C ί P(w)dV(w)< ί P W I ^ ' 1 \dV(w)

ί P(z2h(eiθ,z2))dV(z2)

[ P(z2)dV(z2).
\z2\<δ

Since | h(eiθ, 0) | > 1, there exists a constant c> 1 such that {w: | w | <cδ} a {w: \g~1(w)\<

δ} for any δ small enough. Hence, we have

(3.4) C I P(w)dV{w)<B I P(w)dV(w).
J\w\<cδ J\w\<δ

Let

φ(δ) = P{w)dV{w) = δ2\ P{δw)dV{w).
J\w\<δ J | w | < l

Then, we see from (C2) that φ vanishes to infinite order at 0. On the other hand, (3.4)
implies that

Γ φ(cδ) B
hm sup — — - < — .

*-o φ(δ) " C
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This contradicts Lemma 2.1. Hence | h(eiθ, 0) | < 1. We can use the first inequality in (3.3)

to show that | h{eiθ, 0) | > 1. Hence, | h{eiθ, 0) | = 1. th i s completes the proof.

LEMMA 3.3. Let F=(f, g) be an automorphism of EP. Then f(z) = μz1 for some μ

with | μ | = l.

PROOF. By Lemmas 3.1 and 3.2, f(zί9 z2) = μm(z1) and g(z1, z2) = z2h(z1, z2) with

I h(eiθ, 0) I = 1 where | μ \ = 1 and m is a Mόbius transformation. Assume that μ = 1 without

loss of generality. Suppose that m(O)φO. Put Dε = {(0,z2): \z2 |<ε} . Let Fn = Fo Ojp

be the n times iteration of F, and let Fn = (Gm Hn). Then, Gn(z1, z2) = mn(z1) and hence

I Gπ(0, z2) I -• 1 as n -• oo for any z2 and Gπ(0, z2) is independent of z2. Therefore, we have

ί dV(z2)= ί dV(z2)^0 as

for any ε > 0. Let

g(zl9z2) =
n = 2

in some neighborhood of (0, 0) containing Dε for a small ε. Then we have | v | = 1 by

Lemma 3.2. We can show by induction that

B1 f
n = 2

for some holomorphic functions bn. Hence,

dHί dV(z2)= ί
JHn(DE) JDε

dz2

>ε z π|v | 2 " +

~(0,z2) dV(z2)

which is a contradiction. Thus, m(0) = 0 and the proof is complete.

Theorem and Corollary follow from Lemma 3.3.
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