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Abstract. Unlike an integrable function on the unit circle which has the nonnegative
Fourier coefficients and is square-integrable near the origin, an integrable function on
the real line which has the nonnegative Fourier transform and is square-integrable near
the origin is not always square-integrable on the real line. We give some examples, and
consider an additional condition which guarantees the global square-integrability.
Moreover, we treat an analogous problem for an integrable function on the real line
which has non-negative wavelet coefficients of the Fourier transform and is square-
integrable near the origin.

1. Introduction. In this paper we consider the following:

QUESTION. Let feL1(R) with the Fourier transform / > 0 and f restricted to a
neighborhood (-<5, δ) of x = 0 belongs to L2(R). Then, does/belong to L2(R)Ί

A similar question in which we replace the Euclidean space R by a compact
group G has an affirmative answer. For example, when G is a compact abelian group,
feL1(G) with the nonnegative Fourier coefficients which is /?-th (l</?<2) power
integrable near the identity of G has the Fourier coefficients in lq (q=p/(p—l)). For
p = 2 this conclusion is equivalent to feL2(G), and was obtained by N. Wiener for
G= T (cf. Boas [2] and Shapiro [8]) and by Rains [7] for arbitrary compact abelian
groups. For 1 <p<2 it was proved by Ash, Rains and Vagi [1]. Moreover, when G
is a compact semisimple Lie group, an analogue of this result for central and zonal
functions on G was obtained by the first author and Miyazaki [5].

The answer to our question is unfortunately negative on the Euclidean space R.
In §2 we shall give two counterexamples: one is constructed by using step functions
and the other by applying wavelets. Therefore, for a function / satisfying the assumption
of the Question to be in L2(R), we need an additional condition of /. In §3 we replace
the condition feL2( — δ, δ) by a stronger one, under which we can deduce the global
square-integrability of / . In the last section we treat an analogue of the Question in
which the assumption / > 0 is replaced by the nonnegativity of the wavelet coefficients
of /. The second counterexample in §2 and the last section were announced by the first
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author in [4].

2. Counterexamples.

COUNTEREXAMPLE 1. Let 0<y< 1/2 and α, β positive numbers satisfying

(1) α < j δ - l , (2) α>3(jS-l)/4, and (3) a<β/2.

For each n e N we define

n {rf if n — yn~β<x<n + yn~β,
α' 'y | θ otherwise,

and we put g{x) = Y^=ιg\x). Since supp(0 l)nsupp(#J) = 0 (iφj), it follows that

\\g\\i = 2yΣ™=inCί~β<O0 by (I) and ||0||2 = 2y£*=1«
2a~/* = oo, because 2oc — β>(β — 3)/

2>α/2- 1 > - 1 by (1) and (2). We put

where g(x) = g( — x). It is easy to see that

(4) Il/Hi^l

and

(5) f(λ) = \g(λ)\2>0 (λeR).

We define A(x) = (2γ/\ x \)llβ. Looking at the support of gn, we see that g\ )g\ - x ) = 0

for n and x satisfying n > \_A(x)~] + 1, where [a~\ denotes the greatest integer not exceeding

aeR, and moreover, gn(-)gm( -x) = 0 (nφπi), if \x\<b<\—2y. Therefore, we can

deduce that

[A(x)] riA(x)]

f(x)< Σ 2yn2*-β<\ 2γy2

n = l J l

by (3). Since 2 α - β + 1 <β/2 by (1) and (3), it follows that

(6) Γ |/(x)|2</x<oo.
J -s

We next obtain an estimate for/on the neighborhood /[ = [/-c3/~^, /+c3/~/*] of leN,

where c3 = y((β-2oc)/β)β+1. For xelh we put ^ ( X ) = 7 1 / ( ^ + 1 ) ( / / | J C - / | ) 1 / ( ^ + 1 ) - / .

Obviously, Bι(x)>2al/(β-2oc) on lx and the inequality n<Bt(x) (/> 1) implies that

Ix-Zl^y/^ + O-^-^y/w-H^ + O ' ^ y ^ ' ^ - ^ H - / ) " ^ because β>\ by (1). There-

fore, supp(/ + ί( +x))<=supp(gfn( )) for «9 x satisfying n<Bt(x) (/>1), so we obtain

that if xelt
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= Σ Π g\y)gm(y+χ)dy> Σ Γ g\y)g
n,mJ-o0 n<Bι(x)J-a0

[B|(x)l

>2y Σ

We note that the function ya(y + l)*~p is monotone decreasing on y>Bι = od/(β — 2oc)

and, since α and β — 2α are positive (see (3)), there exists an ε > 0 such that oc>ε(β — 2α).

Then, for large / > L = (α/(β - 2α) - ε ) " 1 and JC e Ih we have ^(x) - (Bt + 1) > ocl/(β - 2α)

— 1 > ε/, and thus, the last summation is estimated below as

Taking the

J xeli

and

(7)

>2y\BήX]

square of this

ll/lli

inequality and

^2^2α + 2 + 2(α-^)/(

>2yJβ;(x)«(5/l

integrating it

fc3l-β
β+1) χ -

Jo

)|2rfx>c5 Σ

ΓBiU)

J β ! + 1

over / f(/>L), we can deduce that

by (2). Therefore, (4)-(7) imply that fatPtyeL\R) with / M , y > 0 and the restriction of

/α,0,v to ( — 5, ^) belongs to L2(R) foτδ<\ —2y. However, faβy does not belong to L2(R).

COUNTEREXAMPLE 2. Let b = (bn)n>ί be a sequence satisfying

(8) 0<bn<\ for all «,

00

(9) Σ<
n=l

00

(10) Σ 2 "

We let d, = (l-bfy12 (leN), and forje2N,keZ,

• b , k=0,j=2l (leN),

(11) α)=- 2-^41 \k\ = n2j,j=2l (l,neN),

0 otherwise.

We now put
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/*(*)= Σ αJ*J
je2N
keZ

where ^/){x) = 2jl2φ{2jx-k) (j,keZ) are wavelets constructed by Meyer [6, p. 74].
We see from (8)—(11) that

(12) Wfbh<cΣ l α J I Σ - ^ c Σ ^ - ' + cΣ Σ M?2' '
2je2N 1=1 1=1 n=ί

keZ

ί = l 1=1

where c = |IM I and we use £n°°= 1d
n

ι=dι(\-dι)~1= rf,(l + </,)(l - έ/,2)~1<2bf2. Moreover,
we can deduce that

αί \l/2 / p \

ιy*wι2Λcj ^.Σj^i 2 J 7 2 ( I m2jχ+2-i-k)\2dχ\
kZ

l/2

m2jχ+2-i-k)\2dχ\

keZ

2Jδ-(k-l/2) \ l / 2

ks Z

for m > l (see [6, Theoreme 1 in p. 70]). We here recall that α* = 0 unless fc=0 or
I kI = n2\ especially, <ή = 0 iijelN and 0 < | k\ <2j (see (11)). Therefore, if δ< 1/4, the
last expression is bounded by

(13) Cm Σ
ί = l i = 1 « = 1

< C m Σ bι + Cm22m Σ 2 ( 1 - 2 m % Σ dϊ
1=1 1=1 n=

as in (12). We next note that #$(• +2-^+1))(ξ) = 2-}l2φ(2-}ξ)e-i2'Jkξei2~u+1)ξ and
φ = θί{ξ)e-lίl2 for 0!>O (see [6, p. 74]). Therefore, we have

(14) /»«)= Σ <#*(' +2- ( j + 1 ))(O= Σ
je2iV je2N keZ
JteZ

1-2dt COS ξ + df

Since ye27V and the support of θ^' 'ξ) is contained in [-2 J + 3π/3, -2 J + 1 π/3]u
[2J+1πβ, 2^+3π/3] (see [6, p. 74]), it is easy to see that }̂(jc + 2- ϋ + 1 )) (7'e27V, fceZ)
are orthonormal in L2(R). Then it follows that
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00 00

(15) \\fb\\l= Σ I«ίl2>2-1 Σ Σ bidf=2-1Σdi=™,
je2N l=ίn=l 1=1
keZ

because df = l- bf-1 (/-> oo). Therefore, (12)-<15) imply that fb e L\R) with/5 > 0 and
the restriction of /* to ( — δ, δ) belongs to L2(R) for δ<\/4. However, /* does not
belong to L\R).

3. Some criteria for square-integrability. As an application of Cl-summability
and Riemann-Lebesgue's lemma, we obtain the following theorem, which can be
regarded as a special case of [3, Lemma 4.3].

THEOREM 3.1. Let feL1(R) and f(ξ)>Ofor all ξeR. Suppose that there isaδ>0
such that /eL°°(-<5, δ). Then f(ξ)eL\R) and in particular, feL\R).

Let feL\R). We note that f*feL\R), and (/*/) Λ = ( / ) 2 > 0 is equivalent to
the fact that / is real-valued. Therefore, applying Theorem 3.1 to /*/, we can deduce
the following:

THEOREM 3.2. Let f e LX(R) with the real-valued Fourier transform /. Suppose that
there is a δ>0 such that /*/6L°°(-5,5). Then feL\R).

Since the convolution of two functions with supports far from the origin may have
its support near the orign, this theorem suggests that to obtain the global square-
integrability of/a local one may not be sufficient. From this point of view we prove
the following:

THEOREM 3.3. Let f eL\R) and f(ξ)>0 for all ξeR. We suppose that

(16) /(*)• Σ l{2τu-δ,2Tk+δ){x)εL2{R)
keZ

for some T and δ with 0<δ<T, where lA(x) denotes the characteristic function of a
measurable set A. Then feL2(R).

For the proof we use the following lemma, which is a simple modification of
Theorem in [1].

LEMMA 3.4. Let feL\-T, T). Suppose that cn = (2T)-1 \τ_Ύf(x)e-inπT~lχdx>Q
for allneZ andfeL\-δ, δ) for some δ,O<δ<T. Then feL\- T, T), in particular,

Cτ AT2 (δ

)-τ X X~ P J -
\ \f(x)\2dx.

T d J-δ

PROOF OF THEOREM 3.3. Define

G{x,s) =
leZ
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for x with - T<x< T and s with 0<s< 1. Then, for a fixed s

(17) Γ \G(x,s)\dx<Σ Γ \f(x + 2Tl)\dx<\ \f(x)\dx<co
J-T leZj-T J-oo

and the Fourier coefficients of G(x, s) are given as follows: for neZ,

(18) (2Γ)"1 Γ G{x,s)e-inπT-Xχdx = (2Ty1Σ Γ i T l i +

J-T Iezj-T

J —

On the other hand the assumption (16) on/implies that

(19) oo>Γ Σl/( + )| f | ( ^ ) | ^
J-ΛJo /

\G(x,s)\2dx)ds.
/

Therefore, (17)—(19) imply that G(x, s) satisfies the assumption of Lemma 3.4 for almost

all s. Then, Lemma 3.4 yields that the last integral is estimated as

Π Σ I Λ » + 2 Π ) I 2 Λ = - ^ - ί

4. An analogue of the Question. We now give a modification of the Question.

We let ψ = ψo ( s e e [6, P 74]) and for a real valued h e L°°(/?) we define the ίP-coefficients

of h by

(20a) Ψ°n{h) = I φ(λ) \2h(λ)einλ dλ
J R

and

(20b) Ψi

n(h) = JJ ^λ)φ{2λ)h{λ)einλdλ
R

for neZ. We say that h has nonnegative Ψ-coefficients if ^ ( A ) > 0 for all nεZand /=0,

1. Moreover, we say that A is dyadically invariant if h(x) = h(2x). We now fix a dyadical-

ly invariant L°°-function h on R with nonnegative ^-coefficients and lfίo(A)>0. Then,

looking at the support of φ, we deduce that
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(21)

0

7i =72

7i=72 + l

7i=72-l

l7i-7 2l>

As an application of this property, we obtain the following:

THEOREM 4.1. Let h be a real valued, even, piecewise-differentiable, dyadically
invariant L*-function on R with nonnegative Ψ-coefficients and Ψ%(h)>0. Let /GL1(R)

with (/, ψ))>0for allj, k^Z and f(x) h(x)eL2(R). Then f belongs to L\R).

PROOF. We note that f = ΣjkeZ

aljιl/lj w ^ #J?^0, a s a wavelet decomposition of
functions in BMO (see [6, p. 150]), and {(fh)\ψ)f) = {?K ΨkA) = Σh,kiez

 a)\ψh> w h e r e

?(x) = f( — x)> Since h is piecewise-differentiable, we easily see that {hψ)l)A is a
(1, 2, 0)-molecule on R and thus, it is in HX(R). Therefore, the above calculation makes
sense, because / is in BMO. Since {φ);j,keZ} is a complete orthonormal system of
L2(R), we see that

= Σ = Σ

Since (ή>0, Λ*ί*2

2>0 and hfj = Ψ%{h)>0 (see (20)), the last summation is estimated as

oo> y
j,keZ

Let 0<(5<2π/3 and for a measurable set S in R let l ± s be the characteristic func-
tion of ( — S) u S. Then we see the following:

COROLLARY 4.2. Let f e L\R) with (/, φ)) > 0 for allj, keZ.If

(22) ' Σ
JeZ

L (R) ,

then f eL2(R).

PROOF. Let kδ be the function on [—π, π] denned by

[ l - | x | / δ |x|<<5

lθ δ<\x\<π

δ 2 Ά 1

ks(x) =

2π πo « = i n
- cos(nδ)) cos(nx)
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and ho(x) = kδ(x — 2π). Then, since <5<2π/3, ho(x) can be regarded as a function on

[2π/3, 8π/3] with the same Fourier series as that of kδ and supported on [2π-(5, 2π + <5].

As a function on [2π/3, 8π/3], we put h1(x) = h0(2x) + h0(x) and we denote the Fourier

series of hx(x) as h1(x) = YMeZan COS(HX). Then, it is easy to see that hx is supported on

[π-2" 1(5,π + 2-1(5] u[2π-(5, 2π + (5], an>0 for all neZ and ao = δ/π>0. We finally

put h(x) = ΣjeZ{h1(-22jx) + h1(22jx)}. Obviously, A is a dyadically invariant L00-

function on R. To show that h has nonnegative ^-coefficients we note that

\φ(λ)\2 cos(nλ)dλ
2π/3

δn0 = (ψn

0,ψ%)=\ \φ(λ)\2e-inλdλ = 2\
JR Ji

and

0 = (ψn

l9ψ$) = JΎ\ φ(λ)φ(2λ)e-inλdλ
JR

rsκ/3
= 2^/J ψ(λ)ψ(2λ)e ~iλ/2 cos((« - 1 β)λ)dλ .

J2π/3

Then, since supp(^)nsuρp(A) = supp(ι^)nsupp(Λ1), these relations imply that

Ψ°n(h) = 2 ί8 π / 3 I φ(λ) | 2 hγ{λ)cos(nλ)dλ
Jlπ/3

Λ8π/3

= Σ am\ IΦW |2{cos((« + m)λ) + cos((«-m)λ)}dλ
m e Z J2π/3/2π/3

_ 1

~T
and

"8π/3

J
^2 cos((«+

2π/3

Since αΠ>0 for all «eZand flo>0, it follows that h has nonnegative IF-coefficients and

Ψ%(h)>0. Furthermore, the assumption (22) on/easily yields that f(x) h(x)eL2(R).

Therefore, the desired result follows from Theorem 4.1. •

REMARK 4.3. Although the nonnegativity of the wavelet coefficients of the Fourier

transform / of feL1^) looks unrelated to the other properties of/, it is deeply related

to those of the Fourier coefficients. Indeed, for f = ΣneZane
inxeL1([ — π, π]) with an>0

(neZ), we put g(χ) = f(χ) ψ(-χ) (xεR), where we regard / as a 2π-periodic function

on R. Then, since φ has compact support on R (see [6, p. 74]) and g(x) = X n e Z anΨo\ ~ χ)>

it follows that geL1(R) and (g, ι/φ>0 for ally, keZ. As an application of this idea

and Corollary 4.2, we can give another proof of Wiener's result stated in §1. Let
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f = ΣneZanέ
nx be in Lι(\_-π, π]) with an>0 for all neZ and / restricted to a

neighborhood ( - δ, δ) of x = 0 belongs to L2([ — π, π]) for some δ with 0 < δ < π. As stated
above, if we put g(x) = f(2x) $ ( - * ) , it follows that geL1{R) and (#, φ))>^ for all
7, fceZ. Since the support of φ is contained in [ —8π/3, — 2π/3] u[2π/3, 8π/3] (see [6,
p. 74]) and 0 < δ/2 < 2π/3, the terms in the summation g(x) Σjez1 ±(<2π-a/2)2̂ (2«+a/2)2J)(*)
vanish except when 7 = 0, —1. Especially, it follows from the assumption on/that

Therefore, Corollary 4.2 yields that g(x) belongs to L2(R) and thus, $n_Jf(x)\2dx =

Z\an\
2 = 2πj"R|g(x)\2dx<00 by the orthonormality of {ψ); j , keZ} .

REMARK 4.4. We cannot replace the condition (22) of Corollary 4.2 by a weaker
one like local square-integrability of/or square-integrability of a finite sum of j in (22).
Indeed, look at the following function:

£ ( 2 " ~ ) ) ! ! cos(nx) (0<*<2π).l £ )
n=ί (2n)\\

Obviously, feLι{T) has nonnegative Fourier coefficients. However it does not belong
to L2(T). We now regard this function as a 2π-periodic function on R and we put for
a fixed j 0 e Z

Then, (fjo, ^ ) > 0 for ally, keZ and fjo vanishes on a neighborhood of JC = O, because
the support of fjo is contained in [-2J'o + 3π/3, -2 J 'o + 1π/3]u[2 /o+1π/3,2jo+3π/3'].
However, fjo does not belong to L2(R).
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