FUNCTIONS ON THE REAL LINE WITH NONNEGATIVE FOURIER TRANSFORMS

Takeshi Kawazoe, Yoshikazu Onoe and Kazuya Tachizawa

(Received January 26, 1993, revised September 1, 1993)

Abstract

Unlike an integrable function on the unit circle which has the nonnegative Fourier coefficients and is square-integrable near the origin, an integrable function on the real line which has the nonnegative Fourier transform and is square-integrable near the origin is not always square-integrable on the real line. We give some examples, and consider an additional condition which guarantees the global square-integrability. Moreover, we treat an analogous problem for an integrable function on the real line which has non-negative wavelet coefficients of the Fourier transform and is squareintegrable near the origin.

1. Introduction. In this paper we consider the following:

Question. Let $f \in L^{1}(\boldsymbol{R})$ with the Fourier transform $\hat{f} \geq 0$ and f. restricted to a neighborhood $(-\delta, \delta)$ of $x=0$ belongs to $L^{2}(\boldsymbol{R})$. Then, does f belong to $L^{2}(\boldsymbol{R})$?

A similar question in which we replace the Euclidean space \boldsymbol{R} by a compact group G has an affirmative answer. For example, when G is a compact abelian group, $f \in L^{1}(G)$ with the nonnegative Fourier coefficients which is p-th $(1<p \leq 2)$ power integrable near the identity of G has the Fourier coefficients in $l^{q}(q=p /(p-1))$. For $p=2$ this conclusion is equivalent to $f \in L^{2}(G)$, and was obtained by N. Wiener for $\boldsymbol{G}=\boldsymbol{T}$ (cf. Boas [2] and Shapiro [8]) and by Rains [7] for arbitrary compact abelian groups. For $1<p<2$ it was proved by Ash, Rains and Vági [1]. Moreover, when G is a compact semisimple Lie group, an analogue of this result for central and zonal functions on G was obtained by the first author and Miyazaki [5].

The answer to our question is unfortunately negative on the Euclidean space \boldsymbol{R}. In $\S 2$ we shall give two counterexamples: one is constructed by using step functions and the other by applying wavelets. Therefore, for a function f satisfying the assumption of the Question to be in $L^{2}(\boldsymbol{R})$, we need an additional condition of f. In $\S 3$ we replace the condition $f \in L^{2}(-\delta, \delta)$ by a stronger one, under which we can deduce the global square-integrability of f. In the last section we treat an analogue of the Question in which the assumption $\hat{f} \geq 0$ is replaced by the nonnegativity of the wavelet coefficients of \hat{f}. The second counterexample in $\S 2$ and the last section were announced by the first

[^0]author in [4].

2. Counterexamples.

Counterexample 1. Let $0<\gamma<1 / 2$ and α, β positive numbers satisfying
(1) $\alpha<\beta-1$,
(2) $\alpha \geq 3(\beta-1) / 4$, and
(3) $\alpha<\beta / 2$.

For each $n \in N$ we define

$$
g^{n}(x)=g_{\alpha, \beta, \gamma}^{n}(x)= \begin{cases}n^{\alpha} & \text { if } n-\gamma n^{-\beta} \leq x \leq n+\gamma n^{-\beta} \\ 0 & \text { otherwise }\end{cases}
$$

and we put $g(x)=\sum_{n=1}^{\infty} g^{n}(x)$. Since $\operatorname{supp}\left(g^{i}\right) \cap \operatorname{supp}\left(g^{j}\right)=\varnothing(i \neq j)$, it follows that $\|g\|_{1}=2 \gamma \sum_{n=1}^{\infty} n^{\alpha-\beta}<\infty$ by (1) and $\|g\|_{2}=2 \gamma \sum_{n=1}^{\infty} n^{2 \alpha-\beta}=\infty$, because $2 \alpha-\beta \geq(\beta-3) /$ $2>\alpha / 2-1>-1$ by (1) and (2). We put

$$
f(x)=f_{\alpha, \beta, \gamma}(x)=g * \tilde{g}(x),
$$

where $\tilde{g}(x)=g(-x)$. It is easy to see that

$$
\begin{equation*}
\|f\|_{1} \leq\|g\|_{1}^{2}<\infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}(\lambda)=|\hat{g}(\lambda)|^{2} \geq 0 \quad(\lambda \in \boldsymbol{R}) . \tag{5}
\end{equation*}
$$

We define $A(x)=(2 \gamma /|x|)^{1 / \beta}$. Looking at the support of g^{n}, we see that $g^{n}(\cdot) g^{n}(\cdot-x)=0$ for n and x satisfying $n \geq[A(x)]+1$, where $[a]$ denotes the greatest integer not exceeding $a \in \boldsymbol{R}$, and moreover, $g^{n}(\cdot) g^{m}(\cdot-x)=0(n \neq m)$, if $|x| \leq \delta \leq 1-2 \gamma$. Therefore, we can deduce that

$$
f(x) \leq \sum_{n=1}^{[A(x)]} 2 \gamma n^{2 \alpha-\beta} \leq \int_{1}^{[A(x)]} 2 \gamma y^{2 \alpha-\beta} d y+2 \gamma \leq c_{1}|x|^{-(2 \alpha-\beta+1) / \beta}+c_{2}
$$

by (3). Since $2 \alpha-\beta+1<\beta / 2$ by (1) and (3), it follows that

$$
\begin{equation*}
\int_{-\delta}^{\delta}|f(x)|^{2} d x<\infty \tag{6}
\end{equation*}
$$

We next obtain an estimate for f on the neighborhood $I_{l}=\left[l-c_{3} l^{-\beta}, l+c_{3} l^{-\beta}\right]$ of $l \in N$, where $c_{3}=\gamma((\beta-2 \alpha) / \beta)^{\beta+1}$. For $x \in I_{l}$, we put $B_{l}(x)=\gamma^{1 /(\beta+1)}(l /|x-l|)^{1 /(\beta+1)}-l$. Obviously, $B_{l}(x) \geq 2 \alpha l /(\beta-2 \alpha)$ on I_{l} and the inequality $n \leq B_{l}(x) \quad(l \geq 1)$ implies that $|x-l| \leq \gamma l(n+l)^{-\beta-1}<\gamma l^{-1}(n+l)^{-\beta}<\gamma\left\{n^{-\beta}-(n+l)^{-\beta}\right\}$, because $\beta>1$ by (1). Therefore, $\operatorname{supp}\left(g^{n+l}(\cdot+x)\right) \subset \operatorname{supp}\left(g^{n}(\cdot)\right)$ for n, x satisfying $n \leq B_{l}(x)(l \geq 1)$, so we obtain that if $x \in I_{l}$

$$
\begin{aligned}
f(x)=\sum_{n, m} \int_{-\infty}^{\infty} g^{n}(y) g^{m}(y+x) d y & \geq \sum_{n \leq B_{l}(x)} \int_{-\infty}^{\infty} g^{n}(y) g^{n+l}(y+x) d y \\
& \geq 2 \gamma \sum_{n=1}^{\left[B_{1}(x)\right]} n^{\alpha}(n+l)^{\alpha-\beta} .
\end{aligned}
$$

We note that the function $y^{\alpha}(y+l)^{\alpha-\beta}$ is monotone decreasing on $y \geq \dot{B}_{l}=\alpha l /(\beta-2 \alpha)$ and, since α and $\beta-2 \alpha$ are positive (see (3)), there exists an $\varepsilon>0$ such that $\alpha>\varepsilon(\beta-2 \alpha)$. Then, for large $l \geq L=(\alpha /(\beta-2 \alpha)-\varepsilon)^{-1}$ and $x \in I_{l}$, we have $B_{l}(x)-\left(B_{l}+1\right) \geq \alpha l /(\beta-2 \alpha)$ $-1 \geq \varepsilon l$, and thus, the last summation is estimated below as

$$
\begin{aligned}
\geq 2 \gamma \int_{B_{l}+1}^{B_{l}(x)} y^{\alpha}(y+l)^{\alpha-\beta} d y & \geq 2 \gamma B_{l}(x)^{\alpha}\left(B_{l}(x)+l\right)^{\alpha-\beta} \int_{B_{1}+1}^{B_{l}(x)} d y \\
& \geq c_{4} l^{\alpha+1}(l /|x-l|)^{(\alpha-\beta)(\beta+1)} .
\end{aligned}
$$

Taking the square of this inequality and integrating it over $I_{l}(l \geq L)$, we can deduce that

$$
\int_{x \in I_{l}}|f(x)|^{2} d x \geq 2 c_{4}^{2} l^{2 \alpha+2+2(\alpha-\beta)(\beta+1)} \int_{0}^{c_{3} l^{-\beta}} x^{-2(\alpha-\beta)(\beta+1)} d x=c_{5} l^{4 \alpha-3 \beta+2}
$$

and

$$
\begin{equation*}
\|f\|_{2}^{2} \geq \sum_{l \geq L} \int_{x \in I_{l}}|f(x)|^{2} d x \geq c_{5} \sum_{l \geq L} l^{4 \alpha-3 \beta+2}=\infty \tag{7}
\end{equation*}
$$

by (2). Therefore, (4)-(7) imply that $f_{\alpha, \beta, \gamma} \in L^{1}(\boldsymbol{R})$ with $\hat{f}_{\alpha, \beta, \gamma} \geq 0$ and the restriction of $f_{\alpha, \beta, \gamma}$ to $(-\delta, \delta)$ belongs to $L^{2}(\boldsymbol{R})$ for $\delta \leq 1-2 \gamma$. However, $f_{\alpha, \beta, \gamma}$ does not belong to $L^{2}(\boldsymbol{R})$.

Counterexample 2. Let $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 1}$ be a sequence satisfying

$$
\begin{gather*}
0<b_{n}<1 \quad \text { for all } n, \tag{8}\\
\sum_{n=1}^{\infty} b_{n}<\infty, \tag{9}\\
\sum_{n=1}^{\infty} 2^{-n} b_{n}^{-1}<\infty . \tag{10}
\end{gather*}
$$

We let $d_{l}=\left(1-b_{l}^{2}\right)^{1 / 2}(l \in N)$, and for $j \in 2 N, k \in Z$,

$$
a_{j}^{k}= \begin{cases}b_{l} & k=0, j=2 l(l \in N), \tag{11}\\ 2^{-1} b_{l} d_{l}^{n} & |k|=n 2^{j}, j=2 l(l, n \in N), \\ 0 & \text { otherwise } .\end{cases}
$$

We now put

$$
f^{b}(x)=\sum_{\substack{j \in 2 \boldsymbol{N} \\ k \in \mathbf{Z}}} a_{j}^{k} \psi_{j}^{k}\left(x+2^{-(j+1)}\right),
$$

where $\psi_{j}^{k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)(j, k \in Z)$ are wavelets constructed by Meyer [6, p. 74]. We see from (8)-(11) that

$$
\begin{align*}
\left\|f^{b}\right\|_{1} \leq c \sum_{\substack{j \in 2 N \\
k \in \mathbf{Z}}}\left|a_{j}^{k}\right| 2^{-j / 2} & \leq c \sum_{l=1}^{\infty} b_{l} 2^{-l}+c \sum_{l=1}^{\infty} \sum_{n=1}^{\infty} b_{l} d_{l}^{n} 2^{-l} \tag{12}\\
& \leq c \sum_{l=1}^{\infty} b_{l}+2 c \sum_{l=1}^{\infty} 2^{-l} b_{l}^{-1}<\infty
\end{align*}
$$

where $c=\|\psi\|_{1}$ and we use $\sum_{n=1}^{\infty} d_{l}^{n}=d_{l}\left(1-d_{l}\right)^{-1}=d_{l}\left(1+d_{l}\right)\left(1-d_{l}^{2}\right)^{-1} \leq 2 b_{l}^{-2}$. Moreover, we can deduce that

$$
\begin{aligned}
\left(\int_{-\delta}^{\delta}\left|f^{b}(x)\right|^{2} d x\right)^{1 / 2} & \leq \sum_{\substack{\in \in 2 N \\
k \in \mathbf{Z}}}\left|a_{j}^{k}\right| 2^{j / 2}\left(\int_{-\delta}^{\delta}\left|\psi\left(2^{j} x+2^{-1}-k\right)\right|^{2} d x\right)^{1 / 2} \\
& \leq C_{\substack{m}} \sum_{\substack{j=2 N \\
k \in \mathbf{Z}}}\left|a_{j}^{k}\right|\left(\int_{-2^{j \delta-(k-1 / 2)}}^{2^{j \delta-(k-1 / 2)}}(1+|x|)^{-2 m} d x\right)^{1 / 2}
\end{aligned}
$$

for $m \geq 1$ (see [6, Théorème 1 in p. 70]). We here recall that $a_{j}^{k}=0$ unless $k=0$ or $|k|=n 2^{j}$, especially, $a_{j}^{k}=0$ if $j \in 2 N$ and $0<|k|<2^{j}$ (see (11)). Therefore, if $\delta<1 / 4$, the last expression is bounded by

$$
\begin{align*}
& C_{m} \sum_{l=1}^{\infty} b_{l}+C_{m} \sum_{l=1}^{\infty} \sum_{n=1}^{\infty} b_{l} d_{l}^{n} 2^{l}\left(1+|k|-2^{2 l-2}\right)^{-m} \tag{13}\\
& \leq C_{m} \sum_{l=1}^{\infty} b_{l}+C_{m} 2^{2 m} \sum_{l=1}^{\infty} 2^{(1-2 m) l} b_{l} \sum_{n=1}^{\infty} d_{l}^{n}<\infty
\end{align*}
$$

as in (12). We next note that $\hat{\psi}_{j}^{k}\left(\cdot+2^{-(j+1)}\right)(\xi)=2^{-j / 2} \hat{\psi}\left(2^{-j} \xi\right) e^{-i 2-j k \xi} e^{i 2-(j+1) \xi}$ and $\hat{\psi}(\xi)=\theta_{1}(\xi) e^{-i \xi / 2}$ for $\theta_{1} \geq 0$ (see [6, p. 74]). Therefore, we have

$$
\begin{align*}
\hat{f}^{\mathbf{b}}(\xi) & =\sum_{\substack{j \in \mathcal{N} \\
k \in \mathbf{Z}}} a_{j}^{k} \hat{\psi}_{j}^{k}\left(\cdot+2^{-(j+1)}\right)(\xi)=\sum_{j \in 2 N} 2^{-j / 2} \theta_{1}\left(2^{-j} \xi\right) \sum_{k \in \mathbf{Z}} a_{j}^{k} e^{-i 2^{-j} j_{k} \xi} \tag{14}\\
& =\sum_{j \in 2 N} 2^{-j / 2} \theta_{1}\left(2^{-j} \xi\right) b_{l} \frac{1-d_{l} \cos \xi}{1-2 d_{l} \cos \xi+d_{l}^{2}} \geq 0
\end{align*}
$$

Since $j \in 2 N$ and the support of $\theta_{1}\left(2^{-j} \xi\right)$ is contained in $\left[-2^{j+3} \pi / 3,-2^{j+1} \pi / 3\right] \cup$ $\left[2^{j+1} \pi / 3,2^{j+3} \pi / 3\right]$ (see [6, p. 74]), it is easy to see that $\psi_{j}^{k}\left(x+2^{-(j+1)}\right)(j \in 2 N, k \in Z)$ are orthonormal in $L^{2}(\boldsymbol{R})$. Then it follows that

$$
\begin{equation*}
\left\|f^{b}\right\|_{2}^{2}=\sum_{\substack{j \in 2 \boldsymbol{N} \\ k \in \mathbf{Z}}}\left|a_{j}^{k}\right|^{2} \geq 2^{-1} \sum_{l=1}^{\infty} \sum_{n=1}^{\infty} b_{l}^{2} d_{l}^{2 n}=2^{-1} \sum_{l=1}^{\infty} d_{l}^{2}=\infty \tag{15}
\end{equation*}
$$

because $d_{l}^{2}=1-b_{l}^{2} \rightarrow 1(l \rightarrow \infty)$. Therefore, (12)-(15) imply that $f^{b} \in L^{1}(\boldsymbol{R})$ with $\hat{f}^{b} \geq 0$ and the restriction of f^{b} to $(-\delta, \delta)$ belongs to $L^{2}(\boldsymbol{R})$ for $\delta<1 / 4$. However, f^{b} does not belong to $L^{2}(\boldsymbol{R})$.
3. Some criteria for square-integrability. As an application of C1-summability and Riemann-Lebesgue's lemma, we obtain the following theorem, which can be regarded as a special case of [3, Lemma 4.3].

Theorem 3.1. Let $f \in L^{1}(\boldsymbol{R})$ and $\hat{f}(\xi) \geq 0$ for all $\xi \in \boldsymbol{R}$. Suppose that there is a $\delta>0$ such that $f \in L^{\infty}(-\delta, \delta)$. Then $\hat{f}(\xi) \in L^{1}(\boldsymbol{R})$ and in particular, $f \in L^{2}(\boldsymbol{R})$.

Let $f \in L^{1}(\boldsymbol{R})$. We note that $f * f \in L^{1}(\boldsymbol{R})$, and $(f * f)^{\wedge}=(\hat{f})^{2} \geq 0$ is equivalent to the fact that \hat{f} is real-valued. Therefore, applying Theorem 3.1 to $f * f$, we can deduce the following:

Theorem 3.2. Let $f \in L^{1}(\boldsymbol{R})$ with the real-valued Fourier transform \hat{f}. Suppose that there is a $\delta>0$ such that $f * f \in L^{\infty}(-\delta, \delta)$. Then $f \in L^{2}(\boldsymbol{R})$.

Since the convolution of two functions with supports far from the origin may have its support near the orign, this theorem suggests that to obtain the global squareintegrability of f a local one may not be sufficient. From this point of view we prove the following:

Theorem 3.3. Let $f \in L^{1}(\boldsymbol{R})$ and $\hat{f}(\xi) \geq 0$ for all $\xi \in \boldsymbol{R}$. We suppose that

$$
\begin{equation*}
f(x) \cdot \sum_{k \in Z} \mathbf{1}_{(2 T k-\delta, 2 T k+\delta)}(x) \in L^{2}(\boldsymbol{R}) \tag{16}
\end{equation*}
$$

for some T and δ with $0<\delta<T$, where $\mathbf{1}_{A}(x)$ denotes the characteristic function of a measurable set A. Then $f \in L^{2}(\boldsymbol{R})$.

For the proof we use the following lemma, which is a simple modification of Theorem in [1].

Lemma 3.4. Let $f \in L^{1}(-T, T)$. Suppose that $c_{n}=(2 T)^{-1} \int_{-T}^{T} f(x) e^{-i n \pi T^{-1} x} d x \geq 0$ for all $n \in Z$ and $f \in L^{2}(-\delta, \delta)$ for some $\delta, 0<\delta<T$. Then $f \in L^{2}(-T, T)$, in particular,

$$
\int_{-T}^{T}|f(x)|^{2} d x \leq \frac{4 T^{2}}{\delta^{2}} \int_{-\delta}^{\delta}|f(x)|^{2} d x .
$$

Proof of Theorem 3.3. Define

$$
G(x, s)=\sum_{l \in Z} f(x+2 T l) e^{-i \pi T^{-1} s(x+2 T l)}
$$

for x with $-T \leq x \leq T$ and s with $0 \leq s \leq 1$. Then, for a fixed s

$$
\begin{equation*}
\int_{-T}^{T}|G(x, s)| d x \leq \sum_{l \in \mathbb{Z}} \int_{-T}^{T}|f(x+2 T l)| d x \leq \int_{-\infty}^{\infty}|f(x)| d x<\infty \tag{17}
\end{equation*}
$$

and the Fourier coefficients of $G(x, s)$ are given as follows: for $n \in \boldsymbol{Z}$,

$$
\begin{gather*}
(2 T)^{-1} \int_{-T}^{T} G(x, s) e^{-i n \pi T^{-1} x} d x=(2 T)^{-1} \sum_{l \in Z} \int_{-T}^{T} f(x+2 T l) e^{-i \pi T^{-1}(s+n)(x+2 T l)} d x \tag{18}\\
=(2 T)^{-1} \int_{-\infty}^{\infty} f(x) e^{-i \pi T^{-1}(s+n) x} d x=(2 T)^{-1} \hat{f}\left(\pi T^{-1}(s+n)\right) \geq 0
\end{gather*}
$$

On the other hand the assumption (16) on f implies that

$$
\begin{align*}
\infty>\int_{-\delta}^{\delta} \sum_{l \in \boldsymbol{Z}}|f(x+2 T l)|^{2} d x & =\int_{-\delta}^{\delta}\left(\int_{0}^{1}|G(x, s)|^{2} d s\right) d x \tag{19}\\
& =\int_{0}^{1}\left(\int_{-\delta}^{\delta}|G(x, s)|^{2} d x\right) d s
\end{align*}
$$

Therefore, (17)-(19) imply that $G(x, s)$ satisfies the assumption of Lemma 3.4 for almost all s. Then, Lemma 3.4 yields that the last integral is estimated as

$$
\begin{aligned}
& \geq \int_{0}^{1}\left(\frac{\delta^{2}}{4 T^{2}} \int_{-T}^{T}|G(x, s)|^{2} d x\right) d s=\frac{\delta^{2}}{4 T^{2}} \int_{-T}^{T}\left(\int_{0}^{1}|G(x, s)|^{2} d s\right) d x \\
& =\frac{\delta^{2}}{4 T^{2}} \int_{-T}^{T} \sum_{l \in \mathbb{Z}}|f(x+2 T l)|^{2} d x=\frac{\delta^{2}}{4 T^{2}} \int_{-\infty}^{\infty}|f(x)|^{2} d x .
\end{aligned}
$$

4. An analogue of the Question. We now give a modification of the Question. We let $\psi=\psi_{0}^{0}$ (see [6, p. 74]) and for a real valued $h \in L^{\infty}(\boldsymbol{R})$ we define the Ψ-coefficients of h by

$$
\begin{equation*}
\Psi_{n}^{0}(h)=\int_{R}|\hat{\psi}(\lambda)|^{2} h(\lambda) e^{i n \lambda} d \lambda \tag{20a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{n}^{1}(h)=\sqrt{2} \int_{\boldsymbol{R}} \hat{\psi}(\lambda) \overline{\hat{\psi}}(2 \lambda) h(\lambda) e^{i n \lambda} d \lambda \tag{20b}
\end{equation*}
$$

for $n \in \boldsymbol{Z}$. We say that h has nonnegative Ψ-coefficients if $\Psi_{n}^{i}(h) \geq 0$ for all $n \in \boldsymbol{Z}$ and $i=0$, 1. Moreover, we say that h is dyadically invariant if $h(x)=h(2 x)$. We now fix a dyadically invariant L^{∞}-function h on \boldsymbol{R} with nonnegative Ψ-coefficients and $\Psi_{0}^{0}(h)>0$. Then, looking at the support of $\hat{\psi}$, we deduce that

$$
\begin{align*}
h_{j_{1} j_{2}}^{k_{1} k_{2}}=\left(\hat{\psi}_{j_{1}}^{k_{1}}, h \hat{\psi}_{j_{2}}^{k_{2}}\right) & =2^{-\left(j_{1}+j_{2}\right) / 2} \int_{\boldsymbol{R}} \hat{\psi}\left(\lambda 2^{-j_{1}}\right) \overline{\hat{\psi}}\left(\lambda 2^{-j_{2}}\right) h(\lambda) e^{-i\left(k_{1} 2-j_{1}-k_{2} 2^{-j_{2}}\right) \lambda} d \lambda \tag{21}\\
& = \begin{cases}\Psi_{k_{2}-k_{1}}^{0}(h) & j_{1}=j_{2} \\
\Psi_{2 k_{2}-k_{1}}^{1}(h) & j_{1}=j_{2}+1 \\
\bar{\Psi}_{k_{2}-2 k_{1}}^{1}(h) & j_{1}=j_{2}-1 \\
0 & \left|j_{1}-j_{2}\right|>1 .\end{cases}
\end{align*}
$$

As an application of this property, we obtain the following:
Theorem 4.1. Let h be a real valued, even, piecewise-differentiable, dyadically invariant L^{∞}-function on \boldsymbol{R} with nonnegative Ψ-coefficients and $\Psi_{0}^{0}(h)>0$. Let $f \in L^{1}(\boldsymbol{R})$ with $\left(\hat{f}, \psi_{j}^{k}\right) \geq 0$ for all $j, k \in \boldsymbol{Z}$ and $f(x) \cdot h(x) \in L^{2}(\boldsymbol{R})$. Then f belongs to $L^{2}(\boldsymbol{R})$.

Proof. We note that $\hat{f}=\sum_{j, k \in \boldsymbol{Z}} a_{j}^{k} \psi_{j}^{k}$ with $a_{j}^{k} \geq 0$, as a wavelet decomposition of functions in BMO (see [6, p. 150]), and ($\left.(f h)^{\wedge}, \psi_{j_{2}}^{k_{2}}\right)=\left(\tilde{f} h, \psi_{j_{2}}^{k_{2}}\right)=\sum_{j_{1}, k_{1} \in \boldsymbol{Z}} a_{j_{1}}^{k_{1}} h_{j_{1} j_{2}}^{k_{2}, k_{2}}$, where $\tilde{f}(x)=f(-x)$. Since h is piecewise-differentiable, we easily see that $\left(h \hat{\psi}_{j_{2}}^{k_{2}}\right)^{\wedge}$ is a (1,2,0)-molecule on \boldsymbol{R} and thus, it is in $H^{1}(\boldsymbol{R})$. Therefore, the above calculation makes sense, because \hat{f} is in BMO. Since $\left\{\psi_{j}^{k} ; j, k \in \boldsymbol{Z}\right\}$ is a complete orthonormal system of $L^{2}(\boldsymbol{R})$, we see that

$$
\infty>\|f h\|_{2}^{2}=\left\|(f h)^{\wedge}\right\|_{2}^{2}=\sum_{j_{2}, k_{2} \in \mathbf{Z}}\left|\left((f h)^{\wedge}, \psi_{j_{2}}^{k_{2}}\right)\right|^{2}=\sum_{j_{2}, k_{2} \in \mathbf{Z}}\left|\sum_{j_{1}, k_{1} \in \mathbf{Z}} a_{j_{1}}^{k_{1}} h_{j_{1} j_{2}}^{k_{2} k_{2}}\right|^{2} .
$$

Since $a_{j}^{k} \geq 0, h_{j_{1} j_{2}}^{k_{1} k_{2}} \geq 0$ and $h_{j j}^{k k}=\Psi_{0}^{0}(h)>0$ (see (20)), the last summation is estimated as

$$
\infty>\sum_{j, k \in \mathbf{Z}}\left|a_{j}^{k} h_{j j}^{k k}\right|^{2}=\Psi_{0}^{0}(h)^{2}\|\hat{f}\|_{2}^{2}=\Psi_{0}^{0}(h)^{2}\|f\|_{2}^{2}
$$

Let $0<\delta<2 \pi / 3$ and for a measurable set S in \boldsymbol{R} let $\mathbf{1}_{ \pm S}$ be the characteristic function of $(-S) \cup S$. Then we see the following:

Corollary 4.2. Let $f \in L^{1}(\boldsymbol{R})$ with $\left(\hat{f}, \psi_{j}^{k}\right) \geq 0$ for all $j, k \in \boldsymbol{Z}$. If

$$
\begin{equation*}
f(x) \cdot \sum_{j \in \mathbb{Z}} \mathbf{1}_{ \pm\left((2 \pi-\delta) 2^{j},(2 \pi+\delta) 2^{j}\right)}(x) \in L^{2}(\boldsymbol{R}), \tag{22}
\end{equation*}
$$

then $f \in L^{2}(\boldsymbol{R})$.
Proof. Let k_{δ} be the function on $[-\pi, \pi]$ defined by

$$
\begin{aligned}
k_{\delta}(x) & = \begin{cases}1-|x| / \delta & |x| \leq \delta \\
0 & \delta<|x| \leq \pi\end{cases} \\
& =\frac{\delta}{2 \pi}+\frac{2}{\pi \delta} \sum_{n=1}^{\infty} \frac{1}{n^{2}}(1-\cos (n \delta)) \cos (n x)
\end{aligned}
$$

and $h_{0}(x)=k_{\delta}(x-2 \pi)$. Then, since $\delta<2 \pi / 3, h_{0}(x)$ can be regarded as a function on $[2 \pi / 3,8 \pi / 3]$ with the same Fourier series as that of k_{δ} and supported on $[2 \pi-\delta, 2 \pi+\delta]$. As a function on [$2 \pi / 3,8 \pi / 3]$, we put $h_{1}(x)=h_{0}(2 x)+h_{0}(x)$ and we denote the Fourier series of $h_{1}(x)$ as $h_{1}(x)=\sum_{n \in \boldsymbol{Z}} a_{n} \cos (n x)$. Then, it is easy to see that h_{1} is supported on $\left[\pi-2^{-1} \delta, \pi+2^{-1} \delta\right] \cup[2 \pi-\delta, 2 \pi+\delta], a_{n} \geq 0$ for all $n \in \boldsymbol{Z}$ and $a_{0}=\delta / \pi>0$. We finally put $h(x)=\sum_{j \in \boldsymbol{Z}}\left\{h_{1}\left(-2^{2 j} x\right)+h_{1}\left(2^{2 j} x\right)\right\}$. Obviously, h is a dyadically invariant L^{∞} function on \boldsymbol{R}. To show that h has nonnegative Ψ-coefficients we note that

$$
\delta_{n 0}=\left(\psi_{0}^{n}, \psi_{0}^{0}\right)=\int_{\boldsymbol{R}}|\hat{\psi}(\lambda)|^{2} e^{-i n \lambda} d \lambda=2 \int_{2 \pi / 3}^{8 \pi / 3}|\hat{\psi}(\lambda)|^{2} \cos (n \lambda) d \lambda
$$

and

$$
\begin{aligned}
0=\left(\psi_{1}^{n}, \psi_{0}^{0}\right) & =\sqrt{2} \int_{\boldsymbol{R}} \hat{\psi}(\lambda) \overline{\hat{\psi}}(2 \lambda) e^{-i n \lambda} d \lambda \\
& =2 \sqrt{2} \int_{2 \pi / 3}^{8 \pi / 3} \hat{\psi}(\lambda) \overline{\hat{\psi}}(2 \lambda) e^{-i \lambda / 2} \cos ((n-1 / 2) \lambda) d \lambda
\end{aligned}
$$

Then, since $\operatorname{supp}(\hat{\psi}) \cap \operatorname{supp}(h)=\operatorname{supp}(\hat{\psi}) \cap \operatorname{supp}\left(h_{1}\right)$, these relations imply that

$$
\begin{aligned}
\Psi_{n}^{0}(h) & =2 \int_{2 \pi / 3}^{8 \pi / 3}|\hat{\psi}(\lambda)|^{2} h_{1}(\lambda) \cos (n \lambda) d \lambda \\
& =\sum_{m \in Z} a_{m} \int_{2 \pi / 3}^{8 \pi / 3}|\hat{\psi}(\lambda)|^{2}\{\cos ((n+m) \lambda)+\cos ((n-m) \lambda)\} d \lambda \\
& =\frac{1}{2}\left(a_{n}+a_{-n}\right)
\end{aligned}
$$

and

$$
\Psi_{n}^{1}(h)=2 \sqrt{2} \int_{2 \pi / 3}^{8 \pi / 3} \hat{\psi}(\lambda) \overline{\hat{\psi}}(2 \lambda) h_{1}(\lambda) e^{-i \lambda / 2} \cos ((n+1 / 2) \lambda) d \lambda=0 .
$$

Since $a_{n} \geq 0$ for all $n \in \boldsymbol{Z}$ and $a_{0}>0$, it follows that h has nonnegative Ψ-coefficients and $\Psi_{0}^{0}(h)>0$. Furthermore, the assumption (22) on f easily yields that $f(x) \cdot h(x) \in L^{2}(\boldsymbol{R})$. Therefore, the desired result follows from Theorem 4.1.

Remark 4.3. Although the nonnegativity of the wavelet coefficients of the Fourier transform \hat{f} of $f \in L^{1}(\boldsymbol{R})$ looks unrelated to the other properties of f, it is deeply related to those of the Fourier coefficients. Indeed, for $f=\sum_{n \in Z} a_{n} e^{i n x} \in L^{1}([-\pi, \pi])$ with $a_{n} \geq 0$ ($n \in \boldsymbol{Z}$), we put $g(x)=f(x) \cdot \hat{\psi}(-x)(x \in \boldsymbol{R})$, where we regard f as a 2π-periodic function on \boldsymbol{R}. Then, since $\hat{\psi}$ has compact support on \boldsymbol{R} (see [6, p. 74]) and $g(x)=\sum_{n \in \boldsymbol{Z}} a_{n} \hat{\psi}_{0}^{-n}(-x)$, it follows that $g \in L^{1}(\boldsymbol{R})$ and $\left(\hat{g}, \psi_{j}^{k}\right) \geq 0$ for all $j, k \in \boldsymbol{Z}$. As an application of this idea and Corollary 4.2, we can give another proof of Wiener's result stated in §1. Let
$f=\sum_{n \in Z} a_{n} e^{i n x}$ be in $L^{1}([-\pi, \pi])$ with $a_{n} \geq 0$ for all $n \in \boldsymbol{Z}$ and f restricted to a neighborhood $(-\delta, \delta)$ of $x=0$ belongs to $L^{2}([-\pi, \pi])$ for some δ with $0<\delta<\pi$. As stated above, if we put $g(x)=f(2 x) \cdot \hat{\psi}(-x)$, it follows that $g \in L^{1}(\boldsymbol{R})$ and $\left(\hat{g}, \psi_{j}^{k}\right) \geq 0$ for all $j, k \in \boldsymbol{Z}$. Since the support of $\hat{\psi}$ is contained in $[-8 \pi / 3,-2 \pi / 3] \cup[2 \pi / 3,8 \pi / 3]$ (see [6, p. 74]) and $0<\delta / 2<2 \pi / 3$, the terms in the summation $g(x) \cdot \sum_{j \in \mathbf{Z}^{1}} \mathbf{1}_{ \pm\left((2 \pi-\delta / 2) 2^{j},\left(2 \pi+\delta / 22^{j j}\right)\right.}(x)$ vanish except when $j=0,-1$. Especially, it follows from the assumption on f that

$$
g(x) \cdot \sum_{j \in \mathbb{Z}} \mathbf{1}_{ \pm\left((2 \pi-\delta / 2) 2^{j},(2 \pi+\delta / 2) 2^{j}\right)}(x) \in L^{2}(\boldsymbol{R})
$$

Therefore, Corollary 4.2 yields that $g(x)$ belongs to $L^{2}(\boldsymbol{R})$ and thus, $\int_{-\pi}^{\pi}|f(x)|^{2} d x=$ $2 \pi \sum_{n \in \boldsymbol{Z}}\left|a_{n}\right|^{2}=2 \pi \int_{R}|g(x)|^{2} d x<\infty$ by the orthonormality of $\left\{\psi_{j}^{k} ; j, k \in \boldsymbol{Z}\right\}$.

Remark 4.4. We cannot replace the condition (22) of Corollary 4.2 by a weaker one like local square-integrability of f or square-integrability of a finite sum of j in (22). Indeed, look at the following function:

$$
f(x)=(2 \sin (x / 2))^{-1 / 2} \cos \left(\frac{\pi-x}{4}\right)-1=\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \cos (n x) \quad(0<x<2 \pi) .
$$

Obviously, $f \in L^{1}(\boldsymbol{T})$ has nonnegative Fourier coefficients. However it does not belong to $L^{2}(\boldsymbol{T})$. We now regard this function as a 2π-periodic function on \boldsymbol{R} and we put for a fixed $j_{0} \in \boldsymbol{Z}$

$$
\begin{aligned}
f_{j_{0}}(x)=\hat{\psi}\left(\frac{x}{2^{j_{0}}}\right) f\left(\frac{x}{2^{j_{0}}}\right) & =\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \hat{\psi}\left(\frac{x}{2^{j_{0}}}\right) \cos \left(n \frac{x}{2^{j_{0}}}\right) \\
& =2^{j_{0} / 2-1} \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!}\left(\hat{\psi}_{j_{0}}^{n}(x)+\hat{\psi}_{j_{0}}^{-n}(x)\right) .
\end{aligned}
$$

Then, $\left(\hat{f}_{j_{0}}, \psi_{j}^{k}\right) \geq 0$ for all $j, k \in \boldsymbol{Z}$ and $f_{j_{0}}$ vanishes on a neighborhood of $x=0$, because the support of $f_{j_{0}}$ is contained in $\left[-2^{j_{0}+3} \pi / 3,-2^{j_{0}+1} \pi / 3\right] \cup\left[2^{j_{0}+1} \pi / 3,2^{j_{0}+3} \pi / 3\right]$. However, $f_{j_{0}}$ does not belong to $L^{2}(\boldsymbol{R})$.

References

[1] J. M. Ash, M. Rains and S. VÁGi, Fourier series with nonnegative coefficients, Proc. Amer. Math. Soc. 101 (1987), 392-393.
[2] R. P. Boas, Entire Functions, Academic Press, New York, 1964.
[3] M. Flensted-Jensen and T. H. Koornwinder, Jacobi functions: the addition formula and the positivity of the dual convolution structure, Ark. Mat. 17 (1979), 139-151.
[4] T. Kawazoe, On functions in $L^{1}(\boldsymbol{R})$ with nonnegative Fourier transforms, manuscript.
[5] T. Kawazoe and H. Miyazaki, Fourier series with nonnegative coefficients on compact semisimple Lie groups, Tokyo J. Math. 12 (1989), 241-246.
[6] Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris, 1990.
[7] M. Rains, On functions with nonnegative Fourier transforms, Indian J. Math. 27 (1985), 41-48.
[8] H. S. Shapiro, Majorant problems for Fourier coefficients, Quart. J. Math. Oxford 26 (1975), 9-18.

Takeshi Kawazoe and Yoshikazu Onoe	Kazuya Tachizawa
Department of Mathematics	Mathematical Institute
Faculty of Science and Technology	Tôhoku University
Keio University	Sendai 980-77
14-1 Hiyoshi 3-chome Kohoku-ku	Japan
Yokohama 223	
Japan	

[^0]: The third author was partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 42A38; Secondary 42C15.

