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Abstract. We will give a complete classification of Q-structures of quasisymmetric
domains. In the standard case, it will be shown that there are only very natural
Q-structures coming from semisimple Q-algebras with positive involutions. As is shown
in the Appendix, when the domain is symmetric, any Q-structure of it as a quasisymmetric
domain can uniquely be extended to one as a symmetric domain.

The purpose of this note is to determine the Q-structures of quasisymmetric
domains.

The notion of a quasisymmetric domain was introduced in [S3] (cf. also [S6,
Ch. V]). It was shown that, among Siegel domains (of the second kind), the symmetric
domains were characterized by three conditions (i), (ii), (iii). A Siegel domain is called
quasisymmetric if it satisfies the conditions (i), (ii). It is known that any symmetric
domain 2 with a fixed boundary component % has a natural structure of a fiber space
(a Siegel domain of the third kind) over &, in which the fiber over each point of % is
a quasisymmetric domain. All quasisymmetric domains of “‘standard” type are obtained
in this form (see §4), while there are quasisymmetric domains of non-standard (quadratic)
type that are not obtained in this manner.

A quasisymmetric domain & is defined by a data (U, V, 4, ¥, I), where U, (V, I)
are real and complex vector spaces of finite dimension, 7 denoting a complex structure
on V. € is a self-dual homogeneous cone in U (condition (i)) and 4 is an alternating
bilinear map V' x V= U such that A(v, Iv') (v, v'€ V) is “@-positive” (see 1.1). In §1, 2
we summarize basic definitions and properties concerning quasisymmetric domains.
Here we give the condition (ii) in the form independent of the complex structure I,
viewing I as a point in the parameter space S=&(V, 4, ¥). To give a Q-structure of
& is, roughly speaking, equivalent to giving a Q-structure of (U, V) such that the affine
automorphism group Aff.%, is defined over Q. By virtue of the complete reducibility
of quasisymmetric domains (see 2.5), our problem of determining Q-structures of &,
is reduced to the Q-irreducible case. A general method of determining Q-irreducible
QO-structures of &; with V'#0 is given in §3. In particular, it will be shown that a
O-structure of &, is essentially determined by that of the enveloping algebra of the
representation of Lie Aut% on V, which is a (Q-simple) Q-algebra with positive
involution. Applying this method to the standard and non-standard cases, in §§4, S,
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respectively, one can easily classify all possible Q-structures of &;. We also give an
explicit expression of A4 in each case.

In the simplest case, where ¥ =2, (R), a Q-structure of #,, denoted as (IIT{}), ),
is given as follows. One takes a pair of Q-structures of U and V, for which there exist
two Q-vector spaces V| and V, such that one has

v@=8svi®Vvy), V@=v®Vr,,

S denoting the symmetrizer and dimg V;=v; (i=1, 2). Then the alternating bilinear map
A and the complex structure 7 are given in the form

A(v; ® v, v ® v5)=8S(v; ® v})ay(vy, v53)
(v, vieV,i=1,2),
I=1, ®I,,

a, denoting a non-degenerate alternating Q-bilinear form on ¥V, x V, and I, denoting
a “rational” point in the Siegel space ©=&(V,(R), a,). It will be shown in §4 that, in
the standard case, one can obtain all Q-structures of &, generalizing this construction
to vector spaces over a division algebra over Q with positive involution.

In the Appendix, we will show that, when the domain &; is symmetric, any
Q-structure of &; as a quasisymmetric domain can be extended (uniquely) to a
Q-structure of it as a symmetric domain.

One of the motivations of this study is to construct a new kind of cusp singularities
(cf. [S9]). Cusps of the arithmetic quotients of symmetric tube domains have been
studied by many mathematicians. Especially, a generalization of the Hirzebruch
conjecture, which relates the zero value of the zeta functions Z, associated with the
cone % with some geometric invariants of the cusp, was recently established by Ogata
[02] and Ishida [I2] (see also [SO]). In the case of quasisymmetric domains with V0,
for which Q-rank Aut% is =1, one can obtain similar cusps, which we propose to
call cusps of the second kind; in the notation of §4, this occurs only in the following
three cases:

2;vy0

RF/Q(Ifsf,?zp,q)’ Dy/Z, hy), (00=2).

RF/Q(III(ll;)vz/Z)I s RF/Q(III(Z) DO, hZ)I s

It is expected that one can further generalize the result of Ogata and Ishida to the case
of the cusps of the second kind to obtain a geometric interpretation of the values of
the zeta functions Z, at negative integers.

1. Siegel domains.
1.1.  Siegel domains (of the second kind) (cf. [PS], [S6, Ch. III, §§5-6]). A Siegel
domain is defined by the following data (U, V, 4, €, I). U and V are finite-dimensional
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real vector spaces and 4: V' x V- U is an alternating bilinear map. € is an open convex
cone in U, which is “non-degenerate” in the sense that €n —%={0}. I is a complex
structure on V satisfying the following condition:

(1) A(v, Iv') is symmetric and “#-positive”, i.e. one has

A, Iv)e€—{0}  forall veV,v#0.

This implies that A4 is non-degenerate, i.e. if A(v, v')=0 for all v'e V, then v=0.
We set

VO)=V@rC=V.®V_

with ¥, ={ve V(C)|Iv= +iv} and extend 4 in a natural manner to a C-bilinear map
V(C)x V(C)-U(C), denoted again by the same letter. Then one has A(V., V)=
A(V_,V_)=0 and

2iA(v_, v, )=A(v, Iv')+iA(v, v)

for v, '€V, v, denoting the V. -part of v.
A Siegel domain ;=% (U, V, A, ¥, I) is defined by

) V,={(u, w)e U(C) x VJImu—éA(W, w)e‘g}.

When V'={0}, one obtains a tube domain ¥ =U+i%.

We denote by €=G(V, 4, ¥) the set of all complex structures I on V satisfying
the condition (1); by the assumption one has S# (. In what follows, it will be con-
venient to consider the complex structure 7 to be a point in the parameter space S,
rather than fixing it once and for all. Then the total space Z = {(u, w, I) | (u,w e, IeS}
is a so-called “‘Siegel domain of the third kind™.

1.2. Automorphism groups. We first define the (generalized) Heisenberg group
V=H(U, V, A). By definition ¥ is the direct product U x ¥ endowed with a multiplica-
tion

3) (, ), v')=<u+u'—% A, v'), v+v'>

for (u, v), (u’, v')e V. It is clear that with the natural homomorphisms one has an exact
sequence

©)) l-+U—>I7—>V—->l,

in which U is central. It is known that, conversely, all central extension ¥ of V by U

(as Lie groups) is obtained in this manner with a (uniquely determined) alternating

bilinear map A. In our case, 4 being non-degenerate, U coincides with the center of V.
We set
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() Au(U,V, A)={g=(91,92)|9: € GL(U), g, GL(V), g, o A=A°g,% gy},

and write g;= p;(g) for g=(g,, 9,) € Aut(U, V, A). We are concerned with the following
automorphism groups:

G,=Aul(U, 6)={g, € GL(U)| 9,4 =%} ,
(6) G=Au(U, V, 4, ¢)={ge Aut(U, V, A)| p,(9)€G,} ,
G,=Sp(V, A)={g,€GL(V)| A°g, x g, =A} .

Note that one has Ker p; =1 x G, and S(V, 4, €)cG,. It is known that G, is a reductive

algebraic group of hermitian type and S(V, 4, €) is the associated symmetric domain

(see 2.3 and [S5]). Since G<Aut ¥, one can construct a semidirect product G=G - V.
For ve V and we V., one defines an automorphy factor by

1
F, w):A(w-i-? vy, v_) ,
which satisfies the relation
1
Flo+v, w)= g, w+v' )+ £, W)+7 A, v') .

Then the Heisenberg group ¥ acts on &, by

(M (a, b)(u, w))=(u+a+ #(b,w), w+b.,)
for (a,b)eV and (u,w)e¥;.

On the other hand, for 7e S(V, A, €), one puts
GI=AUt(Ua V, A5 (ga I)= {gEG|p2(g)€GL(V9 I)} )
Gy=Au(V, A, )=Sp(V, AAnGL(V, I).

Then G, acts linearly on #,, and the semidirect product G;=G; - V acts affinely on
;. G, is a maximal compact subgroup of G,. It is known ([PS], [S6, p. 129, Prop.
6.2]) that the affine automorphism group Aff.%; of &, coincides with G,.

2. Quasisymmetric domains.

2.1. Quasisymmetric case. A Siegel domain #=L(U,V, A, 4,I) is called
quasisymmetric if two conditions (i), (ii) below are satisfied. (For the meaning of these
conditions, see [S3, Prop. 1], or [S6, Ch. V, §§3, 4, especially, Prop. 4.1]. Here we state
the condition (ii) in the form independent of the complex structure /. For the classifica-
tion of quasisymmetric domains, see [S2] and [S3], or [S6, Ch. V, §5].)

(i) There exists a (positive definite) inner product { ) on U such that, defining
the dual of € by
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¢*={ueU|<u,u’)>0 for all ' €€ —{0}},
one has ¥ =%*. Moreover, the automorphism group G, =Aut(U, €) is transitive on €.

When this condition is satisfied, € is called a self-dual homogeneous cone. One then
has G, ='G,, t denoting the transpose with respect to { ). This implies that G, is a
reductive ““algebraic” group (in a weaker sense that the identity connected component
G coincides with that of the real points of a linear algebraic group defined over R).
The map 0, : x+— —‘x is a Cartan involution of the Lie algebra g, of G,. Let g, =F, +p,
be the corresponding Cartan decomposition. Then it is known that for a suitable choice
of a point e in € one has

f,={xeg,|xe=0}.

It follows that, for each ue U, there exists a uniquely determined element T, in g, such
that 'T,=T, and T,e=u; in particular, T,=1,. The map ur> T, gives a linear
isomorphism U=x~p;.

It is well known that the vector space U endowed with a product uu'= T, u’ (u, u’ € U)
is a formally real Jordan algebra with unit element e (cf. e.g. [S6, p. 33, Th. 8.5]). In
what follows, we will normalize the inner product { ) by setting

(8) <u, u,>=tr(KTuu') >

where in the notation of 2.5 below k =Y (r;/n;)1yw with n;,=dim U® and r;= R-rank g{.
By this relation e and { ) determine each other uniquely.
2.2. We now state the second condition:

(i) The homomorphism p,: G- G, is “almost surjective”,i.e. one has p,(G°)=G3.

In what follows, we assume that the conditions (i), (ii) are satisfied. Then with the
natural homomorphisms one has an exact sequence

©) 15 G, — G — G, - (finite) .

Since G; and G, are reductive “algebraic”’, so is G. Hence there exists a connected
normal “algebraic” subgroup G of G such that

(10) G°=G,+(1xG3),  Gyn(lxG3)=(finite).

Then the restriction of p, on G gives an isogeny G;—G,. (Such a subgroup G is
uniquely determined, because G is of cone type and G, is of hermitian type.) Note
that, since 7 is contained in G3, one has G| = G} and hence p,(G})=G]. It follows that
the domain &%, is affinely homogeneous.

Let g, g; (i=1, 2), and g denote the Lie algebras of G, G;, and G/}, respectively.
Then p,|g}:g;—g; is an isomorphism; we put B=p,e(p, |g7)~*. Then B is a
representation of g, on V and one has
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(11) g1 ={(x, f(x))|xeg,} -

Since G| = Gy, B is actually a representation of g, in gl(V, I).
2.3.  Reformulations. For ueU and v,v' eV, we set

(12) A v, v)=<u, Av,v)),
(13) a(v, v')=A v, ') .
Clearly a is an alternating bilinear form on ¥ x V and for Ie€ S the bilinear form a(v, Iv’)
is symmetric and positive definite; in other words, if one puts
hy(v, v")=a(v, Iv")+ia(v, v'),

then 4, is a positive definite hermitian form (which is C-linear in v’) on the complex
vector space (V, I). Let V* and Alt(V) denote the dual space of V and the space of all
alternating bilinear forms on V x V, respectively. Alt(V) may be identified with the
subspace of Homg(V, V*) formed of all skewsymmetric elements. We define an involu-
tion 1=1(a) of Endg V' by

(14) 1y atya  (yeEndgV).

Clearly, for ye Endg V, one has y'=y if and only if ay e Alt(V) and, for ye End(V, I),
y' is the adjoint of y with respect to the hermitian form 4,. One sets

Her(V, a, )={yeEnd(V, )| y'=y}

and denote by 2(V, a, I) the cone of all positive definite elements in Her(V, a, I) with
respect to Aj.
For ue U there corresponds uniquely an element ¢(x) in Endg V' such that

(15) A v, v)=alv, pup) @, v'eV);
in particular, one has ¢(e)=1,. Then the condition (1) is equivalent to
(16) o(U)cHer(V,a,I), o(€)=2P(V,a,l).

Note also that in this notation one has

G,=Sp(V, A)={g,eSp(V, a)| [9,, (U)]=0} ,

17 SV, A, €)=8(V,a)nG,,

S(V, a) denoting the “Siegel space” associated with Sp(V, a) (i.e. the space of all complex
structures / on V such that a(v, Iv’) is symmetric and positive definite). This implies that
G, is a reductive algebraic group of hermitian type with a Cartan involution

0,:9, 1" g,1,
and S(V, A4, ¥) is the associated symmetric domain (cf. [S5]).
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Now, in the quasisymmetric case, one has for xeg,
xA(v, v')=A(B(x)v, v")+ A(v, B(x)") (v, v'€V),

or equivalently,

(B1) o(xu)=P(x)pu)+ewp(x)  (uel).
LEMMA 1. The representation f: g, —gl(V, I) defined by (11) satisfies the relation
(B2) B(x)=B(x)*  for xeg,,

where 1= 1(a).

PrROOF. Putting u=ein (B1) one sees that x e, implies f(x)eiHer(V, a, I). It follows
([S2, p. 127]) that B can be written as a commutative sum of two representations f,
By a,—gl(V, I) such that

Po(a)<=iHer(V,a,I),
B1(x)=pB(x) (xeg,).

Since G is “algebraic” and p; [ G'; (i=1, 2) are rational, all eigenvalues of f(x) (xep,)
are real. On the other hand, (*) implies that for x in p, all eigenvalues of fy(x), resp.
B.(x) are purely imaginary, resp. real. Hence one has f,(p,)=0 and, since g, is generated
by p,, one has f,=0. Thus =, satisfies (f2). q.e.d.

(*)

By (B1) and (82) one has

(%) o(T )= P(T)(u')+ @ )B(T,) .

Hence putting u' =e, one has
1
(18) ﬂ(Tu)=-2—(p(u) for ueU,;

in particular, f(1,)=(1/2)1,. Since g, is generated by p,, the relation (18) shows that
B is uniquely determined by ¢. (This gives another proof for the uniqueness of G.)
[Note that the relations (**) and (18) imply

(19) <p(uu’)=% {oWo)+o)pw)}  (u,u'el),
which means that the map ¢ is a unital Jordan algebra homomorphism of (U, e) into
Her(V, a, I) (cf. [S6, loc. cit.]).]

2.4. Admissible triples. Let (U, V, A, %) be a data satisfying the conditions (i),
(ii). In general, a triple (e, a, f) formed of e€ %, a non-degenerate alternating bilinear
form a on V' x V, and a representation f: g, —»>gl(V) is called an admissible triple belong-

ing to (U, V, €), if there exists a linear map ¢: U->Endg V' with ¢(e)=1, such that
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the conditions (f1), (f2) are satisfied with 1=1(a). Since these conditions imply (18),
and ¢ determine each other uniquely. They also imply that a@(U) < Alt(V). For an ad-
missible triple (e, a, f) one sets

If an admissible triple (e, a, f) comes from the data (U, V, 4, €) as explained in 2.3,
then it is said to be belonging to (U, V, 4, ¥). In that case, one has by (17)

S(V,A,6)=S(V,a, p).

In general, two admissible triples (e, a, f) and (e’, a’, B’) are called equivalent if = p’
and if there exists g’ € G} such that one has e’=p,(g})e and a’=a-B(g;" ') x B(g,™ 1)
Clearly, two admissible triples belonging to the same (U, V, A, ¥) are equivalent.

Conversely, suppose that one has (U, €) satisfying the condition (i), a real vector
space V, and an admissible triple (e, a, ) belonging to (U, V, ). Then, it is easy to see
that, if 7e #(V, a, B), then the linear map ¢ : U—»Endg V associated with f satisfies the
condition (16). Hence, if one defines a bilinear map 4: V' x V- U by (12) and (15), then
A is an alternating bilinear map satisfying the condition (1). In this manner, one recovers
the data (U, V, A4, €) satisfying (i), (ii), to which the triple (e, a, f) is belonging. Clearly
equivalent admissible triples give rise to one and the same data (U, V, 4, ¥).

Thus we have shown that to give a data (U, V, A, €) (with S(V, A, €)# ) satisfying
(1), (i1) is equivalent to giving (U, €) satisfying (i), a real vector space V, and an equivalence
class of admissible triples (e, a, B) belonging to (U, V, €) (for which S(V, a, B)# &).

2.5. Complete reducibility. Let (U, V, A, €, I) be a data satisfying the conditions
(i), (i), and let (e, a, B) be an admissible triple belonging to it. Let

1
@n U, €)=11U" %)
i=1
be the direct decomposition of (U, €) into irreducible factors. Then each ¥® is an
irreducible self-dual homogeneous cone in U®. If one sets
GP=Au(U®, V), gP=LieG?,

then one has
]
(22) a=®af.  aP={lyo}a®s",

where g (the semisimple part of g{) is simple or reduces to {0}. One has

e= El: e® eVeg®,
i=1
One also has the following decomposition of the representation space ([S2] or [S6,
p. 237, Prop. 5.2]):
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1
V=@ r®, B=@p?,
(23) i=1
a=ya", =Y 19,
where VO =B(1,0)V, (e?, a®, B?) is an admissible triple belonging to (U®, V®, ¢?),
and 1P S(V®, a®, B0,
It follows that one has A=) A® with
A9 YO YO L, yo
each (U®, VO A9 ¢® [9) (1<i<l) being a data satisfying the conditions (i), (ii),
to which the triple (e, a®, B?) is belonging.
Thus one obtains the direct decompositions of the domains:

]
(24) PV, 4,6, 1)= ] LU, VO, 40, 40, [0
i=1
1
(25) SV, 4,%)=[] S(V®, 49, %),
i=1

which are known to be the unique irreducible decompositions of &; and & (as complex
manifolds) ([S6, p. 237, Th. 5.3]).

3. QO-structures of a quasisymmetric domain.

3.1. Definition of a Q-structure. Let (U,V,A,%,I) be a data defining a
quasisymmetric domain &, and (e, a, f) an admissible triple belonging to it. By a
QO-structure of & ; we mean a pair of Q-structures of U, V, i.e., a pair of Q-vector spaces
Uy, Vo such that U=U,®¢R, V=V,®¢R, satisfying the conditions (Q1), (Q2) below.

(Q1) The Lie algebra g, and the bilinear map A are defined over Q.

This condition implies that the groups ¥, G, and G, (i=1, 2) are defined over Q;
hence so is the ‘“‘algebraic” subgroup G in (10). It follows that the representation
B: g,—g¢l(V) is also defined over Q.

Under the condition (Q1), we can always choose e in U,=U(Q). Then the
corresponding Cartan involution 8, of g, and hence f,, p,, the linear map u+ T, (hence
the normalized inner product { ) are defined over Q. The bilinear form a= A4, is also
defined over Q. Conversely, if the triple (e, a, f) is defined over @, then so is A. Thus
we can rephrase the condition (Q1) as

(QY) The Lie algebra g, is defined over Q, and the triple (e, a, B) can be taken to be
defined over Q.

Next we state the condition (Q2):
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(Q2) The Cartan involution of g, defined by I is Q-rational.

This means that the point 7 in the symmetric domain ©=&(V, 4, ¥) is “rational”
(with respect to the given Q-structure) in the sense of [S8]. It follows that G, and G,
are defined over Q. [Note that (Q2) does not necessarily imply that GL(V,I) or
Her(V, a, I) are defined over @, and that under (Q1) there may be no rational points
in G.]

3.2. Q-irreducible Q-forms. We assume that a Q-structure (U,, V,) satisfying
the conditions (Q1), (Q2) is given. By virtue of the complete reducibility we may (hence
will) further assume, without any loss of generality, that (U, €) is Q-irreducible, i.e. no
proper partial product in the direct decomposition (21) is defined over Q. The Q-structure
of &, is then called Q-irreducible.

In the case V=0, the domain &, is a symmetric tube domain, for which our
problem of classifying Q-structures becomes trivial. Hence, in what follows, we will
always assume that U is Q-irreducible and V#0. Then the representation f is faithful
and ¢ is injective. Note that, if dim U'"'=1, one has ¢ =0 and our theory becomes
also trivial.

The Galois group ¥ =Gal Q/Q acts transitively on the set {U"” (1 <i</)}. Hence,
if one puts 4, ={ce%| UV = UM}, then the field F= Q corresponding to %, by Galois
theory is a totally real number field of degree /. If one sets ¥ =]_['i= 1 %,0; with a set of
representatives {a;} (o, =1) for ¥,\ ¥, then one has U"” = UV’ In the notation of 2.5,
g™ and e are then defined over F. Moreover, V'Y= f(1,u,)V is defined over F and
hence so are also a'V, B, A1) etc. and the Cartan involution of g&" defined by IV
The corresponding objects g', etc. for 2 <i</are obtained from these by the conjugation
o;. By abuse of notation, we sometimes express this situation by writing g, = Rg,9(g{"),
etc. Note that if dim UV > 1, g3 (the semisimple part of g,) is Q-simple and ““pure” (i.e.
all R-simple factors g'’* are mutually R-isomorphic). The representations B are also
mutually R-equivalent in an obvious sense.

By the above observation, we see that the problem of determining all Q-structures
of &, satisfying the conditions (Q1), (Q2) can be solved in the following steps.

0. Fix a totally real number field F of degree /.

1. Find all F-structures of (U, V) such that g‘" and the faithful representation
BV are defined over F. Such an F-structure of (U™, ¥™V) will be called admissible. Then
we set U= Rp,oU™", g, =Ry p(at"), and (V, B)=Rpo(V ™, BY). The (U?, V?) (i>2) are
given the conjugate admissible F’-structures.

2. Choose ee¥n U(Q) and find a non-degenerate alternating bilinear form a)
on VM x Y defined over F such that (e'V, a®, V) is admissible. Then all the conju-
gates (e, gWoi o) (2 <i<[) are automatically admissible.

In this way one obtains an admissible triple (e, a, ) defined over @, which determines
an alternating bilinear map A4 defined over Q. Thus one has a Q-structure of &, satisfying

QD).
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3. Finally, find all rational points / in the symmetric domain €= &(V, 4, €) with
respect to the given Q-structure.

The solution of the step 3 was already given in [S8]. We give solutions of the steps
1 and 2 in the succeeding sections.

3.3. The R-primary case. For simplicity, in the rest of this section, we assume
that the representation (V¥), BV} is R-primary, i.e. a direct sum of mutually equivalent
R-irreducible representations. Actually, it is known ([S2]) that this is the case except
for the case where ) is a quadratic cone 2(1, n, — 1) with n, =2 (mod 4).

In what follows, a division R-algebra D, is always endowed with its standard
involution &+ &. We denote by 8, and d, the degree of D, over its center and the
degree of the center over R, respectively;i.e., 6, =1for D,=R, Cand 6, =2 for D, =H,
and d,=1 for D, =R, H and d, =2 for D, =C.

Let (V'V, BV) be an R-irreducible representation of gV contained in (V, V)
and put V{"=Homgyn(V{", V). Then there exists a uniquely determined division
R-algebra D, such that V{V is a right D,-module and the g{"-endomorphisms of V{1
are given by the right multiplication y, (€ D,). Then V(" has a natural structure of a
left D,-module defined by &v,=v, o ., and one has a tensor product decomposition:

(262) VO= V0@, VY,
(26b) BO=pP@1.

Suppose that (UM, VM) is given an admissible F-structure. Then, (V(F), B1) is
F-primary. Hence, in a manner similar to the above, one has an F-irreducible
representation (¥, ;) over F, ¥, =Homgu(Vy, V(F)), and a division F-algebra D,,
such that V; and V, are right and left D,-modules, respectively, and

(273) V(l)(F)= Vl ®D0 V2 N
(27v) BOIVIF)=p®1,

(cf. [S1, pp. 230-231, Prop. 1, 2], or [S6, Ch. IV, §1]).

Since g3 is pure, one has decompositions of V= Ve gimilar to (26a) with the
same D, for all 1<i<l To be more precise, let c{’ be a primitive idempotent in
DG(R)=Dg ®p. R and fix an R-isomorphism

W9 Dy s cODYRC .

Then the D,-module V=(V(R)c?, y{) gives an R-irreducible representation of g¢’
contained in (V' B®), (In particular, one may assume that V‘! is given in this manner.)
Hence, putting VY =(cPV5(R), ¢{), one has

(282) vO=VP®,, 1Y,
(28b) BO=pO®1  (1<i<l).
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One denotes the degree of D, over its center Z by ,, and the D,-rank of V;
(j=1,2) by v;. Let Do(R)~ M, (D,); then one has 6,=0,s, and

(29) dimg VO =v,5,62d, , dimgV®@=v,v,62d, (1<i<l, j=1,2).

Since one has Z°(R)=R or ~ C simultaneously for 1<i<l, accordingasd,;=1or 2, Z
is either = F or a totally imaginary quadratic extension of F.

3.4. The algebra of,. Let o/, denote the R-subalgebra of Endg V! generated
by BM(g'"). Then o, is R-simple and o/, ~End, (V{")~ D,. Moreover, ./, is defined
over F and &/,(F)~Endp (V,)~D,. &, is of degree v,6,d; =vs,6,d, over R.

LEMMA 2. For each Cartan involution 0, of g\ there exists a uniquely determined
involution 1, of <, such that one has

(30) B0 x)=— BV (x)" .
Such an involution 1, is positive.

PrOOF. Let 6, be a Cartan involution of g{"’. Then 6, extends to a Cartan
involution 07 of (&/;).;., Which is reductive. Then there exists a positive involution 1,
of &7, such that one has ', y= — y*' for ye «/,. This 1, satisfies (30). Since ./, is generated
by BM(g'V), 1, is uniquely determined. g.ed.

It follows that, if one has an admissible F-structure on (U, V™) and ifee € n U(Q),
then the involution 1, corresponding to 0, determined by e is defined over F, and for
each i the conjugate 19 corresponds to the Cartan involution 6% of g{’ determined by
e®=eMoic@® Thus 1, is totally positive, i.e., all the conjugates 1 are positive. Other-
wise expressed, Rpg(1,) is a positive involution of the simple Q-algebra Ry o(/1)(Q). It
follows that D, has also a totally positive involution 1, such that 1,|Z=1,|Z.

As is well known, for the algebra D, with a totally positive involution one has
only the following four possibilities:

(Type 1.1) Dy=F; o=1, D, =R,
(Type 1.2) D, is a totally indefinite quaternion algebra over F; §,=2, D, =R,
(Type 2) D, is a totally definite quaternion algebra over F; §,=2, D, =H,
(Type 3) D, is a central division algebra over a CM-field Z with an involution of
the second kind with respect to Z/F; 6,>1, D, =C.
Note that in case ,=0J, the (unique) positive involution 1, of D, is induced by the
canonical involution of D,.
We identify .o¢,(F) with End, (V) and set

31) 0,(w)=28(T) for ueUD .

Then @, is a linear map: UV >Her(s#,, 1,) and the pair (B, ¢,) satisfies the relations
similar to (B1), (B2):
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@1(x() = B1(x)¢1 () + @, () B,(x)",

B1(0:(x)=—B,(x)*, @i(eM)=1.
One notes that, given a “base point” e e €™, the involution 1, and the map ¢, are
uniquely characterized by (32). These relations also imply that ¢, is a Jordan algebra

homomorphism of U™ into (#,);or4an and that ¢,(€") is contained in the cone of all
positive elements in Her(/,, 1,).

(32)

PROPOSITION 1. The normalized inner product of UV corresponding to eV is given
by

(33) Cu, u'y =ry(vi0od;) " tr(@ () (u,u'eUY),
where r, = R-rank g{") and tr denotes the reduced trace tr .
Put {u, u")' =tr(¢,(®)@,(«')). Then by (32) one has
o 'y = —u, 0,00u’y  for xegld.

Hence one has { ) =c{ ) with a real constant c. Putting u=u’=e", one has by (8)
c=rittr(l)=r;'v,00d,, as desired.

3.5. We shall now show that, conversely, one can obtain admissible F-structures
of (UM, ¥') from an F-algebra structure of .o/;.

THEOREM 1. Let o/, be the subalgebra of Endg V) generated by BV(g'). Then
an F-algebra structure of s/, gives rise to an admissible F-structure of (UV, VV) if and
only if the following conditions (a), (b), (c) are satisfied:

@ BMgYY) is a linear subspace of o, defined over F.

(b) There exists a totally positive involution 1, of of,(F) leaving B (g\V)(F) invar-
iant.

(¢) Let o (F)~Dy, o1~D, and let 6, and 5, be the degree of D, and D, over
the center. Then the multiplicity of the R-irreducible representation BV in BV is divisible
by 5,=204/0;.

Proor. The “only if” part is clear from what we said in 3.4. To prove the “if”
part, we construct an admissible F-structure of (UY), V), starting from an F-algebra
structure of ./, satisfying the conditions (a), (b), (c).

Take a primitive idempotent ¢; in o/;(F) and fix an F-isomorphism

Y12 Do —c (F)ey .

Then V,=(,(F)c;, ;) is a (right) D,-module of rankv, and one can make an
identification &/,(F)=End, (V). By the condition (a) one has an F-Lie algebra struc-
ture on g such that B, =p"|g{"(F) is an F-linear representation of g{"(F) in
&1(F)=Endp (V). Then, defining V{" (j=1, 2) as explained in 3.3, one obtains the
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decomposition (26a), (26b). By the condition (c), the multiplicity of B¢ in B*) can be
written as v,s;, and one has the relation (29) for i=1.

Now an F-structure of V@ is defined as follows. Fix an R-isomorphism
Dy(R)~M,(D,) and the matrix units (e{}’); <; j<,, in Do(R) such that c{V=e!}). Then
there exist injective g{M-equivariant linear maps

¢;: VI(R).—_E.)1 VW L ) (1<i<yy)
such that one has V"= @ ¢,(V,(R)). Hence one can define an F-structure on V'V so
that

VOE)= @ ¢V

Then, in the manner explained in 3.3, one obtains the decomposition (27a), (27b).

An F-structure of U™ is defined as follows. Take a totally positive involution 1,
of o/,(F) leaving f,(g{"(F)) invariant. Let 6, be a Cartan involution of g{!’ defined by
(30) and let e be the corresponding point in U™ (determined up to a scalar
multiplication). One defines an F-structure of UV so that

UDF)={ue UV |T,ep(F)} .

Then, clearly, U“XF) is invariant under g'“(F), and one has e®eUW(F),
©,(UF))c Her(s#,(F), 1,). Thus one obtains an admissible F-structure of (U", V"),
q.e.d.

In the above notation, since § =09 is a Cartan involution of g{’, one may,
replacing e by ae* with o.e F* if necessary, assume that e® =i e @ forall 1 <i</,
ie.e=) ePe®.

REMARK. The F-algebra structure of o7, satisfying (a) is uniquely determined by
that of g‘*). The admissible F-structure of (U'", V")) compatible with a given F-structure
of g{" is uniquely determined up to g{"-automorphisms of (U}, V),

3.6. Determination of a'V. Let ¢e{+1}. In general, by a (D, 1,)-&-hermitian
form h; on aright Dy-module V, we mean an F-bilinear map h, : V; x V| — D satisfying
the following conditions:

hy(vy, 018)=hy(vy, v, (v, v)=¢hy(vy, V)
for wv,,vieV,, EeD,.
The dual V¥ of V, (as an F-vector space) is viewed as a left Dy-module in a natural

manner. Then the hermitian form A; may be identified with an e-symmetric
(Dy, 1o)-semilinear map A, : V;— V¥ by the relation

(34) tr1)0/17(]11(01, v1))=<vy, hy(v1)) .
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Similarly, a (D, 1o)-¢’-hermitian form 4, on a left D,-module V, (satisfying this time
h,(Ev,, v5)=Ehy(v,, v5), etc.) is identified with an ¢’-symmetric (D, 15)-semilinear map
h,: V,— V% by a relation similar to (34), V% being viewed as a right Dy-module.

Now suppose one has an admissible F-structure on (U, ¥V) and ee % n UY(Q).
Let 1, be the totally positive involution of «,(F)=End (V;) corresponding to e* in
the sense of Lemma 2. Then 1, can be written in the form

(35 1y =1,(hy): y>hy t'yhy

with a (D, 1o)-n-hermitian form A, on V; (n= £ 1) uniquely determined up to a scalar
multiplication of F*. (In the case of Type 3, one may, hence will, assume that n=1.)
The hermitian form 4, can be taken to be “totally positive (definite)”. To be more
precise, let ¢, Y9, V¥ be as defined in 3.3 and extend 1§ to an R-linear involution
of DS{(R). Then as is easily seen, there exist b € DZ(R)* (1 <i<!) such that one has

(36) YPEYE =9 Y PEWY  (EeDy);
in particular, one has
PR = p O PP
The elements c¢PpP=bDc" are uniquely determined by the ¢{’ up to scalar
multiplications of Z(R)™. In particular, one has
(37) PP P =y b with p=+1.
(In the case of Type 3, one chooses b so that n;=1.) Then there exist D,-nn,-hermitian
forms 4% on V{’ determined by the relation
(33) YO, 01PN =cPbPhT (v, v))e?  for vy, vieV].
Since 1, is totally positive, one has yn;=1 (1<i<!/) and the h{”’s are definite. Hence

one has 7= —1 for Type 1.2 and n=1 for all other cases. For the given choice of s
one may choose 4, in such a way that all the h%{) are positive definite.

REMARK. The above definition of the “positivity” of 4; depends on the choice
of the s, which is usually made in the following manner. Fix isomorphisms
M®: DE(R) 3 M, (D,) and the matrix units (¢); <; x<,, in DF(R) in such a way that

MOWYPE)=EMDE,)  for (eDy;
in particular, %) =¢{. Then one chooses b} so that
oy b9

then by (37) one has b$'8'=y,5{. By these conditions the 5{ are uniquely determined
up to scalar multiplications of R*. Now, for Type 1.1 and 2 one has s, =1, ¢{=1, so
that one may put 5% = 1. For Type 1.2, one has s; =2, n,= — 1, and one takes ¢ so that
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() — 0 1>
MOb$) (_1 o)

For Type 3, one chooses b so that M@(H{) is positive definite. We also note that in
this notation (38) is equivalent to saying that

(38) MOGBPhEv,, v))=(r P, Vi@ i cjnes,  fOr vy, vy eV
(cf. [S6, Ch. IV, §3]).

THEOREM 2. Suppose that (UY, V) is given an admissible F-structure,
ecénUMNQ), and hy is a totally positive (Dy, 10)-n-hermitian form on V, such that
1,=1,(h,) is the involution corresponding to e*). Then (e'V, aV, BV) is an admissible
triple belonging to (UY, VIV, €Y defined over F if and only if a'V is of the form

(39 aV(v, ®poV2, V' ®p,02) =trpyplhy (1, v1)hy(va, v5))  for vy, vieV;, j=1,2,

where h, is a (D, 15)-(—n)-hermitian form on V.
(Cf. [S1, p. 234, Prop. 3], or [S6, Ch. IV, §2].)

ProOF. Assume that (e?, 'V, BV) is an admissible triple defined over F. Then by
(B2) and (30) the involution 1=1(a'") leaves </, invariant and 1|/, =1,. Since one has

End, (V" (F))= End, (V1) ®zEndp (V) ,
there exists an involution 1, of Endp, (V) such that 1,|Z=1,|Z and
(71 ®2y)'=y1®zy%  (y;€Endp(V)), j=1,2).

Hence, making the natural identification V(F)* = V% ®p V¥, one has a (D, 10)-(—#)-
hermitian map A, : V,— V% such that

av, ® poV2) =hy(v1) ® p,h15(v2)
which is equivalent to (39). The converse is clear. q.e.d.

With the same notation as in Theorem 2, let (e®, a®, p@)=(eV, a'V), gV
(1<i<l); then they are admissible triples belonging to (U, V'@, €¥) defined over F°:.
Let ¢, y¢), b{) be as above. Then for each 1<i</ there is D,-skew-hermitian form
A% on the left D,-module V' determined by the relation

(40) Y PP (cPv,, cPvo))=cPhG(vs, DY '  for vy, v5eVE,
and one has
(41) a(i)(vl®D|02, V1®p, U'2)=trp,/n(h(1i)(vn U&)h(zi)(uz, v3))
for v, vje VP, j=1,2
(cf. [S6, Ch. IV, §3]).
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3.7. The description of S. Let
1
1eG=6(V,a,p, I=> 19,
i=1

[YeSO=6(VD, a®, p0) .
Then, since IV is f9(g{)-invariant, one has
@2) =1, 19 (1<i<l),
with a complex structure 19 € Endp, (V9), which by (41) satisfies the condition
(43) h ), IP%)  (vy, v5€ VYY) is Dy-hermitian and positive definite .

Let SV, h{) denote the space of D,-linear complex structures on V'{ satisfying the
condition (43). Then one has

(44) SV, a®, fO) SV, D).

This implies, in particular, that for any Q-rational admissible triple (e, a, f) one has
1
S(V,a, )~ [ SV, i)+ .
i=1

The symmetric domain & (with the given Q-structure) is denoted as
RpioS(V, Dy, hy). In the case where D, is of Type 1.1, Type 1.2, and Type 2, © is
also written as Rp,o(I11$)),), Re o112, Dy, h,), and Rgo(I1$2, Dy, h,), respectively.

Note that the corresponding group G, has no compact factors (and hence
determined uniquely by &) except for the following two cases. The group G,
corresponding to Ry o(II¥, Dy, h,) is compact, so that the corresponding domain &
reduces to a point. The group G, corresponding to Rpo(II$?, Do, h,) (under the
assumption that & has rational points) is isogenous to the direct product of two Q-simple
groups G5, G, one of which is compact and the other is isomorphic to the group
corresponding to Ry o(III{"). (These cases are usually excluded from the classification.)

3.8. In the case where D, is of Type 3, one has to determine furthermore the
signature of ). For that purpose, let ¢} and ¢} denote two imbeddings of the center
Z of D, into C extending g;: F—R; then one has ¢} =0, ° g}, 0, denoting the complex
conjugation of C. We determine ¢¢{? and (¢/, ¢}) in such a way that

(45) YO =yP)=a"c?  (xeZ).
Then we say that the ¥’ are compatible with the “CM-type” (d’) of the CM-field Z.

In this case, since D, = Cis commutative, we don’t distinguish left and right C-vector
spaces. Then, the (V', y{’) being C-vector spaces, one has direct decompositions

(46) Vgi) ®RC= Vg-i)l ) Vgi),/ , V}i)u — V§i)/ao R (1 SlSl, ]= 1, 2) ,
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where
Vi ={ve VO @pC|oyP(E)=¢v for Ee€C},
VO ={oe VP @gC|oy(¢)=Ev for £eCY,
and dim¢ VY =dim V9 =v,6,.

Let B and B =B denote the restrictions to ¥{” and V{"" of the natural
extension of the representation B to V{? ® g C. Then they are absolutely irreducible
and the primary decomposition of (V? ® xC, B?) is given by
(47) VOReC=VI RN @V @ VY.

Now, for the given complex structure I® on V¥, set

VO={veVO@xC|IP=,/—10}.
Then V@ is BO(gP)-invariant, and the primary decomposition of it is of the form
(48) Vo=V @ WY @VY' ®c Wy,

where WY and W4 are complex subspaces of V'§” and V'$" of dimension p; and ¢;,
respectively. Since one has

VO ®eC=VD@ yio,
one has
(49) VY =W @ Wy,
in particular, p;+¢;=v,5, (1<i</). Thus one has
(50) VO, 19, B9 =(VY, ppY @ 4.8 .
Otherwise expressed, one has

VO=Rou(VY @cVY).

9= RC/R(I ®c1(2i)’) >

where 1§ is a complex structure on V'{, defined by

_ -1 on WY,
wo{ |
- -1 on Wy,
Let h{" denote the (—1)Y ™ !-hermitian forms on V{" obtained from h{’ by the
C-isomorphism (V, Y )~ V' then h9'(w,, wh) (w,, whe VY) is C-linear in w,. For
the sake of consistency, we set

(51

(51a)

RS (w2, W) =h§ (W, w3) ,
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to obtain a skew-hermitian form which is C-linear in w’,. Then by (41) one has
(52) a0, ® vz, vy ® ) =2 Re(h(wy, wi)hY (w,, wh))
where

vi=wi+w;, vi=wi+w;, v, 05e VP, w, wie vy (1<i<l j=1,2),

and the symbol ®, in (52) stands for the tensor product over y{(C). Since a1 and
the hermitian form A% are positive definite, one has by (51), (51a) and (52) that the
hermitian form \[—1hS" on V" is of signature (p,, q;). In this sense, we say that h, (or
1,) is of signature (p,, g;); <; <; With respect to the given “CM-type” (o;). In this case &
is written as

(53) S =H 6( V(zi)l, ﬁg")= RF/Q(B( Vz’ Do/Z, hz) .

For the given skew-hermitian form #4,, the CM-type (g}), .;<, can be so chosen
that one has p;>g¢; for 1 <i</. When & has rational points, the reductive group G, is
(strictly) pure, so that there exist integers p, ¢ such that p,=p, g,;=¢ (1 <i<l!). Then the
symmetric domain & in (53) is denoted as

Regl192, Do/Z, hy)

p.q>
The corresponding group G, has no compact factors, except for the case ¢g=0, in which
case the group G, itself is compact. Note also that the group corresponding to
Rpo(1$), Z, hy) is Q-isogenous to the one corresponding to Ry o(II$, Dy, h?) for a suita-
ble totally definite quaternion algebra D, over F and a D,-skew-hermitian form A4’
of 3 variables.

REMARK. When p> g, there exist rational points in & if and only if one has 50|q
and Q-rank G,=gq/d,. If this is the case, I is rational, if and only if there exists a
Dy-submodule W, of V', of rank ¢/, such that

W =(W3C)n Ve, W =W vy

1 denoting the orthogonal complement with respect to h,. When p =g, the situation is
a little more complicated ([S8]).

4. The standard case.

4.1. Admissible F-structures of (UV, V1Y), According to the classification the-
ory of irreducible self-dual homogeneous cones, ‘! is isomorphic to one of the fol-
lowing cones:

2,(R) (ryz1), 2,(C)(r,22), 2,(H)(r23), P(,n 1)@ =3).

We call the first three cases standard and the fourth non-standard or quadratic. Note
that 2,(R) is the unique case for which r;=n;=1 and that the quadratic case is
characterized by r,=2; in particular, one has the isomorphisms 2,(R)~Z#(l,2),
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2,(C)~=2(1, 3). (For convenience, we exclude 2,(H)~%(1, 5) from the standard case.
Because of the assumption V'#0, the exceptional case 24(0) is also excluded.)
In the standard case, one has

g~ ,  gP={lyn}a @i,
g ~sl, (D)), D,=R,C,H.

We know ([S2]) that the representation (VV, 1) is R-primary. In (26a,b) V{" is a
D,-module of rank r, and B¢ is a Lie algebra isomorphism

(54

(5%) BV g? —— {yeEndp, (V{")|trye R},

tr denoting here the reduced trace of Endp (V™) over its center. Thus one has
o, ~Endp, (V{")~ M, (D,) and r; =v,5,/6;.

It follows that, if one has an F-algebra structure on ./, with a totally positive
involution 1, then the conditions (a), (b) in Proposition 2 are automatically satisfied.
Hence, in the standard case, an F-algebra structure of </, gives rise to an admissible
F-structure of (U, V1Y) if and only if there exists a totally positive involution 1, of o/ ,(F)
and the condition (c) in Proposition 2 is satisfied.

Now, suppose one has an F-algebra structure on &/, satisfying these conditions
and fix an admissible F-structure of (U™, V") compatible with it. Then one has (27a, b)
with

o,(F)=Endp,V,
(56)

Bi: g{"%(F) = sl(V{/D,) .

Hence in this case one has F-rank g{’=v,.

REMARK. Our argument shows that, in our case, the F-forms of g{ corresponding

to the unitary groups do not occur. (In fact, for such an F-form the representation g
is not defined over F).

On the other hand, one has
(57) UV =S(V{"®,, V),

where S denotes the symmetrizer and the second factor V'V in the right hand side is
viewed as a left D,-space by &v, =v,& (v, € ViV, e D,). UM is also identified with the
space of all symmetric D,-semilinear maps: V{"*— V1, Then the action of g{" on U?
is given by

(58) x(u)=BP(x) o u+uoBP(x)

for xeg{" and ue UW.
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From (57) one also has an F-structure of U*) such that
(59 U(l)(F)= Sq(Vl ®D0 Vl) s

S, denoting the n-symmetrizer S, =(1/2)(1 +#nt), where 7 is the transposition and n= —1
if D, is of Type 1.2 and =1 otherwise. Thus U*)(F) is identified with the space of all
n-symmetric (D, 1o)-semilinear maps: V¥— V. Then the action of g{"(F) on U)(F) is
given by a formula similar to (58).

4.2. Now let ee€nU(Q), e=(e"”), and consider e as a (D, 1,)-semilinear
isomorphism ¥* 3 V,. Then its inverse e ': ¥V, »>¥V* may be viewed as a
(Dy, 19)-n-hermitian form on V,, which we denote by 4, i.e.,

(60) trp ey (v, 01)) =<0y, e®” l1”1 (v, v1€VY).

PROPOSITION 2. Let ¢, and 1, be as defined in 3.4. Then, for ue U"F) and
yesd (F), one has

(61) @y(u)y=uoe",
(62) yr=eWolyoe®™"
(Thus one has 1, =1,(h,), i.e., our notation is consistent.)

Proor. For the proof, we denote the right hand sides of (61) and (62) by ¢(«)
and y*, respectively. Then it is clear that one has ¢',(u) e Her(s;, 1}) and, for x e g{"(F),

@' (x(w) = (B(x) o utuo'By(x)) o eV = B (x) o9y () + @' () o By (x)' .

Hence ¢ is an F-isomorphism U ~Her(s/,, 1)) satisfying the first and the third
equations in (32). In particular, one has

x(e™)=0 <= B,(x)+ B, (x)1=0,

which shows that the map y+— —y"t (ye.o,) induces the Cartan involution 6, of g{"
corresponding to e". Thus the second equation in (32) is also satisfied. Hence by the
uniqueness of 1; and ¢, one has ¢ =¢,, 17=1,. q.e.d.

By (19) and (61) the Jordan product in U is given by
1 -1 -1
uu’=?(uoe(” ou'+uoeM ou),

and by (33) the normalized inner product on U™ corresponding to e is given by
(63) Cuyu'y=(5,dy) " try gue™® 'u'e®) .
Finally one obtains the following

PROPOSITION 3. Suppose we are in the standard case. Let (e'V, aV, BYV) be an
admissible triple defined over F belonging to (U™, VIV, W), h, =e™M ™" and let h, be a



378 1. SATAKE

(Do, 10)-(—n)-hermitian form on V, satisfying (39). Then the corresponding alternating
bilinear map AV : VO x VW UW js given as follows:

(64) AD(v, ® pyV2, Uy ®p,03) =101d1S,(v15(v2, v3) @ p,v')
Jor vy, vieV, and v, v5€V,.
Proor. For ue U')F) one has
{u, A(l)(vl ® otz U ®D01'712)> =A4,(v, ® pov2s v ®DOU’2)

=aW(v, ®p,V2s (ue™” ‘)Ull ®p,02)
=trD0/F(h1(vla (“em_ ‘)vll)lohz(vz, v3))
=trDO/F(h1(U1h2(”2, %), (“e(l)al)vll))
= {0 hy(v,, 5), (€ 'ue™ ™ W) >
=n trdm/r«vxhz(vz, v3) ®Dovll)e(1)_ ‘ueM” 1)
=n0,d;<u, Sn(vth(UZ, v3) ®DOU,1)> s

whence follows (64). q.ed.

4.3. Classification. In the classification theory, the quasisymmetric domain %
with a @-structure described above is expressed by the following symbols, according
as D, is of Type 1.1, 1.2, 2, or 3.

ReoIIS) 00, Rp(IIE),.,,, Do, ho)y s

2vyi;vp0

RF/Q(II(Z) Dy, h,); (v,=3),

RF/Q(I (v&l%)o; (p.9)° DO/Z’ hZ)I (V150 = 2) .

In the standard case, the total space & is always symmetric. For Rg,o(IIIY), ),
the space % may be identified with the Siegel domain (of the third kind) expression
of Rpp(III¢Y,, ;) over the v;-th rational boundary component &= Rp(III{}),). In
the case of Rpo(IIIZ) .., Do, hy)y, 1esp. Rpo(II2), ., Do, hy); (vi=3), let h denote
a D,-hermitian, resp. D,-skew-hermitian, form of 2v,+v, variables in the same
Witt class as #,. Then & may be identified with the Siegel domain expression
of Reo(IIIS) 1 ,,, Do, h3), resp. ReoI1), 4,,, Do, h) over the v;-th rational boundary
component &= Rpo(III2. Dy, h,), resp. Ry o112, Dy, hy). In particular, Rgo(IIZ);,
Dy, hy); (v, >3) is identified with the symmetric domain Rgo(I1%), 1, Do, h%). In the case
Reio(199) . p.ay Dol Z, hy); (v106>2, p+g=v,8,), let h’, denote a (D, 1,)-skew-hermitian
form of 2v, +v, variables in the same Witt class as ,. Then the total space % may be
identified with the Siegel domain expression of Rpp(I¥9 4, .50+4 DolZ, h) over
the v,-th rational boundary component &=R(I$9, Dy/Z, h,). In particular,
Reio(099. . v250,0 Do/ Z, hy); is identified with the symmetric domain Rp o180, 50 .50
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Dy/Z, hY).

In general, it is known that, for any boundary point p of an irreducible symmetric
domain 9, the “fiber” over p, i.e., the union of all geodesic lines in 2 tending to p, is
an irreducible quasisymmetric domain and, if p belongs to the first boundary component,
it is of type (I}, ). For instance, for the symmetric domain & = Ryo(I1$.,., Do, h5),
resp. RpoI{),. 144 Z, h5) (p+g=V5), the fiber over a rational point I in the first
rational boundary component &= Rpo(I\?, Dy, h,), resp. Ry (1), Z, h,) is of type
Ry (1Y, 2); (v2=2v%). [But, because of the existence of compact factors in GL,(H)
and GL,(C), the automorphism group of the fiber induced by the paraboric subgroup
is, in general, smaller than Aff(Rg,o(IT14Y,, ,),.] In particular, the domain Rgo(I11{Y, ),
can be identified with the symmetric domain Rgo(I{),, 1, Z, h’) (along with the auto-
morphism group), where Z, h’, are determined as follows. Let a, be a non-degenerate
alternating bilinear form on V,=V"(F), I€ Rg ¥ (V,, a,), and let Z be the CM-field
attached to 7, i.e., Z=F(,/—a,), where «, is a totally positive element in F such that
Y /a1 is Q-rational. Then h, is a Z-skew-hermitian form on ¥, given by

hy(v, v")=a,(v, v')—\/——laz(u, 1My,
which is totally positive with respect to the CM-type (c;) determined by /—a, %=

J—=1./a5, and h’, is a Z-skew-hermitian form of 2+ v/, variables in the same Witt
class as h,.

5. The quadratic case.
5.1.  F-structures of (UY, g{!). We keep the notation of §3. In the quadratic
case, one has

(5(”39’(1,"1—1)={(5i)€R"‘lff~ ) £i2>0} ,
i=2
(65)
glz(g(ll))la g(ll)sggo(],nl—])’
where n, =dim UM > 3. In this case, r, = R-rankg{"’ =2.

One obtains all F-forms of g‘! in the following manner. Fis a totally real number
field of degree [. Suppose that UV is given an F-structure and S'" is a symmetric
bilinear form on UM x U™ defined over F. Put (U, S)=Rp,o(U™, V). We assume
that all S®=S®M" (1<i<l) are of signature (1, n, —1). Then one has an F-structure
of g{V given by

§(F) = so(UV(F), SU) = {x e g UD(F)) | xSV + SVx =0} .
For convenience, one fixes an F-rational orthogonal basis {e;} of U" such that

S~ diag(ety, ..., 0, ) s
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where «, is totally positive and a,, ..., «,, are totally negative.

REMARK. When n, is even, there is a possibility of F-forms of g{" defined by a
quaternion skew-hermitian form 4 of n,/2 variables with respect to a totally indefinite
quaternion algebra over F. However, since A should give rise to a symmetric bilinear
form of signature (1, n, — 1) at every real place, an easy observation of the root diagrams
shows that g‘!) is F-anisotropic. By a theorem of Kneser ([Sc, Lem. 10.3.5, Th. 10.4.1]),
this can happen only for n, <6. For n; =4, by virtue of the isomorphism (1, 3)~2,(C),
the F-forms of this type were already treated in §4, so that we may exclude them
from the general discussion of the quadratic case. For n, =6, such F-forms come from
a central division algebra of degree 4, which can not have positive involutions. Hence
F-forms of this type do not occur. For n, =8, there is also a possibility of F-forms
of g{¥ coming from the triality. But, for the reason similar to the one given in [SI,
p. 270], such F-forms do not occur either.

5.2. The Clifford algebras. Let C=C(UY, SV) denote the Clifford algebra of
S® and let C* denote its even part. C and C™ are semisimple R-algebra defined over
F. Put

é=e e, eC(F),
(66) A= =(—1m-V2y .. .q & F>
(the discriminant of V).

By our assumption, 4 is totally positive (resp. totally negative) for n; =1, 2 (resp. =0,
3) (mod 4).

When 7, is odd, C* is a central simple R-algebra of degree 2"~ 1/ defined over
F. When n, is even, the center of C* is {1, &}z. Hence, if n, =0 (mod 4), the center Z
of C*(F) is a totally imaginary quadratic extension of F, isomorphic to F (\/Z ) with
4«0 (totally negative). Thus C™ is simple and of degree 2"/~ ! over its center Z(R)~C.
If n, =2 (mod 4), one has 4> 0 (totally positive) and

1 .
(67) C*=C{®Cy, ?(1+(—l)“14/A‘lé)eC1+

with central simple R-algebras C;* (i=1, 2) of degree 2"/>~!. (The ordering of C{, C5
may be determined by the orientation of U‘Y.) If, moreover, 4~ 1 over F (i.e., 4€(F*)?),
then each C; is defined over F and one has C{ (F)~Cj3(F) (by the map x+> e 'xe,).
If n; =2 (mod4) and A+ 1, C*(F) is simple with center Z~F(,/4), which is a totally
real quadratic extension of F. In this case, one has C*(F)~C; (F(\/Z ) (=1, 2).

Let p denote the canonical involution of C™* (i.e., one has (¢;, "¢, )’ =¢, " " e;,).
Then it is easy to see that

(68) p':x—exfer!



Q-STRUCTURES OF QUASISYMMETRIC DOMAINS 381

is a totally positive involution of C*; when n, is even and 4 ~ 1, we mean by this that
p’ induces a totally positive involution on each simple factor C;* (i=1, 2) ([S6, p. 282,
Prop. 5.1]).

Let D, be a division algebra over F such that C*(F) (or C;'(F))~D,. Then the
degree &, of D, (over its center) is <2. One has F-rankg!® =1 if §,=2 and n, <4, and
F-rank g{"=2 otherwise. One has

R if n,=1,2,3 (mody),
(69) Dy(R)~D,=4{C if n,=0,4 (mod8),
H if n,=5,6,7 (mod8).

Thus D, is of Type 1, if n; =1, 3 (mod 8) or =2 (mod 8) and 4~ 1, of Type 2, if n, =5,
7 (mod 8) or =6 (mod 8) and 4~ 1, and of Type 3, if n; =0 (mod 4). When r, =2 (mod 4)
and A~1, D,y is of Type 1 or 2 over F(ﬂ ) according as n; =2 or 6 (mod 8).

5.3. F-structures of (VV), BWV): the case n;#2 (mod4). In this case B is
R-primary and the R-irreducible factor is given by the spin representation. As is well
known, there exists a canonical F-isomorphism

Bi: g’ =5 Bi(@) = (CT)pic

such that one has
(70) x(u)=[B(x), u] for xeg® and ueUW,
(71) Bi(e)={yeC*|y+y°eR, [y, UV]cUW}.

If one denotes by k the unique R-irreducible representation of the simple R-algebra
C*, then the spin representation of g{" is given by ko #,. Therefore, identifying f)(x)
(xeg'®) with B,(x), one may make an identification &/, =C™. It is then clear that the
natural F-algebra strucrure of .o/, = C* (which is the unique F-algebra structure making
B and B, defined over F) satisfies the conditions (a), (b) in Proposition 2 with 1, =p’.
Hence the natural F-algebra structure of o/, gives rise to an admissible F-structure of
(UD, VD), if and only if the condition (c) in Proposition 2 is satisfied. For simplicity,
one puts e =e,; then one recovers the same F-structure of U* given in 5.1.
In the notation of §3, one has

{2"‘“1’/2 {1 if n, isodd,
v10o= - dy= .
2m/2-1 2 if n;=0(mod4).

5.4. Now, fix eV=e, e UF) with a; =S)(e,, e,)>0. Then one has
PROPOSITION 4. For ue UY(F) and ye C*(F), one has

(72) @ (W)=ue; ',

(73) Yi=e yPer!.
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ProorF. We know (73) already ([S6, Prop. 5.1]). To prove (72), define ¢, by (72)
for a moment. Then it is enough to show that ¢,(x)e Her(C*, p’), ¢,(e;)=1, and that
@, satisfies the first relation in (32), because these properties characterize ¢,. The first
two properties of ¢, are obvious. From (70) one has

@1 (x(w) = (B, (x)u—up(x)e; ' = B1(x)p, () + @1 (x)e, By (x)e;
which proves the first relation in (32). g.e.d.

By an easy computation, one has

1
5 (01000:() + 0, ()P, (W) = Sey, €1) (S, e)py(u)+ S, e (W) — S(u, u) .

This shows that the Jordan product in U™V is given by

uou'=S(ey, e;) " (Su, e)u’ + S, e))u—S(u, u)e,) .
It follows that the normalized inner product on U is given by
(74) {u,u=28(u, e)Sw’, e;)— S(u, u’)S(ey, e;) -

On the other hand, let ¢, be a primitive idempotent of C*(F) and y¥,; an
F-isomorphism: Dy 3 ¢;C*(F)c;. Then the (D, 1o)-n-hermitian form 4, on V,=
(C*(F)ey, ¥y) is given by

(75) hy(vy, v') =V 1 '(byevfer oY) (v, v1€VY),
where b, is an element of C*(F)* such that
Yi(&y) =br Wi(€Dby,  bi=nb,.

Finally to obtain an explicit form of 4", let { )¢+ denote the inner product on
C* defined by

X, Ve =trC+/R(x“y) .

For xe C™, let [x], denote the element of U™ such that ¢,([x]y) coincides with the
¢ ,(UM)-component of x with respect to the inner product { c-.

PROPOSITION 5. Suppose we are in the quadratic case with n; #2 (mod 4). Let (eV,
aV, BY) be an admissible triple with e'*) = e, defined over F belonging to (U™, V1), ¢)
and let h, and h, be as given in (75) and (39). Then the corresponding alternating bilinear
map AV : VO x YO UW s given as follows:

1
(76) A“)(U1 ®poV2s Uy ®DOUI2)=—2—ﬂvléodl[vlllll(hz(vz, v2)b, 01 ]y .

Proor. For ue UY(F),v,,v, eV, =C*(F)c,, v, vy€V,, one has
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A (v1 ®p, Vs V) ®Dov’2)=a“’(vl ®pyV2s (uefl)u’l ®po2)
= trDo/F(hl(vl’ (uey I)U&)'th(vza %))

=1trp,p(h1(vV1h(03, V), (uer h))

=trc+ g0 1 (hay(vy, 05)) 08 uer 10y

=Cuer !, nuy(hy(vy, v5))b1 0} e
1
=7 nv100d; <, [01Y1(h3(02, v2))b,01 ]y

which proves our assertion. q.ed.

5.5. Classification. In the classification theory, the domains &, and & in the
present case are denoted as

RF/Q(Ian;vza Sm, hy)); (ny=3, #2(mod4)), RF/Qe(Vz, Dy, hy) .

(When D, is of Type 1.1, i.e., when D,=F, one omits 4,.)

The total space Z is symmetric for the following three cases. For n, =3, by virtue
of the isomorphism (1, 2) > 2,(R), the domain Rg,y(IV3.,,, SV, h,); is identified with
Rpjo(III),, 0); or Reo(IIIY) . Dy, hy); (Do=C*(F)) according as Dy=F or not. Hence
the corresponding & is the Siegel domain expression of Ry o(II1$9, 5./2) over the 2/5,-th
rational boundary component &=Rp,o(III¥Y ,). For n;=4, by virtue of the
isomorphism 2(1,3)~2,(C), the domain Rp,(IVy,,,, S, k), is identified with
Ryio1§%.00 Dol Z, hy); (D= C*(F), Z=F(,/4), p+g=0v,), so that the corresponding
& is the Siegel domain expression of R Froll Qo2+ o Do/Z, h’) over the 2/6,-th boundary
component &= Rp,o(I¥9, Dy/Z, h,). In particular, Rgo(IVy,,,, S, hy); with q=0 is
identified with the symmetric domain Rpg(1§9,,5,.2- Do/Z, h%). In the case Rpo(IVg, 1,
SM, hy),, the domain & reduces to a point I(I=Y'| 47|~ 26®) and F = &, is a symmetric
domain of the exceptional type (V)! with a Q-structure of Q-rank 2.

5.6. The case n;=2 (mod4). In this case, there exist two R-irreducible (spin)
representations of g{). Let n; denote the projection C*—C;" and «; the R-irreducible
representation of C; (i=1, 2). Define the injective homomorphism B, : g{"—C* as in
5.3. Then the two spin representations of g'!) are given by ;o m; 0 B, (i=1, 2). In general,
the representation (), BV)) has two R-primary components corresponding to these
R-irreducible representations.

Let .o/, denote the enveloping algebra of f)(g") in Endg V). Then there exists
a uniquely determined (algebra) homomorphism A: C* -/, such that one has
BN =AoB,. Suppose that the F-structure of (U, SV) is extended to an admissible
F-structure of (U™, VM) (under the condition similar to the condition (c) in Theorem
1). Then C* and 7, have natural F-algebra structures such that g, and A are defined
over F.
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When 4 + 1 over F, the F-algebra C*(F) is F-simple, and 4 gives an F-isomorphism
C*(F)~sf,(F). The center Z of «/,(F) is a totally real quadratic extension of F,
isomorphic to F(,/4). Hence B is F-primary, but not R-primary, and we obtain a
result similar to the one given in §3 with some modifications. For instance, (27a), (26a)
must be modified in the form:

Vm(F) = RZ/F( Vi ®p, V),
V=V, VY@ VY @p, VY
1 1 k4

where V,, V!, and V(! are simple left ideals of C*(F), C{, and C5, respectively. In
this case, v,;0,=2"/>""', and one has

dimg V' =dimg V" =v;s,6% ,

dimg V9 =2v,v,63 .

In the classification theory, the domains %, and & are denoted as

R (v S, hy)y (ny 26, =2(4),

ny;va,va?

F(V4)/Q

Ry a0V Do o) .

When A~ 1 over F, C*(F) is décomposed as (67), in which each simple component
C}(F) is invariant under p’. Hence one has either «/,(F)~C™*(F) or C/(F) (i=1, 2),
according as B™ has two or one F-primary component(s). For each F-primary
component (which is also R-primary) one has formulas similar to the ones given in the
F-primary case, replacing f8,, ¢, by m;° f, @;o @,. Thus in this case, (27a), (26a) should
be modified as follows:

V)=V ®p, V2@ V{®p, V5
VOO @, YO @V @, VY,
Vi, Vi VY and VY being simple left ideals of C{ (F), C5 (F), C{, and C; , respectively.
Denoting the ranks of Dy-modules ¥ and V7 (i=1, 2) by v} and v, one has
Vi=v]=2m27150 oy, v >0,
and
dimg VW' =vis5,62, dimg V" =v/s,6%,
dimg VO =v (v, 4v5)d3 .
In this case, the domains %, and € are denoted as
Rpio(IViyivy vy ST Y b)) (126, =2(4)),
Ry1o@(V, Do, h'3) X ReioS(V', Do, h) .
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[One may choose the orientation of U so that v, >v’y and, when v} =0, one omits
the second factor Ry &S(V}, Do, h3).]

In general, if p is a point in the second boundary component of an irreducible
symmetric doamin, then the fiber over p is an irreducible quasisymmetric domain of
type (IV,.,,)or (IV,,.,, o). Thus, for n; = 6, by virtue of the isomorphism 2(1, 5) ~2,(H),
the domain Ry o(IVe.,,0, S, hy); (A~1) is identified (through the first spin
representation) with the fiber over a rational point I in the second rational boundary
component &= Ry o(I'?, Dy, h,) in the Siegel domain expression of P =Ry o(I1Z) .,
Dy, h}), where D,= C{(F) is a totally definite quaternion algebra over F. In particular,
Rpo(IVe. 1.0, S, hy) is identified with the symmetric domain Ry,o(I1Y, Dy, h%). For
ny =10, the domain Rp,o(IV 0,250, S, #5); (4~1) is identified with the fiber over a
rational point / in the second rational boundary component &= Ry o(II1{?, Dy, h,) in
the Siegel domain expression of a symmetric domain of the exceptional type (VI)' with
a Q-structure of Q-rank 1+2/4,.

Appendix: The symmetric case.
A.1. The condition (iii). First we introduce some notation. For v, v' e V, set
(76) @H (v, v")=p(A(v, V') + @(A(v, IV")) .
Then one has
I- (pHI(U9 Ul)= _quI(IU’ U/)=(PHI(U, IU,)= (pHI(v’ U,)I .

Thus @H (v, v") is C-linear in v’ and C-semilinear in v with respect to the complex
structure of V' defined by I. It follows that one has

77 QoH (v, v W' =2i(p(A(v_, v )’y —p(A(v,, v_))'l).
Moreover, for g, € G,, one has
(78) g; 'oH (9,0, 9,0")g,= PHy-1p,(v, V')

The following result is known (cf. [S6, p. 223-224, Th. 3.5]).

PROPOSITION 6. A quasisymmetric domain & is symmetric if and only if the fol-
lowing condition is satisfied:

(iii) A, oH,(v', v"W")=A(H,(v", v)v", v")  for v,v',0"€V,

or equivalently,

(iii") AW, (AW, w W' )= A(p(A(W, w" W, w")  for w,w,w’'elV, .
COROLLARY. [If &, is symmetric for one I€ S, then & is symmetric for all Ie S.

This follows from Proposition 9 and (78).
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REMARK. It is known ([S6, p. 228, Lem. 4.6]) that (iii) is equivalent to any one
of the following conditions.
(ii1;) o H (v, p(u)vo" = @) Hv, v'W’,
(iiiy) PH(p(u), v’ =@ H (v, v')p(u)’

(v,v'eV,uel).

By the classification, we see that an irreducible domain &, is symmetric if and only if
either one has g, ={ly}g or g, is compact. Note that there are some discrepancy
of the notation between this paper and [S6, Ch. V]. In the latter, the complex structure

I on V is fixed, so that (V, I) is identified with V.. One has the following dictionary
(on the left hand side is the notation in [S6]):

4H(v, v')=A(v, Iv')+iA(v,v"),  2R,=o(u),
8R(H(v, v"))(on V1)=@H (v, v')(on V,)=2ip(A(v-, v',)) -

A.2. Infinitesimal automorphisms of &, Let Aut%; denote the group of
biholomorphic automorphisms of &, and let ® =Lie Aut.¥;. Then Xe® can be ex-
pressed by the corresponding “infinitesimal automorphism” of &, i.e. the differential
operator X on C*(¥,) defined by

(R W)= 7(expe) s Wl

in notation, we write X > X. Let (e,) and (e?) be bases of U, and V', over C, respectively,
and let (u,) and (w,) the corresponding complex coordinates of U. and V. Then X is
expressed in the form

0

ow,

9
Ou,

) = 5 piww o+ 3 aiu

Setting p(u, w)=) " _ | p(u, W)e,, g, w)=17_, q,(u, w)e};, we write
~ 0 )
sz(us W)_+q(ua W)— .
ou ow

First, for the Heisenberg group ¥, the Lie algebra Lie ¥ is naturally identified with
U@V (as a vector space). Viewing Lie I as a subalgebra of ®, one has by (7)

(80) a+b<—>—(a—A(b_,w))i—b+—i— (@aeU,beV).
. du ow

Clearly one has

@81 [a+b,a’ +b']=—A(b,b’) (a,a’eU,b,b’eV).
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For the linear group G,, one embeds LieG,=g; ®f, into gl(U) x gl(V). Then, for
(X, Y,)eLie G,, one has

(82) Xy, Y1)<—>—X1ui— Ylwi.
ou - ow

Clearly one has
[(Xy, Yy), a+b]=Xa+Y,b,
(X3, YY), (X, Y)1=([X;, X5], [Y,, Y5]) .

When &, is symmetric, let 6 be the Cartan involution of ® at (ie, 0)e &,. Then one
has a gradation of ® according to ad(—1y, (—1/2)1,) of the following form:

2
(83) 6= Z ®v/2 > 0(5v/2=(5—v/2 .

v=-2
6_,=U, 6_,,=V, 6,=LieG,=g,dI,,

and 6 induces the Cartan involution 8, ® 8, on G, (cf. [M], [S6, p. 211, (A), p. 220,
Prop. 3.3]). In order to describe the action of 8 on U, V, it is convenient to use the
following notation:

@Ou " ={u,u', u"} =(uu " +u@'v")—u'(uu") ,
uQu' =T, +[T, T,].
By (18) and (19) one has

1
(84) o({u, u', u"})= > (@) )p")+ ou")o(u)pw) ,

1
(85) {u, Av, v"), u'} =?(A(<P(u)v, P ")+ Alpu'), p(u)p’)) .
PROPOSITION 7. One has

(86) fa > —{u, a, u} —} —owola)w 9 ,
u ow

(87) 0b < —iA(pw)b_, w) i —i(ew)b . + o(A(b_, w))w) —q— .
Oou ow

This was given in [S6, p. 224, Th. 3.6]. A more direct proof can be given as follows.
The symmetry at (ie, 0), denoted also by 0, is given by

1

0: (u,w)y—(—u"t, —ip(u)” 'w),

where u~! denotes the inverse of u in the Jordan algebra (U, e) and one has
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o H=0)™ ! (cf. [S6, p. 139, Exc. 3]). Hence, for ae U, one has
(exp Ba)(u, w)=(0 - (exp a)o O)u, w)=0(—u"* +a, —ip(u)~'w)

1

= '~a) " o™ —a) o) 'w).

Here one has
w - '=(1—-ula) 'tu=u—{u,a,u}+---
o™ )1 pW) =1- 9@+ -

([S6, p. 26, Exc. 6] and (84)). Hence one obtains (86). The relation (87) is obtained
similarly by using (iii,), (77), (85).
By direct computations from (80), (86) and (87) one obtains

(88) [a, 0a']=(—2a0a’, —p(a)p(a’)) ,
89) [a, 0b]= —p(a)Ib

(90) [b,0b]=(—4D,,, —4¥, ),
where

49, . : ur— A(b, pw)Ib’),
1
¥, v ) (pH (b, v)b—@H (b, v)b"+ 9 H\(b', b)) .

(For (90) one uses (iii'). Cf. [S6, p. 231-233, Exc. 5 and Rem.])

A3. Q-structures of . Now we assume that there is given a Q-structure of the
quasisymmetric domain &, in the sense of 3.1. This means that one has a Q-structure
of ®pes=6_,+6_,,,+6, such that (1, (1/2)1,)eg, is Q-rational. Then, since Ie S
is “rational”, there exists a totally positive element o, € F such that Y!_ \/a1? is
Q-rational. [We say that 7 is a rational point with CM-field F(,/—a, ), endowed with
the standard CM-type (o;) defined by ,/—«, %=/~ 1,/x;°.] In what follows, for 1,€ R
(1<i<l)and x=) x?, we write

I
(A) x=Y Ax®.
i=1

In this section, we don’t assume that e is Q-rational. e is called semirational if there
exists a totally positive element o€ F such that (\/a°)-e is Q-rational. We say that e
or 0 is compatible with the complex structure I if (/a%) - e is Q-rational.

LEMMA. Let e, e'€U, e'=(4;) e and denote the symbols relative to e' by the
corresponding symbols relative to e with a prime. Then one has
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To=)""T,, ¢@=)" 9@,
{uu',u"} =) {uu’,u"},
0'a=(A;)"%+0a, 0'b=(4)"'-0b
fora,u,u,u”"el, beV.
The proof is straightforward.

THEOREM 3. Assume that & is symmetric and let § be the Cartan involution of ®
at (ie,0)e &,. Then, there exists a unique Q-structure of ®& satisfying the following
conditions:

() It extends the given Q-structure of ® .

(B) Whenever e is semirational, the restriction 0|U is Q-rational.

The Cartan involution 0 is Q-rational with respect to this Q-structure of ® if and only if
0 is compatible with I.

Proor. First we prove the uniqueness in the first statement. Suppose one has
a @-structure of ® satisfying the conditions («), (8). (Note that, by the above lemma,
the condition (f) is satisfied if 9| U is Q-rational for one semirational e.) Then the Q-
structures on the vector spaces ®,,, are uniquely determined except for v=1. As for
®,,,=0V, one has by (89)

0lb= —[0e,b]  (beV).

Hence, if (\/o?) - e is Q-rational, then the map br—»(\/ﬁ) - 0Ib is Q-rational. By this
condition, which is independent of the choice of the semirational e by the above lemma,
the Q-structure of ®,, is also uniquely determined. Conversely, by virtue of (88), (89),
(90) and the above lemma, one sees that, defining the Q-structure of ®,,, and ®, as
indicated above, one obtains a Q-structure of & satisfying the conditions («), (§). From
this and the definition the second statement is clear. q.ed.

REMARK. The above theorem remains valid for the case V'=0. In that case, any
Cartan involution with semirational e is Q-rational.
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