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Abstract. We will give a complete classification of (^-structures of quasisymmetric

domains. In the standard case, it will be shown that there are only very natural

g-structures coming from semisimple g-algebras with positive involutions. As is shown

in the Appendix, when the domain is symmetric, any g-structure of it as a quasisymmetric

domain can uniquely be extended to one as a symmetric domain.

The purpose of this note is to determine the (^-structures of quasisymmetric
domains.

The notion of a quasisymmetric domain was introduced in [S3] (cf. also [S6,
Ch. V]). It was shown that, among Siegel domains (of the second kind), the symmetric
domains were characterized by three conditions (i), (ii), (iii). A Siegel domain is called
quasisymmetric if it satisfies the conditions (i), (ii). It is known that any symmetric
domain Q) with a fixed boundary component J* has a natural structure of a fiber space
(a Siegel domain of the third kind) over ^ , in which the fiber over each point of 3F is
a quasisymmetric domain. All quasisymmetric domains of "standard" type are obtained
in this form (see §4), while there are quasisymmetric domains of non-standard (quadratic)
type that are not obtained in this manner.

A quasisymmetric domain Sfj is defined by a data (U, V, A, <&, /), where U, (V, I)
are real and complex vector spaces of finite dimension, / denoting a complex structure
on V. %> is a self-dual homogeneous cone in U (condition (i)) and A is an alternating
bilinear map Vx V-^U such that A(v, Ivf) (υ, υ'eV) is "^-positive" (see 1.1). In §§1, 2
we summarize basic definitions and properties concerning quasisymmetric domains.
Here we give the condition (ii) in the form independent of the complex structure /,
viewing / as a point in the parameter space © = ®(K, A, c€). To give a g-structure of
&Ί is, roughly speaking, equivalent to giving a β-structure of (U, V) such that the affine
automorphism group Aff Sfι is defined over Q. By virtue of the complete reducibility
of quasisymmetric domains (see 2.5), our problem of determining (J-structures of 9>

ι

is reduced to the g-irreducible case. A general method of determining β-irreducible
(J-structures of 9?

ι with K/0 is given in §3. In particular, it will be shown that a
g-structure of £f ι is essentially determined by that of the enveloping algebra of the
representation of LieAut^ on V, which is a (β-simple) β-algebra with positive
involution. Applying this method to the standard and non-standard cases, in §§4, 5,

1991 Mathematics Subject Classification. Primary 32M15; Secondary 11E39, 11F55, 20G20.



358 I. SATAKE

respectively, one can easily classify all possible (^-structures of Sfv We also give an

explicit expression of A in each case.

In the simplest case, where (£ = έ?Vι(R), a β-structure of &Ί, denoted as (III^?V2/2),.

is given as follows. One takes a pair of β-structures of U and V, for which there exist

two β-vector spaces Vί and V2 such that one has

U(Q) = S(Vί®V1), V(Q)=Vί®V2,

S denoting the symmetrizer and dimQ Vt = v£ (i= 1, 2). Then the alternating bilinear map

A and the complex structure / are given in the form

2, v\ ® υ2) = S(vί ® v'1)a2(v2, v'2)

{Όi9Ό
f

teVi9i=l92)9

a2 denoting a non-degenerate alternating Q-bilinear form on V2 x V2 and I2 denoting

a "rational" point in the Siegel space <5 = <5(V2(R), a2). It will be shown in §4 that, in

the standard case, one can obtain all g-structures of Sfu generalizing this construction

to vector spaces over a division algebra over Q with positive involution.

In the Appendix, we will show that, when the domain £fj is symmetric, any

β-structure of Sfι as a quasisymmetric domain can be extended (uniquely) to a

β-structure of it as a symmetric domain.

One of the motivations of this study is to construct a new kind of cusp singularities

(cf. [S9]). Cusps of the arithmetic quotients of symmetric tube domains have been

studied by many mathematicians. Especially, a generalization of the Hirzebruch

conjecture, which relates the zero value of the zeta functions Z<g> associated with the

cone # with some geometric invariants of the cusp, was recently established by Ogata

[O2] and Ishida [12] (see also [SO]). In the case of quasisymmetric domains with VφO,

for which β-rankAut^7 is = 1 , one can obtain similar cusps, which we propose to

call cusps of the second kind; in the notation of §4, this occurs only in the following

three cases:

, D09 h2)j ,

It is expected that one can further generalize the result of Ogata and Ishida to the case

of the cusps of the second kind to obtain a geometric interpretation of the values of

the zeta functions Z^ at negative integers.

1. Siegel domains.

1.1. Siegel domains (of the second kind) (cf. [PS], [S6, Ch. Ill, §§5-6]). A Siegel

domain is defined by the following data (U, V, A, # , /). U and V are finite-dimensional
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real vector spaces and A : Vx V-+ U is an alternating bilinear map. ^ is an open convex

cone in U, which is "non-degenerate" in the sense that ^ n — <? = {()}. / is a complex

structure on V satisfying the following condition:

(1) A(v9 Iv') is symmetric and "^-positive", i.e. one has

A(v,Iυ)e&-{0} for all veV,vΦO .

This implies that A is non-degenerate, i.e. if A(v, υ') = 0 for all υ'e V, then t; = 0.

We set

V(C)=V®RC=V+®V_

with V+ = {ve V(C)\lv= ±ίv} and extend A in a natural manner to a C-bilinear map

F(C)x K(C)->ί/(C), denoted again by the same letter. Then one has A(V+, V+) =

A(V_, F_) = 0and

2 L φ _ , v'+) = A{v, Ivf) + ίA(v, υ')

for v, υ'e V, v± denoting the F+-part of v.

A Siegel domain 5 ^ = ^(£/, V, A, % I) is defined by

(2) &?

I = \(u,w)eU(C)xV+\lmu—-

When V={0}, one obtains a tube domain 9)^ =

We denote by S = ®(K, Λ, if) the set of all complex structures / o n K satisfying

the condition (1); by the assumption one has &Φ0. In what follows, it will be con-

venient to consider the complex structure / to be a point in the parameter space 6 ,

rather than fixing it once and for all. Then the total space !? = {(u9 w, /) | (w, w) e &Ί, Ie S}

is a so-called "Siegel domain of the third kind".

1.2. Automorphism groups. We first define the (generalized) Heίsenberg group

V=H(U, V, A). By definition Fis the direct product Ux V endowed with a multiplica-

tion

(3) (M, V)(U\ V') = ( + '

for (u, v\ (u\ vf)eV. It is clear that with the natural homomorphisms one has an exact

sequence

(4) 1 _ * £ / _ > K - > F - 1 ,

in which U is central. It is known that, conversely, all central extension V of V by U

(as Lie groups) is obtained in this manner with a (uniquely determined) alternating

bilinear map A. In our case, A being non-degenerate, U coincides with the center of V.

We set
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(5) Aut(U9V9A) = {g = {gl9g2)\g1eGL(U)9g2eGL{V)9 g1oA=Aog2χg2} ,

and write gi = Pi(g) for g = (g1, g2)e Aut(ί/, F, A). We are concerned with the following
automorphism groups:

(6) G = Aut(U9 V9A9V) = {geAut(U9 V9A)\p1{g)eG1} 9

) = {g2eGL(V)\Aog2χg2 = A} .

Note that one has Ker pγ = l x G 2 and S(K, A, # ) c G2. It is known that G2 is a reductive
algebraic group of hermitian type and S(K, 4̂, #) is the associated symmetric domain
(see 2.3 and [S5]). Since GcAut V, one can construct a semidirect product G = G V.

For ve V and weF + , one defines an automorphy factor by

f(v, W) = A( w + y u+, v. J ,

which satisfies the relation

»', W) + —

Then the Heisenberg group V acts on ίfι by

(7) (α, &X(u, w)) = (iι + α + /(fc, w),

for (α,fe)eK and ^ w

On the other hand, for Is <Z(V, A, <&), one puts

9 A, I) = Sp(V, A)nGL{V, I).

Then Gj acts linearly on Sfl9 and the semidirect product GJ = GJ- V acts affinely on
Sfj. G2l is a maximal compact subgroup of G2. It is known ([PS], [S6, p. 129, Prop.
6.2]) that the affine automorphism group Aff &Ί of 9?

ι coincides with Gj.

2. Quasisymmetric domains.
2.1. Quasisymmetric case. A Siegel domain 9?

I = 9?(U,V, A,^,I) is called

quasisymmetric if two conditions (i), (ii) below are satisfied. (For the meaning of these

conditions, see [S3, Prop. 1], or [S6, Ch. V, §§3, 4, especially, Prop. 4.1]. Here we state

the condition (ii) in the form independent of the complex structure /. For the classifica-

tion of quasisymmetric domains, see [S2] and [S3], or [S6, Ch. V, §5].)

(i) There exists a (positive definite) inner product < > on U such that, defining
the dual of V by
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one has <€ = <€*. Moreover, the automorphism group G1=Aut(U, <%) is transitive on c€.

When this condition is satisfied, # is called a self-dual homogeneous cone. One then
has Gί=

tG1, t denoting the transpose with respect to < >. This implies that Gx is a

reductive "algebraic" group (in a weaker sense that the identity connected component

G\ coincides with that of the real points of a linear algebraic group defined over R).

The map θι: X H — *x is a Cartan involution of the Lie algebra gx of Gγ. Let gx =fx + p x

be the corresponding Cartan decomposition. Then it is known that for a suitable choice

of a point e in # one has

It follows that, for each ueU, there exists a uniquely determined element Γu in gx such

that tTu=Tu and Tue = u; in particular, Te=\υ. The map u\-*Tu gives a linear

isomorphism {y^p^

It is well known that the vector space Uendowed with a product uu' = T^M' (u,u'e U)

is a formally real Jordan algebra with unit element e (cf. e.g. [S6, p. 33, Th. 8.5]). In

what follows, we will normalize the inner product < > by setting

(8) <u,u'}

where in the notation of 2.5 below κ = Σ(ri/ni)\ua) with rii = dim U(i) and r^R-

By this relation e and < > determine each other uniquely.

2.2. We now state the second condition:

(ii) Thehomomorphismpi: G^G1 is "almost surjective", i.e. one has p1(G°) = G°1.

In what follows, we assume that the conditions (i), (ii) are satisfied. Then with the

natural homomorphisms one has an exact sequence

(9) 1 - G2 -> G -> Gι -> (finite).

Since Gt and G2 are reductive "algebraic", so is G. Hence there exists a connected

normal "algebraic" subgroup G\ of G such that

(10) G° = G\ (1 x G°2), G\ n(l x G°2) = (finite).

Then the restriction of pj on G'x gives an isogeny G'ί-^Gί. (Such a subgroup GΊ is

uniquely determined, because GΊ is of cone type and G2 is of hermitian type.) Note

that, since /is contained in G°2, one has GΊ czGJ and hence p1(GJ) = GJ. It follows that

the domain 5 ^ is affinely homogeneous.

Let g, ĝ  (/= 1, 2), and gΊ denote the Lie algebras of G, Gh and GΊ, respectively.

Then PilgΊ gΊ-^δi is a n isomorphism; we put β = p2°(Pi IδΊ)" 1 - Then jS is a

representation of gx on K and one has
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(11) β'i = {(x,β

Since G\aGl9 β is actually a representation of gj in gl(K, /).

2.3. Reformulations. For ueU and v, υ'e V, we set

(12) AJLΌ9Ό') = <U9A(Ό9Ό')>,

(13) φ9υ
r) = AJp9υ').

Clearly a is an alternating bilinear form o n F x F a n d for Ie S the bilinear form α(ϋ, /t;')

is symmetric and positive definite; in other words, if one puts

then hj is a positive definite hermitian form (which is C-linear in v') on the complex

vector space (V, I). Let V* and Alt(F) denote the dual space of V and the space of all

alternating bilinear forms on VxV, respectively. Alt(F) may be identified with the

subspace of HomΛ(F, V*) formed of all skewsymmetric elements. We define an involu-

tion i = ι(a) of EndR V by

(14) ι\y\-^a'uya {yeΈnάRV).

Clearly, for ̂ GEndΛ V9 one has yι=y if and only if aye Alt(F) and, for jeEnd c(K, /),

yι is the adjoint of y with respect to the hermitian form hv One sets

Her(F, a9 /) = {^6Endc(F, I)\yι=y}

and denote by &*(V, a, I) the cone of all positive definite elements in Her(F, a, I) with

respect to hv

For u e U there corresponds uniquely an element φ(u) in EndΛ V such that

(15) AJtΌ9v
r) = ΦMu)vr) ( M ' e K ) ;

in particular, one has φ(e)= \v. Then the condition (1) is equivalent to

(16) <p(t/)cHer(F,α,/), φ(<g)cP(V,a,I).

Note also that in this notation one has

G2 = Sp{V9A) = {g2eSp{V9a)\[jg29φ{U)'] = 0}9

( } S(K,A,^) = S(F,α)nG 2 ,

S(K, a) denoting the "Siegel space" associated with Sp(V, a) (i.e. the space of all complex

structures /on Ksuch that a(v, Ivr) is symmetric and positive definite). This implies that

G2 is a reductive algebraic group of hermitian type with a Cartan involution

θ2\g2^Γιg2I,

and S(K, A, %>) is the associated symmetric domain (cf. [S5]).
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Now, in the quasisymmetric case, one has for XGQ1

xA(v, v') = A(β(x)v, v') + A(v, β(x)v') (v,v'eV),

or equivalently,

(β\) φ('xu) = β{x)ιφ(u) + φ(ιήβ(x) (ueU).

LEMMA 1. The representation β: c^—^(K, /) defined by (11) satisfies the relation

082) β('x) = β(x) for x e 9 l ,

where i = ι(a).

PROOF. Putting u = e'm (β\) one sees that xelx implies jβ(x)ezΉer(K, α, /). It follows

([S2, p. 127]) that β can be written as a commutative sum of two representations β0,

βi Qi^aKVJ) such that

£ 0 (

βi?

Since G\ is "algebraic" and pt \ G\ (i=\, 2) are rational, all eigenvalues of β(x)

are real. On the other hand, (*) implies that for x in p x all eigenvalues oΐβo(x), resp.

β^x) are purely imaginary, resp. real. Hence one has βo(p1) = 0 and, since gx is generated

by p l 5 one has βo = 0. Thus jS = i?1 satisfies (β2). q.e.d.

By (j81) and (β2) one has

(•*)

Hence putting u' = e, one has

(18) β(Tu) = ̂ φ(u) for M e ί / ;

in particular, )8(ll7) = (l/2)lF. Since gx is generated by p l 9 the relation (18) shows that

β is uniquely determined by φ. (This gives another proof for the uniqueness of G\)

[Note that the relations (**) and (18) imply

(19) Φ(w«') = y {φ(u)φ(u') + φ(u')φ(u)} (w, u'e U),

which means that the map φ is a unital Jordan algebra homomorphism of (U, e) into

Her(F, a, I) (cf. [S6, loc. cit.]).]

2.4. Admissible triples. Let (£/, V, A, %>) be a data satisfying the conditions (i),

(ii). In general, a triple (e, a, β) formed of e e ^ , a non-degenerate alternating bilinear

form aonVxV, and a representation β: 9i^gI(F) is called an admissible triple belong-

ing to (U, V, %>\ if there exists a linear map φ: U^EndRV with φ ( e ) = l κ such that
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the conditions (β\), (β2) are satisfied with ι = ι(a). Since these conditions imply (18), β

and φ determine each other uniquely. They also imply that aφ(U)a Alt(F). For an ad-

missible triple (e, a, β) one sets

(20) S(F, a, β) = {Ie ®(K, a) | [/, j8(8l)] =0} .

If an admissible triple (e, α, β) comes from the data (U, V, A, %>) as explained in 2.3,

then it is said to be belonging to (U, V, A, c€). In that case, one has by (17)

In general, two admissible triples (e, a, β) and (e\ a\ βr) are called equivalent if β = β'

and if there exists g\eG\ such that one has e' = p1(g\)e and a' = ao β(g\~1)x β(g\~1).

Clearly, two admissible triples belonging to the same (U, V, A, %?) are equivalent.

Conversely, suppose that one has (U, %>) satisfying the condition (i), a real vector

space F, and an admissible triple (e, a, β) belonging to (U, V, Ή). Then, it is easy to see

that, if IE^(V, a, β\ then the linear map φ: £/-»EndR V associated with β satisfies the

condition (16). Hence, if one defines a bilinear map A : Vx V-+Uby (12) and (15), then

A is an alternating bilinear map satisfying the condition (1). In this manner, one recovers

the data (U, V, A, %>) satisfying (i), (ii), to which the triple (e, α, β) is belonging. Clearly

equivalent admissible triples give rise to one and the same data (U, V, A, c€).

Thus we have shown that to give a data (U, V, A, %>) (with S(K, A, <#) Φ 0) satisfying

(i), (ii) is equivalent to giving (U, %>) satisfying (i), a real vector space V, and an equivalence

class of admissible triples (e, α, β) belonging to (U, V, %>) (for which ®(K, α, β)Φ0).

2.5. Complete reducibility. Let (U, V, A, %>, I) be a data satisfying the conditions

(i), (ii), and let (e, α, β) be an admissible triple belonging to it. Let

(21) (U,V)=U (&»,&**)

be the direct decomposition of (U, <£) into irreducible factors. Then each ^ ( ί ) is an

irreducible self-dual homogeneous cone in t/(i). If one sets

Gψ = Aut(U{i\ <£(i)), g^ = Lie Gψ ,

then one has

(22) ii=®9ψ, β 'Nί l^

where g(/)s (the semisimple part of g^0) is simple or reduces to {0}. One has

ί = l

One also has the following decomposition of the representation space ([S2] or [S6,

p. 237, Prop. 5.2]):
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F0
(23)

where V(i) = β(lvw)V, (έ?(i), α( ί ), β(i)) is an admissible triple belonging to (ί/(i), V(i),

a n d / ( ί ) e S ( F ( i ) , α ( i ), jβ(ί)).

It follows that one has A=YιA
(i) with

each (U(i\ V(i\ A(i\ ^ ( ί ) , /(i)) ( l < / < / ) being a data satisfying the conditions (i), (ii),

to which the triple (e(i\ a(i\ β{i)) is belonging.

Thus one obtains the direct decompositions of the domains:

i

(24) £r(U, V, A, <#,I)=Y[ Sf(U(i\ V(i\ A{i\ # ( 0 , 7 ( 0),

i=ί

I

(25) S(K, A,(g)=Π S ( F ( 0 , A{i\ <g(i)),

which are known to be the unique irreducible decompositions of Sfι and S (as complex

manifolds) ([S6, p. 237, Th. 5.3]).

3. β-structures of a quasisymmetric domain.

3.1. Definition of a Q-structure. Let (U, V, A, Ή, I) be a data defining a

quasisymmetric domain Sfι and (e, α, β) din admissible triple belonging to it. By a

Q-structure of £f ι we mean a pair of ^-structures of U, V, i.e., a pair of β-vector spaces

Uθ9 Vo such that U= U0®QR, V= V0®QR, satisfying the conditions (Ql), (Q2) below.

(Ql) The Lie algebra QX and the bilinear map A are defined over Q.

This condition implies that the groups V, G, and Gt (/= 1, 2) are defined over Q;

hence so is the "algebraic" subgroup G\ in (10). It follows that the representation

β' 9i—>9l(K) is also defined over Q.

Under the condition (Ql), we can always choose e in U0=U(Q). Then the

corresponding Cartan involution θ1 of gx and hence I l 5 p l 5 the linear map u\-^Tu (hence

the normalized inner product < » are defined over Q. The bilinear form a = Aeis also

defined over Q. Conversely, if the triple (e, a, β) is defined over Q, then so is A. Thus

we can rephrase the condition (Ql) as

(QΓ) The Lie algebra gx is defined over Q, and the triple (e, α, β) can be taken to be

defined over Q.

Next we state the condition (Q2):
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(Q2) The Carton involution ofq2 defined by I is Q-rational.

This means that the point / in the symmetric domain S = S(F, A, <%) is "rational"
(with respect to the given ^-structure) in the sense of [S8]. It follows that G7 and G2I

are defined over Q. [Note that (Q2) does not necessarily imply that GL(V,I) or
Her(F, a, /) are defined over Q, and that under (Ql) there may be no rational points
inS.]

3.2. Q-irreducible Q-forms. We assume that a g-structure (£/0, Vo) satisfying
the conditions (Ql), (Q2) is given. By virtue of the complete reducibility we may (hence
will) further assume, without any loss of generality, that (U, Ή) is β-irreducible, i.e. no
proper partial product in the direct decomposition (21) is defined over Q. The (J-structure
of Sf1 is then called Q-irreducible.

In the case V=0, the domain Sf ι is a symmetric tube domain, for which our
problem of classifying {^-structures becomes trivial. Hence, in what follows, we will
always assume that U is Q-irreducible and VφO. Then the representation β is faithful
and φ is injective. Note that, if dim f/(1)= 1, one has g^^O and our theory becomes
also trivial.

The Galois group <g = Ga\Q/Q acts transitively on the set {U(i) (1 </</)}. Hence,
if one puts 9t = {σ e & | U{1)σ = U(1)}, then the field Fez Q corresponding to 9t by Galois
theory is a totally real number field of degree /. If one sets ^ = W\ = ι^^i with a set of
representatives {σj {σ1 = 1) for (^1\^, then one has U{i)= U{1)σi. In the notation of 2.5,
g(

1

1) and e{1) are then defined over F. Moreover, V{1) = β(\u{i))V is defined over F and
hence so are also a{1\ β{1\ A(1\ etc. and the Cartan involution of g(

2

υ defined by /(1).
The corresponding objects qψ, etc. for 2 < /< /are obtained from these by the conjugation
σv By abuse of notation, we sometimes express this situation by writing 9I = ^F/C(9(I1))?

etc. Note that if dim C/(1)> 1, §\ (the semisimple part of gx) is (λsimple and "pure" (i.e.
all /?-simple factors qψs are mutually /?-isomorphic). The representations βiι) are also
mutually /?-equivalent in an obvious sense.

By the above observation, we see that the problem of determining all (7-structures
of <9% satisfying the conditions (Ql), (Q2) can be solved in the following steps.

0. Fix a totally real number field F of degree /.
1. Find all F-structures of (ί/(1), F(1)) such that g(

1

1) and the faithful representation
β{1) are defined over F. Such an F-structure of (Ua\ V(1)) will be called admissible. Then
we set U=RP/QU™9 9! = ΛF/fl(fl

(

1

1)), and (K, β) = RF/Q(V{1\ j3(1)). The (U{i\ V{i)) (i>2) are
given the conjugate admissible Fσi-structures.

2. Choose ee^n U(Q) and find a non-degenerate alternating bilinear form a(1)

on F ( 1 ) x F ( 1 ) defined over F such that (e(ί\ a{1\ β(1)) is admissible. Then all the conju-
gates (e(1)σ\ a{1)σ\ β(1)σi) (2<i<l) are automatically admissible.

In this way one obtains an admissible triple (e, a, β) defined over Q, which determines

an alternating bilinear map A defined over Q. Thus one has a (7-structure of Sfι satisfying

(Ql).
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3. Finally, find all rational points /in the symmetric domain S = β(K, A, %>) with

respect to the given β-structure.

The solution of the step 3 was already given in [S8]. We give solutions of the steps

1 and 2 in the succeeding sections.

3.3. The R-primary case. For simplicity, in the rest of this section, we assume

that the representation (V{1\ β(1)) is /^-primary, i.e. a direct sum of mutually equivalent

/?-irreducible representations. Actually, it is known ([S2]) that this is the case except

for the case where ^ ( 1 ) is a quadratic cone ^ ( 1 , n1 — 1) with n1=2 (mod4).

In what follows, a division /?-algebra Dx is always endowed with its standard

involution ξ\-+ξ. We denote by ̂ x and d1 the degree of Dλ over its center and the

degree of the center over /?, respectively; i.e., δx = 1 for Dγ=R, C and δί = 2 for Dx = H,

and d1 = 1 for DX=R, Hand d1 =2 for Dt = C.

Let {V^\β{^) be an ̂ -irreducible representation of g(

1

1) contained in ( F ( 1 ) , β(1))

and put V(2] = HomQγ)(Viι\ F ( 1 )). Then there exists a uniquely determined division

/?-algebra Dx such that V^ is a right Z^-module and the g^-endomorphisms of V^

are given by the right multiplication μξ (ξeD^). Then K(

2

1) has a natural structure of a

left Di-module defined by ξv2 = v2°μξ, and one has a tensor product decomposition:

(26a) yW=v[1)®DίV2

1\

(26b) ]8(1) = i ϊ (

1

1 ) ® l .

Suppose that (ί/ ( 1 ), F ( 1 )) is given an admissible F-structure. Then, (F ( 1 )(F), β(1)) is

F-primary. Hence, in a manner similar to the above, one has an F-irreducible

representation (Vl9 βx) over F, V2 = Homgd) ( F )(K1, V(1\F)), and a division F-algebra D o ,

such that Vί and V2 are right and left Z>0-modules, respectively, and

(27a)

(27b) \

(cf. [SI, pp. 230-231, Prop. 1, 2], or [S6, Ch. IV, §1]).

Since §\ is pure, one has decompositions of V{1)= K(1)σi similar to (26a) with the

same Dx for all \<i<l. To be more precise, let cψ be a primitive idempotent in

DJ(/?) = Z>J ®Fσ.R and fix an /^-isomorphism

Then the ^i-module Vf = (Vσ

ί

i(R)cf, φφ) gives an /^-irreducible representation of $ψ

contained in (V(i\ β(i)). (In particular, one may assume that V^] is given in this manner.)

Hence, putting Vψ = (cφVσ

2iR), φφ\ one has

(28a) Vii)=Vf®DlVf9

(28b) β{i) = βψ®\ (!
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One denotes the degree of Do over its center Z by δ0, and the Z)0-rank of Vi

(j= 1, 2) by Vj. Let D0(R)^MSί(D1); then one has δo = δ1s1 and

(29) dimRVf = vjs1δ
2

1d1 , dim^^v^δl^ (1 <*</,;= 1, 2).

Since one has Zσi(R) = Roτ ~ C simultaneously for 1 < i < I, according as d1 = 1 or 2, Z

is either = F or a totally imaginary quadratic extension of F.

3.4. The algebra srfγ. Let jrfί denote the /?-subalgebra of E n d R F ( 1 ) generated

by β(1)(g(iυ) Then stx is /^-simple and d1~ΈnάDl{V(ϊ))~D1. Moreover, stγ is defined

over F a n d s/1(F)~ΈndDo(V1)~ Do. s/t is of degree v1δodί = v1s1δ1d1 over /?.

LEMMA 2. For each Carton involution θx o/g(

1

1) there exists a uniquely determined

involution ιx of srfx such that one has

(30) β^(θίx)=-β^(x)^.

Such an involution ιx is positive.

PROOF. Let θx be a Cartan involution of g(

1

1). Then θx extends to a Cartan

involution θ\ of (^i)Li e ? which is reductive. Then there exists a positive involution ιx

of stγ such that one has θ\y= —y11 for yestfί. This ιx satisfies (30). Since ̂  is generated

by /J^ίgi1*), ΪI is uniquely determined. q.e.d.

It follows that, if one has an admissible F-structure on (ί/ ( 1 ), F ( 1 )) and if e ε * n

then the involution Zi corresponding to θ1 determined by e(1) is defined over F, and for

each i the conjugate 11* corresponds to the Cartan involution θ^ of g^0 determined by

e ( ί ) = e ( 1 ) σ i e ^ ( 0 . Thus ιx is totally positive, i.e., all the conjugates i^ are positive. Other-

wise expressed, RF/Q(iι) is a positive involution of the simple β-algebra RF/Q(^I)(Q)' It

follows that Do has also a totally positive involution ι0 such that ι^\Z=ι^Z.

As is well known, for the algebra Do with a totally positive involution one has

only the following four possibilities:

(Type 1.1) D0 = F; δo = l, DX=R9

(Type 1.2) Do is a totally indefinite quaternion algebra over F; δo = 2, Dί=R,

(Type 2) Do is a totally definite quaternion algebra over F; δo = 2, D1=H,

(Type 3) Do is a central division algebra over a CM-field Z with an involution of

the second kind with respect to Z/F; δo>\, D1 = C.

Note that in case (50

 = <5i the (unique) positive involution z0 of Do is induced by the

canonical involution of Dγ.

We identify s/^F) with E n d ^ F J and set

(31) φ1(u) = 2β1(Tu) for u

Then φγ is a linear map: £/(1)—•Her(eβ/1, ίx) and the pair (βu φx) satisfies the relations

similar to (βl), 082):
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One notes that, given a "base point" e ( 1 ) e # ( 1 ) , the involution ιx and the map φx are

uniquely characterized by (32). These relations also imply that φx is a Jordan algebra

homomorphism of ί/(1) into (^i)jOΓdan a n d that ^>iC^(1)) is contained in the cone of all

positive elements in Heφa^, i j .

PROPOSITION 1. The normalized inner product of t/ ( 1 ) corresponding to e^ is given

by

(33) <iι, ιι/> = r1(v1 V i ) "

wΛere r t = /?-rankg(

1

1) and tr denotes the reduced trace tr

Put <w, M'>'= tr(^1(«)φ1(i/')). Then by (32) one has

< x w , W ' > ' = - < M i ( * K > ' for

Hence one has < >' = c< > with a real constant c. Putting u = u' = e(1\ one has by (8)

c = rϊ1tr(\) = rϊ1v1δod1, as desired.
3.5. We shall now show that, conversely, one can obtain admissible F-structures

of (ί/ ( 1 ), F ( 1 )) from an ^-algebra structure of $4X.

THEOREM 1. Let s/x be the subalgebra of EndRV{1) generated by jS(1)(g(iυ). Then

an F-algebra structure of stfγ gives rise to an admissible F-structure of(U{1\ F ( 1 )) if and

only if the following conditions (a), (b), (c) are satisfied:

(a) /^^(Qi1*) is a linear sub space of s/x defined over F.

(b) There exists a totally positive involution ι1 ofs/^F) leaving βίl)(9i1))(/Γ) invar-

iant.

(c) Let ts^1(F)^D0, s^ι^Dι and let δ0 and δx be the degree of Do and Dx over

the center. Then the multiplicity of the R-irreducible representation jS(

1

1) in jS(1) is divisible

bys1=δ0/δί.

PROOF. The "only if" part is clear from what we said in 3.4. To prove the "if"

part, we construct an admissible F-structure of (£/(1), F ( 1 )), starting from an F-algebra

structure of siγ satisfying the conditions (a), (b), (c).

Take a primitive idempotent cγ in stf^F) and fix an F-isomorphism

Then V1=(s^ί(F)c1,φί) is a (right) D0-module of rankvx and one can make an

identification jtfί(F) = ΈndDo(V1). By the condition (a) one has an F-Lie algebra struc-

ture on g(

t

1} such that jSi=j8 ί l ) |g ίi1 )(F) is an F-linear representation of g^^F) in

£/1(F) = ΈndDo(V1). Then, defining Vγ} (7= 1,2) as explained in 3.3, one obtains the
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decomposition (26a), (26b). By the condition (c), the multiplicity of )5(

1

1) in β{1) can be

written as v2su and one has the relation (29) for /= 1.

Now an F-structure of F ( 1 ) is defined as follows. Fix an /^-isomorphism

D0{R)~MSι{Dγ) and the matrix units (e[j))1<iJ<Sί in D0(R) such that c^ = e{H Then

there exist injective g^-equivariant linear maps

φt: Vί(R)=
k=l

such that one has K ( 1 ) = (&Φi(Vi(/?)). Hence one can define an F-structure on F ( 1 ) so

that

F (1)(F)=© φiVγ).

Then, in the manner explained in 3.3, one obtains the decomposition (27a), (27b).

An F-structure of U{1) is defined as follows. Take a totally positive involution ι1

of s/^F) leaving j M g ^ F ) ) invariant. Let θλ be a Cartan involution of g ^ defined by

(30) and let e ( 1 ) be the corresponding point in t/ ( 1 ) (determined up to a scalar

multiplication). One defines an F-structure of U{1) so that

Then, clearly, f/(1)(F) is invariant under QΫ\F), and one has e(1)e

φ 1(t/ ( 1 )(F))cHer(j/ 1(F), h). Thus one obtains an admissible F-structure of (C/(1), F ( 1 )).

q.e.d.

In the above notation, since θψ^θ^ is a Cartan involution of g^, one may,

replacing e{1) by (xe(1) with α e F x if necessary, assume that e{i) = e(1)<Ti e ^(ι) for all 1 < i< /,

i.e. e =

REMARK. The F-algebra structure of jrf1 satisfying (a) is uniquely determined by

that of g ^ . The admissible F-structure of (ί/ ( 1 ), V{1)) compatible with a given F-structure

of g(!υ is uniquely determined up to g^1 ̂ automorphisms of (U(1\ V(ί)).

3.6. Determination of a(ί). Let ε e { ± l } . In general, by a (Do, ιo)-ε-hermitian

form h1onsi right Z>0-module Vί we mean an F-bilinear map hx: V1 x Vx -+D0 satisfying

the following conditions:

hί(vl9 v\ξ) = h1{v1, v\)ξ , A^ϋΊ, ι?i) = εA1(!;1, v\)ι°

for vί9 v\ε V1 ,

The dual V\ of F x (as an F-vector space) is viewed as a left D0-module in a natural

manner. Then the hermitian form hx may be identified with an ε-symmetric

(Do, ϊo)-semilinear map hx: Vγ-+V\ by the relation

(34) trDo/F(A1(ι;1,i;'1)) = <i;1,A1(i;i)>.



2-STRUCTURES OF QUASISYMMETRIC DOMAINS 371

Similarly, a (Do, ϊo)-ε'-hermitian form h2 on a left Z>0-module V2 (satisfying this time

h2(ξυ2, v'2) = ξh2(v2, i?2), etc.) is identified with an ε'-symmetric (Do, zo)-semilinear map

^2 : Vi^V* by a relation similar to (34), V\ being viewed as a right Z>0-module.

Now suppose one has an admissible F-structure on (U(1\ F ( 1 )) and eeΉn U{1\Q).

Let ϊj be the totally positive involution of s/1(F) = EndDo(Vί) corresponding to ea) in

the sense of Lemma 2. Then ιx can be written in the form

(35) i^hiKY.y^h^'yh,

with a (Z>0, zo)-ί7-hermitian form Ax on Vx (η= ± 1) uniquely determined up to a scalar

multiplication of Fx. (In the case of Type 3, one may, hence will, assume that η= 1.)

The hermitian form h1 can be taken to be "totally positive (definite)". To be more

precise, let cψ, φψ, Vψ be as defined in 3.3 and extend ig* to an /Minear involution

of D%(R). Then as is easily seen, there exist bψeDfiiR)* (1 </</) such that one has

(36) ψψiξyV^bψ-ψftξybψ (ξeDJ

in particular, one has

The elements cψbψ = bfcψι°ι are uniquely determined by the cψ up to scalar

multiplications of Z(R)x. In particular, one has

(37) bψ^cψ1^ = ηfiψbψ with ηt = ± 1 .

(In the case of Type 3, one chooses bψ so that ηt= 1.) Then there exist Z^-T/^-

forms hψ on Vψ determined by the relation

(38) φψ(hψ(Vlcψ, v\cψ)) = cψbψhV(υu v\)cψ for υu υ\ e V? .

Since ιx is totally positive, one has ηη^X (l<i<l) and the hψ's are definite. Hence

one has η = — 1 for Type 1.2 and η = 1 for all other cases. For the given choice of bψ's

one may choose hx in such a way that all the hψ are positive definite.

REMARK. The above definition of the "positivity" of hλ depends on the choice

of the bψ's, which is usually made in the following manner. Fix isomorphisms

M ( ί ) : D%{R) ̂  M^D^) and the matrix units (ε$) i< M < S l in D^R) in such a way that

εψ1) for ξeDx

in particular, εψ1 = cψ. Then one chooses bψ so that

εkj —°1
)

kj

then by (37) one has bψ^^ηφψ. By these conditions the bψ are uniquely determined

up to scalar multiplications of Rx. Now, for Type 1.1 and 2 one has sί = l9 cψ=l, so

that one may put bψ = 1. For Type 1.2, one has sί=2,ηi= — \, and one takes bψ so that
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0 1

For Type 3, one chooses bψ so that M{i\bψ) is positive definite. We also note that in

this notation (38) is equivalent to saying that

(38') M®(bψhV{vl9 i>Ί)) = (A?W& v'^l)),^^ for vu v\ e V?

(cf. [S6, Ch. IV, §3]).

THEOREM 2. Suppose that (U{1\ V(1)) is given an admissible F-structure,

ee^nU{1\Q), and hx is a totally positive (Z>0, ιo)-η-hermitian form on Vx such that
ι\ = ιι{h\) is t n e involution corresponding to e{1). Then (e(1\ a(1\ β(1)) is an admissible

triple belonging to (U(1\ V(ί\ <^(1)) defined over F if and only ifa(ί) is of the form

(39) 0 ( 1 ) K ® D o t ; 2 , υ\ ®z>o^2) = trD o / F(Λ1(t;1, v\)^h2(v29 υ'2)) for υj9 υ)e Vj, j= 1, 2 ,

where h2 is a (D o , ιo)-( — η)-hermίtian form on V2.

(Cf. [SI, p. 234, Prop. 3], or [S6, Ch. IV, §2].)

PROOF. Assume that (e ( 1 ), a(1\ β(1)) is an admissible triple defined over F. Then by

(β2) and (30) the involution ι = ι(a(1)) leaves stγ invariant and ι\s^1 = ιι. Since one has

there exists an involution ι2 of EndD o(F2) such that ι2\Z=ι0\Z and

{y,®zyi)ι=yιϊ®zy1} ( ^ e E n d ^ ί ^ ) , 7 = 1 , 2 ) .

Hence, making the natural identification V(1)(F)* = V% ®Do KJ, one has a (Do, ιo)-( — η)-

hermitian map h2: V2-+V* such that

a{lXvi®Dov2) = hi(v1)®Doh2(v2),

which is equivalent to (39). The converse is clear. q.e.d.

With the same notation as in Theorem 2, let (e{i\ a(i\ β(i)) = (e(1\ a(1\ β{1ψ

(1 </</); then they are admissible triples belonging to (U(i\ F ( 0, ̂ ( 0 ) defined over Fσi.

Let cψ, ψ{l\ bψ be as above. Then for each \<i<l there is Z^-skew-hermitian form

hf on the left Dλ -module Vψ determined by the relation

(40) ψψ{hf(cψΌ29 cψv'2)) = cψhσ

2iυ2, vf

2)bψ~ιcψ for Ό2,

and one has

(41) « > i Oi,,^, »i®D1u2) = tr | > l / e(A (>1, Ό\)h2\Ό29 V'2))

for vpv)eVf, 7= 1,2

(cf. [S6, Ch. IV, §3]).
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3.7. The description of <Z. Let

Then, since I(i) is /?(0(g ̂ -invariant, one has

(42) iU=\®Dιlf (1 </</),

with a complex structure ifeEndj^^Vψ), which by (41) satisfies the condition

(43) hψ(υ2,1
(i)v'2) (v2, v'2e Vψ) is Z^-hermitian and positive definite .

Let ^{Vψ, hψ) denote the space of/^-linear complex structures on Vf satisfying the

condition (43). Then one has

(44) 6(F ( / ), a(i\ β(i))~<5(Vψ, hf).

This implies, in particular, that for any (J-rational admissible triple (e, α, β) one has

The symmetric domain ® (with the given g-structure) is denoted as

RF/Q&(V2, Do, h2). In the case where Do is of Type 1.1, Type 1.2, and Type 2, S is

also written as ^ ( I Π ^ ) , i ^ I I I ^ , Do, h2), and RF/1flI™, Do, h2), respectively.

Note that the corresponding group G2 has no compact factors (and hence

determined uniquely by ®) except for the following two cases. The group G2

corresponding to RF/Q(IIf\ Do, h2) is compact, so that the corresponding domain ®

reduces to a point. The group G2 corresponding to RF/Q(ϊl2

2\ Z>0, h2) (under the

assumption that ® has rational points) is isogenous to the direct product of two β-simple

groups G'2, G'2\ one of which is compact and the other is isomorphic to the group

corresponding to / ^ ^ ( I Π ^ ) . (These cases are usually excluded from the classification.)

3.8. In the case where Do is of Type 3, one has to determine furthermore the

signature of hψ. For that purpose, let σ and σ" denote two imbeddings of the center

Z of Do into C extending σt: F-+R; then one has σ" = σ0 <> σ'h σ0 denoting the complex

conjugation of C We determine φψ and (σj, σ") in such a way that

(45) ψψ((xσ'ή = φf{θL<) = ocσicf ( α e Z ) .

Then we say that the ψψ are compatible with the "CM-type" (σj) of the CM-field Z.

In this case, since D1 = Cis commutative, we don't distinguish left and right C-vector

spaces. Then, the (Vf, φf) being C-vector spaces, one has direct decompositions

(46) Vf ®RC= Vf © Vf" , Vf" = Vffσo, (1 < i < /, = 1, 2),
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where

Vf = {ΌeVf®ΛC\Όψψ(ξ) = ξΌ for ξεC} ,

Vf" = {vGVf®RC\vφψ(ξ) = ξv for ξeC} ,

and dimc Kf = dimc Vf" = v/0.
Let βψ' and βψ" = βψ'σ° denote the restrictions to Kf and Vψ" of the natural

extension of the representation βψ to Vψ®RC. Then they are absolutely irreducible
and the primary decomposition of (V(i)®RC, β(i)) is given by

(47) V{i)®RC= Vψ' ®c Vψ' ® Vψ"®cVf .

Now, for the given complex structure I(i) on V{ί\ set

κ(;}={VG v(i) ®Rc\ i(i)v=J^\v}.

Then V{$ is jS^^g^J-invariant, and the primary decomposition of it is of the form

(48) F(i} = Vψ' ®c Wψ ® Vψ" ®c Wψ" ,

where Wψ and Wψ' are complex subspaces of Vψ and Vψ' of dimension pt and qh

respectively. Since one has

v{ΐ)®Rc=v{2®vψ\

one has

(49) Vψ=Wψ®Wψ'σo;

in particular, Pi + qi = v2δ0 (1 </</). Thus one has

( 5 0 ) ( K ( ί ) , /«'>, ( i ) % ψ ψ

Otherwise expressed, one has

V(i

(51)
/( ί>

where 7§)r is a complex structure on Vψ, defined by

on
(51a)

on

Let AJ0' denote the (-ly^-hermitian forms on Vf' obtained from hf by the
C-isomorphism (Vf, ψψ)~ Vf'; then hψ'(w2, w'2) (w2, W'2G Vψ) is C-linear in w2. For
the sake of consistency, we set
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to obtain a skew-hermitian form which is C-linear in w'2. Then by (41) one has

(52) a^v, ® c ϋ 2 , υ\ ®cv'2) = 2Rφψ'(w1, w\)hψ\w2, w'2)),

where

vj = wj + wj9 Ό'J = W'J + W'J, vj9v
fjEVf, wj9w'jeVf (l<ί<lj=h 2),

and the symbol ® c in (52) stands for the tensor product over ψψ(C). Since a(i)l(i) and

the hermitian form hψ' are positive definite, one has by (51), (51a) and (52) that the

hermition form ^j— λhψ on Vψ is of signature (ph qt). In this sense, we say that h2 (or

I2) is of signature (pi9 qi)ι<i<ι with respect to the given "CM-type" (σί). In this case ©

is written as

(53) S = Π W * ' . hψ) = RFIQ(B{V2, Do/Z9 h2).

For the given skew-hermitian form h2, the CM-type (σ'i)1<i<ι can be so chosen

that one hasp t >q t for \<i<l. When ® has rational points, the reductive group G2 is

(strictly) pure, so that there exist integersp, q such thatp t=p, qv = q (1 <i<ϊ). Then the

symmetric domain © in (53) is denoted as

The corresponding group G2 has no compact factors, except for the case q — 0, in which

case the group G2 itself is compact. Note also that the group corresponding to

RF/Q(1{^U Z, h2) is β-isogenous to the one corresponding to i?F/β(II(

3

2), Do, h'2) for a suita-

ble totally definite quaternion algebra Do over F and a Z)0-skew-hermitian form h'2
of 3 variables.

REMARK. When p>q, there exist rational points in © if and only if one has δo\q

and β-rank G2 = q/δ0. If this is the case, / is rational, if and only if there exists a

D0-submodule W2 of V2 of rank q/δ0 such that

Wf = (Wi-)σ'iC) n Vψ , W "̂ = W$(Q n K( "̂ .

1 denoting the orthogonal complement with respect to h2. When p = q, the situation is

a little more complicated ([S8]).

4. The standard case.

4.1. Admissible F-structures of (ί/ ( 1 ), K(1)). According to the classification the-

ory of irreducible self-dual homogeneous cones, ^ ( 1 ) is isomorphic to one of the fol-

lowing cones:

We call the first three cases standard and the fourth non-standard or quadratic. Note

that ^^R) is the unique case for which r1=n1 = \ and that the quadratic case is

characterized by r1=2; in particular, one has the isomorphisms ^2(/?)
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0>

2(C)~0>{\, 3). (For convenience, we exclude 0>2(H)~0>(\, 5) from the standard case.

Because of the assumption F / 0 , the exceptional case ^3(O) is also excluded.)

In the standard case, one has

ίi
(54)

flimsy/)!), DX=R9C9H.

We know ([S2]) that the representation (F ( 1 ) , βa)) is /^-primary. In (26a, b) F(

1

1) is a

£>!-module of rank rί and j8(

1

1) is a Lie algebra isomorphism

(55) β™: q ^ ^

tr denoting here the reduced trace of EndD l(F ( 1 )) over its center. Thus one has

j ^ - E n d ^ F ^ - M , ^ ) and r^v.δjδ,.

It follows that, if one has an F-algebra structure on sfx with a totally positive

involution i l 5 then the conditions (a), (b) in Proposition 2 are automatically satisfied.

Hence, in the standard case, an F-algebra structure of stfx gives rise to an admissible

F-structure of(U{1\ F (1)) if and only if there exists a totally positive involution ιx ofs/^F)

and the condition (c) in Proposition 2 is satisfied.

Now, suppose one has an F-algebra structure on s/ί satisfying these conditions

and fix an admissible F-structure of (C/(1), V(1)) compatible with it. Then one has (27a, b)

with

(56)

Hence in this case one has F-

REMARK. Our argument shows that, in our case, the F-forms of g(

1

1) corresponding

to the unitary groups do not occur. (In fact, for such an F-form the representation β(ί)

is not defined over F).

On the other hand, one has

(57) U^^V^®^"),

where S denotes the symmetrizer and the second factor F\ υ in the right hand side is

viewed as a left D^space by ξvί = v1ξ(v1 e Vγ\ ξsD^. U(1) is also identified with the

space of all symmetric /Vsemilinear maps: V^^V^K Then the action of g(

1

1) on Ua)

is given by

(58)

ueU(1).
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From (57) one also has an F-structure of U{1) such that

(59)

S, denoting the 77-symmetrizer Ŝ  = (l/2)(1 +ητ), where τ is the transposition and η= — 1

if Do is of Type 1.2 and η= 1 otherwise. Thus C/(1)(/7) is identified with the space of all

^-symmetric (Z>0, ιo)-semilinear maps: Kf-> F x . Then the action of g ^ F ) on £/(1)(F) is

given by a formula similar to (58).

4.2. Now let ee^nU(Q), e = (e(i)), and consider e ( 1 ) as a (Z>0, zo)-semilinear

isomorphism V\ ^ V1. Then its inverse e(1)~ι: VX-^V\ may be viewed as a

(Z>0, ιo)-f/-hermitian form on Vu which we denote by Al5 i.e.,

(60) t r ^ A ^ ϋ ! , i Ί)) = <!?!, e ( 1 ) " X > {υl9 υ\

PROPOSITION 2. L^/ φ x ««J ιx be as defined in 3.4. Then, for ueU(1)(F) and

F), one has

(61) φι(u) = uoe{ί)~\

(62) /^^o^o^"1 .

(TTzws ί?«^ has ιx = ?i(Ai), /.^., our notation is consistent.)

PROOF. For the proof, we denote the right hand sides of (61) and (62) by φ\(u)

and y1'1, respectively. Then it is clear that one has φr

1(u)eϊieτ(s/ί9 ι\) and, for XEQ{I\F)9

Hence φ\ is an F-isomorphism C/ ( 1 )^Her(j/1, ϊi) satisfying the first and the third

equations in (32). In particular, one has

which shows that the map y\-> —y1'1 (yes/^) induces the Cartan involution θx of g(

1

1)

corresponding to e{1). Thus the second equation in (32) is also satisfied. Hence by the

uniqueness of ix and φx one has φ'1 = φl9 ι\ = h q.e.d.

By (19) and (61) the Jordan product in U{1) is given by

uu'' = — (woe*1*"1 ou' + u'oeW1 o«),

and by (33) the normalized inner product on U{1) corresponding to e(1) is given by

(63) <iι,iι'> = (Mi)" 1 tr j / l / β («e ( 1 ) "V^ 1 >- 1 )-.

Finally one obtains the following

PROPOSITION 3. Suppose we are in the standard case. Let (e ( 1 ), a{1\ β(1)) be an

admissible triple defined over F belonging to (ί/ ( 1 ), K(1), ^ ( 1 ) ) , hx = e{1) \ and let h2 be a
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Φo> io)-{-η)-hermitian form on V2 satisfying (39). Then the corresponding alternating
bilinear map A{1): F ( 1 ) x F ( 1 )-> U{1) is given as follows:

(64) Ail\v1 ®Dov2, v'1®Dov'2) = ηδίd1Sη(v1h2(v29 υ'2)®Doυ\)

for vu v\ e Vx and v2, v'2 e V2 .

PROOF. For we U{1)(F) one has

<w, Ail\v1 ®Dov2, v\ ®DQV'2)
S) = AU{V1 ®DOV2, V\ ®DOV'2)

{υu {ue^-λ)υ\rh2(v2, υ'2))

(ι;1/z2(ι;2, υ'2), {ue^x)υ\))

= ηδ1d1(u, Sl|(f?1A2(ι;2, v'2) ®Dov
f

1)} ,

whence follows (64). q.e.d.

4.3. Classification. In the classification theory, the quasisymmetric domain ^

with a β-structure described above is expressed by the following symbols, according

as Do is of Type 1.1, 1.2, 2, or 3.

v > i ; V 2 , Do, h2)j ,

/MipΛ 2)j (vA>2).

In the standard case, the total space §? is always symmetric. For RFι

the space Sf may be identified with the Siegel domain (of the third kind) expression

of ΛF/β(ΠI(

v

1

1

)

+V2/2) over the v r t h rational boundary component (B = RF/Q(llli

v

1

2

)ι2). In

the case of RF/Q(lllfl;V2, Z)o, h2)l9 resp. ΛF/Q(Π(

V^V2, Dθ9h2)j (Vi>3), let h'2 denote

a Z)0-hermitian, resp. Z)0-skew-hermitian, form of 2v !+v 2 variables in the same

Witt class as h2. Then & may be identified with the Siegel domain expression

of ΛF/fl(IΠ2

2

¥

)

1 + V2, Do, h'2), resp. RF/Q(II{£ί+V2, Dθ9h'2) over the v r t h rational boundary

component S = RF/Q(llli

v

2

2

). Dθ9h2), resp. RF/Q(Il[2

2\ Do, h2). In particular, RF/1fll™l9

^o? h2)I (v1 >3) is identified with the symmetric domain /?F/Q(II(

2

2

V

)

1 + 1, Do, A2). In the case
RFIQ(^LΛP^ DO/Z> hi)i (viδo>2,P + q = v2δol let h'2 denote a (Do, zo)-skew-hermitian

form of 2v1 + v2 variables in the same Witt class as h2. Then the total space & may be

identified with the Siegel domain expression of RF/Q(l^o+pViδo+q9Do/Z9h
f

2) over

the vx-th rational boundary component S = i?F/Q(I<?°), Do/Z, h2). In particular,

)5 DO/Z, h2\ is identified with the symmetric domain RFίςβ%%^2)δ^xδ^
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D0/Z9h'2).

In general, it is known that, for any boundary point p of an irreducible symmetric

domain @, the "fiber" over p, i.e., the union of all geodesic lines in 2 tending to /?, is

an irreducible quasisymmetric domain and, if/? belongs to the first boundary component,

it is of type ( Π I ^ ^ ) , . F o r instance, for the symmetric domain ̂  = /?F / Q(II (

2

2 | v^ Do, h'2\

resp. RF/Q(I(ilP,i+q> Z, h'2) (p + q = v'2), the fiber over a rational point / in the first

rational boundary component ® = ΛF/β(Π<,?), Do, h2), resp. RFiςβ
(^φ Z, h2) is of type

i?F/Q(IΠ(

1

1.)

V2/2)/ (v2 = 2v2). [But, because of the existence of compact factors in GLX(H)

and GL^C), the automorphism group of the fiber induced by the paraboric subgroup

is, in general, smaller than Af[(RF/Q(lll^)V2/2)I.'] In particular, the domain ^ ^ ( I Π ^ 1 . ^ ^ ) /

can be identified with the symmetric domain RF/Q(l(ilv>Λ, Z, h2) (along with the auto-

morphism group), where Z, h'2 are determined as follows. Let a2 be a non-degenerate

alternating bilinear form on V2= V{1)(F), lsRFia^{V2, a2), and let Z be the CM-field

attached to /, i.e., Z=F(yJ—ocι), where cc1 is a totally positive element in F such that

is β-rational. Then h2 is a Z-skew-hermitian form on V2 given by

which is totally positive with respect to the CM-type (σ'f) determined by •sf—~0L1

σ'i =

yJ—\ yjoif, and h'2 is a Z-skew-hermitian form of 2 + v'2 variables in the same Witt

class as h2.

5. The quadratic case.

5.1. F-structures of (ί/ ( 1 ), g(iυ). We keep the notation of §3. In the quadratic

case, one has

(65)
gî (giυy, g^^^i^.-i),

where « x = d i m U{1)>3. In this case, r1=/?-rankg ί

1

1 ) = 2.

One obtains all informs of qγ] in the following manner. 7MS a totally real number

field of degree /. Suppose that U{1) is given an F-structure and S{1) is a symmetric

bilinear form on ί/ ( 1 )xί/ ( 1 ) defined over F. Put (U, S) = RF/Q(U{1\ 5 ( 1 )). We assume

that all S{i) = Sil)σi ( l < i < / ) are of signature (l,nί-\). Then one has an F-structure

of g(

1

1) given by

For convenience, one fixes an irrational orthogonal basis {et} of U{1) such that
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where αx is totally positive and α 2 , . . . , αΠl are totally negative.

REMARK. When n1 is even, there is a possibility of F-forms of g(

1

1) defined by a

quaternion skew-hermitian form h of nJ2 variables with respect to a totally indefinite

quaternion algebra over F. However, since h should give rise to a symmetric bilinear

form of signature (1, nx — 1) at every real place, an easy observation of the root diagrams

shows that g(

1

1) is F-anisotropic. By a theorem of Kneser ([Sc, Lem. 10.3.5, Th. 10.4.1]),

this can happen only for nί <6 . For nx = 4, by virtue of the isomorphism ^ ( 1 , 3)~^ 2 (C),

the F-forms of this type were already treated in §4, so that we may exclude them

from the general discussion of the quadratic case. For n1 = 6, such F-forms come from

a central division algebra of degree 4, which can not have positive involutions. Hence

F-forms of this type do not occur. For «1 = 8, there is also a possibility of F-forms

of g(

1

1) coming from the triality. But, for the reason similar to the one given in [SI,

p. 270], such F-forms do not occur either.

5.2. The Clifford algebras. Let C=C{U{1\ S(1)) denote the Clifford algebra of

S{1) and let C+ denote its even part. C and C+ are semisimple /^-algebra defined over

F. Put

e = e1 -eHιeC{F)9

(66) A=e2 = (-\)ni{nι-ί)/2oc1- -aniGFx

(the discriminant of S{1)).

By our assumption, A is totally positive (resp. totally negative) for n1 = 1, 2 (resp. Ξ O ,

3) (mod 4).

When nx is odd, C+ is a central simple /?-algebra of degree 2 ( Π l " 1 ) / 2 defined over

F. When nγ is even, the center of C + is {1, e)R. Hence, if nx = 0 (mod 4), the center Z

of C+(F) is a totally imaginary quadratic extension of F, isomorphic to F(J~Δ) with

zJ«O (totally negative). Thus C+ is simple and of degree 2Π l / 2 " x over its center Z(R) ~ C.

If nx=2 (mod 4), one has Zl » 0 (totally positive) and

(67) C+=Ct®Ct

with central simple /^-algebras Q + (i = 1, 2) of degree 2" l / 2 \ (The ordering of Cj", C 2

may be determined by the orientation of U(1).) If, moreover, A ~ 1 over F(i.e., A e(F x ) 2 ) ,

then each C+ is defined over F and one has Cft/O-Cj (iθ ( b v t h e m a P ^ ^ ^ Γ ^ i ) -

If n1 =2 (mod4) and A + \, C+(F) is simple with center Z^F(yJ~Δ\ which is a totally

real quadratic extension of F. In this case, one has C+(F)^C^(F(J~A)) (/= 1, 2).

Let p denote the canonical involution of C+ (i.e., one has (eh eik)
p = eik eh).

Then it is easy to see that

(68) p'
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is a totally positive involution of C + ; when nγ is even and A ~ 1, we mean by this that

p' induces a totally positive involution on each simple factor C* (i= 1, 2) ([S6, p. 282,

Prop. 5.1]).

Let Do be a division algebra over F such that C+(F) (or C?(F))~D0. Then the

degree δ0 of Do (over its center) is <2. One has F-rankg^ 1^ 1 if δo = 2 and n1<4, and

F-rankg(

1

1) = 2 otherwise. One has

(69)

R if nλ = \, 2, 3 (mod 8),

C if « ! = 0 , 4 (mod8),

H if ^ = 5, 6, 7 (mod 8).

Thus Do is of Type 1, if ^ = 1, 3 (mod8) or = 2 (modδ) and J ~ l , of Type 2, if ^ ^ 5 ,

7 (mod 8) or = 6 (mod 8) and A ~ 1 , and of Type 3, if «x = 0 (mod 4). When nι = 2 (mod 4)

and A Φ1, Do is of Type 1 or 2 over F(^J~A) according as n1 = 2 or 6 (mod 8).

5.3. F-structures of (F ( 1 ) , β{1)): the case nγψ2 (mod4). In this case β{1) is

/^-primary and the /^-irreducible factor is given by the spin representation. As is well

known, there exists a canonical /^isomorphism

^(i) ~

such that one has

(70) x(u) = [β1(x\ u] for xe§[1] and ueU{γ\

(71) i»i(β (i1 }) =

If one denotes by K the unique /^-irreducible representation of the simple /^-algebra

C + , then the spin representation of g(

1

1) is given by κoβx. Therefore, identifying β{1\x)

(xEqγ]) with βx{x), one may make an identification <s/ί = C+. It is then clear that the

natural F-algebra strucrure of sdγ = C+ (which is the unique F-algebra structure making

β{1) and /?! defined over F) satisfies the conditions (a), (b) in Proposition 2 with ι1=p'.

Hence the natural F-algebra structure of stfγ gives rise to an admissible F-structure of

(U(1\ K(1)), if and only if the condition (c) in Proposition 2 is satisfied. For simplicity,

one puts e{l) = eι\ then one recovers the same F-structure of U(1) given in 5.1.

In the notation of §3, one has

i f Λ i i s odd,

5.4. Now, fix β ( 1 ) = e16C/ ( 1 )(F) with a1 = Siί\eue1)»0. Then one has

PROPOSITION 4. For we t/ (1)(F) andyeC+(F), one has

(72) φ1(iι) = iιeΓ 1,

(73) y»
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PROOF. We know (73) already ([S6, Prop. 5.1]). To prove (72), define φx by (72)

for a moment. Then it is enough to show that φ1(w)eHer(C+, p'), φ1(e1)= 1, and that

φγ satisfies the first relation in (32), because these properties characterize φί. The first

two properties of φx are obvious. From (70) one has

) = (β^u-WjS^K1 = βM)ψM) + φ ̂ e ,β .{xf e', ' ,

which proves the first relation in (32). q.e.d.

By an easy computation, one has

( ( ) ((φi(κ)φ1(κ) + Φi("/)φi(«)) = ̂ i , eJ-^Siu, e1)φ1(u') + S(u'l9 e^φ^-S^ u')).

This shows that the Jordan product in U{1) is given by

It follows that the normalized inner product on U(1) is given by

(74) <u, u'} = 2S(u, ei)S{u'9 eJ-Siu, u*)S(el9 ex).

On the other hand, let c1 be a primitive idempotent of C+(F) and \\J1 an

F-isomorphism: Do >̂ c1C
+(F)c1. Then the (Z>0, ιo)-^y-hermitian form hx on Vx =

(C+{F)cu ψj is given by

(75) Ai(«i^/i) = ^ Γ 1

where bx is an element of C+(F)* such that

Finally to obtain an explicit form of Aa\ let < > c + denote the inner product on

C+ defined by

For x e C + , let [x]v denote the element of t/ ( 1 ) such that ΦiflXlc/) coincides with the

φ1(ί/(1))-component of x with respect to the inner product < > c + .

PROPOSITION 5. Suppose we are in the quadratic case with n^ψl (mod4). Let (e(ί\

a{1\ β{1)) be an admissible triple with e{1) = ex defined over F belonging to (U(1\ V(1\ <£{1))

and let h1 and h2 be as given in (75) and (39). Then the corresponding alternating bilinear

map A{1): F ( 1 ) x F ( 1 ) ->ί/ ( 1 ) is given as follows:

(76) A{1\v1 ®Dov2, v\ ®Dov
f2) = -γΨi^odiίv1φ1(h2(v2, ι/2))Vi l l]ι/

PROOF. For we U(1)(F), vί9 v\ e V1 = C+(F)cu υ29 υ'2 e Vl9 one has
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2, (IΛ?Γ V i ®Dov
f

2)

= ^D0/F(hi{vίh2(v2, t/2), ( W ^ Γ V I ) )

= Kc+ιikbiΨi{h2(Ό2iΌ'JfιΌxiueΐ1Ό

= (ueϊ\ ηv1φί(h2(v29 vf

2))b1v'ϊί)c

which proves our assertion. q.e.d.

5.5. Classification. In the classification theory, the domains 9?

ι and S in the

present case are denoted as

^ / e (IV n i ; V 2 ,5 ( 1 ) ,A 2 ) 7 (71^3, # 2 (mod4)), ΛF/β®(K2,Z>0,Λ2).

(When Do is of Type 1.1, i.e., when D0 = F, one omits h2.)

The total space £f is symmetric for the following three cases. For n1 = 3, by virtue

of the isomorphism ^ ( 1 , 2)~0>2(R\ the domain ^F / e(IV 3 ; V 2, S(1\ h2\ is identified with

^F/β(ΠI(21,)v2/2)/ o r ^ W 1 1 1 ^ * ^o* Λ2)/ (Do = C+(F)) according as D0 = F or not. Hence

the corresponding SP is the Siegel domain expression of RF/Q(Ill2

δ+V2δo/2) over the 2/(50-th

rational boundary component <Z = RF/Q(UI^O/2). For « x = 4 , by virtue of the

isomorphism ^ ( 1 , 3 ) ^ ^ 2 ( C ) , the domain i?F/Q(IV4;V2, S(1\ h2\ is identified with

^F/β(I (2uU' Dolz> hi)i (D0 = C+(F), Z=F(y/J),p + q = δov2\ so that the corresponding

S? is the Siegel domain expression of RF/ίfi
i

2^Pt2+q9 Do/Z9 h2) over the 2/δo-th boundary

component <Z = RF/Q(I%f,D0/Z,h2). In particular, ^F / Q(IV4 ; V 2, S(1\ Λ2)j wiYA ^ = 0 w

identified with the symmetric domain RF/Q{I2

δ+V2δo,2, Do/Z, h'2). In the case ^F/β(ΓV8;1,

5 ( 1 ), Λ2)/, the domain ® reduces to a point / ( / = ^ | J σ i | " ι/2e(i)) and §P = 9?

ι is a symmetric

domain of the exceptional type (V)z with a β-structure of β-rank 2.

5.6. The case nί=2 (mod4). In this case, there exist two /^-irreducible (spin)

representations of g ^ . Let πf denote the projection C+ -+C* and κt the /^-irreducible

representation of Cf (i=\, 2). Define the injective homomorphism βx: Q{ι]^>C+ as in

5.3. Then the two spin representations of g(

1

1) are given by κt o π t o βι (i= 1, 2). In general,

the representation (V(1\ β{1)) has two /^-primary components corresponding to these

/^-irreducible representations.

Let sίγ denote the enveloping algebra of β^ffl) in E n d Λ F ( 1 ) . Then there exists

a uniquely determined (algebra) homomorphism λ\ C+^s/ί such that one has

β^) = λoβ1. Suppose that the F-structure of (U{1\ S{1)) is extended to an admissible

F-structure of (Ua\ V{1)) (under the condition similar to the condition (c) in Theorem

1). Then C + and stfγ have natural F-algebra structures such that βγ and λ are defined

over F.
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When A Φ 1 over F, the F-algebra C+{F) is F-simple, and λ gives an F-isomorphism

C+(F)^^ί(F). The center Z of stfx(F) is a totally real quadratic extension of F,

isomorphic to FQ A ). Hence βa) is F-primary, but not /^-primary, and we obtain a

result similar to the one given in §3 with some modifications. For instance, (27a), (26a)

must be modified in the form:

= V[1)f®Dί V2

1)f®V[1)ff®Dί Vψ" ,

where Vl9 Vγ)f, and V[1)π are simple left ideals of C+(F\ C\, and Cj", respectively. In

this case, v1δ0 = 2ni/2~1, and one has

dimκ Vf = dimR Vf" = vjs1δ
2

1 ,

In the classification theory, the domains S/Ί and S are denoted as

V".;v2,v2*
 S(U> h2)ι («i 2:6, =2(4)) ,

When zl ̂  1 over F, C+(F) is decomposed as (67), in which each simple component

Cf{F) is invariant under p'. Hence one has either srf^^C+iF) or Q+(F) ( ί = l , 2),

according as β(1) has two or one F-primary component(s). For each F-primary

component (which is also /^-primary) one has formulas similar to the ones given in the

F-primary case, replacing βu φx by πf ° j8l5 πf o φ x . Thus in this case, (27a), (26a) should

be modified as follows:

V{1)= V[lv ®Dl Vψ' ® Vψ ®Dί

V'i, v'ύ Vi1)f, and V[ί)ff being simple left ideals of Ct(F\ C^(F\ Ct, and C2

+, respectively.

Denoting the ranks of /)0-modules V' } and V'\ (/= 1, 2) by v) and vj, one has

v ; = v ϊ = 2 ^ 2 - 1 5 0 - 1 , v'2, v' 2 '>0,

and

dimR Vf = v'jSlδ\, dimR Kj0" = v'jsj\ ,

In this case, the domains Sfι and 6 are denoted as

*F/ β (IV,, i ; v ^, S ( 1 ), Λ'2, Λ'2')7 ( Λ l >6, =2(4)),

Γ2, Z)o, h'2) x ΛF / QS(KΪ, β 0 , Λ2').
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[One may choose the orientation of U{1) so that v ' 2 >v 2 and, when v'2' = 0, one omits

the second factor 7?F/Q(5(F2, Do, λ'2').]

In general, if p is a point in the second boundary component of an irreducible

symmetric doamin, then the fiber over p is an irreducible quasisymmetric domain of

type (IVΠi; V2) or (IVΛl. V 2 f 0 ) . Thus, for n1 = 6, by virtue of the isomorphism ^ ( 1 , 5) ~ &2{H\

the domain ^F/Q(IV 6 ; V 2 θ, S ( 1 ),/ι2)7 (Λ~l) is identified (through the first spin

representation) with the fiber over a rational point / in the second rational boundary

component S = ΛF/β(Π(

V2), Do, h2) in the Siegel domain expression of «ί̂  = /ίF / β(Π^2 jV 2,

A)> h'2), where Do = C^{F) is a totally definite quaternion algebra over F. In particular,

^F/β(IV6 ; l f 0, 5 ( 1 ) , Λ2) is identified with the symmetric domain /£F/β(II(

5

2), Do, h'2). For

nx = 10, the domain ΛF/β(ΓV10;2/<50>0, S{1\ hi)i (A ~ 1) i s identified with the fiber over a

rational point / in the second rational boundary component S = ΛF/Q(ΠI(

1*
)), D o , /z2) in

the Siegel domain expression of a symmetric domain of the exceptional type (VI)' with

a β-structure of (J-rank 1 +2/δ0.

Appendix: The symmetric case.

A.I. The condition (iii). First we introduce some notation. For υ, v' e V, set

(76) φHfa v') = φ(A(v, v'))I+ φ(A(v, Iυ')).

Then one has

fa υ')= -φHtfυ, V) = φHI(v, Iv') = φHI(v, i;')/.

Thus φHj(v, v') is C-linear in υ' and C-semilinear in v with respect to the complex

structure of V defined by /. It follows that one has

(77)

Moreover, for g2 e G2, one has

(78) g21φHI{g2υ, g2υ')g2 = φHg~ iIg2(v, v').

The following result is known (cf. [S6, p. 223-224, Th. 3.5]).

PROPOSITION 6. A quasisymmetric domain ίf1 is symmetric if and only if the fol-

lowing condition is satisfied'.

(iii) A^φHjiυ^v'y^AiφHjiv'^vy^") for υ,υ',v"eV,

or equivalently,

(iii') A(w, φ(A(w\ w"))w") = A(φ(A(w, w")w\ w") for w,w\w" eV+ .

COROLLARY. If&Ί is symmetric for one Ie 6, then Sfι is symmetric for all Ie S.

This follows from Proposition 9 and (78).
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REMARK. It is known ([S6, p. 228, Lem. 4.6]) that (iii) is equivalent to any one

of the following conditions.

(iii1) φH^v, φ(u)v>' = φ{u)φHj{υ, v')v',

(iii;) φH£φ{u)υ9 υ')υ' = φHfa υ')φ{u)υ'

{v,v'eV,uεU).

By the classification, we see that an irreducible domain Sfι is symmetric if and only if

either one has g i = {lc/}κ or c$2 *
s compact. N o t e that there are some discrepancy

of the notation between this paper and [S6, Ch. V] . In the latter, the complex structure

/ o n V is fixed, so that (V, I) is identified with V+. One has the following dictionary

(on the left hand side is the notation in [S6]):

(i?, v') = A{v, Iv') + iA(v, υ'), 2RU = φ{u),

SR(H(Ό9 rO)(on V+) = φHI(v9 i;')(on V+) = 2iφ(A(v.9 υ'+)).

A.2. Infinitesimal automorphisms of έfj. Let A u t ^ j denote the group of

biholomorphic automorphisms of Sf1 and let (5 = LieAute9
<?j. Then Xe© can be ex-

pressed by the corresponding "infinitesimal automorphism" of &Ί, i.e. the differential

operator X on C 0 0 ^ ) defined by

(Xf)(u, w) = 4/(exp(^)"1(w, w))|ί=0at

in notation, we write X<r+X. Let (ea) and (ef

λ) be bases of Uc and V+ over C, respectively,

and let (wα) and (wλ) the corresponding complex coordinates of Uc and V+. Then X is

expressed in the form

(79) Ϋ= 4 8

. 1=1 ' " ' dWλ

Settingp{u, w)=£"=1/7a(u, vv)βα, φ , w) = Y^=iqx{u, w)e'λ, we write

^ , , δ
u, w) .

First, for the Heisenberg group F, the Lie algebra Lie V is naturally identified with

ί / ® F ( a s a vector space). Viewing Lie V as a subalgebra of (5, one has by (7)

(80) a + b++ -(a-A(b_, w)) Z>+ (ae U,beV).
du dw

Clearly one has

(81) la + b, fl' + *'] = -A(b, b') {a, a'eU, b, b'εV).
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For the linear group G/? one embeds LieG/ = g1 θ ϊ 2 i n t 0 QKU) X §ί(V)- Then, for
(Xl9 Yx)6Lie Gj, one has

(82) {χuYl)^-JL d

du dw

Clearly one has

l(Xl9 YJ, {X29 Y2)-] = (lXl9 X2l ίYl9 Y2Ί)

When Sfj is symmetric, let 0 be the Cartan involution of © at (ie, 0) e Sfv Then one

has a gradation of © according to ad(— 1 ,̂ (—1/2)1 v) of the following form:

(83) <5= £ © v / 2 , 0© v / 2 = © _ v / 2 .
v=-2

©_! = !/, © _ 1 / 2 = K , ©o = LieG/ = g 1 θ ϊ 2 ,

and θ induces the Cartan involution θx © 0 2 on © 0 (cf. [M], [S6, p. 211, (A), p. 220,

Prop. 3.3]). In order to describe the action of θ on U, F, it is convenient to use the

following notation:

( « Π M > " = {«, u', u") = (uu')u" + u(u'u")- u'{uu"),

uΠu' = Tuu. + [Tu9 Tur\ .

By (18) and (19) one has

(84) φ({u, u'9 u"}) = \(φ(u)φ(

(85) {u, A(Ό9 v'\ iι'} = i - μ ( φ ( φ , φίn'^

PROPOSITION 7. O«^ Aα̂

(86) θα «-> - {M, α, M} φ(u)φ{a)w —— ,

a a
(87) 0* <-> - M(φ(M)6 _, w) 1(φ(ιι)ft + + φ(A(b _, w))w) — .

du dw

This was given in [S6, p. 224, Th. 3.6]. A more direct proof can be given as follows.

The symmetry at (ίe, 0), denoted also by 0, is given by

0: (M, W J I - ^ - W " 1 ,

where M" 1 denotes the inverse of u in the Jordan algebra (U, e) and one has
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φ(μ~1) = φ(u)~1 (cf. [S6, p. 139, Exc. 3]). Hence, for aeU, one has

(exp θa)(u, w) = (0 ° (exp a) ° θ)(u, w) = θ( - u ~1 + a, - iφ(u) ~ι w)

= ((u-1-ay\φ(u-1-a)-1φ(uy1w).

Here one has

(u~1-a)~1=(\-u\Ja)~1u = u-{u,a, u}+

φiμ-1 -aΓ'φiuy1 = \-φ{u)φ{a)+

([S6, p. 26, Exc. 6] and (84)). Hence one obtains (86). The relation (87) is obtained

similarly by using (iii1), (77), (85).

By direct computations from (80), (86) and (87) one obtains

(88) [a, θa'-\={-2aUa\ -φ{a)φ{a')),

(89) la,θb-]=-φ{a)lb9

(90) [ M * ' ] = ( - 4 Φ ^ , -4Ψb,b.),

where

4Φhh,\ u\->A(b,φ(u)Ibf),

4Ψbtb.: v^—(φHj(b\ ϋ)b-φHj{b9 υ)b' + φHHp\ b)υ).

(For (90) one uses (iii;). Cf. [S6, p. 231-233, Exc. 5 and Rem.])

A.3. Q-structures o/(5. Now we assume that there is given a Q-structure of the

quasisymmetric domain Sfι in the sense of 3.1. This means that one has a β-structure

of ©A f f = ©_1 + ©_1/2H-(5o such that (1^, (1/2)1^)6 9! is β-rational. Then, since /e®

is "rational", there exists a totally positive element a1eF such that X! = 1 V ^ ^ ω *s

Q-rational. [We say that / is a rational point with CM-field F(yJ—a1), endowed with

the standard CM-type (σ'£) denned by Λy-α1

σ* = Λ/- :T λ/α7' ] In what follows, for λ^R

(1 </</) and χ = γjχ
ii\ we write

In this section, we don't assume that e is (^-rational, e is called semirational if there

exists a totally positive element aeF such that (λ/α^) e is (?- r a t i o n a l We say that e

or 0 is compatible with the complex structure / if (^/α?) e is (^-rational.

LEMMA. Le/ e, e'e U, e' = (λ?) e and denote the symbols relative to e' by the

corresponding symbols relative to e with a prime. Then one has
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θ'a = (λi)-2-θa, θ'b = (λiy
1-θb

for α, w, u\ u"eU, beV.

The proof is straightforward.

THEOREM 3. Assume that £f\ is symmetric and let θ be the Car tan involution oj(S

at (ze, 0)e5Ύ Then, there exists a unique Q-structure of (5 satisfying the following

conditions:

(α) It extends the given Q-structure of (δ A f f .

(β) Whenever e is semirational, the restriction Θ\U is Q-rational.

The Carton involution θ is Q-rational with respect to this Q-structure of(!ΰ if and only if

θ is compatible with I.

PROOF. First we prove the uniqueness in the first statement. Suppose one has

a Q-structure of © satisfying the conditions (α), (β). (Note that, by the above lemma,

the condition (β) is satisfied if θ\ U is Q-rational for one semirational e.) Then the Q-

structures on the vector spaces © v / 2 are uniquely determined except for v = 1. As for

© 1 / 2 = 0K, one has by (89)

ΘIb=-lθe,b] (beV).

Hence, if (y/ai°~i) e is Q-rational, then the map b\-+(y/ai°i)'ΘIb is Q-rational. By this

condition, which is independent of the choice of the semirational e by the above lemma,

the Q-structure of © 1 / 2 is also uniquely determined. Conversely, by virtue of (88), (89),

(90) and the above lemma, one sees that, defining the Q-structure of © 1 / 2 and © 2 as

indicated above, one obtains a Q-structure of © satisfying the conditions (α), (β). From

this and the definition the second statement is clear. q.e.d.

REMARK. The above theorem remains valid for the case V=0. In that case, any

Cartan involution with semirational e is Q-rational.
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