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Abstract. We construct partial compactifications of arithmetic quotients of the

classifying spaces of polarized Hodge structures of general weight by adding the re-

strictions of the 'tamest' nilpotent orbits to the invariant cycles, and introduce complex

structures on them. We prove holomorphic extendability of period maps from a punc-

tured disc whose monodromy logarithm satisfies a certain property. We also examine

some geometric examples which can be settled within the present framework.

Introduction. In this paper, we try to introduce a complex structure on a partial
compactiίication of an arithmetic quotient D/Γ of the classifying space of polarized
Hodge structures of general weight w under the restriction (0.1) below.

In the classical case where D is a symmetric domain of Hermitian type (cf. (1.8)),
we have Satake compactifications, Baily-Borel compactifications, toroidal compactifica-
tions by Mumford et al. of D/Γ, which carry not only complex structures but algebraic
structures. On the other hand, beyond the classical case, we know very little about these
problems. As far as the author knows, the only work in this direction is the one due
to Cattani and Kaplan [CK1], who constructed partial compactifications of D/Γ in the
case w = 2, which are Hausdorff topological spaces. In contrast to the classical case, the
essential difference lies in the fact that the isotropy subgroup I of G with D ~ G/I is
compact but not maximal.

As a first attempt, we restrict ourselves throughout this paper to those boundary
points which appear as the limits of nilpotent orbits (N, F) whose nilpotent endomor-
phism N satisfies the condition

(0.1) ^ 0 , dimImiV {
[2 if w is even .

This condition (equivalent to (2.1) and (2.2)) implies that the monodromy cone has

1991 Mathematics Subject Classification. Primary 14C30; Secondary 14D07, 32G20.

Partly supported by a Grant under The Monbusho International Scientific Research Program: 04044081,

the Grants-in-Aid for Scientific Research on Priority Areas 231 "Infinite Analysis": 05230040 as well as

Cooperative Research: 04302003, the Ministry of Education, Science and Culture, Japan.



406 s. usui

dimension one (cf. (2.5.i)), which postpones the combinatorial complexity (or interest)
of the toroidal method as a problem in the future. Even under the restriction (0.1),
however, we encounter new phenomena such as: nilpotent orbits with a common N are
divided into several types when the weight w is even and >4 (see (3.4), (3.5)); partial
compactifications are not known to be locally compact; the loci Jί of nilpotent orbits
in (3.14) are the counterparts of the classical objects, on which topologies and complex
structures are the expected ones, whereas off these loci the situation is not easy (cf. also
[Sc, (6.17)] and the comment just before it).

We construct our partial compactification D/Γ by the method of torus embedding
in [AMRT]. Namely, we first prepare several pieces Dw N in (3.16) by adding suitable
boundary components to partial quotients D/cxp(ZN), which have a natural topology
and a complex structure. We then introduce a Satake topology on them, and finally
patching up their full quotients along suitable Satake open sets to make up D/Γ. The
D/Γ thus constructed is Hausdorff in the induced Satake topology and carries the
induced complex structure (Theorem (4.17) and Construction (4.19)). Our boundary
points consist of the full data of gradedly polarized mixed Hodge structures on the
space WW: = KQTN of invariant cycles, whereas the boundary points in [CK1] lose
their extension data, which play an important role in the interaction between Hodge
theory and geometry. Our partial compactification D/Γ is characterized by the property
that they contain exactly those boundary points with which every period map from a
punctured disc with its monodromy logarithm N satisfying (0.1) can be extended
holomorphically (Theorem (5.1)). Hence we can now talk about the differentials at
boundary points of these extended period maps.

In §1 we recall several facts and definitions, which will be used later. In §2 we
construct a line bundle L(W, N) containing D/exp(ZΛΓ) by the technique of torus
embedding, and in §3 we define boundary components B(W, p, N) and embed them into
the zero section of the line bundles L(W, N) to make up our pieces Dw N. §4 is devoted
to the construction of a partial compactification D/Γ from the pieces Dw N and to
introduce a complex structure on it. In §5 were examine holomorphic extendability of
period maps. The examples in §6 suggest an interesting interplay between the present
result and geometry, which is our motivation.

The present work owes much to Schmid [Sc].
We leave the following problems open: comparison of the Satake topology and

the natural topology on Dw N c L(W, N); removal of the restriction (0.1) and general-
ization to the case of higher dimensional monodromy cones.

The author is grateful to the referee.

1. Preliminaries. We recall first the definition of a (polarized) Hodge structure
of weight w. Fix a free Z-module Hz of finite rank. Set HQ: = Q®HZ, H = HR\ =
R®HZ and Hc \ = C®HZ, whose complex conjugation is denoted by σ. Let w be an
integer. A Hodge structure of weight w on Hc is a decomposition
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(1.1) Hc= 0 Hpq with σHpq = Hqp.

Fp:=@pl>pH
p''qf is called a Hodge filtration, and i/™ is recovered by Hpq = Fp n

The integers

(1.2) /ι™: = dimH™

are called the Hodge numbers.

A polarization S for a Hodge structure (1.1) of weight w is a non-degenerate bilinear

form on HQ, symmetric if w is even and skew-symmetric if w is odd, such that its

C-bilinear extension, denoted also by S, satisfies

S{Hp\ σHp>q) = 0 unless (p, q) = (p\ q'),

i*-«S(i?, σι;) > 0 for all 0 / v e Hpq .

For fixed S and {hp'q}, the classifying space D for Hodge structures and its 'compact

dual' D are defined by

D : = {{Hp>q} I Hodge structure on Hc with dim Hpq = h™ ,

(1.4) satisfying the first condition in (1.3)} ,

D : = {{Hp'q} E DI satisfying also the second condition in (1.3)} .

These are homogeneous spaces under the natural actions of the groups

(1.5) Gc: = Aut(HC9S)9 G = GR: = {geGc\gHR = HR},

respectively. Taking a reference point reD, one obtains identifications

(1.6) D~GC/Ic,r, D^G// r,

where ICr and Ir are the isotropy subgroups of Gc and of G at r e D , respectively. It is

a direct consequence of the definition that

( 1 7 ) G ^ ί ° ( / c ' 2 / l ) ' I Ϊ U ( h ^ X x U ( h f ) x O ( h ) if w = 2 ί ,

~{Sp(2KR), r~\u(hw>°)x xU(ht+1>t) if w = 2 ί + l ,

where k ' = Σ\j\<[t/2]ht+2Jft~2J a n d Λ : = (dimH-ik)/2 if w = 2ί, and ft: = dimiί/2 if

w = 2t+ 1. It is an important observation that Ir is compact, but not maximal compact

in general. Hence D is a symmetric domain of Hermitian type if and only if one of the

following is satisfied:

w = 2 ί + l , hp'q = 0 unless p = ί + l , ί;

w = 2ί, hp'q=l for p = ί + l , ί - 1 , hut is arbitrary, /ip'4 = 0 otherwise; or
(1.8)

w = 2ί, hp'q=\ for p = t + a, t + a-1, ί - α + 1 , ί - α for some α > 2 ,

= 0 o t h e r w i s e .
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We denote

(1-9) Γ: = {geG\gHz = Hz}.

Then Γ acts on D properly discontinuously because the isotropy subgroup Ir is compact

and Γ is discrete in G.

A reference Hodge structure r = {H?'q} e D induces a Hodge structure of weight 0

on the Lie algebra g c : = Lie Gc by

(1.10) Qsc~s : = {Xeec\XH*«c: Hp

r

+sq-s for all p, q} .

One can define the associated Cartan involution θr on g: = Lie G induced by

(1.11) θr(X): = Σ(-l)sXs'-s for X = ΣXs'

We take the standard generators for the Lie algebras s!2(/?) and su(l, 1) which are

related by the Cayley transformation Ad(cx), where

< U 2 ) * : ' V 4 V 1 o

as follows:

1 0 \ /0si 1 f ), (
\0 - 1 / \0 0/ VI 0

(1.13) Ad( C l ) | I I I

0 - A 1 / - i 1\ \ ( i 15 " ( U ) 9 ' I o y 2 V 1 / / ' 2 V 1 -/

REMARK (1.14). i e ί ) : = (the upper half plane)~SL2(R)/U(l) corresponds to a

Hodge structure

C2 = HJ °φHfΛ with Hu0 = c ( l J polarized by S = ί° ~^

The canonical decomposition of g i c : = sI2(C) by the standard Ή-element' (cf., e.g.,

[Sa2, Π. §7])

1/0 1

T\-l 0

coincides with the Hodge structure induced by iefy.

From now on, we assume that w>0 and all Hodge structures of weight w satisfy
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Hpq = 0 unless p,q>0.

DEFINITION (1.15) (cf. [Sc, p. 258]). An SL2-representation p : SL2(R) -> G is hor-

izontal at r = {Hp/q} ED if

r : - -

When this is the case, we call the pair (p, r) an SL2-orbit.

REMARK (1.16). Clearly, (p, r) is an SL2-orbit if and only if p^: s!2(/?)->g is a

morphism of Hodge structures of type (0, 0) with respect to the Hodge structures in-

duced by ίeί) and reD, respectively. A horizontal SL2-representation p induces an

equivariant horizontal map p : P1 ->Z> with p(i) = r\

SL2(C)

P 1 - ^ 15.

This is a generalization to the present context of the notion of '(HJ-homomorphism'

in the case of symmetric domains of Hermitian type (cf., e.g., [Sa2, II. (8.5), III. §1]).

Let (σ, r) be an SL2-orbit and p : Pι-+D the associated horizontal equivariant

map. We set

{ ) ( 0 ((U7) Y-P*{1 i ) N + : ^ ( o 0 ' N - : P * ( Ϊ o
We denote by H(Y; λ) the A-eigenspace of the action of Y on H, and set

(1.18)

LEMMA (1.19). Let (p,r) be an SL2-orbit. Then, in the above notation,

limImz_^ooexp( — zN+)'p(z) = c~1 r e ί . The corresponding filtration, denoted by Fo,

together with W(Y), determines the limiting S-polarized split mixed Hodge structure.

PROOF. We have

L( ( ° M V A exp((z-i) -N+) r,

exp(-zN + ) p{z) = exp(-iN+) r = p[ exp - i

On the other hand, c " 1 r = p(c^1 i) = P(°)
The second assertion follows from [Sc, (6.16)]. (N, L in [Sc, (6.16)] correspond



410 S. USUI

to N+9 ΛΓ_ in our present notation, respectively.) D

We recall a definition in [CK1, (2.19)], [U, (3.3)]:

DEFINITION (1.20). A pair (Y, r) e g x D is admissible if there exists an SL2-orbit

(p, r) such that Y is as in (1.17). Y is said to be admissible if (Y, r) is an admissible pair

for some reD. *

Note that giving an admissible pair (Y, r) is equivalent to giving an SL2-orbit (p, r),

and an admissible element is characterized numerically (for more details, see [CK1],

[U])

2. Line bundles L(W, N). Let Ww_1 be a subspace of HQ defined over Q which

is isotropic with respect to S, i.e., S(w, v) = 0 for all u,ve Ww-ί. We assume throughout

this paper that

,~>Λ\ Λ ττ7 ί 1 i f ^ is odd,
(2-1) ώmWw-1 = <

12 it w is even .

Let Ww be the annihilator of Ww-t in //Q with respect to S. Then we have a filtration

PF of 7/Q:

(2.2) 0 c ^ . l C ( y w c ^ + 1 : = fffi.

By abuse of notation, we also use PFfor the filtrations induced on H=HR, Hc if it does

not lead to any confusion.

We define the following subgroups of G:

N(W): = {geG\gWj=Wj for ally} ,

(2.3) U(W): the unipotent radical of N(W),

C(W): the center of U(W).

The induced sub- and sub-quotient groups of Γ are denoted by

Γw: = ΓnN(W), U(W)Z : = Γ n U(W), C(W)Z: = Γ n C(W),
(2.4)

^ : =

We denote

D(W)\ = C(W)C-D .

LEMMA (2.5). ( i ) dim C{W) = 1.

(ii) C(W0 w α «ί?rwβ/ subgroup of N(W), and Ad(g)X = (g\ Ww_ί)
2X if w is odd

and Kά{g)X = det(g \ Ww.t)X if w is even for g e N(W), X e Lie C{W).

(iii) C(W)C acts on D(W) freely.

PROOF. Since we assume (2.1), (i) is obvious in the case of odd w. In order to
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examine (i) in the case of even w, we choose a β-basis of HQ adapted to the filtration
W so that the polarization form S is represented by a matrix *S=antidiagonal(J, *, J),
where J : = diagonal(l, — 1) of rank 2. In this basis, any XeLie C(W) is represented by
a matrix

χ=

From *XS + SX = 0, we can readily derive a = d = O,b = c. This completes the proof of (i).
By using the above basis, (ii) can also be verified easily.
Let r 6 D be a reference point and let AT be a basis of Lie C( W). Since N is nilpotent,

v : C~C(W)C-+D(W) cz Z), sending z to exp(zA/) r, is an algebraic morphism. v is not
a constant map, because the isotropy subgroup Ir of G at r is compact hence does not
contain a unipotent subgroup C(W0~/?. It follows that v is quasi-finite. If v(zι) = v(z2),
^ , 2 2 6 ^ then exp((zί— z2)N) r = r and so Z(zί— z2)a v" 1^), which occurs only if
zί=z2. •

DEFINITION (2.6). In the case of odd w, Ne Lie C(W) is positive if S(N~x , )>0
on Ww-ί.

We denote by o(VK) the set of orientations of Lie C(W) consisting of

f the positive generator of Lie C(W)Z if w is odd ,

[the two generators of Lie C(W)Z if w is even .

We define

(2.7) N(W)+ : = {geN(W)\Ad(g)NeR>oN,Neo(W)} ,

Note that, by (2.5.H), we see that

1 if w is odd ,

2 if w is even .

By Lemma (2.5.iii), the quotient

D{W)':=D(W)/C(W)C

is a complex manifold and that the principal C(PF)c-bundle D(W)^D(W)' is a complex
affine bundle. Starting from this affine bundle, we shall construct a complex line bundle
L{W, N)^D(W)r in the following way. Take a quotient bundle

(2.8) D(W)/C(W)Z -• D(W)f.

Set T(W): = C(W)C/C(W)Z. According to a choice of N e o{W\ we have an identification
T(W) ^ C*, exp(z]V)h->exp(2πϊz). Let C* c C be the natural embedding. We denote by
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(2.9) π:L(W,N): = (D(W)/C{W)Z) xc*C-> D(W)'

the complex line bundle associated to the principal C*-bundle (2.8).

PROPOSITION (2.10). The action ofΓ^ on the C*-bundle (2.8) extends to the action

on the complex line bundle (2.9), which commutes with the action of T(W). Γ^ acts

properly discontinuously on D(W)f and hence on L(W, N).

PROOF. The first part follows easily from (2.5.ii).

In order to prove the second part, we use the C*-bundle (2.8). Given a compact

subset A c D(W)'. Put A : = π~\Af). Take a neighborhood VaofaeAn (D/C(W)Z) such

that the closure Va is compact and is contained in D/C(W)Z. Then {π(Va)\aeAn

(D/C(W)Z)} is an open covering of A' and so we can choose a finite subset {π(Kβ.)| 1 <

i<n} which covers A. Set V: = \Jί^nN(W)1 Vai, where

(2.11) N(Wγ : = Ker(Ad : N(W) -> Aut(Lie C(W))).

Then, by construction, we see that VaD/C(W)z, π(V)^A and that the restriction

π : V^D(W)' is a proper map. Since Γ^ <^N(Wγ whose action preserves the fiber

coordinate of (2.9), we see that

The latter set is finite because the action of Γ£ on D/C(W)Z is properly discontinuous

and A n Va D/C(W)Z is a compact subset. This proves that Γ^ acts on D(W)' properly

discontinuously. The assertion on the action on L(W, N) follows from this easily. •

3. Boundary components B(W9 p, N). Let {hp'q} be a set of Hodge numbers in

(1.2). For a filtration Win (2.2), we set

(3.1) nΛ : = dimgr^_A.

We recall a definition in [U, (2.15)]:

DEFINITION (3.2). A set p = {pa

λ'
b} of non-negative integers is called a set of prim-

itive Hodge numbers belonging to {hp q, nλ} if it satisfies the following conditions.

(0) The indices α, b and λ are non-negative integrers satisfying a + b = w — λ.

( O Za + * = w-APfl/ = "A-nA + 2 f o r a l U .
(ϋ) p$ β = pj* for alia, b, λ.
(iii) ^ ^ ^ ^ ' - ^

Under the assumption (2.1), only the following sets of primitive Hodge numbers

are possible.

(3.3) Case w = 2ί+1. The possibility is unique .
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1 if α = ί,

0 otherwise. Γ" [ ha'b otherwise.

Case w = 2t. There are ί + 1 possible cases.

(3.4) For each s = w, w— l , . . . , ί + l ,

1 if a — s, w — s — 1 , a b (ha'b—\ if a = s+l, s, w — s, w — s—1 ,
Pθ = )

0 otherwise. [ha' otherwise.
(3.5) F o r s = ί,

ha>b-\ if α = t + l , ί - l ,

fi f l 'b-2 i f α = ί,
0 otherwise. ua b u

ha-b otherwise.

DEFINITION (3.6). Given a filtration Win (2.2) satisfying (2.1), a set p = {pa

λ'
b} of

primitive Hodge numbers belonging to {hp'q, nλ} and an orientation Neo(W) in (2.6)

the corresponding boundary component B(W, p, N) is the classifying space of gradedly

polarized mixed Hodge structures on WWHC with Hodge type {po'
b} (resp. {pa{b}) and

polarization form S (resp. 5 ( N - 1 , •)) o n &Z (resp. Ww_1).

PROPOSITION (3.7). There is an N{W)+-equivariant embedding B(W, p, N) en* D(W)'.

PROOF. We shall first construct a map φ: B-+D', where B = B(W,p, N)9 D' =

D(W)'. Let FeB. In the present case, the weight length is one, hence we have the

Hodge-Deligne decomposition

WWHC= 0 Paχ , Paχ : = Fa n σF n Ww_λHc ,

where the summation is taken over a + b = w — λ, λ = 0, 1. We want to extend this to an

S-polarized split mixed Hodge structure on Hc uniquely up to C(P^)c-action. Setting

'a,bAbP
aόb, we have a splitting over R of WW.1HC a WWHC. In case w = 2 ί + l ,

our assertion follows immediately from the fact that P-ίtC '.=Pt-ι't+1 should be per-

pendicular to Poc with respect to S. Similarly, in case w = 2ί, P _ x c : = PS_+

1

1'VV~S +

pvv-s,s+i j s distinguished up to C(P^)c-action by the same condition, where s is the

integer satisfying ps^w~s~1 = 1 in the given set of primitive Hodge numbers. Moreover,

the summands Pa^1

1'w~a(a = s, w — s — 1) are distinguished up to C(W^)c-action by the

condition that pa_γ^~a should be perpendicular to p ^ - α - i + pα+^w-α w i t h r e s p e c t

to S. Now let I*+ΐ>t + 1 in case w = 2 ί + l and PS_Y'W-S, p™_-s>s+1 in case w = 2ί be

representatives in the above constructions. These data determine a splitting Pλ © P o ©

P _ ! over R of the filtration Ww_ι ^Wwa Ww+l9 where P1 :=Ww.l9 Pλ' = Pλ,c n H

(λ = 0, —1). This, in turn, determines a real semi-simple element Yeq so that Pλ is

the A-eigenspace of Y. Since [Y,iV] = 2iV by construction, we have a representation

p : SL2(R) -» G (not necessarily rational) such that
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Transforming the PJ* by the Cayley element c = p(cί) in (1.17), we get the Hodge-

(Z, X±)-decomposition © Qa

λ

b+λ : = © cPf. Then we know that Hpq: = ®λQ
p

λ'
q deter-

mines an element reD where p is horizontal (see [CK2, (2.18) and its proof] and [U,

(3.4) and its proof]). We now define a map

(3.8) φ.B^D' by F^C(W)c-r.

Next we define a map

(3.9) φ : φ(5) ->B by C(W% Ff-»F n JΓW//C .

This is well-defined. Indeed, since Ww = K.eτ N, we see that g\ Ww is the identity for any

geC(W)c and so

g F n ^ W H C = ̂ (F n WWHC) = F n ^ W H C .

We claim now that φφ is the identity. Indeed, let F e B and Fo the Hodge filtration as-

sociated to the S-polarized split mixed Hodge structure {Pa

λ

yb \a + b = w — λ, Λ = 1, 0, —1}

constructed above. Then the filtration Fr corresponding to r e D is Fr = cF0 by defini-

tion. On the other hand, cF0 = exp(ϊW) Fo as in the proof of Lemma (1.19). Hence

Fr n WwHc = exp(iN) F o n WWHC = F.

It is obvious that φ is N(W)+-equivariant, whence so is ψ. •

Let (p, r) be an SL2-orbit, Y in (1.17), and W=W(Y) in (1.18). We assume that

W is defined over Q. We denote

(3.10) Gί : = {# G JV(W0+I Ad(0)Y=Y} .

In the notation of (2.9), we set

(3.11) r:=(rmod C(W)Z)eL(W, ΛΓ), 6 : = π(r)e

where iVGθ(VΓ) with N+=aN, α > 0 . Then, as in the proof of (1.19), we have cF0 =

Fr = Qxp(iN+) F o , and hence beB(W, p, N) under the identification of (3.7).

PROPOSITION (3.12). In the above situation, we have the following.

( i ) The orbits Gy b a N(W)+ b = B a D(W)' are complex submanifolds, where

B = B(W,p,N).

(ii) ((C(W)xGΪ) -r)~-+GΪ b and (N(W)+ r)~ -+B are punctured disc bundles

contained in the line bundle L(W9 N), which are the family of all SL2-orbits corresponding

to the triple (Y,p9N) and the family of all nilpotent orbits corresponding to the triple

(W, p, N\ respectively.

(iii) N(W)+ r is open in D if and only if D is a Hermitian symmetric domain.
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PROOF. We first claim that

dimR N(W)+/I r n N{W)+ =2ά\mcN{W)c/ICr n N(W)C ,

(3.13) dimR(C(W)xGΪ)/Ir n (C(W)xGf)

= 2dimc(C(W)cxGYfC)/Ic>r n {C{W)cxGγχ),

where lr and ICr are the isotropy subgroups at r of G and Gc, respectively. (3.13) can be

verified easily by the dimension count of the corresponding Lie algebras using bases of

Hc adapted to the mixed Hodge-(Y, N+^decomposition of (p, r) (cf. [U, §2]). Hence

we leave it to the reader. Similarly, we can verify easily that N(W)+ acts on B transi-

tively and so we omit this verification. (3.13) shows that the orbit N(W)+ r (resp.

(C(W)xGγ) r) is open in N(W)C r (resp. {C{W)cxGYC) r) in the Hausdorff topology

and the latter is a closed complex submanifold of D = Gc r. Hence the former induces

a complex submanifold (N(W)+ r)~ (resp. ((C(W)xGΪ) r)~) of D(W)/C(W)Z. From

this we know that the interior of the closure of (N(W)+ r)~ (resp. ((C(W)xGγ) r)~)

in L(W, N), denoted by

(3.14) Jf(W, p, N) (resp. S?(Y9 p, N)),

is a complex submanifold and so its intersection with the zero section of the line bundle

(2.9) is a complex submanifold of the zero section. Via the projection, we get the

assertion (i).

Now the first part of (ii) follows from an observation that, for g1exp(ηY)e

N(W)+ =N(Wyxexp(RY), we have

= g1 βlexplηl _ j Jj ij = g1 β(e2ηi)

= 0i exp(i(e2<-

T (see (3.11)),

and exρ{2πi-i(e2η-l)a) = exp(2π(l-e2η)a)<e2πa (cf. the identification T(P^)^C* in

(2.9)). As for the assertion on the families in (ii), it follows from [ U , (3.16.iii)], (2.5.ii)

and (3.11) that Gγ r is the set of all reference points gmr such that (Y,g-r) is an

admissible pair of type p whose associated ^ - r e p r e s e n t a t i o n PiάHg)p+ satisfies

) = Ad(g)N+=afN+=afaN

for some α'>0. Hence

exp((x + iy)N)g r = exp(xN)g Qxp(ia' ~ 1yN) r

= exp(xN)gexp(log((a'a)-1y+1)1/2Y) -re{C(W)χGΪ) -r if y> -a'a .
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Similarly for g r e N(W)+ r,

(3.15) exp((x + i»N)0 r = exp(xN)gexp(log((α'αΓ1;μ+ 1)1/2Y) r

eN(W)+-r if y>-da.

Let H c = ® Q 5 ' 6 + λ = φ P 5 ' & be the Hodge-(Z,X+)-decomposition and the mixed

Hodge-(y, ΛΓ±)-decomposition associated to (p, r), respectively (cf. [U, §2]). We see

that, for p> : = p°-i'»-° + pw-* + \

It follows that N+Fa

r^Fa

r~
l and hence i V F ^ c f ; ; 1 by (2.5.U) and (3.11), where Fr,

Fg.r are the filtrations corresponding to r, g r eD, respectively. Therefore (N, Ffl.r) is a

nilpotent orbit in the direction of (W, p, AT). Conversely, let (N, F), FeD, be a nilpotent

orbit, i.e., NF α c F f l - 1 and exp(ϊ>N) -FeDΐory»0. Then, by [Sc, (6.16)], (W, F) is an

S'-polarized mixed Hodge structure. If (W, F) has mixed Hodge type p, then this deter-

mines a point of B by F n WWHC, hence, by (3.7) and the first part of (ii), we have

exp(ίyΛf) FeN(W)+ r for y»0. This completes the proof of (ii).

In order to prove (iii), we compute dimD — dimΛΓ(W0+ r. Let K be a maximal

compact subgroup of G containing the isotropy subgroup /r, G = RTK an Iwasawa

decomposition.

Case w = 2ί + l, i.e., (3.3). We see that

G = Sp(2h,R), K~U(h), Ir~U{hw>°)x x U{hf+Ut)9 X? : = K n G ? ^ l / ( f e - l ) ,

/+y : = / r n Gί ^ L/(ftw'°) x x l / ^ ^ 2 ' ' " 1 ) x x

Hence

dim D-dimN(W)+ r = dim G//Γ - dim N(W)+/I+Y = dim K//Γ - dim K + /I+γ

This is zero if and only if h = ht + u , that is, K = Ir.

Case w = 2ί. We see that

G = O(k, 2h), K~O(k) x 0(2/i), / r - U(hw-°) x x

K + - O(ifc - 2) x O(2Λ - 2) x 50(2).

According to the subcases (3.4), (3.5), I?γ is isomorphic, respectively, to

C/(/iw'°) x x U^1-"-8-1 -1) x U{hs^~s-1) x x t/ί*^ 1 - '- 1 ) x 0 ( ^ 0 x 1/(1),

t/(/ιw'°) x x U^f*1-'-1 -1) x O(fcw-2) x 1/(1).

As before, we can compute dim/) — dimΛΓ(W0+ r to obtain

/ι s + 1 ' w - s - 1 -Λ s '» '- s -2) in Case (3.4),

- A ί + 1 f - 1 - Λ t ί - l ) in Case (3.5).
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These are zero if and only if

k = 2hs w~s(or 2hs+Uw-s~l) = 2 , h = hr+1-w~'-1 (or hs w~s) = ί in Case (3.4),

k = h' ', h = ht+1-'~1 = l inCase(3.5) .

Hence, dim D = dim N( W)+ r if and only if K = J r. •

We denote

DW,P,N : = D/C(W)Z u JT(Wt p, N) <= L(W, N),

( 3 1 6 ) ϋ W J , : = U S W ι P j l d L(W, N), D : = U S W J I ,
W,N

where the unions are taken over all sets p of primitive Hodge numbers belonging to

{nλ, hp'q}, all rational S-isotropic nitrations W of HQ in (2.2) satisfying (2.1) and the

orientations N e o(W).

4. Partial compactίfications D/Γ. We first recall the partial compactification

D**/Γ of Cattani-Kaplan in [CK1] and its generalization into arbitrary weight [U,

Appendix] within our present context. Under the assumption (2.1), the disjoint union

D** of all rational boundary components and the disjoint union D* of all rational bound-

ary bundles, both in the sense of [CK1], coincide and it is defined by

(4.1) D*: = D u ( U w A F(W,p): = \gτwF\FE LJ B(W9p9N)
\W,p J I Neo(W)

where W and p run over all rational S-isotropic filtrations (2.2) of HQ satisfying the

condition (2.1) and all sets of primitive Hodge numbers, respectively, and B(W, p, N)

is a boundary component in the sense of (3.6).

In order to introduce the Satake topology on D*, we choose a maximal (?-sPtit

Cartan subalgebra t of g and a Cartan decomposition g = f + p with p => t. Let Φ cz t*

be the Q-voot system, Φ+ <= Φ the positive root system with respect to some lexi-

cographical order in t*. Let G = RTK be the Iwasawa decomposition, where R: =
e xP(ΣαeΦ+ 9β)» τ : = e x P * a n ( * κ ^s t n e m a χ i m a l compact subgroup of G with Lie K= f.

Let t + : = {A e 11 oc{A) > 0 for all α e Φ+} be the Weyl chamber. We denote by si the

set of all rational admissible elements A with dim H(A λ) = δλlc ( 2 = 1 , 2 , . . . ) in the

closure t + of t + in t, where c= 1 if w is odd and c = 2 if w is even. Then we see by

construction that si is finite and is a set of complete representatives of all GQ-conjugacy

classes of rational admissible elements A with dim H(A λ) = δλlc ( 2 = 1 , 2 , . . . ) . Under

the assumption (2.1), si consists of the single element Y: =diagonal(lc, 0 , . . . , 0, - lc).

Let W{Y) be the weight filtration associated to Y in (1.18). For each set p = {pa

λ>
b} of

primitive Hodge numbers, we take a reference point rp e D lying over [K] e G/K, via

some fixed projection D -• G/K, such that (7, rp) is an admissible pair of type p (for the

definition of 'type/?', see [U, (3.3), (3.4)]). This is possible by [U, (3.16.ii)]. We set
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(4.2) rp : = (rpmodC(W(Y))z)eL(W(Yl N),

bp : = π(rp)eB{W{Y\ p,N), bp: = grw™(bp)eF(W(Y), p),

where N is as in (3.11).

The Satake topology τΓ(D*) on D* relative to Γ in [CK1] is introduced in the

following process (i)-(iii):

( i ) An open Siegel set subject to the Iwasawa decomposition G = RTKis a subset

S : = ωTμK of G, where ω is a relatively compact open neighborhood of 1 in R, μ>0

and Tμ \ = {teT\e\t)>μ for all αeΦ + } . An extended Siegel set in D* is a subset

S* : = (J (© ' fp u (© n N(W(Y))) ϊ p ) . For suitable choices of ω and μ, there exists a

finite subset E of GQ satisfying Γ £ S rp = D and JV(y)(E n N(W(Y)))(<Z n N(W(Y)))

δ, = F(W(y), p) for all /?. Then, as in [CK1, (4.28)], Ω* : = E&* is a Γ-fundamental set

in D*, i.e., satisfies the following two conditions.

(4.3) ΓΩ* = D*.

(4.4) 77zere x̂w/ finitely many yveΓ such that, if yeΓ, yΩ* n Ω* = 0, then the ac-

tions ofy and yv coincide on Ω* n y~1Ω* for some v.

(ii) A topology τ(©*) on S* is defined so that a basis of open sets is given by

open subsets of © rp ( c D) in the natural topology together with subsets

(4.5) ( ί / / r p u ί / ftp)nδ*

for all p, where t/ runs over the pull-backs via the projection N(W(Y))->F(W(Y)9 p\

g\->g'bp, of all open sets in F(W(Y)9 p) in the natural topology, λ is a positive real

number, Uλ : = {ge U\ea(g)>λ for all aeΦ with α(7)>0}, V runs over neighborhoods

of 1 in K. The topology τ(Ω*) on Ω* is induced from τ(©*) in the following way: the

system of neighborhoods of x e Ω* consists of all subsets ^ c Ω* satisfying the condition

that, if x e e S * with eeE, then e~1(JU n ©* is a τ(©*)-neighborhood of e~1xG©*. Then,

as in [CK1, (4.32)], the topology τ(Ω*) has the following property.

(4.6) τ(Ω*) is Hausdorffand the action ofy e Γ is continuous in τ(Ω*) in the following

sense: for xeΩ*, ifyxeΩ*, then for any τ(Ω*)-neighborhood %' of yx there exists a

τ(Ω*)-neighborhood % of x such that y * n f i * c « ' ; if yxφΩ*, then there exists a

τ(Ω*yneighborhood W of x such that yWnΩ* = 0.

(iii) By virtue of (4.3), (4.4) and (4.6), we can apply [Sal, Theorem Γ] to obtain

a Satake topology τΓ(D*) (uniquely determined) with the following four properties.

(4.7.1) τΓ(D*) induces τ(Ω*) (and also τ(S*)).

(4.7.2) The action of Γ on D* is continuous.

(4.7.3) IfΓxnΓx' = 0 with x, x' e D*9 then there exist τΓ(D*)-neighborhoods °U of

x and W of x' such that Γ% n Γ<%' = 0.

(4.7.4) For each xeD*, there exists a fundamental system \flί\ of τΓ(D*)-neighbor-

hoods of x such that, for yeΓ, we have yύU = ύU if yeΓx, and yΰllς\ϋU = 0 ifyφΓx,
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where Γx is the isotropy subgroup of Γ at x.

[CK1] used a closed Siegel set instead of an open one. In both cases the arguments

are parallel. [CK1, §5] showed that the Satake topology τΓ(D*) is independent of the

choices of t, Φ + , K, rp, Γ, ®, E. As Looijenga has pointed out to the author, the induced

Satake topology on D*/Γ is not known to be locally compact in general (there is no

proof of it in [CK1, (4.36.i)]).

DEFINITION (4.8). In the notation of (3.16), a Satake topology τ(D) on D is denned

in the following way.

( i ) Set B(W(Y), N):= UpB(W(Y), p, N). The topology τ{DUB{W{Y\ N)) coin-

cides with the natural one on D and at a boundary point xεB(W(Y), N) a fundamental

system of neighborhoods is given by

UλV-rpUU-bp for some p,

where U runs over the pull-backs via the projection N(W(Y))+ -+B(W(Y), N), g\-^g bp,

of all neighborhoods of x in B(W(Y), N) in the natural topology, λ is a positive real

number, Uλ : = {geU\ea(g)>λ for all α e Φ with α(Y)>0}, Fruns over neighborhoods

of 1 in K.

(ii) We extend τ{DUB{W{Y\ N)) to the topology τ([_jWίMeo{w)(DUB(W9 M))) so

that the action of GQ is continuous in the latter, where W runs over all rational S-iso-

tropic nitrations (2.2) of HQ satisfying the condition (2.1).

(iii) τ(D) is the topology induced from τ(UWM(DUB(W, M))) via the natural

projections DUB(W, M)-+DWM whose restriction to B{W, M) is given by the composite

of the embedding (3.7) and the zero section of the line bundle (2.9).

It is easy to see that the Satake topology τ(D) is well-defined, and we can prove

as in [CK1, §5] that τ(D) is independent of the choices oft, Φ + , K, rp.

LEMMA (4.9). The restriction of τ(D) to J^(W9 p, M) coincides with the natural

topology on it for every W, p and M, where Jf{W, p, M) is as in (3.14).

PROOF. The assertion follows immediately by Definition (4.8) and (3.15) for the

5L2-orbit (p, rp) corresponding to the admissible pair (Y, rp). •

PROBLEM (4.10). Compare the topology τ(Dw M) with the natural one on Dw M a

L{W, M).

LEMMA (4.11). The naturalmapf: D -• D*/Γ is continuous in the Satake topologies.

PROOF. Set W=W(Y) and let N be as in (4.2). By Definition (4.8) and [CK1,

(5.7)] and its generalization [U, Appendix], it is enough to show that, in the notation

of (3.16), the natural map

(4-12) fw,P,N-Sw,P,N
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is continuous in the Satake topologies for any p.
Obviously fWtPtN is continuous on D/C(W)Z. Let xeB(W, p, N) and x its image in

F(W, p). Note that a fundamental system of τ(Z>*)-neighborhoods of xeD* is given by
the following sets (cf. [CK1, (4.31)], [Sal, Proof of Theorem 1']):

(4.13) W = rJ U 0(τ(6*)-neighborhood of g ~1 x e S*)
\geΓE, gS*3x

Hence, in order to prove the continuity offWtPtN, it is enough to show that, on Dw pN,
the topology τ ^ / V ^ ) , similarly defined as the topology τ(D*/C{W)z) on D*/C(W)Z

induced by τΓ(/)*), coincides with the topology τ(Dw p N) induced by τ(D).
We may assume that the Siegel set S and a finite subset E<=GQ satisfy C(W)Z& =>

C(W) and Γ^{E n N(W)+)(& n N(W)+) bp = B(W, p,N) for all p. Set 6 ^ = 6 n N{W)+,
r = rp and b = bp. Since S^exp(/?>0 Y) = ©£, ( S ^ rJ^US^ fe is an open subset of
Jr = Jί(W,p,N) in the natural topology. It follows that the topology -^((S^ r^U
6 ^ fr), induced from τ ^ Θ ^ r U S ^ b) which is similarly defined as τ(®*), coincides
with the natural topology on (S^r r)~US^ l?c ^K Since the action of AΓ(VF)+ on
Ĵ * is continuous in the natural topology, the topology τ1(^Γ), similarly defined as
τ(D*/C(W)z), coincides with the natural topology on Jί by (4.13). Evidently the mul-
tiplication by geN(W)+ from the left to UλV in (4.5) does not have any effect on the
neighborhood V of 1 in K. Thus we get τx(Dw pN) = τ(Dw pN). •

COROLLARY (4.14). For any x e B(W, p, M), there exists a Satake neighborhood %
of x in Z), which is stable by C(W), such that the T-equivalence and the T^-equivalence
coincide on %, where % is the pull-back of% via D-+D/C(W)Z c Dw pM.

PROOF. By Lemma (4.11), this follows immediately from (4.7.4). •

LEMMA (4.15). In the Satake topology, the action of Γ£ on Dw M is properly

discontinuous, so that the Γ^-equivalence relation is closed on Dw M.

PROOF. Let xeB(W, p, M), and xsF{W, p) its image. By Definition (4.8), we may
assume W= W(Y) and M = N as in (4.2). Let % be a Satake neighborhood of xεD*
satisfying the condition (4.7.4). By Lemma (4.11), we can take a Satake neighborhood
% = (UλV-rpy ΌU -bpOΐxeDWpNcontained inf^tptN(%mod C(W)Z). By Proposition
(2.10), we may assume that {yeΓ^yJJ bp n 17 bpΦ0} is finite. Since F{W,p)^
B(W, p, N)/U(W), where U(W) is in (2.3), we see that the isotropy subgroup Γ* of Γ at
x is equal to U(W)zxΓx.

For yE U(W)Z, We claim that y% r\%φ0iΐ and only if γU bp n U bpφ0. To
see this, notice that y% n % = 0 is equivalent to

tiUλV rp)~n{UλV rprΦ09 or γU bp n U bpΦ0 .

The former implies yUλVn δUλVIrpφ0 for some δeC(W)z, hence, by the uniqueness
of the Iwasawa decomposition, we have yUλ n δίlλφ0, and so yU' bp n U %bpφ0 as
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desired. This proves the Only if part. The converse is obvious.
Thus we see {yeΓ£\y% n %φ0} = {yeΓ5c\y% n %Φ0} = {yeΓ£\yU bp n t/

bpφ0}, which is finite. •

We shall now construct our partial compactification D/Γ. We denote by iV the
set of complete representatives of the GQ-orbit of W(Y) modulo the Γ-action, which is
a finite set by (4.3). As point sets, we take

(4.16) \D/Γ\ = (Du U B(W,p,M)) Γ^D/ΓlA \J B(W,p,N)/Γ^,
\ W,p,Meo(W) )\ Weψ p

where in the middle term W and p run over all rational S-isotropic nitrations of HQ in
(2.2) satisfying the condition (2.1) and all sets of primitive Hodge numbers belonging
to {hp'q, nλ}, respectively, and in the B(W, p, N) on the extreme right hand side N is
some element of o(W).

D carries the Satake topology τ(D) defined in (4.8) as well as the natural topology,
both of which introduce the corresponding quotient topologies on \D/Γ\ via the
projection D^\D/Γ\. We denote by D/Γ the point set \D/Γ\ together with these two
topologies.

THEOREM (4.17). D/Γ is Hausdorffin the Satake topology.

PROOF. Let $ be the graph of the equivalence relation defined by the projection
D -* D/Γ. Notice that D/Γ is Hausdorίf in the Satake topology if and only if the graph
$ a D x D is Satake closed. To see the Satake closedness of δ, it is enough to show the
following: ύ xhyieD and y^Γ with y^y&i satisfy (xt modC{W)z)->xeB(W, p, N),
(yt modC(W)Z)^>yeB(W\ p', N') in the Satake topology, then (x, y)eS.

By Lemma (4.11) and the fact that the Satake topology on D*/Γ is Hausdorίf (see
[CK1, (4.36.i)], and also [U, Appendix]), the images of x and y in D*/Γ coincide,
hence lie in the same boundary component F(W, p)/Γw of D*/Γ. Hence W' = δW and
N' = δN for some δeΓ and p = p'. Replacing yhy by δ~1yh δ-1y, it suffices to prove
the assertion in the special case x, y eB(W, p, N). We consider a diagram:

DW,P,N — D*/C{W)Z . D*/Γ
u u

F(W9p) >F(W9p)/Γw.

Since x, y have the same image in D*/Γ, their images in F(W, p) c D*/C(W)Z differ by
aye Γw. Again replacing yb y by γ ~ ίyh y ~ γy9 we may assume that x, y have the same
image xeF(W, p) c D*/C(W)Z. Let % cz D* be a Satake neighborhood of x satisfying
the condition (4.7.4). Then by Lemma (4.11) 1T m.=fw#tί&ttχlC(W)z) is a Satake open
subset oϊ Dw pN containing x, j ; . Therefore, xi5 yt mod C(W)Z eY"ιϊ Ϊ » 0 . In other words,

nD if /»0. Now ^ = 7^, y^eΓ, so, by the assumption on %, we see yte
for /»0. Hence the assertion follows from Lemma (4.15). •
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REMARK (4.18). As we have seen in this section, D (hence D/Γ) carries the two
topologies, i.e., the Satake topology τ(D) defined in (4.8) and the natural topology
induced by the Dw M a L(W, M). These topologies coincide on the loci JV{W, p, M) of
the families of the nilpotent orbits (cf. (4.9)), but off these loci we have not yet compared
them (cf. (4.10)). So at present we may consider that the topology of D (hence of D/Γ)
is the refinement of these two topologies.

CONSTRUCTION (4.19). We then introduce a complex structure on D/Γ.
For each WeΨ°,p and xeB(W, p, N), we choose a Satake open neighborhood %

of xeDw N c 5 as in Corollary (4.14), and form a covering

(4.20) {D/Γ, Γ + %/Γ + (Vx GB{W, p, N), VP^E nr Vp)}

of D/Γ. D/Γ has an obvious complex structure and, by Proposition (2.10), Γ£ ' %/Γw
has the complex structure induced by

(4.21) Γ+ %/Γ+ cz βw,p,N/Γ£ c L(W, N)/Γ+ .

These are patched up by

^Γ-%IΓ c D/Γ,

Satake open Satake open

+ + Γ +

(4.22) for x, ye\JpB(W9 p, N), in DWtN/Γ£ ,

.

for x G J5(^, p, JV) and 3; eB(W, p', N') with ΛΓ # AT', in D/Γ .

5. Extension of period maps. Let φ : Δ*->D/Γ be a period map, i.e., a holo-
morphic map with horizontal local liftings, from the punctured unit disc Δ*. Let l)-+Δ*,
z\->s = exp(2πiz), be the universal cover, φ: \)-+D a lifting of φ,yeΓ an element
satisfying φ(z+ΐ) = yφ(z) for all ZGΪ), N the logarithm of the unipotent part of γ, and
W(N)[ — w] the monodromy weight filtration.

THEOREM (5.1). (i ) Any period map φ : Δ*^ D/Γ from the punctured disc with
the monodromy weight filtration W = W{N)[_ — w] satisfying the conditions (2.1) and (2.2)
extends continuously to φ : Δ -> D/Γ in the Satake topology on D/Γ. Moreover, φ is
holomorphic.

(ii) For any boundary point ξeD/Γ\D/Γ, there exist a period map φ\ Δ* -+
D/Γ with the property described in (i) and its Satake continuous, holomorphic extension
φ : Δ -+Ί)JΓ such that φ(0) = ξ.

PROOF. In order to prove (i), it is enough to show that φ : Δ*^>D/Γ extends
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continuously over the puncture both in the Satake topology and in the natural topology

onΈJf.
As for the first part of (i), the proof is almost analoguous to the one in [CK1],

and so we shall write down the proof as far as needed. By the rational version of the

SL2-orbit theorem [Sc, (5.13), (5.19), (5.26)], there exists and SL2-orbit (p, rp) with p

defined over Q, such that

) = N, together with Y:=ρJ
0 0/ ' * μ*\0 -1

satisfies the property (5.2) below. Choose a maximal β-split Cartan subalgebra t of g

containing Y, and a positive root system Φ+ c t* for the adjoint action of t on g such

that any root α with α(7)>0 belongs to Φ + . Set R : = exp(^α 6 φ +gα) and Γ: = expt.

Then the centralizer of T in G is a product TL with L β-anisotropic, and P : = RTL is

a minimal (J-parabolic subgroup of G. Let K be the maximal compact subgroup of G

corresponding to the Cartan involution θrp determined by the reference point rp as in

(1.11). Then G = PK=RTLK, and we have* the following:

(5.2) There exist functions r(x, y\ t(x, y\ l(x, y) and fc(x, y) defined and real analytic

on a domain {x + ίyel)\y>β} for some β and taking values in groups R, T, L and K,

respectively, such that

(5.2.1) φ(x + iy) = r(x,y)t(x,y)l(x,y)k{x,y) rp, and

(5.2.2) as y-> + oo, the functions

r(x, y)->exp(xJV)r(oo), exp(log(};-ί/2)Y)t(x, y)^l, ί(χ, y)- 1, k(χ, y)- 1 ,

converge uniformly in x, where r(oo)eexpt) with p : = Im(adgiV) n Ker(adgiV).

By [CK1, (6.4)], we see expυ c l/(py). (Since N2 = 0 in the present case, the proof

is easier.) φ factors through A* -+D/C(W)Z, denoted also by φ by abuse of notation.

Take Meo(W) so that N = aM, a>0. We now claim:

(5.3) limf_,oφ(ί) = r(oo) bpeDwpM (see (3.16)) in the Satake topology, where bpe

B(W, p, M) is induced from rp as in (3.11).

In order to reset the situation where we have introduced the Satake topology, we

choose a maximal compact subgroup K' of G whose associated Cartan involution acts

on t as multiplication by — 1. Then we have an Iwasawa decomposition G = RTKf. As

in the proof of [U, (3.16.H)], there exists geGγ such that K' =^\ni(g)K. gsGγ splits

according to the decomposition G = PK, hence we may assume moreover geP n Gγ.

Set r'p\=g-rpeD and b'p \ = g bpe B = B(W, p, M'), where M' e o(W) is a positive mul-

tiple of Ad(#)M. We are thus in the situation after (4.1). Then (5.3) follows if we show:

(5.4) In the notation of (4.8), for the pull-back V via the projection N(W)+ -+

B, h\-^h - b'p, of any neighborhood of ξ' :=gr(co) bp in 2?, any λ>0 and any neighbor-

hood V of 1 in K\ there exists β>0 such that g φ(x + iy)eU'λV r'p for all y>β and
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Indeed, (5.4) implies φ{x + ίy)eg~1U'λV-r'p for all y>β and | x | < l . It is easy to

see that this, in turn, yields ^ e f e ^ ί / ' ^ / ' r ^ for 0 < | ί | < έ Γ 2 π / * , where λo: =

m i n u t e " ^ α e Φ with α(Y)>0}. Since ({g'^^V -r'p)~ u ( g Γ 1 ! / ' ) - ^ is a Satake

neighborhood of g~1 ξ' = r(co) bp in Dw p M,, which can be taken arbitrarily small, we

get (5.3).

Now we shall prove (5.4). Set g = roίo/o, roeR,toGTand / 0 e L . Then, from (5.2.1),

P and L a K\ we have

gφ(x + iy) = r'(x, y)t(x, y)k'(x, y)-r'p, where

It follows from (5.2.2) that, as y-> + oo, these functions converge uniformly in JC:

Γ(x, y) -> 1, r'ίx, y)-+g exp(xN)r(oo)g-' , fc'(x, y) - 1 .

Hence there exists β > 0 such that r'(x, y)ί(x, y)Gl/'A and fe'(x, y)eV for all y>jβ and

I x I < 1. (5.4) is proved, and this completes the proof of the first part of (i).

In order to prove the second part of (i), it is enough to show:

(5.5) φ : Δ*->DWtPfM extends continuously in the natural topology induced by

β
Taking a finite cyclic base extension A —• A, s'\-+s = srr, if necessary, we may assume

that the monodromy y is unipotent and N = logy is the generator M of Lie C(W)Z.

Moreover, [B, (7.13.2)] allows us to change the lattice Hz, if necessary, so that there

exists a basis {vί9...,vn} of Hz adapted to the filtration W= W(N)\_ — w] and the

polarization S (cf. the proof of (2.5)) such that

„ (o
(5.6) N <

if w = It + 1 , and if w = 2ί, respectively. Set \j/{z): = exp( — zN) φ(z). Then φ(z +1) = φ{z)

hence ^ : ί) -> Z> drops to ^ : A -+D, which extends to φ : zl -> i5 holomorphically by the

nilpotent orbit theorem [Sc, (4.9)]. The corresponding Hodge filtration Fw(ι^(s)) c c

F°(ij/(s)) = Hc varies holomorphically in sezl and is determined by {Fp(ij/(s))}p>t+ί be-

cause of the first Riemann-Hodge bilinear relation (1.3). Let {I/Ί(S), ...,ψf(s)} be a

basis of F + ^ ( s ) ) adapted to the filtration. Set φj(s) =: £ " = χ ^y(s)ι;£. Note that the type

of the limiting Hodge structure (W, F(φ(0))) in the present situation is one of the cases

(3.3), (3.4) and (3.5). Hence, in the case (3.3) φnj(0) = 0 for all φj(0) eFp(φ(0)) with

w>/?>ί + 2 and φnj(0)Φ0 for some ^ . (0)eF ί + 1 (^(0)) , and in the case (3.4), (3.5) the

C-vector subspace of C2 spanned by {(φn-u(0), φnj(O))\l<j<f} is one-dimensional
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and Im(φnj(0)/φn-1J(0))>0 for anyy provided φn_lj(0)Φ0. Let a be the largest integer

p such that Fp(φ(0)) contains some φj(O) with φnj(0) Φ0 in the case (3.3) and ^ π _ u ( 0 ) / 0

in the cases (3.4), (3.5), and set fp : = dimFp =
p' and

c : =
1 ifw = 2 ί + l ,

[2 i fw = 2ί .

Then, reordering the part vc+ί,..., ι?n_c of the basis, if necessary, we may assume that

for every w > p > α + 1 the following hp'w~p square matrices are invertible at s = 0:

Ap : = (φij(s)), where the indices run over fp+ x + 1 <j<fp and

if

' - 1 and ί = n-c+l if p = α,

ί if c - 1

We normalize the basis {φι{s)9..., iA/(s)} by descending induction on p = w,..., t + 1 by

replacing (φj(s) ;fp+1 + l <j<fp) by (φj{s) ;fp+ί + l <j<fp)A~ί and, for each / =

fp+1 + \,...,/, subtracting Y4jδjΊφμU)j'{s)φj(s) (the summation is taken over/p + 1-h

1 <j<fp) from ^y(s), where

j + c if 7 < / f l — 1 ,

n - c + l if j=f,

j + c-l if ; > / " + ! .

Then the resulting n x/matrix (φij(s)) will be of the form in (5.7) if w = 2 ί + 1 , and if

w = 2t, respectively.

/*
/

(5.7)

••• * χ

0 0

/ *

7 0 0

\ 0 0
'* ' / 0

*

\ *
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The entries φij(s) in * of each matrix in (5.7), i.e., with double indices (i,j) running over

for p > α + l

(5.8)

μ(fa-l)+l<ί<n withιVn-c+1, j = fa

μ(fp)+l<ί<n-c, / P + 1 + 1<7</P for p<a-l ,

yield the affine Plΰcker coordinates of the filtration F(ψ(s)), which are holomorphic in
seΔ. For j= 1,...,/,

(5.9) φj(z): = eχp(zN) φj(s)

form a basis of Ft+I(φ(z)) adapted to the Hodge filtration F(φ(z)) corresponding to φ(z)
and their coefficients with double indices (i, j) in (5.8) are considered as the affine Plύcker
coordinates of F(φ{z)). These are still normalized by an affine change of coordinates
replacing ^y(s) + ̂ M_ ί+1J(s)z by

(5.10) ( ^ ) + ̂ - i + 1 J ( s ) z ) - ^ _ ^

(1 < i < c, l<j<fa + 1; moreover (i, j) = (1, fa) in case w = It).

Hence the coordinates of φ(s) e Dw p M are given by

exp 2πy/ -l(φCtfa(s) + z) = exp(2πχ/ - 1 ψCtfa(s)) s ,

(5.11) Ψtj{s)-φH-i+1J{s)ψCtfa{s) ((ij) in (5.10)),

Φij(s) ((i,j) in (5.8) except the above),

from which (5.5) follows easily.
In order to prove (ii), we take the lifting ξeB(W, p, M) of ξ with WeΨl Then,

by Proposition (3.12.ii), there exists a point FeJί(W,p,M) such that π(F) = ξ. Then
for some β>0, v: {zeC\lmz>β}->J^(W, p, M)^DW pM, zι-^exρ(zM) F, is a holo-
morphic horizontal map and, by (4.9), v(z)->ξ as Imz->H-oo. Hence φ(s) : = (projec-
tion) o v((l/2πί) log s + iβ) e D/Γ is the desired period map. •

REMARK (5.12). In the notation and in the normalized situation in the proof of
Theorem (5.1), φ{s) modC(WOz and φ{s) eDWpM differ by the (i, ̂ -coordinates with
l < i < c , l < j < / f l + 1 and j = fa in (5.7) and (5.11). The difference between ι̂ (0)
modC(W0z and φ(0), however, appears only in the (/,y)-coordinates with 1 <i<c and
j=f\ because i/^OHO ( n - c + l < / < n , 1< j<fa+1) by observing the type of the
limiting mixed Hodge structure (W9 F(ψ(Q))).

6. Examples. We consider, as examples, 'tame' degenerations of surfaces of
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general type on the Noether lines, whose canonical images are rational ruled surfaces

Σd of degree d(i.e., type (d) in the terminology in [H, I, p. 363; II, p. 127]). We denote

by So and F the section of Σd-^P1 with S%= —d and a fiber, respectively.

(I) Let X be a minimal algebraic surface on the Noether line c\ = 2pg — 4, where

cί=c1(X) is the first Chern class of X and pg=pg(X) is the geometric genus of X. We

assume that X is of type (d) in the above sense. Then, by [H, I, Theorem l.ό.iii], such

a surface X occurs, via the canonical map, as the minimal resolution of singularities of

the double covering of Σd branched along a curve B e \ 6S0 + (pg + 2 + 3d)F | with at most

simple singularities, where pg>max{d-\-4, 2d — 2} and pg — d is even. The pg of such

surfaces range over all integers > 4 and the fundamental groups π1 are trivial by [H,

I, Theorem 3.4].

(II) Let Y be a minimal algebraic surface on the Noether line c\ = 2pg — 3. We

assume that Y is of type (d). Then, by [H, II, Theorem (1.3. A)], such a surface Y

occurs, via the canonical map, as the contraction of a unique exceptional curve of the

first kind on the minimal resolution of singularities of the double covering of Σd branched

along a curve Ce\6S0 + (pg + 4 + 3d)F\ where pg>2d—\ and pg — d is even. C has two

quadruple points x, y, which may be infinitely near, on the same fiber other than simple

singularities on the proper transform of C to the blow-up of Σd with center x and y.

The/?,, of such surfaces range over all integers > 4 and the fundamental groups π1 are

trivial by [H, II, Theorem (4.8)].

Between these two series of surfaces, we consider the following two types of

degenerations of branch loci.

(II)->(I): The Cte\6S0 + (pg + 4 + 3d)F\ (teΔ*) on Σd9 with two quadruple points

on a fiber F other than simple singularities, degenerate into C0 = B + 2F, where

Be\6S0 + (pg + 2 + 3d)F\ has two ordinary double points on the fiber F other than the

simple singularities come from that on the Cv

(I)-KΠ): The Bte\6SOfd + (pg + 2 + 3d)Fd\ (teΔ*) on Σd have one double point Pt

at which the two branches have contact number 2 and two ordinary double points At,

A't and possibly other simple singularities. The three points Pv At, A't crash one another

to make up one triple point P on Bo. P is apart from the minimal section Sod and each

pair of the three branches have contact number 2 at P. Bo is smooth at the other three

intersection points with the fiber Fd containing P. By blowing-up Σd at P and contraction

the proper transform of Fd, the total transform of Bo becomes C + 2Fd_ί with

Ce\6Sod-ί+((pg—l) + 4 + 3(d—l))Fd-1 | on Σd_ί9 which has two quadruple points on

one fiber other than the simple singularities come from that on Bo.

According to these, we have two types of semi-stable degenerations of surfaces on

the Noether lines.

(II)->(I): g : <& -• A is a semi-stable degeneration whose smooth fibers Yt: = g " x(ί)

(teΔ*) are minimal surfaces of type (d) with cί(Yt)
2 = 2pg(Yt)-3, pg(Yt)>4. Yo: =

g~1(0) = X\j U, where X is a minimal surface of type (d) with c1(X)2 = cι(Yt)
2 — 1 =

2pg(X) — 4, pg(X) = pg(Yt)>4, and U~P2 intersects Xalong a smooth conic on P2 hence
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XnU has self-intersection number - 4 on I We need not extend the base in the
semi-stable reduction in this case.

(I)-*(Π): / : #-> A is a semi-stable degeneration whose smooth fibers Xt: = / " 1(t)
(teA*) are minimal surfaces of type (d) with c1(Xt)

2 = 2pg(Xt)-4, pg(Xt)>5. Xo: =
f-\0)=Yu V, where Y is a minimal surface of type (d) with cί(Y)2 = cί(Xt)

2-\ =
2Pg(Y) — 3> PjίY)=Pg(Xt) — l ^ 4 > K is a rational surface, and Y n V is a smooth elliptic
curve with self-intersection number — 1 on Y, hence is the exceptional curve of the
minimal resolution of a simple elliptic singularity of type E8. We need to take a ramified
double covering of the base in the semi-stable reduction in this case.

Thus two series of smooth families of surfaces with (pg, c\) on the Noether lines
in question are connected by the above 'tame' degenerations:

(II): (4,5) (5,7) ••• (p,2p-3) ( p + l , 2 / > - l ) •••

i \ Ϊ \ ••• \ i \ i \ -"
(I): (4,4) (5,6) ••• (/>, 2/7-4) (/>+l,2/>-2) •••.

REMARK (6.1). Ashikaga and Konno [AK] showed that degenerations of the
above type are observed widely in the geography of surfaces of general type.

For the above semi-stable degenerations, we observe the Clemens-Schmid sequences
(cf. [C]) and the Mayer-Vietoris sequences

H\% Φ-Yo) >H2(Y0) >H2(y,) — H2(Yt),

n U) >H2{Y0) >H2{X)@H2{U),

H\Y)@H\V) >H\YnV)-^H2(X0) >H\Y)@H2(V).

Since H1(Xn ί/) = 0, we see that H2(YQ) carries a Hodge structure of pure weight 2 so
that the monodromy weight filtration W=W(N)[-2] is trivial, i.e., Q=Wι<=:W2 =
H\Yt). As for the second family, since H1(Y)φH1(V) = 0 and H\3C, %-X0)~
i/4(jr0)^//4(Y)θ#4(JO, we see that β is injective and ImjS n Imα = 0 in H2(X0) for a
reason of weight. It follows that Wo = 0 and W1^H1(Yn V). Hence W satisfies the
conditions (2.1), (2.2) and we can apply Theorem (5.1. i) to the period map φ : A * -» D/Γ
associated to the variation of Hodge structure of weight 2 arising from the smooth
family/: 9£ — Xo-+A* and obtain the holomorphic extension φ : A-+D/Γ. Thus we
can discuss the differential dφ(0) of φ at Oe A.
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