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Abstract. We are concerned with the existence of positive solutions with prescribed
weak isolated singularities to some semilinear elliptic equations. The existence property
differs with the behavior of the nonlinear term. Under the positivity assumption and a
growth condition on the nonlinear term, we obtain not only solutions with a finite
number of singularities but also those with infinitely many singularities. We show also
that, for some nonlinear terms which changes sign, there is no solution with prescribed
singular behavior.

1. Introduction. In this paper we are concerned with the problem of finding

solutions with isolated singularities to some semilinear elliptic partial differential

equations. Choosing a finite set of points {aj}^=1 or a sequence {fl, }j°=i without

accumulation points in RN and a bounded set of positive numbers {Kj}™=1 or {κj}fL1

arbitrarily, we consider the following problems:

- Δw +/(«) = 0 and u > 0 in J?N \{tfj}jL 1 ,

u{x)~κjE{x — aj) asi->Λ,. for y= 1, 2,..., m .

M(X) -• 0 as I x I -> H- oo ,

and

(PJ

( p } Δ w + / ( W ) = 0 and u>0 in RN\{aj}JLl9

u{x)^κjE{x — aj) as x->tf/ for j= 1, 2, . . . .

Here A: = Yj

I^=ι(d/dxi)
2 is the Laplacian in RN with N>2 and E is the fundamental

solution for — Δ in RN, that is,

(1.1) E(x) = E(\x\): = -
(N-2)NωN \x ιΛT-2

if iV>3

for X G / ? N \ { 0 } ,

— log if N=2
I 2π I x I

where ωN denotes the volume of the unit ball in RN. We assume that / : [0, + oo)->/?

is (locally) Lipschitz continuous and /(0) = 0. We call the number Kj the intensity of
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singularity at a^ When m= 1, we assume a1 = 0 and denote κγ simply by K.

When we call u Ά solution to ( P J or ( P J , we assume that ueC2(RN\{aj}
tjl

=1)

or u G C2(RN \{cij}jL i) and u satisfies (Pm) or (P^), respectively. Under a suitable growth

condition at infinity on /, if u is a solution to (Pm) or (P^), then u satisfies the following

equation in the sense of distribution:

7 = 1 7 = 1

where (5α denotes the Dirac delta function supported at a (see Lemma 2).

In general, isolated singularities do not necessarily have the order of the funda-

mental solution, even if they are isotropic (i.e., they have the same sign near the

singularities). For example, in the case where

(1.3) f ( s ) = s > , p>l,

Veron [16] and Brezis-Veron [3] classified positive isolated singularities as follows (we

agree that N/(N—2)= + oo if N=2 throughout the paper):

( i ) If N> 2 and 1 <p < N/(N— 2), then a positive isolated singularity at the origin

is either removable or satisfies one of the following:

(1.4) U(X)~1P,N\XΓ2I{P-1) as x ^ O ,

(1.5) u{x)~κE{x) as x->0,

where lpN: = [2(2/? — N(p — 1))/(/? — I) 2] ί / ( p~ 1 ] and K is a positive constant (for each K > 0

there is a solution of type (1.5)).

(ii) If N> 3 andp > N/(N— 2), then any positive isolated singularity is removable.

A singularity of type (1.4) is called a strong singularity, while that of type (1.5) is called

a weak singularity (see also Vazquez-Veron [14, 15]).

The nonlinearity in which we are interested in this paper includes the following

cases:

(1-6) f{s)=\-e-\

(1.7) f(s) = e-s(l-e-s),

(1.8) f(s) = ̂ —e-s--^-e~cs-\ , c>0, cφ\ .
c— 1 c— 1

Problem (Pm) with / defined by (1.7) and N=2 appears in relativistic Chern-Simons

gauge theories (see [7]). In the case (1.8), (PJ is related to a problem of chemical

process (see [5, § 16]). Note that in the cases (1.6)—(1.8) above, / satisfies

(1.9) \f(s)\ = O(s) as s ^ + o o .

It is known that under the assumption (1.9) each positive isolated singularity is weak
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(see e.g. Serrin [10, Theorems 1 and 3]).

In the case (1.6), (Pm) with N=2 appears in nonrelativistic Chern-Simons gauge

theories as an equation of stationary topological vortex soliton, in which Kj/(4π) is a

positive integer for j= 1, 2, . . . , m (see [4]). Construction of m-vortex solutions to the

first order Ginzburg-Landau equation reduces also to the same equation, and Taubes

[12] proved the existence and uniqueness of solutions via a variational method and

studied their properties. More generally, in the case where / is a maximal monotone

graph with 0e/(0) whose domain is R, Benilan-Brezis [1] and Vazquez [13] studied

a necessary and sufficient condition for the existence of a solution (in an appropriate

sense) to — Au+f(u) 3 v for a bounded Radon measure v on RN. Their results are based

on the case where veL1(RN) (see [2]) and a regularization method.

The purpose of this paper is to construct a solution to (Pm) or (P^) when / is not

necessarily nondecreasing. In particular, for certain nonlinearities / including (1.6) we

shall obtain a solution to (P^) where the measure ΣJ°=1 Kjδaj in (1.2) is not necessarily

a bounded Radon measure (see Theorem 2). The only assumption on the sequence of

points {βj}jLi in RN is that mfjΦr\aj — ar | > 0 and no symmetry condition is required,

though we impose some restriction on the intensity {κj}j3

=ί.

When / is nonnegative (and satisfies some technical assumptions), we can construct

a solution to (Pm) for any intensity [κj]
rf=ι (see Theorems 1 and Γ). However, the

situation is different when / changes sign. Roughly speaking, when / is positive near

the origin and tends to — oo as s-> + oo with appropriate order, the existence of a

solution to (Px) depends on the intensity of singularity (see Theorems 3 and 4).

The paper is organized as follows. Precise statements of our results are given in

Section 2. In Sections 3 and 4, we prove the basic facts (Lemma 2 and Proposition 1)

which will be used repeatedly throughout the paper, and we give the proofs of Theorems

1 and Γ. Problem (P^) is considered in Section 5 and Theorem 2 will be proved. Finally,

we deal with the case where / changes sign and prove the existence and nonexistence

results depending on the intensity of singularity in Sections 6 and 7, respectively.

The author thanks Professors Takeshi Kotake and Izumi Takagi for their helpful

suggestions and advice. Thanks are also due to Professor Jun-ichi Ezawa and Mr.

Masahiro Hotta for their bringing the author's attention to the problem of topological

vortex solitons.

2. Statements of results. Throughout the paper, we assume that / : [0, + oo)->/?

is a locally Lipschitz continuous function which satisfies

(F) /(0) = 0 and f(s)-f{s')<μ\s-s') for s>s'>0

with a positive constant μ. Hence / is bounded from above by a linear function. Note

that (F) is satisfied in the cases (1.6)—(1.8), but not in the case (1.3).

We begin with the case where / is nonnegative. First we state the existence of

solutions with a finite number of singular points. Roughly speaking, under additional
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technical assumptions on /, the positivity of / implies the existence of solutions to (Pm)

for arbitrary {#/}7=i and {κj}
?Jι

=1.

THEOREM 1. Let N>3 and suppose that f satisfies, in addition to (F),

(Fi) f(s)>0 fors>0.

Then for any {aj}
fJι

=ί^RN and {KJ}J=1 c/?+ = (0, +oo), (PJ has a solution ue

C\RN\{aj}J=1).

When N=2, in order to construct a solution to (Pm) for arbitrary {tfy}™=i and

{KJ}™=1, we need a slightly stronger condition on /.

THEOREM Γ. Let N = 2 and suppose that /satisfies (F).

( i ) If m=\ and

(Fi) f(s)>0 for s>0 and f(s)>0 for 0<s«\ ,

then for any κ>0, (Px) has a radial solution UGC2(R2\{0}).

(ii) Ifm>2and

(FJ) f(s)>0 for s>0 and lim inf/(*)>0 ,
s-» + oo

then for any {aj}
rf=l<nR2 and {κj}

tJι

=1c:R+, (Pm) has a solution ueC2(R2\{aj}
tjl

=1).

The nonlinear term (1.6) satisfies all the assumptions of Theorems 1 and Γ. On

the other hand, (1.7) satisfies the assumptions of Theorem 1 and (Fi) of Theorem Γ,

but not (Fi'). Thus for / defined by (1.7), the problem of constructing solutions with

a plural number of singularities of arbitrary intensity remains open, when N=2.

Next we state the existence of solutions with infinitely many singularities. We

assume that / is positive, and the only assumption on {aj}JL1 is that the distance

between any two points is uniformly bounded away from zero.

THEOREM 2. Let N>2 and suppose that f satisfies, in addition to (F),

( F 2 ) / 0 ) > 0 for s > 0 , lim inf f(s)/s > 0 and y:= lim inf f(s) e (0, + oo] .
s - -O s-> + oo

Assume that {αJ}j^1 c=/?^ and {κj}jl1czR+ satisfy

(A) \aj—ar\>0L if jφf and ic: = lim supκ, e[0, + oo)

for some positive constant α. Then (P^) has a solution u e C2(RN \{QJ}JL i) provided that

CNίc/ocN<γ, where CN is a positive constant depending only on N.

By Theorems 1 and Γ, (Pm) has a solution for any intensity if / is positive and

satisfies certain technical assumptions. Then it is natural to ask what happens when /
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is not necessarily positive. In [5, § 16], GeΓfand showed that, in the case where N= 1

and / is defined by (1.8), there is a κ^>0 such that a problem corresponding to (PJ

has a solution if 0<κ<κ^, while there is no solution if κ>κ^. The following two

theorems are motivated by this observation. We assume a growth condition at infinity

on / :

(F o) \f(s)\ = O(sη as j - > + o o ,

where (1 <)p<N/(N—2). Note that (Fo) is satisfied in cases of Theorems 1, Γ and 2.

THEOREM 3. Let N>2 and suppose that f satisfies (F), (Fo) and

f(s)>0 for 0<s«l if N>3,

lim inff(s)/s> 0 if N=2 .
s->0

(F3)

Then, for any {tfJJL 1 a RN, (PJ has a solution u e C2(RN X ί ^ JJU i) provided that κi> 0

is small for each j = 1, 2,..., m.

While the existence result above is valid for / defined by (1.8), the following

non-existence theorem does not cover the case (1.8).

THEOREM 4. Let N>2 and suppose that f satisfies (F), (Fo) and

(F4) lim sup f(s)/s < 0 .
s-* + oo

Then (Px) has no solution in C2(RN\{0}) ifκ>0 is large.

To prove the preceding theorems we shall make use of Proposition 1 below which

is obtained by way of the well-known monotone iteration schemes (cf. [9]). Given {α,-}^ i

and {Kj}™=u we set

(2.1) *(*):= Σ W * - " i ) f o r

 j
7 = 1

where μ>0 is given by (F) and Eμ is the fundamental solution for — Δ + μ2 in RN (see

(4.1) for the definition of Eμ).

PROPOSITION 1. Let N>2 and suppose that f satisfies (F) and (Fo). Assume that

there exists a pair of functions (u, β) with ύ e Lloc(RN) n C(RN \{αi}7= i) and β e L\OC{RN)

satisfying
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(Pm)

-Au+f(u) =

ύ>0 in RN\{aj}J=ί and β>0 a.e. in RN,

ύ{x)^KjE{x — aj) as x -> ̂  /or 7 = 1, 2, . . . , m ,

#(*)-> 0 αjirf /?(*)->() O S | J C | - » + OO.

Then we have the following (i) and (ii):

( i ) /*<£ ΐ>i RN\{aj}^l9

(ii) Problem ( P J /zαs 0 solution ueC2(RN\{aj}
r ι

= x) satisfying

(2.2) h<u<ύ in RN\{aj]
rf=1.

Since — Δw-h/(w)>]ΓJ=1 J C ^ . in the sense of distribution, we call ύ & super solution

to (Pm). On the other hand, h satisfies —Δh+f(h)<Y™=1κjδa. and hence is called a

sub solution to (Pm).

REMARK 1. If the problem (Pm) for a nonlinearity / has a solution ύ, then ύ is a

supersolution to (Pm) for any nonlinearity / satisfying / < / as well as (F) and (Fo). To

see this it is sufficient to take β=f(ύ)—f(ύ).

In view of Proposition 1, it is essential to find a supersolution in order to construct

a solution to (Pm). In the case of Theorems 1 and Γ, finding a supersolution is relatively

easy. To prove Theorem 2 we shall show that for each m = 1, 2, . . . , (Pm) has a solution

um which is bounded from above by a function independent of m, and then obtain a

solution u to (P^) as the limit of um as ra->oo. We shall construct an upper bound by

using the multiple convolutions of the fundamental solutions for — Δ + μ2 (μ>0). To

prove Theorem 3, we first observed that (Px) has a solution with small intensity for

some special nonlinearities, which is shown by elementary calculation and Proposition

1. By superimposing translations of this particular solution we can construct a super-

solution for the general case. Similarly, in view of Remark 1, the proof of Theorem

4 is reduced to showing that the conclusion holds true when / is a piecewise linear

function. In this special case, all the radial solutions to the differential equation near

the singularity are given in terms of the Bessel functions and the modified Bessel func-

tions.

3. Preliminary observation. We begin by showing that any solution to (Pm) or

(P^) satisfies the equation (1.2) in the sense of distribution. First we introduce a few

notations. For r > 0 and xeRN, Br(x) denotes the open ball of radius r centered at x,

and Br stands for Br(0). The gradient of u is denoted by VM, and the matrix of second

order derivatives of u by D2u.
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Clearly, it is sufficient to discuss the local case, and hence we consider the following

situation:

= O in TR\{0},
u(x) ~ κE(x) as x -> 0 .

We claim that a solution (3.1) satisfies

(3.2) -Au+f(u) = κδ0 in ®'(BR).

In order to deduce (3.2), we need an estimate for Vw.

LEMMA 1. Let N>2 and suppose that f satisfies (F o). If ueC2(BR\{0}) solves

(3.1), then it holds that

(3.3) \Vu(x)\ = O(\x\-1E(x)) as x->0.

P R O O F . We use the following three inequalities:

(3.4) I v(x) I < C r - ^ ( | | i ; | | L q ( B r ( J C ) ) + r|| Vt;| |L β ( J i r ( x ) )) ,

(3.5) IIV^| |^(^^^ </-1|^>^^||^(.B^^)) H- CΛ-- x II^II^(

(3.6) H^>2ϋHwcn^x))^ C d l Δ ϋ l l ^ ^ ^ j , + r - 2 H t ll

where q > N and C is a positive constant depending only on N and q (see [6, Theorems

7.10, 9.9 and 9.11]). Substituting v = Vu into (3.4), υ = u into (3.5) and (3.6), we have

for some constant C > 0 , provided that B4rr(x)^BR\{0} (i.e., BAr{x) is relatively com-

pact in i?Λ\{0}). We set x = εω with ωeSN~1 and 4r = ε/2 with small ε > 0 , where

S * " 1 is the unit sphere in RN. Then we have Bεl2(εω)<gBR\{0} and

(3.7) I Vw(βω) I < C7-ε1 ~ ̂ ^( || y(^) II ̂ ( ^ / 2 ( ε ω ) ) + β ~ 21| w || ̂ (^/2(£Ct>)))

for some constant C">0.

When 7V>3, since \u(εω)\<c/εN~2 for some c > 0 , it follows from (F o) that

\f(u(εω))\<c'lεN for some c ' > 0 . Hence.

(3.8) \\u\\LHBE/2{εω))<c"ε2-^' a n d \\f(u)\\LHBεί2{εω))<c'fε-^'

for some c" >0, where q' is the conjugate exponent of q, i.e., \/q+ \\q' = 1. By substituting

(3.8) into (3.7) we obtain (3.3).

When N=2, since | w(εω)|<clog(l/ε), we have |/(w(εω))|<c'(log(l/ε))p and

(3-9) | |w| |L 9 ( β ε / 2 ( ε ω ) )<^ε^log(2/ε) and | |/( W ) | | L , ( l ϊ ε / 2 ( ε ω ) ) <^ε 2 ^(log(2/ε)r

for some c\ c">0. Therefore, (3.3) follows from (3.7) and (3.9). q.e.d.

For i; e C(i?£ \{0}) and re(0, R]9 we denote the average of υ on rSN-1 by v(r),
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i.e.,

(3.10) ϋ(r): = -j— f v(rω)dσ(ω) ,
NωNJSN-i

where dσ is the surface measure. The following lemma ensures that a solution to (Pm)

or (P^) satisfies (1.2).

LEMMA 2. Under the assumption of Lemma 1, if ue C2(BR\{0}) solves (3.1), then

(3.2) holds.

PROOF. We first note that f(u)eL\BR) by (3.1) and (Fo). By averaging the

equation (3.1) on rSN~x, we have

(3.11) r * - i — =/(κ) for 0 < r < Λ .

Multiplying both sides of (3.11) by rN~ι and integrating the resulting equation over

(r, R) yield

7— I — /* Ώ Λ (*

N _ du N _ du j «_ 1 I

Since f{u)eL1(BR), there is a constant TC such that

(3.12) -rN-iJL(f)-+iZ as r->0.

Now we fix φ e CQ(BR) and take ε G (0, R) arbitrarily. By Green's formula we have

Γ Γ / r\ r\ \ Γ
(- uΔφ +f(u)φ)dx = ίu φ — I dσ + ( — Δw +f(u))φdx

JBR\BE JdBE\ dr dr J JBR\BE

= ε N " M w(εω) — (εω) - (φ(εω) - φ(0)) — (εω) dσ(ω) - φ(0)NωNε N ~x — (ε).
Jsjv-iL Sr dr J c/r

Since supωeSjv-i| φ(εω) — φ(0) \<cε for some constant c>0, there holds

ε N - 1 w(εω) (εω) — (φ(εω) — φ(0)) — (εω)L/σ(ω)^0 as ε-^0
JsN-iL dr dr J

by virtue of Lemma 1. Therefore, we see that

(3.13) ( — uΔφ+f(u)φ)dx = NωNκφ(O)

for any φeC%(BR).

Now we show that NωNκ = κ. For any ε>0 we have from (3.12)
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K — ε<— rN~1— (r)<κ + ε for 0<r<η
dr

with some ^ G ( 0 , min{l, R}). Thus it follows that

( | ^ ) f o r 0<r<η.

Letting r->0, we have NωN(κ — ε)<κ<NωN(κ + ε) for any ε>0 so that NωNίc = κ.

Therefore, (3.13) implies (3.2). q.e.d.

4. Solutions with a finite number of singularities. The first goal of this section is

to prove Proposition 1 which is our main tool to establish all the theorems in this paper.

Theorems 1 and Γ are verified by a simple application of Proposition 1. We begin by

introducing a few notations. For N>2 and μ>0, let Eμ denote the fundamental solution

for - Δ + μ 2 in RN, that is,

(4.1) Eμ(x) = Eμ(\x\):=^\-^--]Kv(μ\x\) for xeRN\{0} ,

where v = (N— 2)/2 and Kv is the modified Bessel function of order v (for Bessel functions,

we use here and hereafter the notations in [8]). We list here some of the basic facts

about Eμ\

(4.2) ί-ΔEμ + μ2Eμ = δ0 in &(RN), £μ(x) = / - 2

[Eμ(x)~E(x) as x->0 and Eμ(x)^cμ\x\'iN-1)l2e'μ^ as |x|-» + oo ,

where ^ = (4π)"1[μ/(2π)] ( N"1 ) / 2. In particular, EeLq

λoc{RN) and EμeLq(RN) for 1<

q<N/(N-2).
Before starting the proof of Proposition 1 we recall fundamental facts in the theory

of linear partial differential equations. We denote the class of tempered distributions

by y(RN) and follow the notations of Sobolev spaces and Holder spaces in [6]. In the

following lemma, the uniqueness assertion is verified by making use of the Fourier

transform. For the proof of the second assertion, see e.g. [11, Chapter V, Theorem 3].

LEMMA 3. Let N>2 and μ>0. Then for all φe^f(RNχ the equation

-Av + μ2v = φ in @\RN)

has a unique solution in 6f'(RN), which is given by v = Eμ*φ (where the symbol * denotes

the convolution). Moreover, the mapping φi—• Eμ* φ from LP(RN) into W2yp(RN) is

continuous for 1 <p< +00.

PROOF OF PROPOSITION 1. We construct a solution by way of the well-known

monotone iteration schemes and break up the proof into three steps.
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Step 1: Reduction. From (Pm) it follows that ueLfoc(RN) with 1 <g<N/(N-2).

Since ύ and β vanish at infinity we see that ύ, βe^'{RN). Set

(4.3) g(s): = μ2s-f(s) for s>0.

Then by assumptions (F) and (Fo), g is nondecreasing and

(4.4) 0 = g(0)<g(s)<τ(s + sp) for s>0

holds for some constant τ>0. Thus we have g(u) e Lloc(RN) and g(ύ) vanishes at infinity,

hence g(u)eSf\RN). By (PJ, (2.1) and (4.2),

(4.5) w: = u-h

satisfies

-Aw + μ2w = g(u) + β in @\RN) .

Since we^\RN), we have from Lemma 3

(4.6) w = £μ*[0(w) + j?]>O,

which proves assertion (i). Clearly, if wGC2(RN\{aj}J=1) satisfies

(4.7) -Aw + μ2w = g(w + h) and 0<w<w in RN\{aj}
1Jl

=1 ,

then

(4.8) u: = w + h

is a solution to (Pm) with property (2.2). Thus, problem (Pm) is reduced to finding a

function w satisfying (4.7).

Step 2: Iteration. In order to solve (4.7), we define a sequence of functions {wk}^= 0

on RN by

(4.9) wo: = 0 and wk: = Eμ* lg(wk_ί+h)~] for k = 1, 2 , . . . .

We shall show by induction that

(4.10) wkeW2'qlp(RN) and O ^ H

for A:= 1,2, . . . , where p<g<N/(N-2).

When &= 1, we see from (4.4) and heLq/p(RN)r\Lq(RN) that g(h)eLq/p(RN). Thus

vvx 6 W25ίi/p(jRN) and H^ >0. Since g is nondecreasing, it follows from (4.6) that

Therefore (4.10) holds true for k = 1.

We now assume that (4.10) is true for k-1 with k>2, that is, w ^ ^ W2«lp(RN)

and 0<w k _2<w k _ 1 <w. By Sobolev's inequality it holds wk_1eLt(RN) with l/ί =

p/g — 2/N. Since g/p<g<N/(N-2)<t, we have w ^ i e L ^ / O and hence wk_
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Lq/p(RN)nLq(RN) and g(wk-x+h)GLqlp(RN). Then by Lemma 3 we have wk =

Eμ * ίg(wk _! + A)] e W2>«/P(RN) and

Therefore, (4.10) holds true for & and we have proved that (4.10) is true for all k =

1,2, . . . .

Step 3: Convergence. By (4.9) and Lemma 3 we have

(4.11) -Δwk + μ2wk = g(Wk-i+h) in 9\RN)

for k = 1, 2, . . . . Now we fix any open set Ω with ΩξRN \{aj}Js= x and choose two open

sets Ω' and Ω" so that Ω(ζΩf<ζΩ"<£RN\{aj}'Jι

=1. From (4.10) we have

hence {wj£°=0 and {g(wk_ 1 + h)}^= 1 are uniformly bounded in Ω". Since Ω" is a bounded

set, {0(wk_!+*)}£=! is bounded in l/(Ω") for each ^ ε ( l , +OO). By (4.11) and the

interior //-estimate, it follows that {wk}k=ι is bounded in W2^(Ω'). With^ sufficiently

large, {wk}?=1 is bounded in C\Ω') for some αe(0, 1) in virtue of Sobolev's inequality.

Since g is (locally) Lipschitz continuous, {g(wk_1 + h)}k

x>

=2 is bounded in C^Ω7). By the

Schauder interior estimate, {wk}k

X)

=2 is bounded in C2\Ω). Therefore, {wfc}£°=2 has a

subsequence which is convergent in C2(Ω).

When we choose a sequence {Ωn}™=ι of open sets with Ω 1 €Ω 2 C ••• -^

RN\{aj}
rjl= ί9 by the diagonal process for {Ωn}™= x we can select a subsequence {wfc.}?i x

of {Wfcίί̂ o a n d w e C ^ X ^ ^ i ) such that

wk. -^w as / -• oo in C2(Ωn)

for each neN. By the monotonicity of {wk}£°=0 we see that wk->w as ^-^oo in C(Ωn).

Therefore, we obtain (4.7). q.e.d.

REMARK 2. In the case m= 1, we see from (4.9) that each wk is radial. Therefore,

the solution obtained above is also radial, even if ύ is not radial.

Now we prove Theorem 1 by applying Proposition 1.

PROOF OF THEOREM 1. We set

(4.12) u:=ΣκjE( -aj) and β:=f(u).

Then ύ is a supersolution to (Pm), that is, ύ and β satisfy (Pm), and Theorem 1 follows

immediately from Proposition 1. q.e.d.

To prove Theorem Γ we use the following lemma. We shall give the proof in the

Appendix since it is lengthy.
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LEMMA 4. Let TV =2 and suppose that f is a Lipschitz continuous function on

[0, + oo) such that

(4.13) /(0) = 0, f(s)>0 for 0<s<b and f(s) = 0 for s>b

with a constant b>0. Then (Px) has a radial solution ueC2(R2\{0})for each κ>0.

PROOF OF THEOREM Γ. (i) By (F[) we can choose a Lipschitz continuous func-

tion / on [0, +αo) which satisfies (4.13) and / < / . Then by Lemma 4 and Lemma 2

there exists ύeC2(R2\{0}) such that

Δu +/(w) = κδ0 in &'(R2), ύ > 0 in R2 \{0} ,

ύ(x)~κE(x) as x->0 and ύ(x) ->0 as |x|-* + αo.

This ύ is certainly a supersolution to (Px) with β:=f(u)—f(ύ). Therefore, (P t) has a

radial solution w by Proposition 1 and Remark 2.

(ii) In view of (F^), there is a nondecreasing Lipschitz continuous function Jm on

[0, +oo) satisfying 0<mfm(s)<f(s) for ί > 0 . For each7=1, 2,..., m, there exists ύjE

C2(R2\{aj}) such that

j(x)~KjE(x — aj) as x->αj and #,•(.*)-• 0 as |.x|-> + oo,

by (i) and Lemma 2. It is easy to see that

m m

(4.14) u:=Σuj and β:=f(u)- Σ ?m(uj)

satisfy the assumptions of Proposition 1 and therefore (Pm) has a solution u. q.e.d.

5. Solutions with infinitely many singularities. In this section we shall prove

Theorem 2. For this purpose we shall construct a solution um to (Pm) for m= 1, 2, . . . ,

with an upper bound ύ independent of m. For μ > 0 and positive integer n, we denote

the «-time convolution of Eμ by E^, that is,

(5.1) E<°>: = δ0 a n d E<a>: = E<Λ-1>*Eμ f o r n = l , 2 , . . . .

Then we can calculate £^n > as

1 / u Y + 1 - "

(5.2) E<n>(x) = E<n>(\ x I) = - ? — I A : v + 1 _ / J ( μ | x | )
μ μ ( 2 π ) v + 1 ( « - l ) ! 2 " - 1 Vljcl/

for «> 1 (where v = (N—2)/2) by using the Fourier transform. Thus we have

(5.3) £ί->(r) = ί ° ( £ ( r ) ) a S ^ ° i f "^ 2 '
μ I o(Eμo(r)) a s r - ^ + o o if n> 1 ,

for 0<μo<μ, and hence
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(5-4) E<"><cμ^nEμa

for some constant cμμon > 0 if n > 1.

LEMMA 5. ( i ) For μ>0 and \<q<N/(N-2), we have EμeLq(RN) and

(5-5) \\Eμ\\mR») = μ-2 and \\

' w //ze conjugate exponent of q.
(ii) For 0<η<μ and n > 1, //

PROOF. ( i ) If ϋ e &"(RN) satisfies

(5.7) -Δy + μ2ί; = l in

then it follows from Lemma 3 that v(x) = (Eμ* l)(x)= II^IIL^JI^)- On the other hand,
v(x): = μ " 2 is a solution to (5.7) which belongs to ^\RN). Therefore, the first equality
of (5.5) holds true due to Lemma 3. The second equality of (5.5) follows from (4.2).

(ii) Note that (-A + μ^E^ *Eη = E<i'1> *Eη and (-A + η2)E<iy *Eη = E<iy for
/> 1. Therefore, we have

(5.8) { μ ^ η ^ ^ ^ ^ ^

and get (5.6) by adding (5.8) for i= 1, 2,..., n. q.e.d.

Now we take an integer n > v so as to satisfy E<n> e Lq\RN) for some q' > N/2. Note
that ^ π ) * ^ e Γ ( ^ ) for η>0. For given {o/jJLi and {Kj}jLu we set

(5.9) h:=ΣκjEμ( -aj) and H:= £ μ2(ί"υ Σ M^<0( ~aj)
j=l i=l j=l

LEMMA 6. Lei 7V> 2 α«d {^ }j°= i ^^ a sequence in RN without accumulation points.

if

(5-10) Λ : = Σ κ , ^ o ( -α,)6L1

1

oc(ΛΛί)
J = l

/or ίome μ0 6 (0, μ), (hen h e L\OQ(RN) n L,»C(/?N \{β j}7» J and

( 5 π ) j #6 !£,(*") nL&ίΛ'Xfo}^),
( H(x) ~ KjE(x — aj) as x -» α^ for 7 = 1 , 2 , . . . .

PROOF. Since heLlc(RN) it follows from (4.2) that
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For any open set Ω with Ω^RN\{aJ}jLι, we have HeLco(Ω) by the hypoellipticity of

the operator — Δ + μo, so that HeL^c(RN\{aJ}fL1). The same argument holds for

(5-12) hίm): = h-κmEμo(--am)

and hence h(m)eLroc(RN\{aj}JΦJ. By (5.4) we have

(5.13) Him):=H-κm £ μ2"-%<'>(• -am)eLURN)nL?oc(RN\{aj}jΦm).
i = 1

and (5.11) follows from (5.3) since {aj]f=1 does not accumulate at am. q.e.d.

By assumption (F2) we can choose a nondecreasing function / o n [0, +00) such

that

(5.14) 0<f(s)<f(s) foτs>0, \iminff(s)/s>0 and lim/(*) = y.
s->0 s-> + oo

We define l(η) > 0 for small η > 0 by

(5.15) /(^): = sup{/>0|^</C?) for O^^/} .

Then there holds

(5.16) η2s<f(s) for 0<s<l(η) ,

l(η) -> + 00 and η 2l(η) =f(l(η)) -+γ as η -+ 0 .

To prove Theorem 2, the following is a key lemma.

LEMMA 7. L<?ί N > 2 ύwd suppose that f satisfies (F) α«d (F 2). ί/«^r the notations

above, z/(5.10) holds for some μoe(Q, μ) and

(5.17) Z:=μ2n £ KjE<n>*Eη( -

/or so/we >y > 0, /Ae« (P^) has a solution u e C2(RN \{aj}JL J .

PROOF. Set

(5.18) u:=H+Z.

For m = 1, 2, . . . , let Am, Hm9 Zm and wm be defined by

(4.19)

By Lemma 6 and (5.17) we obtain
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I u{x)^κjE{x — aj) as x -• fl7 for 7 = 1, 2, . . . .

By the definition of ύm there holds

i

i n

where βm:=f(ύm)-η2Zm. Since 0<Zm<Z<l(η), we have >? 2Zm</(ZJ by (5.6). From

the fact / < / and the monotonicity of / we see that

βm>f(um)-η2Zm>/(Zm)-η2Zm>0 ,

and hence um is a supersolution to (Pm). Therefore, by Proposition 1 and Lemma 2 there

exists umeC2(RN\{aj}J:=1) satisfying

(5.20) - Δ « B + / ω = Σ « Λ i n ®'(RN) a n d K^u^u^u.

Since ueL£c(RN \{^}JL J , {ww}m= i is locally uniformly bounded in RN \{aj}JL t .

By a compactness argument similar to that in the proof of Proposition 1, we can select

a subsequence {um}fLι which converges locally in C2{RN\{aj]f=ι). Then clearly, the

limit u belongs to C2(RN\{aj}f=1) and is a solution to (P^) satisfying

(5.21) h<u<ύ in RN\{aj}fL1.

q.e.d.

From (A) and (4.2) it is clear that heLloc(RN) for some μoe(0, μ). Thus we have

only to show (5.17) for some η>0 for the proof of Theorem 2. By assumption (A) there

exists a positive constant CN depending only on TV such that

(5.22) %{jeN\\x-aj\<koc}<CNωNkN for all xeRN and keN,

where #S denotes the number of elements of a set S. In order to estimate Z, we shall

make use of the following lemma with F=E<n> * Eη.

LEMMA 8. Let N>2 andF(x) = F(\ x\) be a nonnegative radial function on RN which

is decreasing in r=\x\. Then, under assumption (A), there holds

(5.23) Σ^F(kocβ{jeN\ka<\x-aj\<(k+l)(x}
k = k

+ Σ ((k+l)N-kN)F(ka)
L k=k

for any ke N and x e RN.
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PROOF. This assertion follows from

Σ F(kφ{jeN\kot<\x-aj\<(k+\)oc}
k = k

= Σ lF(ka)-F({k+l)aW{jeN\£*<\x-aj\<(k+l)a.}
k = k

and the assumptions above. q.e.d.

PROOF OF THEOREM 2. We now show that (5.17) holds for some η>0. Note

that

(5.24) ||^,<Λ> *^"^IIχ.^(«-)< ||^<">||^-(«-)II^^II^(«-)^7-(2-^^'> = ^C^7~2) as ι y - 0 .

By assumption (A), for any ε > 0 there exist positive integers j(ε) and k(ε) such that

(k-\- l)N — kN

(5.25) ic. < K + ε for j>j(ε) and ^ - < 1 + ε for k> k(ε).
kN — (k— l)N

Choose ε > 0 with CJV(ϊc + 6)(H-ε)/αAr<y and set K(ε): =Σj ( =i κr

Then for all xeRN, it follows from (5.22)-(5.25) and (5.5)-(5.6) that

Σ E<n> *Eη(x-cij)
7 = 1 | x - α j |<fc(ε)α

Σ
α< I x-αj I <(fc+l)α

Σ

+ μ2n(κ

+ μ2"(κ + ε)CNωN\k(ε)NE<' >*Etl(k(ε)0L)+ J
L *=*

< μ 2"lK(ε) + 2(κ + ε)CNωNk(^ II E<"> * £ , || L^RN)

2

 N Σ r , , , ' , , ^ E<*> *Eη(ka)dy
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EΛy)dy

_ 2η as

Since CN(κ + ε)(\ + ε)/ocN<y, (5.17) follows from (5.16) for sufficiently small η>0.

q.e.d.

REMARK 3. If h>c in /^NJαyjJLi holds for some constant c>0, then we may

drop the second condition of (F2). Indeed, we can deform the part below c of / so as

to satisfy (F2) and construct a solution satisfying (5.21).

6. Existence of solutions with singularities of small intensity. In the remainder of

this paper we do not assume that / is nonnegative. Then whether (Pm) has a solution

or not may depend on the size of the intensity at singularities. This fact is quite different

from the case where / is nonnegative. In this section we shall prove Theorem 3. For

this purpose we deal with the case where / is defined by

if

if N=2.

Here τ, b and μ are arbitrary positive constants, p satisfies 1 <p<N/(N—2) (2<p<3

if N=3) and s+ :=max{0, s} for seR.

LEMMA 9. Le/ 7V>2 and suppose that f is given by (6.1). Then (Px) /ztfs # radial

solution ueC2(RN\{0}) if the intensity κ>0 is small.

PROOF. ( i ) Case N> 3. We first note that max{ 1, 2/(N- 2)}<p< N/(N- 2). Set

b Γ / ίr \ N - 2 / ~ \tr-2

(6.2) ύ(x) = ύ(\x\): =
1*1/

2 . . - . , • -i . . • , for 0 < | x | < r ,

ψ \N-2

bl — \ for | j c | > r ,

where σ:=p(N-2)e(2,N), θ: = (N-2)/(σ-2) and r\ = [_2κ/(b(N-2)NωN)y/{N-2).

Then we obtain UGC\RN\{0}) and

(6.3) -Au+f(u) = β + κδ0 in

with
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(6.4) β(x) = β(\x\)

0 for | x | > r ,

where p :=(N—2)(N—σ). If we can show that

(6.5) β(r)>0 for 0 < r < f ,

then we easily see that ύ and β satisfy the assumptions of Proposition 1 with m = 1.
Thus we are going to show that (6.5) holds true if κ>0 is small, i.e., if r>0 is small.

Note that

(6.6) β(r)>β(r) for 0 < r < r ,

where

(6.7) ^): = | ^ _ τ ^ - ^ y - | ( ^ ^ y + τ[|(l+θ)J for r>0 .

If p/r2>τbp~ί, then β(r) is positive and decreasing in r for 0 < r « l . Since

ϊ\p(σ-2)

)

/ \/rV ( J V~σΠ

r0 > 0 satisfies )S'(r0) = 0 if and only if

p(N-σ)

Furthermore, if

(6.9) ro>r and β(r)>0,

then by (6.6) we can conclude that β(r)>0 for 0 < r < f and (6.5) holds true. From (6.8)
and (6.7) it follows that (6.9) holds true if and only if

Γ2:
9

Thus we obtain (6.9) if r>0 is small enough, i.e., if κ>0 is small enough. For such
κ>0, ύ is a supersolution to (Px) and we obtain a radial solution to (PJ.

(ii) Case N=2. Let c>0 and set

(6.10) u(x) = u(\x\): = κEμ(x) + ce-μlxl for xeR2\{0} .

Then ueC2(R2 \{0}) and we have (6.3) with
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(6.11) β(x) = β(\x\): = cμ\x\-1e-μlxl-τlκEμ(x) + ce-filxlγ for xeR2\{0} .

If we choose c>0 and κ>0 small enough, then /?>0 and ύ is certainly a supersolution

to (Pi). Therefore, the assertion follows from Proposition 1. q.e.d.

PROOF OF THEOREM 3. ( i ) Case N>3. Note that

Σsj \<2^-^-^Σ^Ϊ for sί9s29...,sm>0

7 = 1 J 7 = 1

if p > 1. Without loss of generality, we can assume that max{ 1, 2/(N— 2)} <p < N/(N— 2).

By assumptions (F), (Fo) and (F3) we can choose positive constants τ and b such that

(6.13) Ks)'.= -τ[{s-b)+γ<f(s) for s>0 .

When we set

(6.14) fm(s):=-ϊm-1){p-l)τ[{s-blm)+γ for

it follows from (6.12) that

/ m \ m

f[ Σ S J ) > Σ fm(Sj) f o r sl9 s2,..., sm>0 .
\ 7 = 1 / 7 = 1

For j= 1, 2, . . . , m, by Lemma 9 and Lemma 2 there exists UjeC2(RN\{aj}) such

that

AQj+fm(uj) = Kjδaj in@'(RN), Uj>0 in RN\{aj} ,

uj(x)~κjE(x — aj) as x^a} and w7 (x) -+ 0 as |x |->

provided that κ:7 > 0 is small. If we set

(6.15) u:=Σΰj and ]8: =f(u)- Σ fm(βj),
7 = 1 7 = 1

then we can easily see that ύ and β satisfy the assumptions of Proposition 1. Therefore,

( P J has a solution ueC2(RN\{aj}y=zl) if Kj>0 is small fory= 1, 2 , . . . , m.

(ii) Case N=2. By (F) and (F 3), we can choose positive constants η and τ such

that

(6.16) f(s): = η2s-τsp<f(s) for s>0.

If we set

(6.17) fm(s): = η2s-2im-1)ip-1)τsp for s > 0 ,

then the remainder of the proof is exactly the same as in the case N>3. q.e.d.

7. Nonexistence of solutions with a singularity of large intensity. In this section
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we shall prove Theorem 4. For this purpose we first consider radial solutions to

in the case where / is defined by

' μ2s for 0<s<B,
(7.1) , w - ^ l f . . , , - Λ V , »,S-Λ _χ2{s_b) for ^ g

Here μ, λ and b are arbitrary positive constants and b: — bλ2\{λ2 + μ2). In order to deal

with this case, we introduce the following functions:

(7.2)

EJx) = EJ\x\): =—\-—\ /v(μ|x|)

4|_2π|x

i Γ i

for xeRN\{0} ,

7Λ(x) = FΛ(| x I): = - i Γ — i - Ί \v(λ\ x I)
4 [ _ 2 π | x | J

where Iv is the modified Bessel function of order v = (N—2)/2, Jv and Nx are the Bessel

functions of order v. Then we have Eμ, ΫλeC™(RN), while yλeC°°(J?N\{0}) and

Yλ(x) - E(x) as x -> 0 and - Δ 7Λ - λ 2 Yλ = δ0 in 9\RΉ).

We note that {Eμ, Eμ} and {Fλ, Yλ} are independent solutions to

1 d[ N_1du~\ 2 1 ^ L . ^ M ] . 2 .

— r^ x — =μ2w and —•— rN x — \ = - λ 2 u f o r r > 0 ,
r^"1 dr[_ dr\ μ rN~' dr{_ dr\

respectively. We also note that Eμ(r) is positive, increasing in r and divergent at infinity,

while Ϋλ(r) and Yλ(r) are oscillating in r, and the first zero of Yλ is smaller than that

of Ϋλ. We now recall some properties of the Bessel functions and the modified Bessel

functions (see [8]):

(7.3) K(s)Jv(s)-J'v(s)Ny(s) = 2l(πs) and K'v(s)Iv(s) - Γv(s)Kv(s) = -1/j,

Kv(s)~-(s/v)K'v(s)~(Γ(v)/2)(2/sγ if v > 0
as s —• u .

:0(j)-log(l/j) and A^(J)--1/J if v = 0

LEMMA 10. Let N>2 and suppose that f is given by (7.1). If the intensity κ>0 is

large, then (PJ has no radial solution in C2(RN\{0}).

PROOF. We choose K > 0 large enough to satisfy

(7.5) κYλ(zj)<-(b-B),

where zλ is the first zero of Ϋλ. If u is a radial solution to (Px) (except the condition at

infinity), then w needs to satisfy

(7.6) u(r) = κYλ(r) + (xΫλ(r) + b for 0 < r < r ,
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where aeR is a constant and r is the first zero of κYλ + aΫλ + b — b. By (7.5) we have

0<f<zλ and hence u(r)<b for f<r<f + ε (ε>0). Thus we obtain

(7.7) u(r) = yEμ(r) + yEμ{r) for f<r<f + ε

with some constants γ,yeR. If y<0, then it follows that y>0 and w(r) is decreasing in

r for r > r. Furthermore, we have u(r0) = 0 for some r0 > r, and w does not satisfy the

positivity condition of (P t).

Thus we only have to show that γ<0 for any α e R if /c>0 is large enough. Since

= b and ^ . ( r - 0 ) = — ( r + 0),

(7.6) and (7.7) imply that

. K Y'λ(f) + α fi(r) = y^(r) + γE'μ(f).

By the definition of the functions above, we have

(7.8) λ\κNv(λf)-aJv(λf)) = 4(b-b)(2πrγ

(7.9) μv(yKv(μf) + ylv(μf)) = 2πb(2πfγ ,

and

(7.10) -πλ x[_λr(κN'v(λr) - aJ'v(λf)) - v(κNv(λf) -

= 2μ\μr{yK'v{μr) + yΓv(μf)) - v{yK

Since r<z λ , it holds Jv(λr)>0. Thus (7.8) yields

(7.11) a = —^--(Γκ

By substituting (7.9) and (7.11) into (7.10) we have

1
κ-2π(2πfγ(bvJv(λf) + (b-

Combining with (7.9) it follows from (7.3) that

(7.12) y=--

μ
where

(7.13) Q(r) : = (b- b)λrJ'v{λr) + (bv -b ^'f^
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By (7.4) we see that Q(r) is bounded from above for 0<r<zλ. Therefore, we obtain

γ<0 for any re(0, zλ) (hence for any oceR) if κ>0 is large enough. q.e.d.

PROOF OF THEOREM 4. From (F) and (F4) we can choose positive constants λ

and b such that

(7.14) f(s):=mm{μ2s,~λ2(s~b)}>f(s) for s>0.

Then, by Lemma 10 the following problem has no radial solution ueC2(RN\{0})

provided that κ>0 is large:

- Δw +/(M) = K(S0 in ®'(Λ N ) , u > 0 in /?" \{0} ,
(7.15)

t ( ) £ ( ) as x -• 0 and u{x) -• 0 as | x | -> + oo .

If (P :) has a solution ueC2(RN\{0}) for such /c>0, then ύ is a supersolution to (7.15)

with β' =f(u)—f(u). Therefore (Px) has a radial solution by virtue of Proposition 1,

which is a contradiction. q.e.d.

REMARK 4. Theorem 4 claims that (PJ has neither radial solution nor nonradial

solution for large intensity κ>0.

Appendix: Proof of Lemma 4. For a nonlinearity / satisfying (4.13), by taking

μ>0 large if necessary, we may assume that

(A.I) \f(s)-f(sf)\<μ2\s-sf\ for s ,s '>0.

When we consider the radial case, we obtain the following ordinary differential equation

(recall that N=2):

(A.2) _ | r _ | = / ( w ) for r > 0 ,

for r > 0 ,

(A.3) \ u(r) ~ κ£(r) as r -• 0 ,

w(r) -• 0 as r -> + oo .

Equation (A.2) is reduced to the system of first order equations

du _

~dr~~V'
(A.4)

— =f(μ)
dr r

Extend / on R by putting f(s): = 0 for s < 0 and set

•:-f
Jo

(A. 5) F(s): - I f(t)dt for s e R and T(s, t):= — t 2 - F(s) for (s, ί) e /? 2
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Then, for any solution (w, v) to (A.4) we have

(A.6) A-iT(u,υ)-]=--υ2<0,
dr r

that is, T(u, v) is decreasing along a solution to (A.4).

LEMMA A.I. Suppose that (w, v) is a solution to (A.4) which satisfies

(A.7) u(ro) = b and v(ro)<0

for some r o > 0 . Then one of the following holds:

( i ) u(rl) = 0 , υ(r1)<0 for some ri>r0,

(ii) 0<u(r)<b, υ(r)<0 for any r>r0

1 * ] and (u(r\ v(r)) -• (0, 0) ojr->+oo,

. (iii) 0<u(rί)<b, ι;(r1) = 0 for some r1>r0 .

Furthermore, if

(A.9) 7X«(r),ι?(r))<0 αwrf w(r)>0

/(9r some f>0, then (iii) Ao/ίfe.

PROOF. By (A.4) and the fact / > 0 , w is decreasing and v is increasing when ι;<0.

Hence for (u, v) satisfying (A.7), one of the following holds:

( i ) ' u(r1) = 0 , v(ry)<0 for some rx >r0 ,

(A.10) (ii)' 0<u(r)<b, υ(r)<0 for any r > r 0 ,

(iii)' 0<w(r 1 )<&, t;(r1) = O for some r1>r0.

In the cases (i)' and (iii)', if

(A. 11) M(r1) = ι?(r1) = 0,

then (u, v) = (Q, 0) is the only solution to (A.4) with the initial value (A. 11) at r = rx by

the uniqueness theorem for the initial value problem. This contradicts (A.7), and hence

(i)' and (iii)' imply (i) and (iii) in (A.8), respectively.

In the case (ii)' there exist the limits w* of u(r) and υ* of v(r) as r-> + oo satisfying

0<u*<b and i;*<0. If i;*<0, then we have

p + oo r + oo

w* — u(ro)= v(r)dr< v*dr=—oo ,

which is a contradiction, hence y* = 0. If w*>0, then it follows

Γ + °° Γ y(r) 1 Γ + °°Γ + °° Γ y(r) 1 Γ + °°
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since /(w*)>0, which is a contradiction. Therefore w* = 0 and hence (ii) holds.

Finally, if (A.9) holds, then the possibility of (i) and (ii) is ruled out by (A.6) and

the fact Γ(0, υ) = v2/2>0, and hence (iii) holds. q.e.d.

Now we fix κ>0 arbitrarily. Then by (4.13), any solution u to (A.2) satisfies

α : = exp - 2 π -
L κ J

(A.12) u(r) = — log — + α for
2π r

with some constant oceR. We denote the solution to (A.4) satisfying (A. 12) by (wα, va)

for oceR. Then {(ua, va)}aeR is continuous in α with respect to the topology of locally

uniform convergence on (0, +oo). If we set

(A. 13)

A(i): = {α 6 R | (ua, vj satisfies (A.8) (i)} ,

A(ίi): = {α 6 R \ (ua, va) satisfies (A.8) (ii)} ,

A(iii): = {α e R \ (ua, va) satisfies (A.8) (iii)} ,

then A{i) and A(Vύ) are open in /? and

(A. 14) R = Aii)\jAi'ή)ΌA{iii) (disjoint union) .

The following lemma implies that A(n) is nonempty, and Lemma 4 holds true.

LEMMA A.2. A(i) and A(iii) are nonempty for any κ > 0 .

PROOF. We first show that Aiύi) is nonempty. From (A. 12) we obtain

T(ua(ral v^FJ) = 1 (j-J exp ^4π ^ J - Fφ)

and Γ(wα(rα), yα(rα))<0 for α » l since F(Z?)>0. Therefore, A(m) is nonempty by Lemma

Al.
Next we show that A(i) is nonempty. For 7?>0 and qe(\, + oo), we set

(A. 15) L\BR\ : = {φe Lq(BR) \ φ is radial}

ί Γ f* Ύ/q 1
= < φ : (0, R) -> /? φ is measurable and || φ | |Lς ( J B R ): = 2π | φ(r) |βrί/r < + oo > ,

I L Jo J J
and define a mapping Φ on Lq(BR)r by

(A. 16) Φ | > ] ( r ) : = - ^ - 1 \ f{φ(t) + κE{t))tdtds-κE(R) for
>:- '"ΐ

J r JO
for φeLq(BR)r. Then we obtain from (A.I)

ί IIΦCΦ] llx. (BΛ> ̂  ί β ( μ ^ ^ ^

1 || LHBR) < cq(μR)2 \\φ-φ \\ LHB
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for φ, ψeLq(BR)n where cq = (\/4)[(q')q + 1B(q + 1, q')~\llq (B( , ) is the beta function).

Therefore Φ: Lq(BR)τ -• Lq(BR)r is a contraction mapping if cq(μR)2 < 1, and hence there

exists a unique w e Lq(BR)r such that

- Γ -ί'
Jr Jo

(A. 17) w(r)=- s ί\ f(w(t) + κE(t))tdtds-κE(R) for 0<r<R.

We can easily see that

(A. 18)

satisfies we C(0, /?] n C2(0, R) and

r — =/(«) and w(r)>0 forO<r<i^,
r dr[_ dr_\

u(r)-κE(r) as r ^ O and u(R) = 0 .

Therefore u — ua for some αe/?, and oceA(i). q.e.d.
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