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GENERALIZED MOTION OF NONCOMPACT HYPERSURFACES
WITH VELOCITY HAVING ARBITRARY GROWTH ON THE

CURVATURE TENSOR

HlTOSHI ISHII* AND P A N A G I O T I S SOUGANIDIS*

(Received December 22, 1993, revised November 14, 1994)

Abstract. In this note we study the generalized motion of noncompact hyper-
surfaces with normal velocity depending on the normal direction and the curvature
tensor. This work extends the by-now-classical works of Evans and Spruck (for mean
curvature) and Chen, Giga and Goto (for general motions with sublinear curvature
dependence), because it allows general dependence on the curvature tensor. It also allows
a general treatment of the generalized evolution including noncompact hypersurfaces.
A number of results regarding no interior, convexity, etc. are also presented.

Introduction. During the past few years there has been a substantial progress in
understanding the evolution of surfaces, moving with normal velocity depending on the
curvature tensor and the normal direction, past the first time singularities occur. The
so-called level set approach, which is based on characterizing the surfaces as a level set
(for definiteness the zero level set) of the solution of certain fully nonlinear degenerate
parabolic PDE's, was developed successfully by Evans and Spruck [ES] for motions
by mean curvature and by Chen, Giga and Goto [CGG] for more general evolutions,
in which, however, the normal velocity depends, at most linearly, on the curvature
tensor. The basic tool of [ES] and [CGG] is the theory of viscosity solutions. We refer
to the User's Guide by Crandall, Ishii and Lions [CIL] for a general discussion of the
theory of viscosity solutions and its scope, to [ES] and [CGG] for the origin of the
level set approach and to Soner [Son] and Barles, Soner and Souganidis [BSS] for
alternative formulations, extensions, discussions, etc. Some of the most striking justifi-
cations of the generalized motion of hypersurfaces were provided by its use towards
obtaining rigorous results regarding the asymptotic behavior of reaction-diffusion
equations (see, for example, Evans, Soner and Souganidis [ESS] and Barles, Soner and
Souganidis [BSS]) and, more recently, the hydrodynamic limits of particle systems in
Katsoulakis and Souganidis [KS1], [KS2] (see also Souganidis [Sou]).

The purpose of this note is to extend the results of [CGG] to cases where the
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normal velocity is a general continuous function of the normal vector and the curvature
tensor. Such evolutions arise very naturally in geometry, since they include, for ex-
ample, the Gaussian curvature, as well as in applications like image processing (see,
for example, Lions [L] and Alvarez, Guichard, Lions and Morel [AGLM]), etc. The
main difficulty in studying such evolutions is that they give rise to PDE's with singu-
larities of order higher than the one's considered by [ES], [CGG], etc. To overcome
this difficulty, we extend the class of admissible test functions in the definition of vis-
cosity solutions and then prove a comparison principle as well as an existence result
in this class. A new feature of the level set approach here is that our uniqueness result
concerning the zero level sets of solutions of nonlinear PDE's is sharp enough to treat
the generalized evolutions of noncompact hypersurfaces. As a result, our arguments are
slightly more natural than those in Ilmanen [I] concerning generalized evolutions of
noncompact hypersurfaces.

The paper is organized as follows: In Section 1 we formulate the problem, give
the definitions and recall basic facts from the theory of viscosity solutions adapted to
our setting. We also recall the definition of the level set approach to the generalized
motion of hypersurfaces. Finally, we present a number of examples of motions of
hypersurfaces which can be put in our framework. In Section 2 we state and prove
our main results, namely, a comparison principle for viscosity solutions as well as a
general existence result. Finally, in Section 3 we state a number of results regarding the
regularity properties of the generalized evolution.

At about the time when this work was completed, Goto [G] proved similar results
but in the case of compact interfaces. Goto's approach, which is different from ours,
is based on introduction of a notion of finite speed of propagation for the evolution.

The authors would like to thank the referee for pointing out an error in the original
version of proof of Theorem 1.7 and for making suggestions for us to improve English
expressions in this paper.

1. Formulation of the problem, definitions and basic facts. We consider the non-

linear equation

(1.1) ut + F{Du,D2u) = 0 in β τ = Ωx(0, Γ),

where T>0, Ω is an open subset of RN, ut, Du and D2u denote the time derivative, the
spatial gradient and the spatial Hessian of the unknown function κ: ί2x[0,T]^Λ
respectively, F: RNxSN^>R is a given function and SN denotes the space of NxN
symmetric matrices.

Throughout the paper we will be assuming that

(1.2) Fe C(J0), where Jo = (RN\{0}) x SN ,

)F is elliptic, i.e., for all peRN\{0} and X, YeSN ,
( L 3 ) [ifX<Y, then F(p, X)>F(p, Y),
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and, finally,

An immediate consequence of (1.2) is that there exists a function ceC((0, oo)) such

JF is geometric, i.e., for any λ>0, μeR and (p, X)eJ0 ,

[F(λp, λX + μp® p) = λF(p, X).

that

(1.5) -c(\p\)<F(p9I)<F(p, -I)<c(\p\) (peRN\{0}).

As mentioned in the Introduction, the correct class of weak solutions of the
equation (1.1) is the class of viscosity solutions. Here we need to adapt their definition
for the possible singularities of F at p = 0.

To this end, denote by & the set of functions/eC2([0, oo)) such that/(0) = /'(0) =
/"(0) = 0 and /"(r)>0 for r>0 which satisfy

It is obvious that & is a cone in C2([0, oo)) with vertex at the origin, i.e., if/ #e #" and
α>0, then/+06& and afe^. In the sequel, we may write #XF) for & to indicate
which F we are concerned with.

We note that 3F'Φ0 provided Fsatisfies (1.2) and (1.3). Indeed, without any loss
of generality, we may assume that the function c, given by (1.5), is actually in Cx((0, oo))
and satisfies

and (l/c)r>0 in (0, 1] and limc(r)=oo and lim(l/cy(r) = 0 .
r|0 rlO

Next define/: [0, by

/(r)= ί;Φ)
-ds if 0 < r < l ,

if r = 0.

It follows that, if | p \ < 1, then

hence

An extension of/to [0, oo) in an appropriate fashion yields a
Now let 0 be an open subset of Qτ and we introduce the class of admissible test
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functions. For future reference we will call this class s/(F) to denote its dependence on
the specific F under consideration.

DEFINITION 1.1. A function φ e C2(Θ) is admissible if for any ί = (jc, i) in 0 such
that Dφ(z) — 0, there is a constant δ > 0 and functions fe 3F and ω e C([0, oo)) satisfying
limriOω(r)/r = 0 such that, for all (x, t)eB(z, δ)

\φ(x,t)-φ(z)-φt(ϊ)(t-t)\<f(\x-X\) + ω(\t-t\).

Next recall that the upper semicontinuous envelope u* and the lower semicontinuous
envelope u^ of a function u: Θ^R u { ± oo} are defined by

u*{z) = lim sup{w(01 \ζ - z \ < r} and u*(z) = lim inf{u(ζ) \ \ ζ - z \ < r} ,

respectively.

DEFINITION 1.2. ( i ) A function u: Θ^Ru { — oo} i sa viscosity subsolution of
(1.1) in 0 if M* < oo in 0 and for all φes/(F) and all local finite maximum points z of

ί φ,(z) + F(Dφ(z\ D2φ(z)) < 0 if £>(?(z) Φ 0 ,

i otherwise .

(ii) A function u: Θ^R u {oo} is a viscosity supersolution of (1.1) in 0 if w* > — oo
in 0 and for all cp e s/(F) and all local finite minimum points z of u^ — φ,

if

1 φt(z) > 0 otherwise .

(iii) A viscosity solution of (1.1) in 0 is defined to be a function which is both a
viscosity subsolution and supersolution of (1.1) in 0.

The word admissible may sound confusing. The introduction of the class of ad-
missible test functions does not lessen but rather strengthen the usual requirements for
functions to be viscosity solutions.

It is immediate that if u e C2(Θ) satisfies

I φ) + F(Du(z), D2u(z)) < 0 if Du(z) Φ 0,

{ut(z)<0 if Du(z) = 0,

or

(ut(z) + F(Du(z),D2u(z))>0 if Du(z)Φ0,

ιφ)>0 if{'
then M is, respectively, a viscosity subsolution or a viscosity supersolution of (1.1) in Θ.

In the sequel we are only concerned with viscosity subsolution, supersolutions and
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solutions of (1.1). For brevity we will simply call them sub-, super- and solutions of
(1.1), respectively.

Next we discuss a number of properties of viscosity solutions. When necessary we
also briefly sketch their proofs.

PROPOSITION 1.3. Let FandFn (n e N) satisfy (1.2)—(1.4). Assume that Fn-+F locally
uniformly in Jo and that ^(F)<=^(Fn)for allneN and that for anyfe^(F),

lim inf ^^-Fn(p, J)>0 (resp., lim sup ^-Fn(p, -I)<θ) .

Let un (neN) be subsolutions (resp., super solutions) of

^ + Fn(Dun,D
2un) = 0 in G,

ot

and define ΰ, u: Θ-*R u {± oo} by

w(z) = limsup]wn(OIIC-^l<^,«> —
no I r

Assume that u(z)<oo (resp., u(z)> — oo) for all zeΘ. Then u (resp., ύ) is a subsolutίon
(resp., a super solution) 0/(1.1) in Θ.

PROOF. We only prove the subsolution case; the case of supersolution follows
exactly in the same way.

Let φejrf(F) and assume that ΰ—φ has a strict local finite maximum at some
z = (x,ΐ)eΘ. lϊ Dφ(z)φ{), we conclude as in the standard case in the theory of viscosity
solutions.

It only remains to show that φt(z)<0 when Dφ(z) = 0. Since φ is admissible, there
are δ>0,fe^ and ωeC(R) with ω(r) = o(r) as r->0 such that

\φ(x9t)-φ(x,t)-φt(x,ϊ)(t-t)\<f(\x-x\

for all (x, t)sB(z, δ). Without loss of generality we assume that ωeC1(R) and ω(0) =

ω'(0) = 0 and also that ω(r)>0 for rφO.
Next choose a sequence {ωn} a C2(R) such that ωw(r)-»ω(r) and ω'n(r)-+ω'(r) locally

uniformly in R as n-+oo and set

φn(x, t) = φt(z)(t - ί) + 2/(| * - * | ) + 2ωn(t -1).

It is immediate that ^ Π 6 J / ( F ) and, moreover, ΰ — φ has a local strict maximum at z.
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Since ψn^ψ locally uniformly in Θ, we may assume that u* — φn attains a local finite

maximum at some point (xn, tn), where (xn, tn)^>z as n-^co. Since un is a subsolution,

we have

if xn Φ x, and φt(z) + 2ω;(ίM - f) < 0 if xn = x. Letting n -• oo, we get φf(f) < 0. Π

The next two propositions, which are classical in the theory of viscosity solutions,

(see, for example, [CIL]), follow by adapting their proofs as above; we therefore state

them without proof.

PROPOSITION 1.4. Assume that (1.2)—(1.4) hold. Let £f be a collection of subsolu-

tionsof{\.\) in 0. Set

u(z) = sup{φ)\ve£f} for zeΘ .

Ifu is locally bounded above in Θ, i.e., u* < oo in Θ, then u is a subsolution 0/(1.1) in Θ.

A similar assertion holds for super solutions 0/(1.1) in Θ.

PROPOSITION 1.5. Assume that (1.2)—(1.4) hold. Let g and h be a subsolution and

a supersolution 0/(1.1) in Θ, respectively, and assume that g and h are locally bounded

in Θ and satisfy g<h in Θ. Finally define u: Θ^R by

u(z) = s\xp{v(z)\v is a subsolution 0/(1.1) in Θ9 g<v<h in Θ) for zeΘ.

Then u is a solution 0/(1.1) in (9.

A straightforward adaptation of the proof of an analogous results of [CGG] yields:

PROPOSITION 1.6. Assume (1.2)—(1.4) and let θ be a nondecreasing continuous

function on R and u a subsolution (resp., supersolution) 0/(1.1) in Θ. Then 0°M is a

subsolution (resp., supersolution) 0/(1.1) in Θ.

REMARK. In the above and below we agree to understand that

θou(z)= lim θ(r) if φ ) = ± o o , respectively.
r-* ± oo

Before stating our main results, we need to introduce the following notation:

dpQτ = (Ωx {0}) u (dΩ x [0, T)) and @τ = Ωx [0, T).

THEOREM 1.7. Assume that (1.2)—(1.4) hold. Let u e U S C ( ^ Γ ) and v e LSC(^ Γ ) be

a subsolution and a supersolution 0/(1.1), respectively. Assume that

(1.6) Hmsup{u(z)
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Then u<v in 0lΎ and moreover,

(1.7) li

Now we consider the initial value problem

\ut + F(Du,D2u)=0 in Qτ,

[u = g on RNx{0},

where g is a given function on RN and Qτ denotes the set RN x (0, Γ). As before we write

Finally, we denote by BUC(Z>) and UC(D) the sets of bounded uniformly continuous

functions on D and uniformly continuous functions on D, respectively.

THEOREM 1.8. Assume that g e BUC(RN) and that (1.2)—(1.4) hold. Then there is a

unique solution ueBUC(@τ) 6>/(1.8).

Next we recall briefly the level set approach to motions of hyper surf aces. For the

details we refer to [ES], [CGG], [BSS], etc.

To this end, we denote by $ the collection of triples (Γ, D+, D~) consisting of a

closed subset Γ and two open subsets D± of RN such that

(1.9) ΓuD+ uD~=RN and Γ,D+,D~ are mutually disjoint.

We note that a triple (Γ, D + , D~) of a closed subset Γ and two open subsets D± of RN

satisfies (1.9) if and only if there is a function geBUC(RN) such that

(1.10) D+ = {xeRN\g(x)>0},

D- = {xeRN\g(x)<0}.

Fix a (Γo, Z>o,Do)e<ί and choose a function geBUC(RN) satisfying (1.10) with

(Γo, DQ,DQ) in place of (Γ, D+,D~). Theorem 1.8 yields the existence of a unique

solution weBUC(^Γ) of (1.8). For each ίe(0, T) define Γt, Dt

+ and D~ by

(1.11) Γt = {xeRN\u(x,t) = 0},

and

(1.12) D ί

± |

Then, by the arbitrariness of T>0 and the uniqueness of the solution u of (1.8), the

definition of (Γί? D,+, £>,") can be extended for all ί > 0 .

An important issue here is whether the triples (Γί9 Df

+, Dt~) depend on the choice

of g or not. The following theorem answers this question:
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THEOREM 1.9. Assume that (1.2)—(1.4) hold and let gl9g2eB\JC(RN) satisfy

{0i>O} = {<72>O}, {^<0} = {flf2<0} (andhence {gi=0} = {g2 = 0}).

Let uu u2eBUC($τ) be the solutions o/(1.8), respectively, with gx and g2 in place of g.

Then

and { W I = 0 } = {M2 = 0} .

In the above and henceforth we use the notational convention: for a function:

D-+R and ye/?, we write

{/ = )>}, {/<?}, etc.

for

{xeD\f(x) = y}, {xeD\f(x)<y} , etc.

From Theorem 1.9 we see that for each ί > 0 the procedure described above defines

a mapping

(1.13) Et: £B(Γo,D+,Do)^(Γt,Dt\Dt-)e&

Moreover, it is easily seen that the collection {Et 11 >0} has the semigroup property:

(1.14) E0 = ids, EtoEs = Et+s for ί , s>0.

We continue with an alternative way to define a generalized evolution of fronts or

hypersurfaces. This approach, which is of course equivalent to the level set approach

under certain conditions, is based on using the signed distance function to the front and

was introduced by Soner [Son] for mean curvature evolution and further developed

by Barles, Soner and Souganidis [BSS] for more general motions.

We say that (Γt, Dt

+

9 D~)ei is a generalized evolution of (Γo, Do , DQ )ES if and

only if the signed distance function

f dist(x,Γ,) if xeDt

+ϋΓt,

l-dist(jc,Γ t) if xsD; ,

is such that

id v 0 is a supersolution of (1.1) ,

Id Λ 0 is a subsolution of (1.1),

where d v 0 = max(d, 0) and d A 0 = min(d, 0).

We conclude this section by listing a number of examples which are included in

the theory developed here.

In the whole generality we consider the motion of surfaces Γt with normal velocity

(1.16) V = f{κu κ2, . . . , κ N _ 1 , ή) on Γt,
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where n is the normal vector and κx < <κN-ί are the principal curvatures of Γt. It

follows from Giga and Goto ([GG]) that the geometric pde in the level set approach

describing (1.16) is given by (1.1) with

(1.17) F(p9X)=-\p\f(k1(p,X\...,kN_1(p,Xl--?-),

\ \P\J
where k^p, X)<k2(p, X)< — * <&JV-I(P> x) a r e the eigenvalues of the linear mapping

on the orthogonal complement of the vector p (assuming pφO) in RN induced by the

matrix

1

\ P \ \ \P\ \P\J

(Note that /—p®p/\p\2 is the orthogonal projection of RN onto the orthogonal com-

plement of p.)

It is immediate that F's defined by (1.17) satisfy (1.2) and (1.4), the first as long

as/ in (1.16) is a continuous function. A sufficient condition for F to be degenerate

elliptic is the following:

(1 18) ίFoτί=1^"^N-^PeSN~1 a n d e a c h (λ1,...,λi-l9λi+1,...9λN-1)eRN-2

(the function /l ίι->/(/l1,..., λN_ί9 p) is nondecreasing in R .

Let us just mention some examples where f(λl9..., λN_u p) = f(λu . . . , λN^x) is

independent of p. The case where

corresponds to motions of surfaces by their mean curvature; then

Condition (1.18) is satisfied and, moreover,

\F(p,X)\<\\X\\ for all (p,X)eJ0,

from which follows that F*(0,0)=F ! | t(0,0)=0. This is the case covered by the theory of

[ES] and [CGG].

We obtain a simple generalization of a motion of surfaces by mean curvature by

setting

f{λ1,...,λN-1) = g(λ1+ +λN-1) with geC(R).

Then
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If g is nondecreasing in R, then F satisfies (1.2), (1.3) and (1.4). If, for instance, g(r) = ra

and α > 1 is an odd natural number, then

(1.19) F*(0, 0) = oo and F^O, 0) = - oo

this is a situation where the theory of [ES] and [CGG] is not applicable.

We obtain another example by replacing mean curvature by Gaussian curvature

Then

This Fdoes not satisfy (1.3), however. A related F which satisfies (1.3) is introduced by

j ( λ ί , . . . , λ N _ i j — λ-^ . . . λ N - 1 .

More generally, let N > 1 and Pm with m e { l , . . . , N - l } denote the m-th elementary

symmetric polynomial of the variables λl9..., λN_x. It is well-known (see [M], [T], for

instance) that for m> 1 there is a closed convex cone Km in RN-1 with vertex at the

origin such t h a t / = P m satisfies (1.18) as long as (λu . . . , λN^1)eKm, such that Km^>

[0, oo)*" x and such that P m (/ l 1 ? . . . , λN_ x) > 0 in the interior K°m and Pm(λu . . . , AN_ x) = 0

on dKm. In particular, if m = N-\, then Km = [0, oo)*" 1 . Define PmeC(RN~1) by

otherwise .

Again, if m = N— 1, then Pm(λί,..., λN_ί) = λ^ A ^ - ^ Corresponding to f=Pm, we

have

F(p, X)=-\p\ Pjkx(p, X) , . . . , &#- i(P> X)),

where the k{ are as in (1.17), which satisfies (1.2)—(1.4).

A little more complicated examples of/'s are given by the ratio of Pm and Pz with

0<l<m<N. That is,

P m ( A , . . . , / l Λ r _ 1 )
11 I Λ i , . . , A M .

Pl(λl9 . . . , Λ^-!)

0 otherwise.

It is known (see [M]) that / satisfies (1.18). Thus the function

F(p, X)=-\p\ /(fc^p, X),...9kN- i(p, X))

on Jo satisfies (1.2)—(1.4). Also, if geC(R) is nondecreasing, then
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F(p, X)=-\p\goβkάp, X\ ..., kN_Λp, X))

on Jo satisfies (1.2)—(1.4). If N>3, l = N-2 and m = N-\ and if κl9 ...,κN_x denote

the principal curvatures of a surface Γ, then

' N - l γ \ - l

. 4 = 1 I C i /

represents the harmonic curvature of Γ.

2. Proofs of main theorems and generalizations.

PROOF OF THEOREM 1.7. In view of Proposition 1.6, we may assume that u and

v are bounded on 0ίτ. It is convenient to extend the domain of definition of w, v to QT

by setting

r|0

and

φc, T) = liminf{v(y, s)\(y, s)e@τ, \y-x\ + \s-T\<r} .
r|0

The function w is still upper semicontinuous and bounded in Qτ. Similarly, v is lower

semicontinuous and bounded in Qτ. Moreover, u and v are, respectively, a subsolution

and a supersolution of (1.1) in Ω x (0,*T] in the following sense: If φ e C2(Θ) is admissible

for some open neighborhood Θ of Ω x (0, T] and u — φ (resp., v — φ) has a local maxi-

mum (resp., minimum) at some zeΩ x (0, T], then

if Dφ(z) # 0,

I φt(z) < 0 otherwise ,

(resp.,

i φt(z) + F(Dφ(z), D2φ(z)) > 0 if Dφ(z) # 0 ,

^ φt(z) > 0 otherwise.)

Below we only check the claim for u; the argument for v is similar. To do so, we may

assume that u — φ has a strict maximum at z = (y, T) with yeΩ. Then, for any neN

large enough, the function (x, t)\-+u(x, t) — φ(x, t)— \/[n(T —1)~] attains a local maximum

at a point zn = (yn9 tn)eQτ, where zn-^z as n-+oo. Since w is a subsolution of (1.1) in Qτ,

for all n £ TV large enough, we have

φt(zn) + F(Dφ(zJ, D2φ(zn)) < φt(zn) + r _ _ + F ( D φ ( 4 D2φ(zπ)) < 0

ΊϊDφ{z)φO and φt(zn)<φt(zn)+ l/[n(T — ί π )] 2 <0 otherwise. Sending n^co, we conclude
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that u is a subsolution of (1.1) in Ω x (0, T].
Now, we set

r|0

and will show that θ0 < 0. To this end, we assume that θ0 > 0, and will get a contradiction.
Fix any ε>0 so that

θ^lim sup{u(x, t)-v(y, s)-εt-εs\(x, t, y, s)e Qϊ, \x-y \v \t-s\<r}>0 .
rlO

Let fe^(F) and let α>0 be a constant to be fixed later on. We define a function Φ on
Qϊby

Φ(x,t;y,s) = u(x,t)-v(y,s)-(xf(\x-y\)-(x(t-s)2-εt-εs,

and set 0 = supg2,Φ. Note that

θ>β=limsuv{Φ{x,t;y,s)\(x,t\(y,s)eQτ,\x-y\<r}>θ1.
riO

Let M > 0 be a constant satisfying

u{z) - v{ζ) < M for all z, ζ e Qτ ,

and observe that if Φ(x, t y, s) > 0, then

i.e.,

(2.D l*

Also, in view of (1.6), there is γ >0 such that

sup{Φ(z;ζ)\(z,ζ)e(dpQτxQτ)Ό(QτxdpQτ\\z-ζ\<y}<-θ^.

Here and henceforth dpQτ denotes the set (Ω x {0}) u (dΩ x [0, Γ]). Fix α>0 so that

/ " x(M/α) v (M/α)1/2 <y. It follows from (2.1) that if z, ζ e Qτ and Φ(z ζ) > θ1 /2, then

(2.2) Z , C G Ω X ( 0 , Γ ] .

Assume that θ= 0. In view of the definition of θ, there is a sequence {(xn, tn, yn, sn)}
<= QT such that

) and \χn-yn\<—.
n n



GENERALIZED MOTION OF NONCOMPACT HYPERSURFACES 239

Here we may assume that {tn} and {sn} converge to some points f, se [0, T], respectively.
We write β = oc+ 1 for notational simplicity. Noting that limr_00/(r)= oo, we can choose
a maximum point (ξn, τn) of the function

(x, t)^u(x, t)-βf(\x-yn\)-0L(t-sn)
2-{t-ϊ)2-εt on QT ,

and a maximum point (ηn, σn) of the function

(y, s)h+ -i<y, s)-βf(\ xn-y\)-oc(tn-s)2-(s-sf -εs on Qτ .

If follows that

u(xn, tn)-v(yn, sn)-βf(\xn-yn\)-cc{tn-sn)
2-(tn-ϊ)2-εtn

<u(ξn,τn)-v(yn9sn)-βf(\ξn-yn\)-a(τn-sn)
2-(τn-ϊ)2-ετn.

Accordingly we have

and

Φ(xn9 tn ymsn)<Φ(ξn9 τn yn, sn) + f(\xn-yn\) + (tn-ΐ)2 .

The former of the above inequalities yields that ξn — yπ->0 and τw->f as n^oo. In view
of the latter we may assume that Φ(ξn, τn yn, sn)>θ1/2 for all n. In the same way, we
deduce that xn — ηn^>0 and σn-+s as n^ao and we may assume that Φ(xn, tn; ηn, σn)>
θi^forallw.

Note that (2.2) yields (ξn, τ J e Ω x (0, T] for all neNlarge enough. If (ξn, T J G Ω X
(0, T] and if we set

and Pn = ξn-yn,

then, since u is a subsolution of (1.1) in Ω x (0, T],

0 > φt(ξn, τn) + F( βf'(\ pn \)-p-9 βf'{\ pn \)J—
\ \Pn\ \Pn\

= 2α(τ w -O + 2(τw-f) + ε+ β Γ i l P ^ F(pn, I),
IΛI

if pn φ 0, and

if pn = 0. Sending «->oo, we obtain

Since v is a supersolution, we similarly obtain

O<2oc(ϊ-s)-ε.
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Subtracting this from the above, we get 0>2ε, which is a contradiction.

If θ<θ, then choose p>0 so that

θ2 = sup{Φ(x, t;y9s)\(x, t\ (y, s)eQτ, | x - y \<p}<θ ,

and define Ψ on Qγ by

It is clear that Ψ attains a maximum at some point (JC, f, y, s)eQγ. Observe also that
θ<θ2. We henceforth assume that δ is sufficiently small so that sup(ρτ)2 Ψ>θ2, which
yields

Φ(xJ;y,s)>s\xpψ>θ2,

and in turn (x, f, j ; , s)e(Ωx (0, T])2, by (2.2). The above together with (2.1) guarantees
that

p<\x-y\<f-\M/oc).

Moreover, since 0<Ψ(x, ϊ; % s)<M-δ\ x\2-δ\ y\2, we have δ(\x\ + \y\)-+0 as <5|0.
We set

uδ{x, t) = iφc, t)- δ \x | 2 and vδ(y, s) = v(y, s) + δ | y \2

and recall (cf. [CIL]) that there is XeSN such that

Uδ\X> l ) 9

\ \P\ /

and

where p = x—y. Here we rely on [CIL] for the definitions of ^ 2 > ± . If we set

w(x, ί, y, s) = α/(|x-y|) + α(ί-s)2 + εί + εs,

then

V2

where / denotes the identity matrix of order N+l. Therefore we may assume that

where C is an absolute constant. Since p<\p\<f 1(M/α), we have ||X|| < C l 5 where
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γ is a constant depending only on α, M, p and/. It follows that

>+U(X, f) ,

\P\ )

and

Ί 4
\p\

Using the fact that \p\>p, we may also assume, choosing δ small enough, that

£ , a n d α / ' ^
£ + 2δxΦ0, and α / ( | ^ | ) ^
\p\ \p\

Now the definition of viscosity solution yields

\P\

and

\P\

Sending δ[0, we get

(2.3) 2a(T-s) + ε + F(aιf'(\p\)-?-9 γ)<0
\ \P\ )

and

(2.4) rV

for some peRN\{0}, T, se [0, T) and YeSN. Subtracting one of the above inequalities

from the other, we again obtain a contradiction. •

For u: QT^R u {-oo, oo} define K+u(Qτ) and K~u(Qτ) by

K±u(QT) = {(p,X)eJo\(p,b,X)e0>2>±u(x,t) for some (x,t,b)eQτxR} .

Using this notation, if we note that

\P\ )

where the left hand side is from (2.3) or, equivalently, from (2.4), then we conclude:

THEOREM 2.1. Let F and G satisfy (1.2)-(l .4). Let u e USC(^T) and v e LSC(^T)
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be a subsolution 0/(1.1) and a super solution 0/(1.1) with G in place of F, respectively:
Assume that

F(p,X)>G(p,X) for all (p,X)eK+u(Qτ)n K'v(Qτ)

and that (1.6) holds. Then u<v in Qτ and, moreover, (1.7) holds.

PROOF OF THEOREM 1.8. In view of Proposition 1.5, in order to show the existence
of solutions it suffices to construct appropriate sub- and super-solutions of (1.8).

It is not hard to see that there is a function /e !F such that

sup/'(r)<oo .
r>0

Fix such a function /e #! Then

)\v\F(p,-I)\
\P\

= sup /'(I p I) F\—9 —I
rJ*JK]μυ \\p\ \P\ V l P l I P I

For each 0 < ε < 1 we choose Λ(ε) > 0 and B(ε) > 0 so that for all p e /?N,

\g(χ)-g(y)\<e+A(ε)f(\x-y\)

and

( ) ^

I P I

We define the functions V± on ̂ τ by

which turn out to be super- and sub-solutions of (1.1), respectively. Moreover, for
all x,yeRN, 0<t<T, and 0 < ε < l , we have V~{x9 t;ε,y)<g(x)<V+(x, t; ε, y), and

"(x, 0; ε, y) = g(x) = irif0<ε<UyeRNV+(x, 0; ε, j). D

A natural generalization of Theorems 1.7 and 1.8 is the following:

THEOREM 2.2. Assume that geUC(GR) for each R>0, where GR={\g\<R}, and
that (1.2)—(1.4) hold. Then there is a unique solution u 0/(1.8) such that ue\JC(UR)for
all R>0, where UR = {\u\<R}.

Theorem 2.2 follows from the following lemma:

LEMMA 2.3. Let ue BUC(^Γ) be a solution 0/(1.1) in Qτ = RNx (0, T) and aeR.
Assume that u(x, 0)<a (resp., u(x, 0)>a)for all xeRN. Then u(z)<a (resp., u(z)>a) for
all
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PROOF. Fix/eJ^ SO that f'(r)< 1 for all r>0 and set

B = sup^^-\ F(pJ)\ v \F(p, -

For ε>0 and yeRN we define w ε e ( C 2 n U C p r ) by

It is easily seen that wε is a supersolution of (1.1). Choose R>0 so that /XR)>2?Γand
observe that the assumption on u( , 0) yields

u(x, 0) < a < wε(x, 0) for xeRN \£(0, K).

Finally let ε > 0 be so small that

u(x, 0) < wε(x, 0) for x e B(0, R).

Applying Theorem 1.7, we conclude that u<wε in ^ Γ , and thus

φ , 0 < wε(y, ί) = α + εB(t -T)<a

for all t G [0, T). Since yeRN is arbitrary, we see that u(z) < a for all z G ̂ Γ .

An argument parallel to the above shows that if u(x, 0) > a for all x e RN, then
u(z)>a for all zefflτ.

We need the following lemma for the proof of Theorem 1.9:

LEMMA 2.4. Assume that (1.2)—(1.4) hold. Let g, gn e BUC(/?N)

β5 n-+co.

Finally let un and u be the solutions of (1.8), with initial data gn andg, respectively. Then

un(z)\u(z) for all ze$τ as n-+oo .

PROOF. The choice of the g^s and Theorem 1.7 yield

un<un + 1<u in 0ίΎ.

Define v: @τ^Rby

v(z) = lim un(z) = sup wπ(z) (z G ̂ Γ ) .
π -• oo neN

Since M Π GC(^ Γ ) for all neN, it is clear that veLSC(^Γ). Using the monotonicity of
the sequence {ι;fc}, we obtain
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un(z) = lim in fK(Q IC e ̂ Γ , I ζ - z | < r}
r|0

<limmf{v(ζ)\ζe^\ζ-z\<r} =
rjO

for any zeMΎ and neTV. This shows that

no [

Therefore, from Proposition 1.3 we see that υ is a supersolution of (1.1).
Fix any ε>0 and yeRN. Fix/e #" so that sup [0>00)/'<oo. The proof of Lemma

2.3 yields the existence of constants Λ(ε)>0 and B(έ)>0, which are independent of y9

such that the function w: 0ίΎ^R denned by

w(x,t) = g(y)-2ε-A(ε)f(\x-y\)-B(ε)t

is a subsolution of (1.8) and such that g(x) — ε>w(x, 0) for all xeRN.
Dini's theorem yields that gn-^g locally uniformly in RN as n->oo. We may assume

in view of Proposition 1.6 that the gn's are uniformly bounded below on RN. Hence,
there is an / e N such that

0π>w( ,O) in RN for all n>l.

But then Theorem 1.7 yields that un>w for all n>l, from which it follows that v>w
in 0ίΎ. Therefore,

u(x, t) - v(y, s) < u(x, t) - w(y, s) < u(x, t) - g(y) + 2ε + B(ε) s

for all (x, t) e 0tτ and 0 < s < T. Since u e BUC(^T) and u = g on RN x {0}, we can choose

(5 e (0, ε/£(ε)) so that if (x,t)e@T,\x-y\<δ and ί<£, then iφc, t)-g{y)<ε. Now, if
(x, ί ) e ^ Γ , \x — y\<δ, t<δ and 0<^<δ, then u(x9t) — v{y,s)<4ε. Noting that ε>0 and
yeRN are arbitrary, we thus conclude that

lim sup{u(x, t) — v{y,s)I(x, t),(y,s)e@T, \x — y\<r, tvs<r}<0 .

riO

Using again Theorem 1.7, we see that u<v in ^ τ . Π

PROOF OF THEOREM 1.9. By symmetry it is enough to check that

Z = {ze@T\u2(z)>0} .
Recall that if u is a solution of (1.1), then, for any continuous nondecreasing function

θ: R^R, the function θou is also a solution of (1.1). Noting that u i

+=θouI for Ϊ = 1 , 2 ,
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where

θ for r < 0 ,

we observe that u? (i= 1, 2) is the solution of (1.8) with gf in place of g.

For n e N, set

and let ι?π be the solution of (1.8) with hn in place of g. It is clear that ftn(x)T^Ϊ"W f° r

all xeRN as n-»oo. From Lemma 2.4 we see that vn{z)]uγ(z) for all z e J Γ as n-»oo.

Since hn<ng2 and m ^ = (rc0)°u2 is a solution of (1.8) with g replaced by ng^, Theorem

1.7 yields that vn<nu2 in ^ Γ .

Now let zeD\. Then iι+(z)>0 and hence vn{z)>0 for some neTV. Therefore from

the inequality that vn<nu2 in 0lΎ, we conclude that u^(z)>0, i.e., zeD^. D

3. Some properties of the generalized evolutions. In this section we list a number

of properties of the generalized evolutions obtained by the level set approach. Since

their proofs are more or less direct adaptations of the corresponding results of [ES],

[CGG], [BSS], etc., we omit most of them.

We begin by recalling that some examples of the velocity law (1.16) give PDE's

(1.1) which do not satisfy (1.3) and are needed to be modified, so that the corresponding

PDE's (1.1) satisfy (1.3). A natural question is whether we can impose some condition

on Γo, so that the generalized evolution obtained by the level set approach does not

depend on such modifications and hence it is in fact generated by the original velocity

law. This is the first topic of the following discussions.

PROPOSITION 3.1. Assume that (1.2)—(1.4) hold. Let geBJJC(RN) satisfy

(3.1) F(Dg,D2g)<y in {\g\<δ}

in the viscosity sense for some yeR,δ>Q. Let u e BUC(^ Γ ) be the solution of (1.8). Then,

for each xeRN, the function: t\-^u(x, t) + γt is nondecreasing on any subinterval of the set

{ίe(0, T)\ |κ(x, ί)l<<5} Moreover, if |ιφc, t)\<δ, (p, a, X)e0>2>+u(x, t) and pφO, then

a + y>0 and F{p,X)<y.

To be precise, let us give the definition of viscosity subsolutions (just when they

are continuous for simplicity) of

(3.2) F(Dv9D
2υ) = γ(x) in Ω,

where Ω is an open subset of RN and yeC(Ω) is a given function. A function φeC(Ω)

is admissible if the function φ e C2(Ω x (0, Γ)) given by φ(x, t) = φ{x) is an admissible test

function, i.e., φes/(F). Now, a function veC(Ω) is a viscosity subsolution (and will be

simply called a subsolution) of (3.2), provided whenever φeC2(Ω) is admissible and
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v — φ attains a local maximum at some xeΩ, then

{F{Dφ(x\D2ψ(x))<y(x) if

jθ<y(;c) if Dφ(x) = 0.

It is easily seen that if geC(Ω) satisfies (3.1) (in the viscosity sense), then the function

veC(Qτ) defined by φc, ή = g(x) + yt solves (1.1).

Although the above proposition can be proved along the lines of the proof of

Theorem 7.3 in [BSS], below we present a simpler one, which does not need local

existence of smooth solutions. Before we give the proof of the proposition we state

some immediate consequences.

COROLLARY 3.2. Under the hypotheses of Proposition 3.1 let F, g and u be as in

the proposition. Let G be a function on Jo which satisfies the conditions (1.2)—(1.4).

Assume that for any (p, X)eJ0,

) if F(p,X)<y9

and

G(p,X)>y if F(p,X)>y.

Let ve BUC(^Γ) be the solution 0/(1.8) with G in place of F. Then

and

u(χ, t) = v(x, t) for all (x, t) e {\ u \ < δ} .

Let F, GeC(J0) satisfy the conditions (1.3) and (1.4). As in (1.13), Fand G define

the generalized evolutions Ef: S^S and Ef\ S^S, with ί>0, respectively.

COROLLARY 3.3. In addition to (1.2)—(1.4), let F and G satisfy

{F<y} = {G<y} (and hence, {F>y} = {G>y}),

and

F(p,X) = G(p9X) for all (p9X)e{F<y}.

Let(Γ,D+,D~)eS. Assume that there is a solution 0eBUC(flN) of (3.1) for some δ>0

such that

(3.3) D+ = {g>0}, D~ = {g<0} and Γ={g = O} .

Then

Ef(Γ,D+,D-) = E?(Γ,D+,D-) for all ί > 0 .

The following is a typical sufficient condition to check if, for given (Γ, D + , D~)eS,
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there is a solution geBUC(RN) of (3.1) which satisfies (3.3): Γ is a compact C2 hyper-

surface and the signed distance function d satisfies

F(Dd{x% D2d(x))<y-ε for all xeΓ

pointwise for some ε>0. Indeed, since de C2({\ d \ <δ}) and Dd(x)Φ0 for all xe {\ d \ <δ}
for some <5>0, by continuity d solves (3.1) in the classical sense for some δ>0.

Now, let Pm be the ra-th elementary symmetric polynomial of the variables

λί9..., AN_! and KmczRN~1 the closed convex cone with vertex at the origin as in the

discussions of Section 1 concerning examples of functions which determine normal

velocity. Let m>\. Define FmεC(J0) by FJp, X)= -\p\Pjkfa X),..., k^^X)),

where Pm and the fcf's are the functions defined in Section 1. If (Γ, D+, D~)eS is such

that there is a fuction g f e B U C ^ ) for which (3.3) holds and which satisfies

(3.4) Fm(Dg9D
2g)<-y in {\g\<δ}

in the viscosity sense for some y>0 and some δ>09 then from Corollary 3.3 we see

that (1.8) with F=Fm naturally determines a generalized evolution in $ issued from

(Γ, D + ,D") . In other words, this generalized evolution issued from (Γ,D+

9D~) does

not depend on how to extend Pm\Km to Jo. (Note that if PeC(J0) is an extension of

Pm\Km to Jo which satisfies (1.18), then P<Pm.) Instead of Pm9 if we extend Pm\Km to

Jo in a way so that the resulting function Pm satisfies Pm(λ)<0 for all λeRN~1\Km9

if we can find a solution geBUC(RN) of (3.4) with γ = 0 for which (3.3) holds and if

we put FJp9X)=-\p\Pjίk1(p9X)9...9kN-1{p9X)) for (p,X)eJθ9 then Corollary 3.3

tells us that (1.8) with F=Fm defines naturally a generalized evolution in $ issued from

(Γ, D + , D~). For instance, if we define

p (λ)=\Pm(λ) if λeKm,
m l \-dist(λ9Km) if

similar remarks are valid also for the ratio PJPX with m > I.

Let PN-! be as above and define FN_1e C(J0) by

PN-X(λ) =-\p\ Pn-άkfa X)9...9 k^,{p9 X))).

Then the convexity of g guarantees the condition (3.1) with F=FN_1 and y = 0. Let

(Γ, D + , D~)eS> be such that D~ is a nonempty convex set and Γ = dD~. For each yeΓ

choose ξeRN1, with \ξ\ = l9 such that (x-y)ξ<0 for all x e D " , and define ^ : /?*->#

by gy{x) = (x-y)'ξ. Then # r with yeΓ, solves (3.1) with F=FN_ί and y = 0 in /?N.

Therefore, if we set g(x) = sup{gy(x)\yeΓ}, then # solves (3.1) with F=FN_1 and γ = 0

in / ^ and satisfies (3.3). Thus, in this case the condition that D~ is a nonempty

convex set and Γ = dD~ gives a sufficient condition for the existence of geBUC(RN)

which satisfies (3.1) and (3.3).

PROOF OF PROPOSITION 3.1. Fix ε e (0, <5), consider the function θ: R^R given by
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s if I s I < ε ,

θ(s) = ε if s > ε ,

— ε if s < — ε ,

and observe that the function

υ(x9t) = θ(g(x)-yt) in RNx(0,h)

solves (1.1) in Qτ = RN x (0, T) provided h > 0 and | y \ h < δ - ε.

Let ύ=θou; since ύ solves (1.1) and ύ<v on RN x {0}, Theorem 1.7 yields v<ύ on

RN x [0, h A T).

Finally, fix any /ze(0, T) so that |y |Λ<5-ε. Noting that the function w: 0lΎ-+R

given by

,t) = θ(u(x,t)-yh)

solves (1.1), we conclude that if z(x, t) = ύ(x91 + /i), then w < z o n ^ x [0, T — h).

In view of the definition of 0, the last inequality yields

tφc, ί)-yh <iφc, ί + h), i.e., iφc, ί) + γt <u(x, t + h) + y(ί + /i)

if |w(x,ί)|<^and |A |«1.

Now let (x, 0e {| u\ <δ] and (p, a, X)e0>2>+u{x, t) with pφ0. The monotonicity in

/ we have just proved implies that a + y>0. Since u is a solution of (1.8), we have

a + F(p, X) < 0. We thus conclude that F(p, X) < y. •

PROOF OF COROLLARY 3.2. Fix εe(0, <5) and define θeC(R) as above. Define w, ve

BUC(^Γ) by u = θou and v = θov. By Proposition 3.1 we see that if we set K={(p, X)e

J0\F(p,X)<y}, then

and X + 0(β r)czX.

Applying Theorem 2.2, we see that ύ — v on (? r. Noting that this implies

{w>ε} = {f>ε} and {u< — ε} = {v< — ε} , with ε e (0, δ),

we conclude the proof. Π

PROOF OF COROLLARY 3.3. Fix a solution g e BUC(RN) of (3.1) so that (3.3) holds.

Let u,reBUC(^ r ) be the solutions of (1.8) with F = F and F = G, respectively. It is

immediate from Corollary 3.2 that

{M>0} = {ι;>0}, {w<0} = {ι;<0} and {u = 0} = {v = 0},

i.e., £f(Γ,D+,Z)-) = £ί

G(Γ,D + , i)-)forall ί>0. •

A very important issue related to the level set approach is whether the level sets

of solutions of (1.1) will develop the interior or not. The background of this issue is
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beyond the scope of this paper. We refer interested readers to [ES], [CGG], [BSS],

etc., for relevant discussions.

Next we state a result which gives a general sufficient condition for no-interior.

We omit its proof since it goes along the lines of the proofs of Proposition 3.1 above

and Theorem 7.3 of [BSS].

To formulate the result we need to make the following additional assumption on F:

(3.5) F(μQ% μ2QtXQ) = μmF(p, X) for all μ>0, (p, X)e Jo and Q e O(N),

where meR is a constant, Qι denotes the adjoint of Q and O(N) denotes the group of

N xN orthogonal matrices.

PROPOSITION 3.4. Assume that (1.2)—(1.4) and (3.5) hold. Let (Γt, Dt

+, D~), with

t>0, be a generalized evolution determined by (1.1). Assume that Γo is of class C2 and

compact and that there exist nonnegative constants ct (ί= 1, 2, 3), a skew symmetric matrix

H and x0 e RN such that

(3.6) cί(x-xoyDd(x) + c2H(x-x0)'Dd(x)-c3F(Dd(x\D2d(x))^0 on Γ0 ,

where d is the signed distance to Γo. Then the set \jt>Q(Γtx {t}) has empty interior in

RN x (0, oo).

We conclude by giving a sufficient condition for solutions u(x, t) of (1.1) to be

concave in x. A corresponding assertion concerning convexity of solutions will be easily

deduced from the result. This result is proved exactly as in Giga, Goto, Ishii and Sato

[GGIS] with appropriate modifications to take care of the singularities. We therefore

omit the proof.

We need the following assumption:

(3.7) F{p, X) is convex in X for all peRN\{0} .

PROPOSITION 3.5. Assume Ω = RN, (1.2)—(1.4) and (3.7), and let u be a solution of

(1.8) with g concave in RN. Moreover, assume that for each R>0,u is uniformly continuous

in {(x, t)e3lτ\\ u(x, t) \ <R}. Then for each t e(0, T) the function u( ,t) is concave in RN.
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