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Abstract. We are concerned with the existence of positive solutions with prescribed
weak isolated singularities to some semilinear elliptic equations. The existence property
differs with the behavior of the nonlinear term. Under the positivity assumption and a
growth condition on the nonlinear term, we obtain not only solutions with a finite
number of singularities but also those with infinitely many singularities. We show also
that, for some nonlinear terms which changes sign, there is no solution with prescribed
singular behavior.

1. Introduction. In this paper we are concerned with the problem of finding
solutions with isolated singularities to some semilinear elliptic partial differential
equations. Choosing a finite set of points {a;}7-, or a sequence {a;}3; without
accumulation points in RY and a bounded set of positive numbers {k;}7; or {x;}Z,
arbitrarily, we consider the following problems:

—Au+f)=0 and u>0 in R¥\{a;}7,,
P,) u(x)~x;E(x—a;) as x—a; forj=1,2,...,m,
ux)—»0 as |x|->+ow0,

and

®.) {—Au-kf(u):O and u>0 in R"\{q;}72,,

u(x)~k;E(x—a;) as x—a; for j=1,2,....

Here A:=Y ", (8/dx;)? is the Laplacian in R™ with N>2 and E is the fundamental
solution for —A in R™, that is,

! ! if N>3
(1.1)  E(x)=E(x]):= (JIV_Z)N;”” X2 for xe RN\ 0},
—log— if N=2
2n | x|

where wy denotes the volume of the unit ball in RY. We assume that f: [0, + 0)—>R
is (locally) Lipschitz continuous and f(0)=0. We call the number «; the intensity of
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singularity at a;. When m=1, we assume a, =0 and denote x; simply by «.

When we call u a solution to (P,) or (P,), we assume that ue C*(R" \\{q;}7-,)
orue C*(R¥\{a;};~,) and usatisfies (P,,) or (P,,), respectively. Under a suitable growth
condition at infinity on f;, if u is a solution to (P,,) or (P), then u satisfies the following
equation in the sense of distribution:

(1.2) —Au+f(w)= ) x;6,, or ) k;8, in ZRY),
i=1 j=1
where J, denotes the Dirac delta function supported at a (see Lemma 2).
In general, isolated singularities do not necessarily have the order of the funda-
mental solution, even if they are isotropic (i.e., they have the same sign near the
singularities). For example, in the case where

(1.3) f)=s", p>1,

Véron [16] and Brézis-Véron [3] classified positive isolated singularities as follows (we
agree that N/(N—2)= + oo if N=2 throughout the paper):

(i) If N>2and 1 <p< N/(N-2), then a positive isolated singularity at the origin
is either removable or satisfies one of the following:

(1.9 u(x)~1, y| x|~ 2@=D as x—0,
(1.5) u(x) ~ k E(x) as x—0,

where /, y:=[2(2p— N(p—1))/(p—1)*]""~V and « is a positive constant (for each x>0
there is a solution of type (1.5)).

(ii) If N>3and p> N/(N—2), then any positive isolated singularity is removable.
A singularity of type (1.4) is called a strong singularity, while that of type (1.5) is called
a weak singularity (see also Vazquez-Véron [14, 15]).

The nonlinearity in which we are interested in this paper includes the following
cases:

(1.6) fs)=1—e",

(L.7) f=e(1—e™%),

(1.8) o=t 2 ey 020, el
c—1 c—1

Problem (P,,) with f defined by (1.7) and N=2 appears in relativistic Chern-Simons
gauge theories (see [7]). In the case (1.8), (P,) is related to a problem of chemical
process (see [5, §16]). Note that in the cases (1.6)—(1.8) above, f satisfies

(1.9) | f(s)|=0(s) as s— +o0.

It is known that under the assumption (1.9) each positive isolated singularity is weak
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(see e.g. Serrin [10, Theorems 1 and 3]).

In the case (1.6), (P,) with N=2 appears in nonrelativistic Chern-Simons gauge
theories as an equation of stationary topological vortex soliton, in which «;/(4r) is a
positive integer for j=1,2, ..., m (see [4]). Construction of m-vortex solutions to the
first order Ginzburg-Landau equation reduces also to the same equation, and Taubes
[12] proved the existence and uniqueness of solutions via a variational method and
studied their properties. More generally, in the case where f is a maximal monotone
graph with 0e f(0) whose domain is R, Bénilan-Brézis [1] and Vazquez [13] studied
a necessary and sufficient condition for the existence of a solution (in an appropriate
sense) to —Au+f(u)3v for a bounded Radon measure v on RY. Their results are based
on the case where ve L'(R") (see [2]) and a regularization method.

The purpose of this paper is to construct a solution to (P,,) or (P,) when f is not
necessarily nondecreasing. In particular, for certain nonlinearities f including (1.6) we
shall obtain a solution to (P,) where the measure Z;‘; 1 K04, in (1.2) is not necessarily
a bounded Radon measure (see Theorem 2). The only assumption on the sequence of
points {a;}52, in R" is that inf}, ;|a;—a; | >0 and no symmetry condition is required,
though we impose some restriction on the intensity {x;}: ;.

When f is nonnegative (and satisfies some technical assumptions), we can construct
a solution to (P,) for any intensity {«;}7_, (see Theorems 1 and 1'). However, the
situation is different when f changes sign. Roughly speaking, when f is positive near
the origin and tends to —oo as s— + oo with appropriate order, the existence of a
solution to (P,) depends on the intensity of singularity (see Theorems 3 and 4).

The paper is organized as follows. Precise statements of our results are given in
Section 2. In Sections 3 and 4, we prove the basic facts (Lemma 2 and Proposition 1)
which will be used repeatedly throughout the paper, and we give the proofs of Theorems
1 and 1'. Problem (P ) is considered in Section 5 and Theorem 2 will be proved. Finally,
we deal with the case where f changes sign and prove the existence and nonexistence
results depending on the intensity of singularity in Sections 6 and 7, respectively.

The author thanks Professors Takeshi Kotake and Izumi Takagi for their helpful
suggestions and advice. Thanks are also due to Professor Jun-ichi Ezawa and Mr.
Masahiro Hotta for their bringing the author’s attention to the problem of topological
vortex solitons.

2. Statements of results. Throughout the paper, we assume that f: [0, + c0)—>R
is a locally Lipschitz continuous function which satisfies

F f(0)=0 and f(s)—f(s)<p3(s—s") for s>5'>0

with a positive constant u. Hence f is bounded from above by a linear function. Note
that (F) is satisfied in the cases (1.6)—(1.8), but not in the case (1.3).

We begin with the case where f is nonnegative. First we state the existence of
solutions with a finite number of singular points. Roughly speaking, under additional
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technical assumptions on f, the positivity of f implies the existence of solutions to (P,,)
for arbitrary {a;}7-, and {x;}7- .

THEOREM 1. Let N >3 and suppose that f satisfies, in addition to (F),
(Fy) f(s)=0  for s>0.
Then for any {a;}7-,<R" and {k;}7-,<R,.=(0, +0), (P,) has a solution ue
CHRY\{a;}7).

When N=2, in order to construct a solution to (P,) for arbitrary {a;}7—, and
{x;}7= 1, we need a slightly stronger condition on f.

THEOREM 1'. Let N=2 and suppose that f satisfies (F).
(i) Ifm=1and

(FD f()=0 for s=0 and f(s)>0 for 0<s«1,

then for any k>0, (P,) has a radial solution ue C*(R*\{0}).
(i) Ifm>2 and

(F)) f()>0 for s>0 and liminf f(s)>0,

s— +

then for any {a;}7-, = R? and {k;}7-, <R, (P,,) has a solution ue C*(R* \{a;}7-,).

The nonlinear term (1.6) satisfies all the assumptions of Theorems 1 and 1’. On
the other hand, (1.7) satisfies the assumptions of Theorem 1 and (F{) of Theorem 1,
but not (F7). Thus for f defined by (1.7), the problem of constructing solutions with
a plural number of singularities of arbitrary intensity remains open, when N=2.

Next we state the existence of solutions with infinitely many singularities. We
assume that f is positive, and the only assumption on {g;}2, is that the distance
between any two points is uniformly bounded away from zero.

THEOREM 2. Let N>2 and suppose that f satisfies, in addition to (F),

(F,))  f(&)>0 for s>0, liminf f(s)/s>0 and 7y:=liminf f(s)e(0, + 0] .
s—=0 s+ o0

Assume that {a;}? =R and {k;} =R, satisfy

(A) laj—a;|>=a if j#j and K:=limsupk;e[0, + o)

Jj— o
for some positive constant «. Then (P ) has a solution ue C*(R" \{a;}> ) provided that

CyR/aN <7y, where Cy is a positive constant depending only on N.

By Theorems 1 and 1’, (P,,) has a solution for any intensity if f is positive and
satisfies certain technical assumptions. Then it is natural to ask what happens when f
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is not necessarily positive. In [5, §16], Gel’fand showed that, in the case where N=1
and f is defined by (1.8), there is a x,>0 such that a problem corresponding to (P,)
has a solution if 0 <x<x,, while there is no solution if x>x,. The following two
theorems are motivated by this observation. We assume a growth condition at infinity

on f:

(Fo) | f(s)[=0(s?) as s— +o0,

where (1 <)p < N/(N—2). Note that (F,) is satisfied in cases of Theorems 1, 1’ and 2.
THEOREM 3. Let N=2 and suppose that f satisfies (F), (F,) and

f()=0 for 0<s«1 if N>3,

F .
(Fa) lim inf £(s)/s>0 if N=2.

s=0
Then, for any {a;}7-, <R, (P,) has a solution ue C*(R" \{a;}7- ) provided that «;>0
is small for each j=1,2,...,m.

While the existence result above is valid for f defined by (1.8), the following
non-existence theorem does not cover the case (1.8).

THEOREM 4. Let N>2 and suppose that f satisfies (F), (F,) and

(Fy) lim sup f(s)/s <O .

s+

Then (Py) has no solution in C*(RY \{0}) if x>0 is large.

To prove the preceding theorems we shall make use of Proposition 1 below which
is obtained by way of the well-known monotone iteration schemes (cf. [9]). Given {a;}7-
and {x;}7-;, we set

m

.1 h(x):= Y k;E(x—a;) for xeR"\{a;}™,,

ji=1

where >0 is given by (F) and E,, is the fundamental solution for —A+p? in R" (see
(4.1) for the definition of E,).

PROPOSITION 1. Let N>2 and suppose that f satisfies (F) and (F,). Assume that
there exists a pair of functions (ii, B) with i€ Li,(R")n C(R" \{q;}7-,) and Be L|,.(R")
satisfying
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( m
—Ai+f(@)=p+ Y x;0,, in D'R"),
j=1

P®,) >0 in R"\{a;}7-, and P>0 ae. in R",

(x)~K;E(x—a;) as x—a; for j=1,2,...,m,

#x)—>0 and P(x)>0 as |x|>+o0.

Then we have the following (i) and (ii):

(i) h<ain RYN\(q}, .
(ii) Problem (P,) has a solution ue C*(R" \\{a;}7-,) satisfying
22) h<u<i i RYN\{a), .

Since —Ad+f (17)22;": 1 k0., in the sense of distribution, we call & a supersolution
to (P,). On the other hand, /4 satisfies —Ah+f (h)sz;."zl k;0,, and hence is called a
subsolution to (P,,).

REMARK 1. If the problem (P,) for a nonlinearity f has a solution i, then i is a
supersolution to (P,) for any nonlinearity f satisfying f<f as well as (F) and (F,). To
see this it is sufficient to take B =7 (i) —f().

In view of Proposition 1, it is essential to find a supersolution in order to construct
a solution to (P,,). In the case of Theorems 1 and 1’, finding a supersolution is relatively
easy. To prove Theorem 2 we shall show that for each m=1, 2, ..., (P,) has a solution
u,, which is bounded from above by a function independent of m, and then obtain a
solution u to (P) as the limit of u,, as m—oco. We shall construct an upper bound by
using the multiple convolutions of the fundamental solutions for —A+u? (u>0). To
prove Theorem 3, we first observed that (P,) has a solution with small intensity for
some special nonlinearities, which is shown by elementary calculation and Proposition
1. By superimposing translations of this particular solution we can construct a super-
solution for the general case. Similarly, in view of Remark 1, the proof of Theorem
4 is reduced to showing that the conclusion holds true when f is a piecewise linear
function. In this special case, all the radial solutions to the differential equation near
the singularity are given in terms of the Bessel functions and the modified Bessel func-
tions.

3. Preliminary observation. We begin by showing that any solution to (P,,) or
(P,) satisfies the equation (1.2) in the sense of distribution. First we introduce a few
notations. For r>0 and xe RY, B,(x) denotes the open ball of radius r centered at x,
and B, stands for B,(0). The gradient of u is denoted by Vu, and the matrix of second
order derivatives of u by D?u.
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Clearly, it is sufficient to discuss the local case, and hence we consider the following
situation:

o { —Aut+f@)=0  in Bx\{0},

u(x) ~kE(x) as x—0.
We claim that a solution (3.1) satisfies
(3.2) —Au+f(u)=xd, in 2'(By) .
In order to deduce (3.2), we need an estimate for Vu.

Lemma 1. Let N>2 and suppose that f satisfies (Fo). If ue C*(Bg \{0}) solves
(3.1), then it holds that

(3.3) | Vu(x)|=O(| x|~ *E(x)) as x—0.
ProoF. We use the following three inequalities:

(3:4) |00 | < Cr™Na(|[v]| Lagg, e + 7 IVO Lags, o) »

(3.5) 1Vl La, 0 < TI D0 ]| Lacganon + Cr ™ 10l Lo 01 »

(3.6 1D 20]| Lo, oy < CU AV Laps,ixn + 7> 10l Lo i) 5

where ¢> N and C is a positive constant depending only on N and g (see [6, Theorems
7.10, 9.9 and 9.11]). Substituting v=Vu into (3.4), v=u into (3.5) and (3.6), we have

[Vu(x)|<C'r t -N/q(”Au"L'I(B..,(x)) +r7? ”uI|Lq(B4,(x)))

for some constant C’>0, provided that B,,(x) € B\ {0} (i.e., B,,(x) is relatively com-
pact in Bx\{0}). We set x=¢w with we SV~ ! and 4r=¢/2 with small £>0, where
SN~1 is the unit sphere in R". Then we have B,,(¢w)€Bx\ {0} and

3.7 | Vu(ew) | < C"e* ™M) f W)l Lago, e + & 2 14ll Lo, ew)

for some constant C”">0.
When N>3, since |u(ew)|<c/eV¥~? for some c¢>0, it follows from (F,) that
| f(u(ew))|<c’/e” for some ¢’>0. Hence.

(3.8) %]l LaB, (e < €8 27N and | f)l LaB,a(ew) S C'E N

for some ¢” >0, where ¢’ is the conjugate exponent of ¢, i.e., 1/g+ 1/¢" = 1. By substituting
(3.8) into (3.7) we obtain (3.3).
When N=2, since | u(ew) | < clog(1/e), we have | f(u(ew)) | <c'(log(1/¢))? and

(3.9 ]l Lap, »eopy < €€ *log(2/e) and | f (u)“Lq(BE/z(sw)) <c"e*M(log(2/e))”
for some ¢’, ¢”>0. Therefore, (3.3) follows from (3.7) and (3.9). q.e.d.
For ve C(Bg \{0}) and re (0, R], we denote the average of v on rS¥~! by i(r),
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ie.,

(3.10) B(r): =

J v(rw)do(w) ,
SN-1

Wy

where do is the surface measure. The following lemma ensures that a solution to (P,,)
or (P) satisfies (1.2).

LEMMA 2. Under the assumption of Lemma 1, if ue C*(Bg \{0}) solves (3.1), then
(3.2) holds.

Proor. We first note that f(u)eL'(Bg) by (3.1) and (F,). By averaging the
equation (3.1) on rSV~!, we have

1 d

N1 dr

(3.11) [r”’lglzJ=f(vu) for 0<r<R.
r

Multiplying both sides of (3.11) by rV~! and integrating the resulting equation over
(r, R) yield

N-y du N-1 i R~ N-1
R —(R)—r"""— ()= f@)(s)s" ds= S(u(x))dx .
dr dr R Oy Jp\s,
Since f(u)e L'(By), there is a constant £ such that
(3.12) —rN—lﬂ(r)—»}% as r—0.
dr

Now we fix ¢ € CP(Bg) and take ¢e (0, R) arbitrarily. By Green’s formula we have

J (—ulbo+f(We)dx= J
Br\B:

0B,

]
<u—a£—(pl>da+f (—Au+f(u)pdx
or or Br\&.

0 0 du
A f [u(ew)i’(sw)—(w(ew)—<p(0))i<sw) do()— p(O)Nwye 1“2 (2)
SN-1 or or dr
Since sup,, s~ - 1| @(ew) — @(0) | < ce for some constant ¢> 0, there holds
0 0
eN f [u(sw)-“’(sw)—«p(sw) -w(O))—“(sw)]da(w) ~0 as ¢-0
SN-1 or or
by virtue of Lemma 1. Therefore, we see that
(3.13) J (—uAp+f(u))dx = Nwykp(0)
Br

for any ¢ € CZ(Bg)-
Now we show that Noyk=k. For any ¢>0 we have from (3.12)
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di
1%-—8<—r~'17;(r)<1€+8 for O<r<py
r

with some # € (0, min{1, R}). Thus it follows that

E(r/)>< u(r) — () <No (1%+e)<1 -
En)- En "

E(n)
E(r)

NwN(ré—a)<1— > for O0<r<npy.
Letting r—0, we have Noy(K—¢)<k<Nwy(K+¢) for any ¢>0 so that Noyk=«.
Therefore, (3.13) implies (3.2). q.e.d.

4. Solutions with a finite number of singularities. The first goal of this section is
to prove Proposition 1 which is our main tool to establish all the theorems in this paper.
Theorems 1 and 1’ are verified by a simple application of Proposition 1. We begin by
introducing a few notations. For N>2 and >0, let E, denote the fundamental solution
for —A+pu?in R¥, that is,

4.1) E(x)=E,(Ix]): _ b

[ a ]VKV(;HXD for xeR¥\J0},
27

27| x|

where v=(N—2)/2 and K, is the modified Bessel function of order v (for Bessel functions,
we use here and hereafter the notations in [8]). We list here some of the basic facts
about E,:

4.2) {—AEu+u2Eu=5o in Z(RY), E/(x)=p" 2E,(ux)>0 for xe R¥\ {0},
E(x)~E(x) as x>0 and E,(x)~c, /x| ® D2 #x a5 |x|>+00,

where ¢, =(4n) " '[p/2n)]V V2. In particular, Ee L{,(R") and E, e LR") for 1<
g<N[(N-2).

Before starting the proof of Proposition 1 we recall fundamental facts in the theory
of linear partial differential equations. We denote the class of tempered distributions
by #'(R") and follow the notations of Sobolev spaces and Hélder spaces in [6]. In the
following lemma, the uniqueness assertion is verified by making use of the Fourier
transform. For the proof of the second assertion, see e.g. [11, Chapter V, Theorem 3].

LEMMA 3. Let N>2 and u>0. Then for all o € ' (R"), the equation
—Av+pu*v=9¢ in 2'(RV)

has a unique solution in &'(R™), which is given by v= E, * @ (where the symbol * denotes
the convolution). Moreover, the mapping ¢+ E,x @ from LP(R") into W*?(R") is
continuous for 1 <p< + 0.

PrOOF OF PrOPOSITION 1. We construct a solution by way of the well-known
monotone iteration schemes and break up the proof into three steps.
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Step 1: Reduction. From (P,,) it follows that ie L% (R") with 1 <g<N/(N—2).
Since & and f vanish at infinity we see that #, fe %' (R"). Set
4.3) g(s):=pu2s—£(s) for s>0.
Then by assumptions (F) and (F,), g is nondecreasing and
4.4) 0=g(0)<g(s)<1(s+sP) for s>0

holds for some constant 7> 0. Thus we have g(#) € L}, .(R") and g(#i) vanishes at infinity,
hence g(#) e #'(R"). By (P,), (2.1) and (4.2),

(4.5) Wi=ii—h
satisfies
—AW+utw=g(@+p in Z'(RY).
Since Wwe %' (RY), we have from Lemma 3
4.6) w=E, x[g@@+p1=0,
which proves assertion (i). Clearly, if we C*(R" \\{q;}]-,) satisfies

4.7 —Aw+p’w=g(w+h) and 0<w<w in R"\{a;}7,,
then
4.8) u:=w+h

is a solution to (P,,) with property (2.2). Thus, problem (P,) is reduced to finding a

function w satisfying (4.7).
Step 2: Iteration. Inorder tosolve (4.7), we define a sequence of functions {w, }i%-,

on R" by

4.9) wo:=0 and wy:=E, *[gw,_;+h)] for k=1,2,....
We shall show by induction that

(4.10) we€ W2IP(RM) and 0<w,_,<w,<w

for k=1,2,..., where p<g<N/(N—2).
When k=1, we see from (4.4) and he LY?(RV)n LY R™) that g(h) e LY?(R"). Thus
w, € W29P(RV) and w, >0. Since g is nondecreasing, it follows from (4.6) that

Ww—w,=E, *[g@@)+B—g(W)]=E,*[g(#+h)—g(h)+]1=0.

Therefore (4.10) holds true for k=1.

We now assume that (4.10) is true for k—1 with k>2, that is, w,_, € W>9P(R")
and 0<w,_,<w,_;<W. By Sobolev’s inequality it holds w,_, e L'(R") with 1/t=
plg—2/N. Since g/p<q<N/(N—2)<t, we have w,_,eL%R") and hence w;_,+he
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LY"(RM)nLYR") and g(w,_,+h)e LY?(R"). Then by Lemma 3 we have w,=
E, *[g(w,_, +h)]e W9 RNy and

W= W1 =E, x[gw_ 1 +h)—gw,_, +1)]>0,
W—w,=E, «[g0W+h)—g(w,_+h)+]1=0.
Therefore, (4.10) holds true for k and we have proved that (4.10) is true for all k=

1,2,....
Step 3: Convergence. By (4.9) and Lemma 3 we have

4.1D —Aw+putwy=gw,_,+h) in D'(RVY)

fork=1,2,.... Now we fix any open set Q with Q€ R" \ {4;}T-; and choose two open
sets Q' and Q" so that Q€ Q'€ Q"€ RV \{q;}7- . From (4.10) we have

O=wo<w;< -+ <Ww<de LR \{g;}™ ),

hence {w, }{~ o and {g(w, - { +h)}, are uniformly bounded in Q”. Since Q" is a bounded
set, {gw,_,+M)}< is bounded in LP(Q") for each pe(l, + o). By (4.11) and the
interior LP-estimate, it follows that {w,}  is bounded in W?2(Q’). With p sufficiently
large, {w,}i>, is bounded in C*(Q") for some a€(0, 1) in virtue of Sobolev’s inequality.
Since g is (locally) Lipschitz continuous, {g(w,_ +h)}{, is bounded in C*Q"). By the
Schauder interior estimate, {w,}, is bounded in C**(Q). Therefore, {w,}2, has a
subsequence which is convergent in C%(Q).

When we choose a sequence {Q,};2, of open sets with Q,€Q,€ - - —
R\ {a;}7-,, by the diagonal process for {Q,}=; we can select a subsequence {w, }2,
of {w};2o and we C*(R" \{q;}7- ) such that

w,,—>w as i—oo in CXQ,)
for each ne N. By the monotonicity of {w,}, we see that w,—w as k— oo in C(Q,).
Therefore, we obtain (4.7). g.e.d.

REMARK 2. In the case m=1, we see from (4.9) that each w, is radial. Therefore,
the solution obtained above is also radial, even if & is not radial.

Now we prove Theorem 1 by applying Proposition 1.

Proor oF THEOREM 1. We set

4.12) i:= ) k;E(-—a;) and B:=f(@).

s

]

ji=1

Then 4 is a supersolution to (P,,), that is, # and B satisfy (P,)), and Theorem 1 follows
immediately from Proposition 1. q.e.d.

To prove Theorem 1’ we use the following lemma. We shall give the proof in the
Appendix since it is lengthy.
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LemMMA 4. Let N=2 and suppose that f is a Lipschitz continuous function on
[0, + o0) such that

(4.13) f0)=0, f(s5)>0 for O0<s<b and f(s)=0 for s>b
with a constant b>0. Then (P,) has a radial solution ue C*(R*\\{0}) for each x>0.

Proor ofF THEOREM 1’. (i) By (F}) we can choose a Lipschitz continuous func-
tion f on [0, 4+ c0) which satisfies (4.13) and f<f. Then by Lemma 4 and Lemma 2
there exists 4€ C*(R?\ {0}) such that

{ —Ad+f(#)=xé, in Z'(R?), a>0 in R*\J{0},
#(x)~kE(x) as x—0 and #(x)—>0 as |x|>+o.
This # is certainly a supersolution to (P,) with B:=f(if)—f(i). Therefore, (P,) has a
radial solution u by Proposition 1 and Remark 2.

(i) In view of (F7), there is a nondecreasing Lipschitz continuous function £ on
[0, + o0) satisfying 0 <mf, (s)<f(s) for s>0. For each j=1,2,..., m, there exists ;e
C%(R*\{a;}) such that

{ —Ad+f ) =x;5, in 2 (R?, #>0 in R*\{q;},
dj(x)~xk;E(x—a;) as x—a; and #(x)—0 as |x|->+o,

by (i) and Lemma 2. It is easy to see that

(4.14) d:=y d; and B:=f@@)— Y, [(i)
i=1 i=1
satisfy the assumptions of Proposition 1 and therefore (P,,) has a solution . q.ed.

5. Solutions with infinitely many singularities. In this section we shall prove
Theorem 2. For this purpose we shall construct a solution u,, to (P,,) for m=1,2, ...,
with an upper bound # independent of m. For u>0 and positive integer n, we denote
the n-time convolution of E, by E{™, that is,

. :=d, an i=E" D« or n=1,2,....
5.1) E®:=5, and EM™:=E"VDxE, f 1,2
Then we can calculate ES™ as
< s 1 U v+1l-n
(5.2) E;"(x)=E"(x])= Q2 <m> K1 -n(ul x1)

for n>1 (where v=(N—2)/2) by using the Fourier transform. Thus we have

o(E(r)) asr—0 if n>2,
o(E,(r)) asr—- 4o if n>1,

(5.3) E,f”>(r)={

for 0 <po<p, and hence
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E

Hspo,n"" po

(5.4) EM<c

for some constant ¢ >0ifn>1.

My ptosn
LEmMMA 5. (i) For p>0 and 1<q<N|(N—2), we have E,e L'(R") and
(5.5) ”Eu”L‘(RN):.u_Z and “E““Lqu):”—(2—N/q')“E1 ”Lq(RN) s

where q' is the conjugate exponent of q.
(ii) For O0<n<u and n>1, it holds that
1 1 . .
(n) _ 2 2\i—1 i)
(5.6) E{™ « E,,_azfnz—)n(E,,—i:Z1 (u>—n?"1ES )s

Proor. (i) If ve %' (RY) satisfies

1
w*—n?" En-

5.7 —Av+pto=1 in 2'(RY),

then it follows from Lemma 3 that v(x)=(E, * 1)(x)= | E,| L1~ On the other hand,
#(x):=pu"2 is a solution to (5.7) which belongs to &'(R"). Therefore, the first equality
of (5.5) holds true due to Lemma 3. The second equality of (5.5) follows from (4.2).

(ii) Note that (—A+p?)E x E,=E{'" "’ x E, and (—A+n?)E" x E,= ES" for
i>1. Therefore, we have

(58) ('uZ_rIZ)iE,SD*E"=(u2__n2)i—1E‘§i—l)*E’I_(HZ_’,’Z)i—IE;D
and get (5.6) by adding (5.8) for i=1,2,...,n. q.ed.

Now we take an integer n>v so as to satisfy E{™ e LY(R") for some ¢'> N/2. Note
that E{™ % E, € L*(R") for n>0. For given {a;}>, and {k;}>,, we set

(5.9 h:=Y x,E(-—a;) and H:=) p?t"0 Y x,EP(-—a;).
ji=1 i=1 ji=1
LEMMA 6. Let N>2 and {a;}{>, be a sequence in R" without accumulation points.
If
(5.10) h:=7Y K;E,(-—a;)e LL(RY)

j=1
Sor some pye (0, p), then he Li, (R™)n L (RY \{a;}~ ) and

(5.11) {HGL']“(RN)”L RN\ {a}720).
H(x)~k;E(x—a;) as x—a; for j=1,2,....

PrROOF. Since /e LL (RY) it follows from (4.2) that

—Ah+pdh=7Y x;8,, in ZD'(RV).
ji=1
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For any open set Q with Q€ R" \ {q;}2,, we have he L*(Q) by the hypoellipticity of
the operator —A+u¢, so that ke L (RY \ {a;} ;). The same argument holds for
(5.12) By : ==K E o (* — )
and hence A,y € L (R \{a;}; m)- By (5.4) we have
(513) H(m) : =PI—Km Z #2“_ 1)E;§i>(. —am)e Llloc(RN) n Llogc(RN \{aj}j?tm) )
i=1
and (5.11) follows from (5.3) since {a;};2, does not accumulate at g, q.e.d.

By assumption (F,) we can choose a nondecreasing function f on [0, + o) such
that

(5.14)  0<f(s)<f(s) for s>0, liminff(s)/s>0 and lim F(s)=y.

s—0 s—+
We define /() >0 for small #>0 by
(5.15) () :=sup{l>0|n2s<f(s) for 0<s<I}.
Then there holds

(5.16) n2.s<f(s) for 0<s<i(n),
)~ +oo and n*lm)=fUm)—>y asn-0.
To prove Theorem 2, the following is a key lemma.

LEMMA 7. Let N>2 and suppose that f satisfies (F) and (F,). Under the notations
above, if (5.10) holds for some pye (0, u) and

5.17) Z:=p™ Y kE™*E, (- —a)<I(n)
i=1

Sfor some n>0, then (P,) has a solution ue C*(R" \{a;}~,).
PrOOF. Set

(5.18) i=H+Z.

Form=1,2,..., let h,, H,, Z,, and i, be defined by

m

B, = _; iGE(-—a), Hy:= .Zl T ,Zl KES(c—a)),

(4.19) S . -

Zp:=p" ), KEM*E(—a), ip:=H,+Z,.
i=1

j=

By Lemma 6 and (5.17) we obtain
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7€ Lig(RM)n Ligo(RY \{a;}72 1) »
i(x)~Kk;E(x—a;) as x—a; for j=1,2,....

By the definition of i, there holds
—Aﬁm+f(am)=ﬁm+ Z Kjéaj in 9’(RN) s
j=1

where B,,: =f(il,) —1*Z,,. Since 0< Z,, < Z <ln), we have n*Z, <f(Z,) by (5.6). From
the fact f<f and the monotonicity of f we see that

ﬂmZi(ﬁm)—nzzmzf(zm)_nzzmzo 5

and hence #,, is a supersolution to (P,,). Therefore, by Proposition 1 and Lemma 2 there
exists u,, € C2(R¥\{q;}]- ) satisfying
(5.20) — Atk +f ()= Y. K;0,, In 2'(RY) and h,<u,<i,<i.

Jj=1

Since i€ L2 (RY \{a;} 2 1), {ttm}r 1 is locally uniformly bounded in R¥ \ {a;} .
By a compactness argument similar to that in the proof of Proposition 1, we can select
a subsequence {u,, }{Z, which converges locally in C*(R" \ {q;}{2,). Then clearly, the
limit u belongs to C*(R"¥\{a;};~,) and is a solution to (P,) satisfying

(5.21) h<u<i in R"\{q}%,.
q.e.d.

From (A) and (4.2) it is clear that he LL (R") for some p,€(0, ). Thus we have
only to show (5.17) for some #> 0 for the proof of Theorem 2. By assumption (A) there
exists a positive constant Cy depending only on N such that

(5.22) #{jeN||x—a;| <ka} < Cyonk" for all xeR" and keN,

where #S denotes the number of elements of a set S. In order to estimate Z, we shall
make use of the following lemma with F=E{™ = E,.

LEMMA 8. Let N>2 and F(x)= F(| x|) be a nonnegative radial function on R which
is decreasing in r=|x|. Then, under assumption (A), there holds

(5.23) §~F(ka)1${jeN|koc<|x—ajls(k+l)oz}
k=k

< Cywy [E”F(/Ea) + f ((k+1)"— k”)F(koc)]
k=k

for any ke N and xe R".
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ProOOF. This assertion follows from

Y. Flkay#{je N|ka<|x—a;| <(k+ o}
K=k

= i[p(ka)—F((k+ Da)]#{je N|ko<|x—a;| <(k+ 1)}
k=k

and the assumptions above. q.e.d.

ProOOF OF THEOREM 2. We now show that (5.17) holds for some n>0. Note
that

(5.24) ||E,f"> * Eq”Lw(RN)S ||E,§">||Lq'mN)"E1 ||Lq(nN)’7_(2 ~N =0("I—2) as n—0.
By assumption (A), for any ¢>0 there exist positive integers j(¢) and k(¢) such that

k lN_ N
(525)  K;<f+e for j>j() and ECT+()k—1]€)—N$1+s for k>k(z).

Choose £>0 with Cy(R+¢)(1+¢)/a™ <y and set K(g):=) 12, ;.

Then for all xe R", it follows from (5.22)—(5.25) and (5.5)(5.6) that
" Y, k;E{" % E(x—a;)
j=1

ie)
<u ¥ EPEfx—a)tpt@ie) D EPeE(x-a)
j=1 x—aj| <k(e)a
+uP(R+e) Y Y E™ % E,(x—aj)

k=k(e) ka<|x—aj|<(k+1)a

j=1 |x—aj| <k(e)a

Je)
sﬂ”[z K+ R+e) Y l]nEﬁ”*Enl'M")

+uP(R+e) Y. EM * E(ka)t{je N|ka<|x—a;| < (k+ 1)}

k=k(e)
< u?"[K(e) + (K + &) Cyyk(e)V]|| E§"> * E, || Lorr)
ji-,uz"(ﬁ+8)CNcuN[k(s)NE,f"> * E,(k(e)a) + Y (k+ DY —kN)E™ % E,,(koc)]
k=k(g)
< p?"[K(e) + 2(k + &) Cywyk(e)] "E,f'l> * E, || Lo(rr)
@ k+1DN—kN
+p(R+e)Cyoy Y, ( _; )y —k =
k=k(e) On[(ka)™ —((k—1))"] J g\ Bee - 11
<uP"[K(e) + 2R +&)Cyoyk(e)V] ||E,§'l> * E, || poocrr)

E{™ x E,(ko)dy
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N Cy &2 1
+ (R +e) —% Y (I+e) J ———o E(»)dy
o k=ke) Bra Ba— e " —N7)

" - n K+e)(1+e) 2 _

<pP"[K(e) +2(R + &) Cyonk (@) I ES™ * E, || oy + Cn ( 3 2
¥ (uP—n?)

K+e)(l+e) _,

~Cy——Fx— 1 as n—0.
o

Since Cy(R+e)(1+¢)/a¥ <7y, (5.17) follows from (5.16) for sufficiently small #>0.
g.e.d.

REMARK 3. If A>cin RY\\{q;}72, holds for some constant ¢>0, then we may
drop the second condition of (F,). Indeed, we can deform the part below ¢ of f so as
to satisfy (F,) and construct a solution satisfying (5.21).

6. Existence of solutions with singularities of small intensity. In the remainder of
this paper we do not assume that f is nonnegative. Then whether (P,,) has a solution
or not may depend on the size of the intensity at singularities. This fact is quite different
from the case where f is nonnegative. In this section we shall prove Theorem 3. For
this purpose we deal with the case where f is defined by

—1[(s—=b)*7]? if N>3,

(6.1) f(s)={#zs_mp if N=2.

Here 7, b and p are arbitrary positive constants, p satisfies 1 <p<N/(N—2) 2<p<3
if N=3) and s* :=max{0, s} for se R.

LEMMA 9. Let N=2 and suppose that f is given by (6.1). Then (P,) has a radial
solution ue C*(RN \{0}) if the intensity x>0 is small.

PrOOF. (i) Case N>3. We first note that max{1, 2/(N—2)} <p < N/(N —2). Set

~ N—-2 ~ a—2
3[(L> +0<L> +1—0} for 0<|x|<F,
2\ x| | x|
i: N-2
b(———) for |x|>F,
| x|

where g:=p(N—2)e(2,N), 0:=(N—2)/(c—2) and 7:=[2k/(b(N—2)Nwy)]''¥~2.
Then we obtain de C*(R¥\ {0}) and

(62) ax)=a(x|):=

(6.3) —Ad+f@@)=p+Krd, in D'(RY)

with



72 T. SATO

64 Bx)=p(x])

bp Y b FN-2 F\r2 »
e\ o) T 5\ ) ) —1-8 f <7,
LA

0 for |x|>F,

where p:=(N—2)(N—o). If we can show that
(6.5) B(r)=0 for 0<r<v7,

then we easily see that # and g satisfy the assumptions of Proposition 1 with m=1.
Thus we are going to show that (6.5) holds true if k>0 is small, i.e., if #7>0 is small.
Note that

(6.6) B(r)=B(r) for 0<r<r,

where

6.7) ﬁ‘m:=f2’—<{;—rbp"l)(f)a—é(be)PG)p("_”+r[§(1+9)]" for r>0.

If p/F2>1h?~1, then J(r) is positive and decreasing in r for 0<r<« 1. Since

Fo= ()t —2xb0r—bo( L—ar ).
2r\r 72 r

ro>0 satisfies f'(ro,) =0 if and only if

Fo p(N—a)_ 1 p

Furthermore, if
(6.9) ro=7 and B(#=0,

then by (6.6) we can conclude that (r)>0 for 0 <r<# and (6.5) holds true. From (6.8)
and (6.7) it follows that (6.9) holds true if and only if

p—1 p
r”‘zzrb |:1+max{0”“,0”—<lﬂ> }]
) 2

Thus we obtain (6.9) if #>0 is small enough, i.e., if k>0 is small enough. For such
k>0, i is a supersolution to (P,) and we obtain a radial solution to (P,).
(ii) Case N=2. Let ¢>0 and set

(6.10) #(x)=1(| x|):=KE‘,()c)+ce"""I for xeR*\{0}.
Then ue C*(R*\{0}) and we have (6.3) with
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6.11)  Bx)=p(x):=cp|x| e > —1[kE,(x)+ce "*I]* for xe RZ\ {0} .

If we choose ¢ >0 and x>0 small enough, then #>0 and i is certainly a supersolution
to (P,). Therefore, the assertion follows from Proposition 1. q.e.d.

PROOF OF THEOREM 3. (i) Case N>3. Note that
m p m
(6.12) |:Z sj] <2mmDE-1 B g for $y,85,...,5,=0
j=1 ji=1

if p> 1. Without loss of generality, we can assume that max{1, 2/(N—2)} <p < N/(N—2).
By assumptions (F), (F,) and (F;) we can choose positive constants T and b such that

(6.13) f(s):=—1[(s—b)*1?<f(s)  for s>0.
When we set
(6.14) Fo(8) 1= =2~ Ve~ e[ (s —b/m)* P for s>0,

it follows from (6.12) that

f( Y s,-)Z Y fuls)  for sy, 85 ...,5,20.
j=1

Jj=1

For j=1,2,...,m, by Lemma 9 and Lemma 2 there exists #;€ C*(R" \\{q;}) such
that

{—Aﬁj+fm(ﬁj)=lcjéaj in Z(RY), #;>0 in R"\{q;},
ij(x)~K;E(x—a;) as x—a; and d;(x)—>0 as |x|->+o0,

provided that x;>0 is small. If we set
(6.15) a:=) & and B:=f@@)— Y, [u(d@),
j=1 j=1
then we can easily see that @ and f satisfy the assumptions of Proposition 1. Therefore,

(P,,) has a solution ue C*(R" \{q;}7-,) if ;>0 is small for j=1,2, ..., m.
(ii) Case N=2. By (F) and (F;), we can choose positive constants # and t such

that

(6.16) F(s) :=n2s—1sP<f(s) for 5>0.

If we set

(6.17) . (s):=n2s—20m~ D@~ Drgp for s>0,

then the remainder of the proof is exactly the same as in the case N> 3. g.e.d.

7. Nonexistence of solutions with a singularity of large intensity. In this section
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we shall prove Theorem 4. For this purpose we first consider radial solutions to (P,)
in the case where f is defined by

7.1 f(s)=min{u’s —12<s—b)}={uzs
| , —A*(s—b) for s

Here u, A and b are arbitrary positive constants and 5:=b12/(A% + u?). In order to deal
with this case, we introduce the following functions:

- ~ 1 v
E(x)=E(x)):= A[L] I(ul x1)

27 | 27| x|
(7.2 Y, (0)=Y,(x): =i|:——l—]vJv(/1| x|) for xe RV\ {0},
4] 27| x|

1 A v
Y x)=Y,(x]):= _X[m] Ny(Alx])

where I, is the modified Bessel function of order v=(N—-2)/2, J, and N, are the Bessel
functions of order v. Then we have E,, ¥,e C*(R"), while Y, e C*(R"\ {0}) and

Y,(x)~E(x) as x—0 and —AY,—A’Y,=65, in Z2'(R").

We note that {E,, E,} and {¥,, ¥,} are independent solutions to

! d[r”“lﬂ]zuzu and ! d[r”"ldu]=—l2u for r>0,

PN gy dr PNy dar

respectively. We also note that Eu(r) is positive, increasing in r and divergent at infinity,
while ¥,(r) and Y,(r) are oscillating in r, and the first zero of Y, is smaller than that
of ¥,. We now recall some properties of the Bessel functions and the modified Bessel
functions (see [8]):

(7.3) N($)J(8) =TSN ,(s)=2/(ns) and  K(s)I,(s)—L(s)K,(s)=—1]s,

{ K,(s)~ —(s/)K(s) ~ (I (v)/2)(2/s)" if v>0

(7.4 .
Ko(s)~log(l/s) and Kj(s)~—1/s if v=0

as s—0.

LEMMA 10. Let N>2 and suppose that f is given by (7.1). If the intensity k>0 is
large, then (Py) has no radial solution in C*(RN\{0}).

PrOOF. We choose k>0 large enough to satisfy
(7.5) kY (z)< —(b—b),

where z, is the first zero of ¥,. If u is a radial solution to (P,) (except the condition at
infinity), then u needs to satisfy

(7.6) ur)y=xY,(N+a¥,(r)+b for O<r<r?F,
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where ae R is a constant and 7 is the first zero of kY, +a¥,+b—b. By (7.5) we have
0<#<z, and hence u(r)<b for 7 <r<#+e (¢>0). Thus we obtain
(7.7 u(r)=yE(r)+JE(r)  for fF<r<i+e

with some constants y, 7€ R. If <0, then it follows that y>0 and u(r) is decreasing in
r for r>F. Furthermore, we have u(r,) =0 for some r,>#, and u does not satisfy the
positivity condition of (P,).

Thus we only have to show that <0 for any ae R if x>0 is large enough. Since

u(F—0)=u(f+0)=>b and ﬂ(f—()):ﬂ(f+0) ,
dr dr

(7.6) and (7.7) imply that
kY,(A)+a¥,(F)=—(b—b),
VE(F))+7E(F)=b,
kY, (F) +aYi(7)=yEL7) +TE(F) .

By the definition of the functions above, we have

(7.8) A (kN (AF) —a (AF)) = 4(b— b)(2nF)"

(7.9) 1K (F) + 71 ,(uF)) = 21b(2nF)” ,

and

(7.10) — A [AF(k N (AF) — oS (AF)) — v(k N (AF) — aJ (AF))]

=2 [pF(y K (uF) + FL(u)) — vy K (uf) + 71, (uF))] -
Since 7 < z,, it holds J (A7) >0. Thus (7.8) yields

(7.11) (A*kN (AF) — 4(b—B)(2nF)") .

1
o=
AT (AF)
By substituting (7.9) and (7.11) into (7.10) we have

VK () + 71 (uF) = — —H_l—_ (4K —2n(2n) (bvJ (AF) + (b—b)AFT(AF)] .
p TR (4F)

Combining with (7.9) it follows from (7.3) that

(7.12) j= =D (v omniy Q)
pJ (A7)
where
(7.13) o(r): =(b—5)/1rJ;(ir)+(bv—5M>Jv(lr).
K, (ur)
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By (7.4) we see that Q(r) is bounded from above for 0<r<z,. Therefore, we obtain
$<0 for any 7e(0, z,) (hence for any ae R) if k>0 is large enough. q.ed.

Proor oF THEOREM 4. From (F) and (F,) we can choose positive constants A
and b such that

(7.14) f(&):=min{u%s, —A%(s—b)}>f(s) for 5>0.

Then, by Lemma 10 the following problem has no radial solution ue C*(R”\ {0})
provided that k>0 is large:

{ —Au+fw)=x8, in Z'(R"), u>0 in RV\J{0},

(7.15)
u(x)~kE(x) as x—»0 and u(x)—>0 as |x|—> +o0.

If (P,) has a solution #e C*(RN \ {0}) for such k>0, then # is a supersolution to (7.15)
with B:=£(i)—f(#). Therefore (P,) has a radial solution by virtue of Proposition 1,
which is a contradiction. q.e.d.

REMARK 4. Theorem 4 claims that (P,) has neither radial solution nor nonradial
solution for large intensity x> 0.

Appendix: Proof of Lemma 4. For a nonlinearity f satisfying (4.13), by taking
w>0 large if necessary, we may assume that
(A.1) [ f()—f(s)|<p?ls—s'| for s5,5'>0.

When we consider the radial case, we obtain the following ordinary differential equation
(recall that N=2):

1 d| d
(A2) — |:r \“] —fw) for r>0,
rodr| dr
u(r)>0 for r>0,
(A.3) u(r)~kE(r) as r—0,
u(ry—0 as r— 4.

Equation (A.2) is reduced to the system of first order equations

du
.
dr
(A.4) )
v v
A

Extend f on R by putting f(s):=0 for s<0 and set

(A.5) F(s):=rf(t)dt for se R and T(s,t):=%t2—F(s) for (s,H)eR?.
0
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Then, for any solution (u, v) to (A.4) we have
d 1

(A.6) —[T(u, v)]= —— %<0,
dr r

that is, T(u, v) is decreasing along a solution to (A.4).

LEMMA A.l. Suppose that (u, v) is a solution to (A.4) which satisfies
(A7) u(rg)=>b and v(ry)<0
for some ro>0. Then one of the following holds:
(1) u(ry)=0, v(r))<0 for some ry>r,,
(i) O<u(r)<b, ov(r)<0 for any r>r,

and  (u(r), v(r)) - (0,0) as r— + oo,
(i) O<u(r,)<b, v(r,)=0 for some ri>ry.

(A.8)

Furthermore, if
(A.9) T(u(7), v(F)<0 and w(F)>0
for some F>0, then (iii) holds.

ProoF. By (A.4) and the fact />0, u is decreasing and v is increasing when v <0.
Hence for (u, v) satisfying (A.7), one of the following holds:

(i) u(r)=0, v(r;)<0 for some r,>r,,
(A.10) (i) O<u(r)<b, v(r)<0 for any r>r,,
(i) 0<u(r,)<b, v(r;)=0 for some r;>r,.
In the cases (i)’ and (iii), if
(A.11) u(ry)=uv(ry)=0,

then (u, v)=(0, 0) is the only solution to (A.4) with the initial value (A.11) at r=r; by
the uniqueness theorem for the initial value problem. This contradicts (A.7), and hence
(1)’ and (ii1)’ imply (i) and (iii) in (A.8), respectively.

In the case (ii)' there exist the limits u* of u(r) and v* of v(r) as r— + oo satisfying
0<u*<b and v*<0. If v*<0, then we have

+ o0 +
u*—u(r0)=J‘ v(r)drsj v¥dr=—o0

0

which is a contradiction, hence v*=0. If u*>0, then it follows

—U("o)=v*—v("o)=j w[ Su(r ))——]d >J S (u(r))dr= + oo
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since f(u*)>0, which is a contradiction. Therefore u* =0 and hence (ii) holds.
Finally, if (A.9) holds, then the possibility of (i) and (ii) is ruled out by (A.6) and

the fact 7(0, v)=v?/2>0, and hence (iii) holds. g.e.d.
Now we fix k>0 arbitrarily. Then by (4.13), any solution u to (A.2) satisfies
1 _
(A.12) ur)=——log—+a  for 0<r<r;:=exp[—2nb “]
2n r K

with some constant € R. We denote the solution to (A.4) satisfying (A.12) by (u,, v,)
for «e R. Then {(u,, v,)},cg iS continuous in « with respect to the topology of locally
uniform convergence on (0, + o0). If we set

AD:={aeR|(u, v,) satisfies (A.8) (i)},
(A.13) AD:={oeR|(u, v, satisfies (A.8) (ii)},
A% ={aeR|(u, v,) satisfies (A.8) (iii)} ,

then 49 and A% are open in R and

(A.14) R=A49Dy A%y 44 (disjoint union) .

The following lemma implies that 4 is nonempty, and Lemma 4 holds true.
LeMMa A2. AY and A are nonempty for any x>0.

PrOOF. We first show that 441" is nonempty. From (A.12) we obtain

2 —
T(uy(F,), v,(Fy)) = %(%) exp [4n b - x ] — F(b)

and T(u,(%,), v,(F,)) <0 for a> 1 since F(b)>0. Therefore, A" is nonempty by Lemma
Al.
Next we show that 4 is nonempty. For R>0 and ge (1, + o), we set

(A.15)  LABg),:={peL%By)| ¢ is radial}
R 1/q
= %\q): 0, R) - R’(p is measurable and [|@| Logy : =[27rj | @(r) |"rdr] <+ oo} ,
0
and define a mapping @ on L(Bg), by
R s
(A.16) D[o](r):= —f s_lf flo(t)+kE())tdtds —kE(R) for 0<r<R,
r 0

for ¢ € LYBg),. Then we obtain from (A.1)

{ IPLOT | Lapry < Ca(UR)? (| @ + KE|| Lasy + K(TR?) 4| E(R) |,
PLo] —P[Y ]l Lapp < éq(,uR)z o —V¥llLapg
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for ¢, y € LYBg),, where ¢,=(1/4)[(¢")**'B(qg+1, ¢')]"% (B( -, *) is the beta function).
Therefore @: L% Byg), — LU(Bg), is a contraction mapping if é,(uR)* <1, and hence there
exists a unique w e LY Bpg), such that

(A.17) w(r)= —JRS_Ifsf(w(l)-}-KE([))tdtdS—KE(R) for 0<r<R.
r (o]

We can easily see that
(A.18) u:=w+kkE
satisfies ue C(0, R]n C?(0, R) and

1 d| d
I:ru]zf(u) and u(r)>0 for 0<r<R,
rodrl dr

u(ry~kE(r) as r—-0 and u(R)=0.

Therefore u=u, for some aeR, and a4V, g.e.d.
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