CHARACTERIZING A CLASS OF TOTALLY REAL SUBMANIFOLDS OF S^{6} BY THEIR SECTIONAL CURVATURES

Bang-Yen Chen, Franki Dillen, Leopold Verstraelen and Luc Vrancken

(Received November 19, 1993, revised August 22, 1994)

Abstract

The first author introduced in a previous paper an important Riemannian invariant for a Riemannian manifold, namely take the scalar curvature function and subtract at each point the smallest sectional curvature at that point. He also proved a sharp inequality for this invariant for submanifolds of real space forms. In this paper we study totally real submanifolds in the nearly Kähler six-sphere that realize the equality in that inequality. In this way we characterize a class of totally real warped product immersions by one equality involving their sectional curvatures.

1. Introduction. In [C], the first author gives a general best possible inequality between the main intrinsic invariants of a submanifold M^{n} in a Riemannian space form $\tilde{M}^{m}(c)$, namely its sectional curvature function K and its scalar curvature function τ, and the main extrinsic invariant, namely its mean curvature function $\|H\|, H$ being the mean curvature vector field of M in \tilde{M}. It is convenient to define a Riemannian invariant δ_{M} of M^{n} by

$$
\delta_{M}(p)=\tau(p)-\inf K(p),
$$

where $\inf K$ is the function assigning to each $p \in M^{n}$ the infimum of $K(\pi)$, where π runs over all planes in $T_{p} M$ and τ is defined by $\tau=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right)$. The inequality can be written as follows.

$$
\begin{equation*}
\delta_{M} \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) c . \tag{1.1}
\end{equation*}
$$

He then started to investigate those submanifolds, with dimension $n \geq 3$, for which the above inequality actually becomes an equality, i.e. submanifolds which satisfy

$$
\begin{equation*}
\delta_{M}=\frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) c . \tag{1.2}
\end{equation*}
$$

For such submanifolds, a distribution can be defined by

$$
\mathscr{D}(p)=\left\{X \in T_{p} M \mid(n-1) h(X, Y)=n\langle X, Y\rangle H, \forall Y \in T_{p} M\right\} .
$$

If the dimension of $\mathscr{D}(p)$ is constant, it is shown in [C] that the distribution \mathscr{D} is completely integrable.

In this paper, we investigate 3-dimensional totally real submanifolds in the nearly Kähler 6-sphere $S^{6}(1)$. Since such a submanifold is always minimal (cf. [E3]), we get

$$
\begin{equation*}
\delta_{M} \leq 2 \tag{1.3}
\end{equation*}
$$

When M has constant scalar curvature (τ is constant), a complete classification of submanifolds satisfying the equality in (1.3) has been obtained in [CDVV1]. Here, we will investigate those totally real 3-dimensional submanifolds in $S^{6}(1)$ which satisfy:
(1) $\delta_{M}=2$,
(2) the dimension of the distribution \mathscr{D} is constant (and hence it is a completely integrable distribution),
(3) the distribution \mathscr{D}^{\perp} is also integrable.

We will relate submanifolds satisfying the above conditions to minimal (non-totally geodesic) totally real immersions of surfaces N^{2} into $S^{6}(1)$ whose ellipse of curvature is a circle. The ellipse of curvature of a surface at a point p is the set $\{h(u, u) \mid u \in$ $\left.T_{p} M,\|u\|=1\right\}$ in the normal space, where h is the second fundamental form. It is shown in [BVW] that every such immersion is linearly full in a totally geodesic S^{5}. An alternative proof of this will be given in Section 5. Other characterizations will be given below. The Main Theorem we prove here is:

MAIN Theorem. Let $f: M^{2} \rightarrow S^{6}(1)$ be a minimal (non-totally geodesic) totally real immersion in $S^{6}(1)$ whose ellipse of curvature is a circle. Then M^{2} is linearly full in a totally geodesic S^{5}. Let N be a unit vector perpendicular to this S^{5}. Then

$$
\begin{equation*}
x:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times M^{2} \rightarrow S^{6}(1),(t, p) \mapsto \sin (t) N+\cos (t) f(p) \tag{1.4}
\end{equation*}
$$

is a totally real immersion which satisfies the equality in (1.3). Conversely, every totally real (non-totally geodesic) immersion of M^{3} into $S^{6}(1)$ satisfying
(1) $\delta_{M}=2$,
(2) the dimension of \mathscr{D} is constant,
(3) \mathscr{D}^{\perp} is an integrable distribution, can be locally obtained in this way.
2. The nearly Kähler structure on $S^{6}(1)$. We give a brief explanation of how the standard nearly Kähler structure on $S^{6}(1)$ arises in a natural manner from Cayley multiplication. For elementary facts about the Cayley numbers and their automorphism group G_{2}, we refer the reader to Section 4 of [W] and to [HL].

The multiplication on the Cayley numbers \mathcal{O} may be used to define a vector crossproduct on the purely imaginary Cayley numbers \boldsymbol{R}^{7} using the formula

$$
\begin{equation*}
u \times v=\frac{1}{2}(u v-v u) \tag{2.1}
\end{equation*}
$$

while the standard inner product on \boldsymbol{R}^{7} is given by

$$
\begin{equation*}
\langle u, v\rangle=-\frac{1}{2}(u v+v u) . \tag{2.2}
\end{equation*}
$$

It is now elementary to show that

$$
\begin{equation*}
u \times(v \times w)+(u \times v) \times w=2\langle u, w\rangle v-\langle u, v\rangle w-\langle w, v\rangle u, \tag{2.3}
\end{equation*}
$$

and that the triple scalar product $\langle u \times v, w\rangle$ is skew symmetric in u, v, w.
Conversely, Cayley multiplication of \mathcal{O} is given in terms of the vector crossproduct and the inner product by

$$
\begin{equation*}
(r+u)(s+v)=r s-(u, v)+r v+s u+(u \times v), \quad r, s \in \operatorname{Re} \mathcal{O}, \quad u, v \in \operatorname{Im} \mathcal{O} \tag{2.4}
\end{equation*}
$$

In view of (2.1), (2.2) and (2.4), it is clear that the group G_{2} of automorphisms of \mathcal{O} is precisely the group of isometries of \boldsymbol{R}^{7} which preserve the vector crossproduct.

An ordered orthonormal basis $\left\{e_{1}, \ldots, e_{7}\right\}$ of \boldsymbol{R}^{7} is said to be canonical if

$$
\begin{equation*}
e_{3}=e_{1} \times e_{2}, \quad e_{5}=e_{1} \times e_{4}, \quad e_{6}=e_{2} \times e_{4}, \quad e_{7}=e_{3} \times e_{4} \tag{2.5}
\end{equation*}
$$

For example, the standard basis of \boldsymbol{R}^{7} is canonical. Moreover, if e_{1}, e_{2}, e_{4} are mutually orthogonal unit vectors with e_{4} orthogonal to $e_{1} \times e_{2}$, then e_{1}, e_{2}, e_{4} determine a unique canonical basis $\left\{e_{1}, \ldots, e_{7}\right\}$ and $\left(\boldsymbol{R}^{7}, \times\right)$ is generated by e_{1}, e_{2}, e_{4} subject to the relations

$$
\begin{equation*}
e_{i} \times\left(e_{j} \times e_{k}\right)+\left(e_{i} \times e_{j}\right) \times e_{k}=2 \delta_{i k} e_{j}-\delta_{i j} e_{k}-\delta_{j k} e_{i} \tag{2.6}
\end{equation*}
$$

Given any two canonical bases $\left\{e_{1}, \ldots, e_{7}\right\}$ and $\left\{f_{1}, \ldots, f_{7}\right\}$ of \boldsymbol{R}^{7}, there is a unique element $g \in G_{2}$ such that $g e_{i}=f_{i}$; and thus g is uniquely determined by $g e_{1}, g e_{2}, g e_{4}$.

Let J be the automorphism of the tangent bundle $T S^{6}(1)$ of $S^{6}(1)$ defined by

$$
J u=x \times u, \quad u \in T_{x} S^{6}(1), \quad x \in S^{6}(1) .
$$

It is clear that J is an almost complex structure on $S^{6}(1)$ and in fact J is a nearly Kähler structure on $S^{6}(1)$ in the sense that $\left(\tilde{\nabla}_{u} J\right) u=0$, for any vector u tangent to $S^{6}(1)$, where $\tilde{\nabla}$ is the Levi-Civita connection of $S^{6}(1)$. We define by

$$
G(X, Y)=\left(\tilde{\nabla}_{X} J\right)(Y),
$$

the corresponding skew-symmetric (2,1)-tensor field. From [S], we know that this tensor field has the following properties:

$$
\begin{gather*}
G(X, J Y)+J G(X, Y)=0, \tag{2.7}\\
(\tilde{\nabla} \mathrm{G})(X, Y, Z)=\langle Y, J Z\rangle X+\langle X, Z\rangle J Y-\langle X, Y\rangle J Z, \tag{2.8}
\end{gather*}
$$

$$
\begin{gather*}
\langle G(X, Y), Z\rangle+\langle G(X, Z), Y\rangle=0, \tag{2.9}\\
\langle G(X, Y), G(Z, W)\rangle=\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Z, Y\rangle \tag{2.10}\\
+\langle J X, Z\rangle\langle Y, J W\rangle-\langle J X, W\rangle\langle Y, J Z\rangle, \\
G(X, Y)=X \times Y+\langle X, J Y\rangle x . \tag{2.11}
\end{gather*}
$$

It is clear from the above that G_{2} acts transitively on $S^{6}(1)$ and that the stabilizer of the point $(1,0, \ldots, 0)$ is $S U(3)$. It follows that G_{2}, a connected subgroup of $S O(7)$ of dimension 14 , is the group of automorphisms of the nearly Kähler structure J.
3. Warped product immersions. Let M_{0}, \ldots, M_{k} be Riemannian manifolds, M their product $M_{0} \times \cdots \times M_{k}$, and let $\pi_{i}: M \rightarrow M_{i}$ denote the canonical projection. If $\rho_{1} ; \ldots, \rho_{k}: M_{0} \rightarrow \boldsymbol{R}_{+}$are positive-valued functions, then

$$
\langle X, Y\rangle:=\left\langle\pi_{0 *} X, \pi_{0 *} Y\right\rangle+\sum_{i=1}^{k}\left(\rho_{i} \circ \pi_{0}\right)^{2}\left\langle\pi_{i *} X, \pi_{i *} Y\right\rangle, \quad X, Y \in \Gamma(T M)
$$

defines a Riemannian metric on M. We call $(M ;\langle\cdot, \cdot\rangle)$ the warped product $M_{0} \times_{\rho_{1}}$ $M_{1} \times \cdots \times_{\rho_{k}} M_{k}$ of M_{0}, \ldots, M_{k}, and $\rho_{1}, \ldots, \rho_{k}$ the warping functions.

Let $f_{i}: N_{i} \rightarrow M_{i}, i=0, \ldots, k$ be isometric immersions, and define $\sigma_{i}:=\rho_{i} \circ f_{0}: N_{0} \rightarrow$ \boldsymbol{R}_{+}for $i=1, \ldots, k$. Then the map $f: N_{0} \times{ }_{\sigma_{1}} N_{1} \times \cdots \times{ }_{\sigma_{k}} N_{k} \rightarrow M_{0} \times{ }_{\rho_{1}} M_{1} \times \cdots \times{ }_{\rho_{k}} M_{k}$ given by $f\left(p_{0}, \ldots, p_{k}\right):=\left(f_{0}\left(p_{0}\right), f_{1}\left(p_{1}\right), \ldots, f_{k}\left(p_{k}\right)\right)$ is an isometric immersion, and is called a warped product immersion.

The decomposition of an immersion into warped product immersions is in particular a very powerful tool when applied to immersions into Euclidean spaces, spheres or hyperbolic spaces. In this respect, the main result from [N] can be stated as follows. Let $f: N_{0} \times{ }_{\sigma_{1}} N_{1} \times \cdots \times{ }_{\sigma_{k}} N_{k} \rightarrow M(c)$ be an isometric immersion into a space of constant curvature c. If h is the second fundamental form of f and $h\left(X_{i}, X_{j}\right)=0$, for all vector fields X_{i} and X_{j}, tangent to N_{i} and N_{j} respectively, with $i \neq j$, then, locally, M is a warped product immersion. The problem of how $M(c)$ can be decomposed into a warped product is solved in [N], see also [DN] for the statement.

Using warped product immersions, we can give a class of examples of minimal submanifolds in a unit sphere which satisfy the equality (1.2). Let $S_{+}^{n-2}(1)=$ $\left\{x \in \boldsymbol{R}^{n-1} \mid\|x\|=1\right.$ and $\left.x_{1}>0\right\}$ be an open hemisphere and let $S^{m-n+2}(1)$ be the unit hypersphere of \boldsymbol{R}^{m-n+3}. Then $\psi: S_{+}^{n-2}(1) \times_{x_{1}} S^{m-n+2}(1) \rightarrow S^{m}(1),(x, y) \mapsto\left(x_{1} y, x_{2}, \ldots\right.$, x_{n-1}) is an isometry onto an open dense subset of $S^{m}(1)$. This can be considered as a warped product decomposition of $S^{m}(1)$. Now if N^{2} is any minimal surface in $S^{m-n+2}(1)$, immersed by f_{1}, then the immersion $f: S_{+}^{n-2}(1) \times_{x_{1}} N^{2} \rightarrow S^{m}(1),(x, p) \mapsto$ $\psi\left(x, f_{1}(p)\right)$ is an isometric immersion satisfying the equality (1.2). This follows trivially since the dimension of the distribution \mathscr{D} is $n-2$. It is easy to see that the immersion (1.4) is a special case of this family. We now focus on (1.4).

We consider a totally geodesic $S^{5}(1)$ in $S^{6}(1)$. Let N denote the unit vector
orthogonal to the hyperplane containing $S^{5}(1)$. We parametrize the half circle $S_{+}^{1}(1)$ by $(-\pi / 2, \pi / 2) \rightarrow S_{+}^{1}(1), t \mapsto(\cos (t), \sin (t))$. Then the isometry ψ of the previous paragraph can also be written as $S_{+}^{1}(1) \times{ }_{\cos (t)} S^{5}(1) \rightarrow S^{6}(1),(t, p) \mapsto \sin (t) N+\cos (t) p$. Let $f: M^{2} \rightarrow S^{5}(1)$ be an immersion of a surface into $S^{5}(1)$. Then the associated warped product immersion is given by

$$
\begin{equation*}
x:(-\pi / 2, \pi / 2) \times_{\cos (t)} M^{2} \rightarrow S^{6}(1),(t, p) \mapsto \sin (t) N+\cos (t) f(p) \tag{3.1}
\end{equation*}
$$

We will determine in Section 5 for which immersions f, the warped product immersion x is totally real.
4. Totally real submanifolds in $S^{6}(1)$. A submanifold M in $S^{6}(1)$ is called totally real if for any vector field X, tangent to $M, J X$ is a normal vector field.

The dimension of M can be 2 or 3 . Totally real surfaces in $S^{6}(1)$ were first studied in [DOVV]. Totally real 3-dimensional submanifolds were first studied in Ejiri [E3], who proved that a 3-dimensional totally real submanifold of $S^{6}(1)$ is orientable and minimal. In both cases it can be proved that $G(X, Y)$ is orthogonal to M, for tangent vectors X and Y.

We denote the Levi-Civita connection of M by ∇. The formulas of Gauss and Weingarten are respectively given by

$$
\begin{gather*}
D_{X} Y=\nabla_{X} Y+h(X, Y), \tag{4.1}\\
D_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{4.2}
\end{gather*}
$$

for tangent vector fields X and Y and normal vector fields ξ. The second fundamental form h is related to A_{ξ} by

$$
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle .
$$

From (4.1) and (4.2), we find that

$$
\begin{gather*}
\nabla_{X}^{\perp} J Y=J \nabla_{X} Y+G(X, Y)+(J h(X, Y))^{n} \tag{4.3}\\
A_{J Y} X=-(J h(X, Y))^{t} \tag{4.4}
\end{gather*}
$$

where $(J h(X, Y))^{n}$ and $(J h(X, Y))^{t}$ denote the normal and tangential parts of $\operatorname{Jh}(X, Y)$. Obviously, if $\operatorname{dim} M=3$, then $\operatorname{Jh}(X, Y)$ is tangent.

The above formulas immediately imply that $\langle h(X, Y), J Z\rangle$ is totally symmetric. If we denote the curvature tensors of ∇ and ∇^{\perp} by R and R^{\perp}, respectively, then the equations of Gauss, Codazzi and Ricci are given by

$$
\begin{align*}
& R(X, Y) Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y+A_{h(Y, Z)} X-A_{h(X, Z)} Y, \tag{4.5}\\
&(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z), \tag{4.6}\\
&\left\langle R^{\perp}(X, Y) \xi, \eta\right\rangle=\left\langle\left[A_{\xi}, A_{\eta}\right] X, Y\right\rangle, \tag{4.7}
\end{align*}
$$

where X, Y, Z (respectively, η and ξ) are tangent (respectively, normal) vector fields to M and ∇h is defined by

$$
(\nabla h)(X, Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) .
$$

5. Totally real surfaces in $S^{6}(1)$. We now continue to investigate the immersion (3.1).

Let X denote a vector field tangent to M^{2}. Then

$$
x_{*}(\partial / \partial t)=\cos (t) N-\sin (t) f(p), \quad x_{*}(X)=\cos (t) f_{*}(X),
$$

and

$$
J x_{*}(\partial / \partial t)=N \times f(p), \quad J x_{*}(X)=\cos (t) \sin (t) N \times f_{*}(X)+\sin ^{2}(t) J f_{*}(X) .
$$

From this it is easy to check that x is totally real if and only if

$$
\begin{gather*}
\left\langle N \times f(p), f_{*}(X)\right\rangle=0, \tag{5.1}\\
\left\langle N \times f_{*}(X), f_{*}(Y)\right\rangle=0, \tag{5.2}\\
\left\langle J f_{*}(X), f_{*}(Y)\right\rangle=0, \tag{5.3}
\end{gather*}
$$

for all tangent vector fields X and Y to M. Now (5.3) simply says f has to be totally real; from (2.11), we obtain that (5.2) is equivalent to $\left\langle G\left(f_{*}(X), f_{*}(Y)\right.\right.$), $\left.N\right\rangle=0$; (5.1) is equivalent to $\left\langle J f_{*}(X), N\right\rangle=0$. We have reduced the condition that x is totally real to conditions depending only on f. From now on, for simplicity, we identify M with $f(M)$, so we do not write f_{*} if there is no confusion.

Differentiating (5.1) gives us

$$
\begin{equation*}
\langle N \times Y, X\rangle+\langle N \times p, h(X, Y)\rangle=0 . \tag{5.4}
\end{equation*}
$$

Since the first term in (5.4) is skew symmetric and the second is symmetric, both terms have to be zero. Therefore (5.1) implies (5.2). Now take any orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} M$. From the properties of G, we obtain that $G\left(e_{1}, e_{2}\right)$ is orthogonal to e_{1}, e_{2}, $J e_{1}, J e_{2}$ and p; (5.2) implies that $G\left(e_{1}, e_{2}\right)$ is also orthogonal to N. On the other hand, (5.1) implies that $N \times p$ is orthogonal to e_{1} and e_{2}; clearly $N \times p$ is orthogonal to p and N, and a straightforward calculation shows that $N \times p$ is orthogonal to $J e_{1}$ and $J e_{2}$. Therefore $G\left(e_{1}, e_{2}\right)= \pm p \times N$. After changing the sign of e_{1}, if necessary, we can make sure that $e_{1} \times e_{2}=J N$. This implies that $e_{1} \times N=-J e_{2}, e_{2} \times N=J e_{1}$. Note that the normal space of M in $S^{5}(1)$ at p is spanned by $J e_{1}, J e_{2}$ and $J N$.

Differentiating (5.2), we obtain

$$
\begin{equation*}
\langle N \times h(Y, Z), X\rangle+\langle N \times Y, h(X, Z)\rangle=0, \tag{5.5}
\end{equation*}
$$

for all tangent vector fields X, Y and Z to M. Putting $X=e_{1}$ and $Y=e_{2}$, we obtain that

$$
0=\left\langle J e_{2}, h\left(e_{2}, Z\right)\right\rangle+\left\langle J e_{1}, h\left(e_{1}, Z\right)\right\rangle=\left\langle h\left(e_{2}, e_{2}\right), J Z\right\rangle+\left\langle h\left(e_{1}, e_{1}\right), J Z\right\rangle,
$$

such that the mean curvature vector H of M in $S^{5}(1)$ is orthogonal to $J e_{1}$ and $J e_{2}$; from (5.4) we obtain that H is orthogonal to $J N$. Therefore H can only be zero. Then (5.4) immediately implies that h is of the form

$$
h\left(e_{1}, e_{1}\right)=\alpha J e_{1}+\beta J e_{2}, \quad h\left(e_{1}, e_{2}\right)=\beta J e_{1}-\alpha J e_{2}, \quad h\left(e_{2}, e_{2}\right)=-\alpha J e_{1}-\beta J e_{2},
$$

such that the ellipse of curvature of M at p is a circle (possibly a point).
Conversely, let M^{2} be a minimal, totally real surface of $S^{6}(1)$ whose ellipse of curvature is a circle. Then we can use exactly the same computations as in the proof of [DOVV, Lemma] to obtain that $h(X, Y)$ is contained in $J(T M)$. Let $\left\{E_{1}, E_{2}\right\}$ be any local orthonormal basis of $T M$. Then $G\left(E_{1}, E_{2}\right)$ does not depend on the choice of $\left\{E_{1}, E_{2}\right\}$ up to sign. Hence we can define a subbundle B of the normal bundle by $B(p)=J\left(T_{p} M\right) \oplus\left\langle G\left(E_{1}, E_{2}\right)\right\rangle$. From (4.3), (2.8) and the minimality of M, we obtain that B is ∇^{\perp}-parallel. Hence by the Erbacher theorem, M lies in a 5 -dimensional totally geodesic hypersphere of $S^{6}(1)$. Let N be a unit vector orthogonal to this $S^{5}(1)$. By construction, $J X$ is tangent to $S^{5}(1)$ and hence orthogonal to N for all X tangent to M. Therefore (5.1) is satisfied; (5.2) follows from (5.1) and (5.3) is true since M is totally real. Even if M is totally geodesic, this 5 -dimensional unit sphere is uniquely determined as follows: take any point p in M. Then $S^{5}(1)$ is the unique great hypersphere of $S^{6}(1)$ through p, tangent to the $T_{p} M \oplus B(p)$. If M is not totally geodesic, it follows again as in [DOVV] that M is not contained in a totally geodesic 4 -sphere. Hence we have proved the following theorem.

Theorem 5.1. (1) Let $f: M^{2} \rightarrow S^{6}(1)$ be a minimal non-totally geodesic totally real immersion in $S^{6}(1)$ whose ellipse of curvature is a circle. Then M^{2} is contained in a unique totally geodesic S^{5} and the warped product immersion (3.1) is totally real.
(2) Let f and x as in Section 3. Then x is totally real if and only if f is totally real and $J\left(f_{*} X\right)$ is tangent to $S^{5}(1)$ for all X tangent to M.
(3) Let f and x as in Section 3. If x is totally real, then f is totally real, minimal and has ellipse of curvature a circle.

Other examples of totally real 3-dimensional submanifolds in S^{6} were constructed by Ejiri in [E1] in the following way. Let $f: M^{2} \rightarrow S^{6}$ be a linearly full superminimal (in the sense of [BVW]) almost complex immersion. Let U and V be local orthonormal vector fields, defined on a neighborhood W, which span the second normal bundle. Then for any real number $\gamma(0<\gamma<\pi)$ we can define the tube of radius γ in the direction of the second normal bundle by

$$
F_{\gamma}: W \times S^{1} \rightarrow S^{6},(x, \theta) \mapsto \cos \gamma f(x)+\sin \gamma(\cos \theta U+\sin \theta V) .
$$

Then F_{γ} defines a totally real immersion if and only if either $\cos \gamma=0$ or $\tan ^{2} \gamma=4 / 5$. A similar construction of totally real submanifolds of $\boldsymbol{C} P^{3}$ can be found in [E2].

A straightforward computation shows that all tubes of radius $\pi / 2$ satisfy the equality in (3.1). In particular, starting from the Veronese immersion $f: S^{2}(1 / 6) \rightarrow S^{6}$ one obtains a 3 -dimensional totally real submanifold with constant scalar curvature, which corresponds to Example 3.1 of [CDVV1]. It is also possible to show that for this class of tubes $F_{\pi / 2}$ the distribution \mathscr{D}^{\perp} is never integrable. As for the second possibility $\left(\tan ^{2} \gamma=4 / 5\right)$, one can show that the equality is never realized.

We now elaborate some more on totally real minimal surfaces whose ellipse of curvature is a circle. For simplicity, assume that $N=e_{4}$. We denote by π the Hopf map from S^{5} to $C P^{2}$ given by

$$
\pi\left(x_{1}, x_{2}, x_{3}, 0, x_{5}, x_{6}, x_{7}\right)=\left[x_{1}+i x_{5}, x_{2}+i x_{6}, x_{3}+i x_{7}\right] .
$$

Then the following theorem from [BVW] gives a relation between minimal totally real surfaces in $S^{6}(1)$ whose ellipse of curvature is a circle and minimal totally real surfaces in $C P^{2}$.

Theorem 5.2 (cf. [BVW]). If $f: M^{2} \rightarrow S^{5} \subset S^{6}(1)$ is a minimal totally real isometric immersion, not totally geodesic, whose ellipse of curvature is a circle, then $\pi(f): M^{2} \rightarrow C P^{2}$ is a totally real, not totally geodesic, minimal isometric immersion of M^{2} into $C P^{2}$. Conversely, if M^{2} is simply connected and if $\psi: M^{2} \rightarrow C P^{2}$ is a totally real, not totally geodesic, weakly conformal harmonic map, then there is a minimal totally real immersion $f: M^{2} \rightarrow S^{5}$ whose ellipse of curvature is a circle such that $\psi=\pi(f)$.

In this respect Theorem 5.1 should be compared with [BVW, Theorem 7.1]. In its turn, minimal totally real immersions of a surface in $\boldsymbol{C P} \boldsymbol{P}^{2}$ can be characterized as follows:

Theorem 5.3. Let $\left(M^{2},\langle\cdot, \cdot\rangle\right)$ be a simply connected surface with Gaussian curvature K satisfying $K<1$. Then the following two conditions are equivalent:
(1) $\Delta \log (1-K)=6 K$;
(2) there exists a totally real minimal immersion $f: M^{2} \rightarrow C P^{2}(4)$.

Proof. The fact that (2) implies (1) follows from a straightforward computation, in view of the basic formulas for a totally real submanifold in $C P^{2}(4)$ from [CO].

Let us now prove the converse. We take isothermal coordinates on M^{2}. So, we have a local non-zero function E such that $\langle\partial / \partial u, \partial / \partial u\rangle=E^{2}=\langle\partial / \partial v, \partial / \partial v\rangle$ and $\langle\partial / \partial u, \partial / \partial v\rangle=0$. Then $K=-\Delta \log E$. We now define a function ϕ by

$$
\phi^{2}=\frac{E^{6}}{2}(1-K) .
$$

Then, by the assumption of the theorem, we get that

$$
\begin{aligned}
\Delta \log \phi & =\frac{1}{2} \Delta \log \phi^{2}=\frac{1}{2} \Delta \log \frac{E^{6}}{2}(1-K) \\
& =3 \Delta \log E+\frac{1}{2} \Delta \log (1-K)=-3 K+3 K=0
\end{aligned}
$$

Hence there exist a function

$$
\psi(u, v)=F(u, v)-i G(u, v),
$$

holomorphic in $z=u+i v$ such that $F^{2}+G^{2}=\phi^{2}$. Put

$$
f(u, v)=\frac{F(u, v)}{E^{2}(u, v)}, \quad g(u, v)=\frac{G(u, v)}{E^{2}(u, v)}
$$

and define $\alpha: T M^{2} \times T M^{2} \rightarrow T M^{2}$ by

$$
\begin{aligned}
& \alpha(\partial / \partial u, \partial / \partial u)=f(u, v) \partial / \partial u+g(u, v) \partial / \partial v \\
& \alpha(\partial / \partial u, \partial / \partial v)=\alpha(\partial / \partial v, \partial / \partial u)=g(u, v) \partial / \partial u-f(u, v) \partial / \partial v, \\
& \alpha(\partial / \partial v, \partial / \partial v)=-f(u, v) \partial / \partial u-g(u, v) \partial / \partial v
\end{aligned}
$$

Then

$$
\begin{aligned}
& (\nabla \alpha)(\partial / \partial u, \partial / \partial u, \partial / \partial v)=\left(g_{u}-3 f \frac{E_{v}}{E}-g \frac{E_{u}}{E}\right) \partial / \partial u-\left(f_{u}+3 g \frac{E_{v}}{E}-f \frac{E_{u}}{E}\right) \partial / \partial v \\
& (\nabla \alpha)(\partial / \partial v, \partial / \partial u, \partial / \partial u)=\left(f_{v}-f \frac{E_{v}}{E}-3 g \frac{E_{u}}{E}\right) \partial / \partial u+\left(g_{v}-g \frac{E_{v}}{E}+3 f \frac{E_{u}}{E}\right) \partial / \partial v \\
& (\nabla \alpha)(\partial / \partial v, \partial / \partial u, \partial / \partial v)=\left(g_{v}-3 f \frac{E_{u}}{E}-g \frac{E_{v}}{E}\right) \partial / \partial u+\left(-f_{v}+3 g \frac{E_{u}}{E}+f \frac{E_{v}}{E}\right) \partial / \partial v, \\
& (\nabla \alpha)(\partial / \partial u, \partial / \partial v, \partial / \partial v)=\left(-f_{u}+f \frac{E_{u}}{E}-3 g \frac{E_{v}}{E}\right) \partial / \partial u+\left(-g_{u}+3 f \frac{E_{v}}{E}+g \frac{E_{u}}{E}\right) \partial / \partial v,
\end{aligned}
$$

showing that $\nabla \alpha$ is totally symmetric if and only if

$$
f_{u}+g_{v}=-2\left(f \frac{E_{u}}{E}+g \frac{E_{v}}{E}\right), \quad f_{v}-g_{u}=2\left(g \frac{E_{u}}{E}-f \frac{E_{v}}{E}\right),
$$

which by the definition of f and g is satisfied indeed. Since

$$
\frac{E^{2}}{2}(1-K)=\frac{\phi}{E^{4}}, \quad \phi^{2}=F^{2}+K^{2}=E^{4}\left(f^{2}+g^{2}\right)
$$

we get that

$$
R(X, Y) Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y+\alpha(\alpha(Y, Z), X)-\alpha(\alpha(X, Z), Y)
$$

Applying the basic existence theorem (cf. [CDVV2]) then completes the proof of the theorem.
6. Proof of the main theorem. We first recall some results of [CDVV1] for 3-dimensional totally real (and therefore minimal) submanifolds of $S^{6}(1)$.

Lemma 6.1. Let M be a 3 -dimensional totally real submanifold of $S^{6}(1)$. Then

$$
\delta_{M} \leq 2
$$

Equality holds at a point p of M if there exists a tangent basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M$ such that

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, & h\left(e_{1}, e_{3}\right)=0 \\
h\left(e_{1}, e_{2}\right)=-\lambda J e_{2}, & h\left(e_{2}, e_{3}\right)=0 \\
h\left(e_{2}, e_{2}\right)=-\lambda J e_{1}, & h\left(e_{3}, e_{3}\right)=0
\end{array}
$$

where λ is a positive number determined by the scalar curvature τ according to

$$
2 \lambda^{2}=3-\tau(p)
$$

So if we define a distribution \mathscr{D} by

$$
\mathscr{D}(p)=\left\{X \in T_{p} M \mid h(X, Y)=0, \forall Y \in T_{p} M\right\},
$$

we see that $\mathscr{D}(p)$ is either 3-dimensional, in which case p is a totally geodesic point, or 1 -dimensional. From now on, we assume that the dimension of $\mathscr{D}(p)$ is constant on M. Then, exactly as in Lemma 5.3 of [CDVV1], we obtain:

Lemma 6.2. Let M^{3} be a totally real submanifold of $S^{6}(1)$ satisfying the equality in (1.3). Assume also that the dimension of the distribution \mathscr{D} is constantly equal to 1 and let $p \in M$. Then, there exists local orthonormal vector fields E_{1}, E_{2}, E_{3} on a neighborhood of p such that

$$
\begin{array}{ll}
h\left(E_{1}, E_{1}\right)=\lambda J E_{1}, & h\left(E_{1}, E_{3}\right)=0, \\
h\left(E_{1}, E_{2}\right)=-\lambda J E_{2}, & h\left(E_{2}, E_{3}\right)=0, \\
h\left(E_{2}, E_{2}\right)=-\lambda J E_{1}, & h\left(E_{3}, E_{3}\right)=0,
\end{array}
$$

where λ is a non-zero local function determined by the scalar curvature by $2 \lambda^{2}=3-\tau$.
Let us take the basis from the previous lemma. By (2.7) and (2.9), we see that $G\left(E_{1}, E_{2}\right)$ is in the direction of $J E_{3}$. From (2.10), we obtain that $G\left(E_{1}, E_{2}\right)$ is a unit vector. Replacing E_{3} by $-E_{3}$ if necessary, we may assume

$$
G\left(E_{1}, E_{2}\right)=J E_{3}, \quad G\left(E_{2}, E_{3}\right)=J E_{1}, \quad G\left(E_{3}, E_{1}\right)=J E_{2} .
$$

From now on, assume that we take this choice of orthonormal basis.
Throughout this section, M^{3} is assumed to be a (non-totally geodesic) totally real submanifold in $S^{6}(1)$ which at every point p of M satisfies the equality in (1.3). We also assume that
(1) the dimension of \mathscr{D} is constant on M,
(2) the distribution \mathscr{D}^{\perp} is integrable.

Since M is assumed to be non-totally geodesic, we have that $\operatorname{dim} \mathscr{D}=1$. Let $p \in M$. We introduce local functions $\gamma_{i j}^{k}$ by

$$
\gamma_{i j}^{k}=\left\langle\nabla_{E_{i}} E_{j}, E_{k}\right\rangle .
$$

Since $\left\{E_{1}, E_{2}, E_{3}\right\}$ is an orthonormal basis, $\gamma_{i j}^{k}+\gamma_{i k}^{j}=0$. Then, we have the following lemma.

Lemmá 6.3. We have

$$
\begin{align*}
& \gamma_{33}^{1}=\gamma_{33}^{2}=0, \tag{1}\\
& \gamma_{11}^{3}=\gamma_{22}^{3}, \tag{2}\\
& \gamma_{12}^{3}=-\gamma_{21}^{3}, \tag{3}\\
& \gamma_{31}^{2}=-\frac{1}{3}\left(\gamma_{12}^{3}+1\right) . \tag{4}
\end{align*}
$$

Moreover, the function λ satisfies the following system of differential equations.

$$
\begin{align*}
& E_{1}(\lambda)=-3 \lambda \gamma_{21}^{2}, \tag{5}\\
& E_{2}(\lambda)=3 \lambda \gamma_{11}^{2}, \tag{6}\\
& E_{3}(\lambda)=-\lambda \gamma_{13}^{1} . \tag{7}
\end{align*}
$$

Proof. Since

$$
(\nabla h)\left(E_{1}, E_{3}, E_{3}\right)=\nabla_{E_{1}}^{\perp} h\left(E_{3}, E_{3}\right)-2 h\left(\nabla_{E_{1}} E_{3}, E_{3}\right)=0
$$

and

$$
(\nabla h)\left(E_{3}, E_{1}, E_{3}\right)=\nabla_{E_{3}}^{\frac{1}{2}} h\left(E_{1}, E_{3}\right)-h\left(\nabla_{E_{3}} E_{1}, E_{3}\right)-h\left(E_{1}, \nabla_{E_{3}} E_{3}\right)=-h\left(E_{1}, \nabla_{E_{3}} E_{3}\right),
$$

Codazzi's equation yields $\nabla_{E_{3}} E_{3}=0$. Next we compute

$$
\begin{aligned}
(\nabla h)\left(E_{3}, E_{1}, E_{1}\right) & =\nabla_{E_{3}}^{\perp} h\left(E_{1}, E_{1}\right)-2 h\left(\nabla_{E_{3}} E_{1}, E_{1}\right) \\
& =E_{3}(\lambda) J E_{1}+\lambda J \nabla_{E_{3}} E_{1}+\lambda J E_{2}+2\left\langle\nabla_{E_{3}} E_{1}, E_{2}\right\rangle \lambda J E_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
(\nabla h)\left(E_{1}, E_{3}, E_{1}\right) & =\nabla_{E_{1}}^{\perp} h\left(E_{3}, E_{1}\right)-h\left(\nabla_{E_{1}} E_{3}, E_{1}\right)-h\left(E_{3}, \nabla_{E_{1}} E_{1}\right) \\
& =-\left\langle\nabla_{E_{1}} E_{3}, E_{1}\right\rangle \lambda J E_{1}+\left\langle\nabla_{E_{1}} E_{3}, E_{2}\right\rangle \lambda J E_{2} .
\end{aligned}
$$

Since $\left\langle\nabla_{E_{3}} E_{3}, E_{1}\right\rangle=0$, by comparing components, we get that

$$
\begin{equation*}
E_{3}(\lambda)=\lambda\left\langle\nabla_{E_{1}} E_{1}, E_{3}\right\rangle=\lambda \gamma_{11}^{3}, \quad 3\left\langle\nabla_{E_{3}} E_{1}, E_{2}\right\rangle=-\left\langle\nabla_{E_{1}} E_{2}, E_{3}\right\rangle-1 . \tag{6.1}
\end{equation*}
$$

This proves (4) and (7). Similarly, from $(\nabla h)\left(E_{3}, E_{2}, E_{2}\right)=(\nabla h)\left(E_{2}, E_{3}, E_{2}\right)$ we obtain

$$
\begin{equation*}
\gamma_{22}^{3}=\gamma_{11}^{3} . \tag{6.2}
\end{equation*}
$$

Finally, we have

$$
\begin{aligned}
(\nabla h)\left(E_{2}, E_{1}, E_{1}\right) & =\nabla_{E_{2}}^{\perp} h\left(E_{1}, E_{1}\right)-2 h\left(\nabla_{E_{2}} E_{1}, E_{1}\right) \\
& =E_{2}(\lambda) J E_{1}+\lambda J \nabla_{E_{2}} E_{1}-\lambda J E_{3}+2\left\langle\nabla_{E_{2}} E_{1}, E_{2}\right\rangle \lambda J E_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
(\nabla h)\left(E_{1}, E_{2}, E_{1}\right) & =\nabla_{E_{1}}^{\perp} h\left(E_{2}, E_{1}\right)-h\left(\nabla_{E_{1}} E_{2}, E_{1}\right)-h\left(E_{2}, \nabla_{E_{1}} E_{1}\right) \\
& =-E_{1}(\lambda) J E_{2}-\lambda J \nabla_{E_{1}} E_{2}-\lambda J E_{3}-\left\langle\nabla_{E_{1}} E_{2}, E_{1}\right\rangle \lambda J E_{1}+\left\langle\nabla_{E_{1}} E_{1}, E_{2}\right\rangle \lambda J E_{1} \\
& =-\lambda J \nabla_{E_{1}} E_{2}-\lambda J E_{3}+2 \lambda\left\langle\nabla_{E_{1}} E_{1}, E_{2}\right\rangle J E_{1} .
\end{aligned}
$$

So, by comparing components, we get

$$
\left\langle\nabla_{E_{2}} E_{1}+\nabla_{E_{1}} E_{2}, E_{3}\right\rangle=0, \quad E_{2}(\lambda)=3 \lambda\left\langle\nabla_{E_{1}} E_{1}, E_{2}\right\rangle, \quad E_{1}(\lambda)=-3 \lambda\left\langle\nabla_{E_{2}} E_{2}, E_{1}\right\rangle .
$$

This completes the proof of the lemma.
In order to simplify the notation, we introduce local functions a, b, c and d by

$$
a=\gamma_{11}^{3}, \quad b=\gamma_{12}^{3}, \quad c=\gamma_{11}^{2}, \quad d=\gamma_{21}^{2} .
$$

Then Lemma 6.3 implies that

$$
\begin{array}{lll}
\nabla_{E_{1}} E_{1}=c E_{2}+a E_{3}, & \nabla_{E_{1}} E_{2}=-c E_{1}+b E_{3}, & \nabla_{E_{1}} E_{3}=-a E_{1}-b E_{2}, \\
\nabla_{E_{2}} E_{1}=d E_{2}-b E_{3}, & \nabla_{E_{2}} E_{2}=-d E_{1}+a E_{3}, & \nabla_{E_{2}} E_{3}=b E_{1}-a E_{2}, \\
\nabla_{E_{3}} E_{1}=-\frac{1}{3}(b+1) E_{2}, & \nabla_{E_{3}} E_{2}=\frac{1}{3}(b+1) E_{1}, & \nabla_{E_{3}} E_{3}=0,
\end{array}
$$

and

$$
E_{1}(\lambda)=-3 \lambda d, \quad E_{2}(\lambda)=3 \lambda c, \quad E_{3}(\lambda)=\lambda a .
$$

Let us now use the assumption that the distribution \mathscr{D}^{\perp}, which is locally spanned by the vector fields E_{1} and E_{2} is an integrable distribution. Then, the above formulas imply that $b=0$. Then, we have:

Lemma 6.4. The local function a, under the assumptions made above, satisfies the following system of differential equations:

$$
E_{1}(a)=0, \quad E_{2}(a)=0, \quad E_{3}(a)=1+a^{2} .
$$

Proof. Using the Gauss equation, we find that

$$
\begin{aligned}
0 & =\left\langle R\left(E_{1}, E_{2}\right) E_{1}, E_{3}\right\rangle=\left\langle\nabla_{E_{1}} \nabla_{E_{2}} E_{1}-\nabla_{E_{2}} \nabla_{E_{1}} E_{1}-\nabla_{\nabla_{E_{1}} E_{2}-\nabla_{E_{2}} E_{1}} E_{1}, E_{3}\right\rangle \\
& =-c a-E_{2}(a)+c a=-E_{2}(a) .
\end{aligned}
$$

Similarly, it follows from the Gauss equation $0=\left\langle R\left(E_{2}, E_{1}\right) E_{2}, E_{3}\right\rangle$ that $E_{1}(a)=0$. Finally, in order to prove that $E_{3}(a)=1+a^{2}$, we use again the Gauss equation. We have

$$
1=\left\langle R\left(E_{1}, E_{3}\right) E_{3}, E_{1}\right\rangle=\left\langle\nabla_{E_{1}} \nabla_{E_{3}} E_{3}-\nabla_{E_{3}} \nabla_{E_{1}} E_{3}-\nabla_{\nabla_{E_{1}} E_{3}-\nabla_{E_{3}} E_{1}} E_{3}, E_{1}\right\rangle=E_{3}(a)-a^{2}
$$

Lemma 6.5. Let M be as above and let $p \in M$. Then, in a neighborhood of the point p, M is warped product of an interval $(-\varepsilon, \varepsilon)$ and N^{2}, the leaf of the distribution \mathscr{D}^{\perp} through p.

Proof. We check Hiepko's condition [H], using the formalism of [N, §3]. In particular, we have to check that \mathscr{D} is totally geodesic and that \mathscr{D}^{\perp} is spherical. Since $\nabla_{E_{3}} E_{3}=0$, the first assumption is trivially satisfied. For the second assertion, we first have for $i, j \in\{1,2\}$ that

$$
\left\langle\nabla_{E_{i}} E_{j}, E_{3}\right\rangle=\delta_{i j} a E_{3},
$$

which shows that \mathscr{D}^{\perp} is totally umbilical in M with mean curvatuve vector $\eta=a E_{3}$. Since, by the previous lemma, $E_{1}(a)=E_{2}(a)=0$, the mean curvature vector is parallel. So, we get that \mathscr{D}^{\perp} is spherical.

The warping function can be determined from Lemma 6.4, but we do not need an explicit expression. Now we can finish the proof. Indeed, we know that M is locally a warped product and that the distributions on M, determined by the product structure, coincide with \mathscr{D} and \mathscr{D}^{\perp}. Moreover, since $h\left(\mathscr{D}, \mathscr{D}^{\perp}\right)=0$, we obtain that M^{3} (locally) is immersed as a warped product; further, the first factor is totally geodesic, and therefore we can assume that the first factor of the corresponding warped product decomposition of $S^{6}(1)$ is 1 -dimensional. Since the decomposition of $S^{6}(1)$ into a warped product whose first factor is 1 -dimensional is unique up to isometries, we obtain that M^{3} is immersed as described by (3.1).

References

[BVW] J. Bolton, L. Vrancken and L. M. Woodward, On almost complex curves in the nearly Kähler 6-sphere, Quart. J. Math. Oxford Ser. (2) 45 (1994), 407-427.
[C] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv Math. 60 (1993), 568-578.
[CO] B.-Y. Chen and K. Ogive, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
[CDVV1] B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Two equivariant totally real immersions into the nearly Kähler 6-sphere and their characterization, Japanese J. Math.
(to appear).
[CDVV2] B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, An exotic totally real minimal immersion of S^{3} in $C P^{3}$ and its characterization, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
[DN] F. Dillen and S. Nölker, Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine. Angew. Math. 435 (1993), 33-63.
[DOVV] F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken, On totally real surfaces in the nearly Kaehler 6-sphere, Geom. Dedicata 27 (1988), 325-334.
[E1] N. Esiri, Equivariant minimal immersions of S^{2} into $S^{2 m}$, Trans. Amer. Math. Soc. 297 (1986), 105-124.
[E2] N. Euri, Calabi lifting and surface geometry in S^{4}, Tokyo J. Math. 9 (1986), 297-324.
[E3] N. Eлri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
[H] S. Hiepko, Eine innere Kennzeichung der verzerrten Produkte, Math. Ann. 241 (1979), 209-215.
[HL] R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
[N] S. Nölker, Isometric immersions of warped products, Diff. Geom. and Appl. (to appear).
[S] K. SEKIGAWA, Almost complex submanifolds of a 6 -dimensional sphere, Kodai Math. J. 6 (1983), 174-185.
[W] R. M. W. Wood, Framing the exceptional Lie group G_{2}, Topology 15 (1976), 303-320.
B.-Y. Chen

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824-1027
USA

F. Dillen, L. Verstraelen and L. Vrancken K. U. Leuven
Departement Wiskunde
Celestijnenlaan 200B
B-3001 Leuven
Belgium

