ON Q-STRUCTURES OF QUASISYMMETRIC DOMAINS

ICHIRO SATAKE

(Received February 10, 1994)

Abstract. We will give a complete classification of Q-structures of quasisymmetric domains. In the standard case, it will be shown that there are only very natural Q-structures coming from semisimple Q-algebras with positive involutions. As is shown in the Appendix, when the domain is symmetric, any Q-structure of it as a quasisymmetric domain can uniquely be extended to one as a symmetric domain.

The purpose of this note is to determine the Q-structures of quasisymmetric domains.

The notion of a quasisymmetric domain was introduced in [S3] (cf. also [S6, Ch. V]). It was shown that, among Siegel domains (of the second kind), the symmetric domains were characterized by three conditions (i), (ii), (iii). A Siegel domain is called *quasisymmetric* if it satisfies the conditions (i), (ii). It is known that any symmetric domain $\mathcal D$ with a fixed boundary component $\mathcal F$ has a natural structure of a fiber space (a Siegel domain of the third kind) over $\mathcal F$, in which the fiber over each point of $\mathcal F$ is a quasisymmetric domain. All quasisymmetric domains of "standard" type are obtained in this form (see §4), while there are quasisymmetric domains of non-standard (quadratic) type that are not obtained in this manner.

¹⁹⁹¹ Mathematics Subject Classification. Primary 32M15; Secondary 11E39, 11F55, 20G20.

respectively, one can easily classify all possible Q-structures of \mathcal{S}_I . We also give an explicit expression of A in each case.

In the simplest case, where $\mathscr{C} = \mathscr{P}_{v_1}(R)$, a **Q**-structure of \mathscr{S}_I , denoted as $(III_{v_1;v_2/2}^{(1)})$, is given as follows. One takes a pair of **Q**-structures of U and V, for which there exist two **Q**-vector spaces V_1 and V_2 such that one has

$$U(\mathbf{Q}) = S(V_1 \otimes V_1)$$
, $V(\mathbf{Q}) = V_1 \otimes V_2$,

S denoting the symmetrizer and $\dim_{\mathbf{Q}} V_i = v_i$ (i = 1, 2). Then the alternating bilinear map A and the complex structure I are given in the form

$$\begin{split} A(v_1 \otimes v_2, \, v_1' \otimes v_2') &= \mathbf{S}(v_1 \otimes v_1') a_2(v_2, \, v_2') \\ (v_i, \, v_i' \in V_i, \, i = 1, \, 2) \;, \\ I &= \mathbf{1}_{V_1} \otimes I_2 \;, \end{split}$$

 a_2 denoting a non-degenerate alternating Q-bilinear form on $V_2 \times V_2$ and I_2 denoting a "rational" point in the Siegel space $\mathfrak{S} = \mathfrak{S}(V_2(R), a_2)$. It will be shown in §4 that, in the standard case, one can obtain all Q-structures of \mathcal{S}_I , generalizing this construction to vector spaces over a division algebra over Q with positive involution.

In the Appendix, we will show that, when the domain \mathcal{S}_I is symmetric, any \mathbf{Q} -structure of \mathcal{S}_I as a quasisymmetric domain can be extended (uniquely) to a \mathbf{Q} -structure of it as a symmetric domain.

One of the motivations of this study is to construct a new kind of cusp singularities (cf. [S9]). Cusps of the arithmetic quotients of symmetric tube domains have been studied by many mathematicians. Especially, a generalization of the Hirzebruch conjecture, which relates the zero value of the zeta functions $Z_{\mathscr{C}}$ associated with the cone \mathscr{C} with some geometric invariants of the cusp, was recently established by Ogata [O2] and Ishida [I2] (see also [SO]). In the case of quasisymmetric domains with $V \neq 0$, for which \mathcal{Q} -rank Aut \mathscr{C} is =1, one can obtain similar cusps, which we propose to call cusps of the second kind; in the notation of §4, this occurs only in the following three cases:

$$\begin{split} R_{F/\mathbf{Q}}(\mathrm{III}_{1;\nu_{2}/2}^{(1)})_{I} \;, \quad R_{F/\mathbf{Q}}(\mathrm{III}_{2;\nu_{2}}^{(2)}, D_{0}, h_{2})_{I} \;, \\ R_{F/\mathbf{Q}}(\mathrm{I}_{\delta_{0;}(p,q)}^{(\delta_{0})}, D_{0}/Z, h_{2})_{I} \quad (\delta_{0} \geq 2) \;. \end{split}$$

It is expected that one can further generalize the result of Ogata and Ishida to the case of the cusps of the second kind to obtain a geometric interpretation of the values of the zeta functions $Z_{\mathscr{C}}$ at negative integers.

1. Siegel domains.

1.1. Siegel domains (of the second kind) (cf. [PS], [S6, Ch. III, §§5–6]). A Siegel domain is defined by the following data $(U, V, A, \mathcal{C}, I)$. U and V are finite-dimensional

real vector spaces and $A: V \times V \to U$ is an alternating bilinear map. \mathscr{C} is an open convex cone in U, which is "non-degenerate" in the sense that $\overline{\mathscr{C}} \cap -\overline{\mathscr{C}} = \{0\}$. I is a complex structure on V satisfying the following condition:

(1) A(v, Iv') is symmetric and " \mathscr{C} -positive", i.e. one has

$$A(v, Iv) \in \overline{\mathscr{C}} - \{0\}$$
 for all $v \in V, v \neq 0$.

This implies that A is non-degenerate, i.e. if A(v, v') = 0 for all $v' \in V$, then v = 0. We set

$$V(C) = V \otimes_{R} C = V_{+} \oplus V_{-}$$

with $V_{\pm} = \{v \in V(C) \mid Iv = \pm iv\}$ and extend A in a natural manner to a C-bilinear map $V(C) \times V(C) \rightarrow U(C)$, denoted again by the same letter. Then one has $A(V_+, V_+) = A(V_-, V_-) = 0$ and

$$2iA(v_-, v'_+) = A(v, Iv') + iA(v, v')$$

for $v, v' \in V$, v_+ denoting the V_+ -part of v.

A Siegel domain $\mathcal{G}_I = \mathcal{G}(U, V, A, \mathcal{C}, I)$ is defined by

(2)
$$\mathscr{S}_{I} = \left\{ (u, w) \in U(\mathbf{C}) \times V_{+} \mid \operatorname{Im} u - \frac{i}{2} A(\bar{w}, w) \in \mathscr{C} \right\}.$$

When $V = \{0\}$, one obtains a tube domain $\mathcal{S}_0 = U + i\mathcal{C}$.

We denote by $\mathfrak{S} = \mathfrak{S}(V, A, \mathscr{C})$ the set of all complex structures I on V satisfying the condition (1); by the assumption one has $\mathfrak{S} \neq \emptyset$. In what follows, it will be convenient to consider the complex structure I to be a point in the parameter space \mathfrak{S} , rather than fixing it once and for all. Then the total space $\mathfrak{T} = \{(u, w, I) \mid (u, w) \in \mathscr{S}_I, I \in \mathfrak{S}\}$ is a so-called "Siegel domain of the third kind".

1.2. Automorphism groups. We first define the (generalized) Heisenberg group $\tilde{V} = H(U, V, A)$. By definition \tilde{V} is the direct product $U \times V$ endowed with a multiplication

(3)
$$(u, v)(u', v') = \left(u + u' - \frac{1}{2} A(v, v'), v + v'\right)$$

for (u, v), $(u', v') \in \tilde{V}$. It is clear that with the natural homomorphisms one has an exact sequence

$$(4) 1 \to U \to \widetilde{V} \to V \to 1,$$

in which U is central. It is known that, conversely, all central extension \tilde{V} of V by U (as Lie groups) is obtained in this manner with a (uniquely determined) alternating bilinear map A. In our case, A being non-degenerate, U coincides with the center of \tilde{V} .

We set

(5) Aut
$$(U, V, A) = \{g = (g_1, g_2) | g_1 \in GL(U), g_2 \in GL(V), g_1 \circ A = A \circ g_2 \times g_2 \},$$

and write $g_i = \rho_i(g)$ for $g = (g_1, g_2) \in Aut(U, V, A)$. We are concerned with the following automorphism groups:

$$G_{1} = \operatorname{Aut}(U, \mathscr{C}) = \{g_{1} \in GL(U) \mid g_{1}\mathscr{C} = \mathscr{C}\},$$

$$G = \operatorname{Aut}(U, V, A, \mathscr{C}) = \{g \in \operatorname{Aut}(U, V, A) \mid \rho_{1}(g) \in G_{1}\},$$

$$G_{2} = \operatorname{Sp}(V, A) = \{g_{2} \in GL(V) \mid A \circ g_{2} \times g_{2} = A\}.$$

Note that one has $\operatorname{Ker} \rho_1 = 1 \times G_2$ and $\mathfrak{S}(V, A, \mathscr{C}) \subset G_2$. It is known that G_2 is a reductive algebraic group of hermitian type and $\mathfrak{S}(V, A, \mathscr{C})$ is the associated symmetric domain (see 2.3 and [S5]). Since $G \subset \operatorname{Aut} \tilde{V}$, one can construct a semidirect product $\tilde{G} = G \cdot \tilde{V}$.

For $v \in V$ and $w \in V_+$, one defines an automorphy factor by

$$\mathcal{J}(v, w) = A\left(w + \frac{1}{2}v_+, v_-\right),\,$$

which satisfies the relation

$$\mathcal{J}(v+v', w) = \mathcal{J}(v, w+v'_{+}) + \mathcal{J}(v', w) + \frac{1}{2} A(v, v')$$
.

Then the Heisenberg group \tilde{V} acts on \mathcal{S}_I by

(7)
$$(a, b)((u, w)) = (u + a + \mathcal{J}(b, w), w + b_+)$$
 for $(a, b) \in \tilde{V}$ and $(u, w) \in \mathcal{S}_T$.

On the other hand, for $I \in \mathfrak{S}(V, A, \mathscr{C})$, one puts

$$\begin{split} G_I &= \operatorname{Aut}(U, \ V, \ A, \mathscr{C}, \ I) = \left\{ g \in G \ \middle| \ \rho_2(g) \in GL(V, \ I) \right\} \,, \\ G_{2I} &= \operatorname{Aut}(V, \ A, \ I) = Sp(V, \ A) \cap GL(V, \ I) \,. \end{split}$$

Then G_I acts linearly on \mathscr{S}_I , and the semidirect product $\widetilde{G}_I = G_I \cdot \widetilde{V}$ acts affinely on \mathscr{S}_I . G_{2I} is a maximal compact subgroup of G_2 . It is known ([PS], [S6, p. 129, Prop. 6.2]) that the affine automorphism group Aff \mathscr{S}_I of \mathscr{S}_I coincides with \widetilde{G}_I .

2. Quasisymmetric domains.

- 2.1. Quasisymmetric case. A Siegel domain $\mathcal{S}_I = \mathcal{S}(U, V, A, \mathcal{C}, I)$ is called quasisymmetric if two conditions (i), (ii) below are satisfied. (For the meaning of these conditions, see [S3, Prop. 1], or [S6, Ch. V, §§3, 4, especially, Prop. 4.1]. Here we state the condition (ii) in the form independent of the complex structure I. For the classification of quasisymmetric domains, see [S2] and [S3], or [S6, Ch. V, §5].)
- (i) There exists a (positive definite) inner product $\langle \ \rangle$ on U such that, defining the dual of $\mathscr C$ by

$$\mathscr{C}^* = \{ u \in U \mid \langle u, u' \rangle > 0 \text{ for all } u' \in \overline{\mathscr{C}} - \{0\} \},$$

one has $\mathscr{C} = \mathscr{C}^*$. Moreover, the automorphism group $G_1 = \operatorname{Aut}(U, \mathscr{C})$ is transitive on \mathscr{C} .

When this condition is satisfied, \mathscr{C} is called a *self-dual homogeneous cone*. One then has $G_1 = {}^tG_1$, t denoting the transpose with respect to $\langle \ \rangle$. This implies that G_1 is a reductive "algebraic" group (in a weaker sense that the identity connected component G_1° coincides with that of the real points of a linear algebraic group defined over R). The map $\theta_1: x \mapsto -{}^tx$ is a Cartan involution of the Lie algebra g_1 of G_1 . Let $g_1 = f_1 + p_1$ be the corresponding Cartan decomposition. Then it is known that for a suitable choice of a point e in $\mathscr C$ one has

$$\mathfrak{f}_1 = \{ x \in \mathfrak{g}_1 \mid xe = 0 \} .$$

It follows that, for each $u \in U$, there exists a uniquely determined element T_u in \mathfrak{g}_1 such that ${}^tT_u = T_u$ and $T_u e = u$; in particular, $T_e = 1_U$. The map $u \mapsto T_u$ gives a linear isomorphism $U \simeq \mathfrak{p}_1$.

It is well known that the vector space U endowed with a product $uu' = T_u u'$ $(u, u' \in U)$ is a formally real Jordan algebra with unit element e (cf. e.g. [S6, p. 33, Th. 8.5]). In what follows, we will normalize the inner product $\langle \ \rangle$ by setting

(8)
$$\langle u, u' \rangle = \operatorname{tr}(\kappa T_{uu'}),$$

where in the notation of 2.5 below $\kappa = \sum (r_i/n_i) 1_{U^{(i)}}$ with $n_i = \dim U^{(i)}$ and $r_i = \mathbf{R}$ -rank $g_1^{(i)}$. By this relation e and $\langle \rangle$ determine each other uniquely.

- 2.2. We now state the second condition:
- (ii) The homomorphism $\rho_1: G \to G_1$ is "almost surjective", i.e. one has $\rho_1(G^\circ) = G_1^\circ$.

In what follows, we assume that the conditions (i), (ii) are satisfied. Then with the natural homomorphisms one has an exact sequence

$$(9) 1 \to G_2 \to G \to G_1 \to (finite).$$

Since G_1 and G_2 are reductive "algebraic", so is G. Hence there exists a connected normal "algebraic" subgroup G'_1 of G such that

(10)
$$G^{\circ} = G'_1 \cdot (1 \times G^{\circ}_2), \qquad G'_1 \cap (1 \times G^{\circ}_2) = (\text{finite}).$$

Then the restriction of ρ_1 on G_1' gives an isogeny $G_1' \to G_1$. (Such a subgroup G_1' is uniquely determined, because G_1' is of cone type and G_2 is of hermitian type.) Note that, since I is contained in G_2° , one has $G_1' \subset G_I^{\circ}$ and hence $\rho_1(G_I^{\circ}) = G_1^{\circ}$. It follows that the domain \mathcal{S}_I is affinely homogeneous.

Let g, g_i (i=1,2), and g_1' denote the Lie algebras of G, G_i , and G_1' , respectively. Then $\rho_1 \mid g_1' : g_1' \to g_1$ is an isomorphism; we put $\beta = \rho_2 \circ (\rho_1 \mid g_1')^{-1}$. Then β is a representation of g_1 on V and one has

(11)
$$g_1' = \{(x, \beta(x)) \mid x \in g_1\}.$$

Since $G'_1 \subset G_I$, β is actually a representation of g_1 in gl(V, I).

2.3. Reformulations. For $u \in U$ and $v, v' \in V$, we set

$$(12) A_{u}(v, v') = \langle u, A(v, v') \rangle,$$

(13)
$$a(v, v') = A_{\rho}(v, v').$$

Clearly a is an alternating bilinear form on $V \times V$ and for $I \in \mathfrak{S}$ the bilinear form a(v, Iv') is symmetric and positive definite; in other words, if one puts

$$h_I(v, v') = a(v, Iv') + ia(v, v'),$$

then h_I is a positive definite hermitian form (which is *C*-linear in v') on the complex vector space (V, I). Let V^* and Alt(V) denote the dual space of V and the space of all alternating bilinear forms on $V \times V$, respectively. Alt(V) may be identified with the subspace of $Hom_{\mathbb{R}}(V, V^*)$ formed of all skewsymmetric elements. We define an involution i = i(a) of $End_{\mathbb{R}} V$ by

(14)
$$i: y \mapsto a^{-1} {}^{t} y a \qquad (y \in \operatorname{End}_{\mathbf{R}} V).$$

Clearly, for $y \in \text{End}_{\mathbb{R}} V$, one has y' = y if and only if $ay \in \text{Alt}(V)$ and, for $y \in \text{End}_{\mathbb{C}}(V, I)$, y' is the adjoint of y with respect to the hermitian form h_I . One sets

$$\operatorname{Her}(V, a, I) = \{ y \in \operatorname{End}_{\boldsymbol{c}}(V, I) \mid y^i = y \}$$

and denote by $\mathcal{P}(V, a, I)$ the cone of all positive definite elements in Her(V, a, I) with respect to h_I .

For $u \in U$ there corresponds uniquely an element $\varphi(u)$ in End_R V such that

(15)
$$A_{\cdot}(v, v') = a(v, \varphi(u)v') \qquad (v, v' \in V):$$

in particular, one has $\varphi(e) = 1_{\nu}$. Then the condition (1) is equivalent to

(16)
$$\varphi(U) \subset \operatorname{Her}(V, a, I), \qquad \varphi(\mathscr{C}) \subset \mathscr{P}(V, a, I).$$

Note also that in this notation one has

(17)
$$G_2 = Sp(V, A) = \{g_2 \in Sp(V, a) \mid [g_2, \varphi(U)] = 0\},$$
$$\mathfrak{S}(V, A, \mathscr{C}) = \mathfrak{S}(V, a) \cap G_2,$$

 $\mathfrak{S}(V, a)$ denoting the "Siegel space" associated with Sp(V, a) (i.e. the space of all complex structures I on V such that a(v, Iv') is symmetric and positive definite). This implies that G_2 is a reductive algebraic group of hermitian type with a Cartan involution

$$\theta_2: g_2 \mapsto I^{-1}g_2I$$
,

and $\mathfrak{S}(V, A, \mathscr{C})$ is the associated symmetric domain (cf. [S5]).

Now, in the quasisymmetric case, one has for $x \in \mathfrak{g}_1$

$$xA(v, v') = A(\beta(x)v, v') + A(v, \beta(x)v') \qquad (v, v' \in V),$$

or equivalently,

$$\varphi(^t x u) = \beta(x)^t \varphi(u) + \varphi(u)\beta(x) \qquad (u \in U) .$$

LEMMA 1. The representation $\beta: \mathfrak{g}_1 \rightarrow \mathfrak{gl}(V, I)$ defined by (11) satisfies the relation

$$\beta(tx) = \beta(x)^{t} \quad for \quad x \in \mathfrak{g}_1,$$

where i = i(a).

PROOF. Putting u = e in $(\beta 1)$ one sees that $x \in \mathfrak{t}_1$ implies $\beta(x) \in i$ Her(V, a, I). It follows ([S2, p. 127]) that β can be written as a commutative sum of two representations β_0 , $\beta_1 : \mathfrak{g}_1 \to \mathfrak{gl}(V, I)$ such that

$$\beta_0(\mathfrak{g}_1) \subset i \operatorname{Her}(V, a, I),$$

$$\beta_1(x) = \beta_1(x)^i \qquad (x \in \mathfrak{g}_1).$$

Since G_1 is "algebraic" and $\rho_i \mid G_1$ (i=1,2) are rational, all eigenvalues of $\beta(x)$ ($x \in \mathfrak{p}_1$) are real. On the other hand, (*) implies that for x in \mathfrak{p}_1 all eigenvalues of $\beta_0(x)$, resp. $\beta_1(x)$ are purely imaginary, resp. real. Hence one has $\beta_0(\mathfrak{p}_1) = 0$ and, since \mathfrak{g}_1 is generated by \mathfrak{p}_1 , one has $\beta_0 = 0$. Thus $\beta = \beta_1$ satisfies ($\beta 2$).

By $(\beta 1)$ and $(\beta 2)$ one has

$$\varphi(T_{n}u') = \beta(T_{n})\varphi(u') + \varphi(u')\beta(T_{n}).$$

Hence putting u' = e, one has

(18)
$$\beta(T_u) = \frac{1}{2} \varphi(u) \quad \text{for} \quad u \in U;$$

in particular, $\beta(1_U) = (1/2)1_V$. Since g_1 is generated by p_1 , the relation (18) shows that β is uniquely determined by φ . (This gives another proof for the uniqueness of G'_1 .)

[Note that the relations (**) and (18) imply

(19)
$$\varphi(uu') = \frac{1}{2} \left\{ \varphi(u)\varphi(u') + \varphi(u')\varphi(u) \right\} \qquad (u, u' \in U),$$

which means that the map φ is a unital Jordan algebra homomorphism of (U, e) into Her(V, a, I) (cf. [S6, loc. cit.]).]

2.4. Admissible triples. Let (U, V, A, \mathcal{C}) be a data satisfying the conditions (i), (ii). In general, a triple (e, a, β) formed of $e \in \mathcal{C}$, a non-degenerate alternating bilinear form a on $V \times V$, and a representation $\beta : \mathfrak{g}_1 \to \mathfrak{gl}(V)$ is called an admissible triple belonging to (U, V, \mathcal{C}) , if there exists a linear map $\varphi : U \to \operatorname{End}_{\mathbf{R}} V$ with $\varphi(e) = 1_V$ such that

the conditions (β 1), (β 2) are satisfied with $\iota = \iota(a)$. Since these conditions imply (18), β and φ determine each other uniquely. They also imply that $a\varphi(U) \subset \text{Alt}(V)$. For an admissible triple (e, a, β) one sets

(20)
$$\mathfrak{S}(V, a, \beta) = \{ I \in \mathfrak{S}(V, a) \mid [I, \beta(\mathfrak{g}_1)] = 0 \}.$$

If an admissible triple (e, a, β) comes from the data (U, V, A, \mathcal{C}) as explained in 2.3, then it is said to be belonging to (U, V, A, \mathcal{C}) . In that case, one has by (17)

$$\mathfrak{S}(V, A, \mathscr{C}) = \mathfrak{S}(V, a, \beta)$$
.

In general, two admissible triples (e, a, β) and (e', a', β') are called *equivalent* if $\beta = \beta'$ and if there exists $g'_1 \in G'_1$ such that one has $e' = \rho_1(g'_1)e$ and $a' = a \circ \beta(g'_1^{-1}) \times \beta(g'_1^{-1})$. Clearly, two admissible triples belonging to the same (U, V, A, \mathcal{C}) are equivalent.

Conversely, suppose that one has (U, \mathcal{C}) satisfying the condition (i), a real vector space V, and an admissible triple (e, a, β) belonging to (U, V, \mathcal{C}) . Then, it is easy to see that, if $I \in \mathcal{S}(V, a, \beta)$, then the linear map $\varphi : U \to \operatorname{End}_{\mathbb{R}} V$ associated with β satisfies the condition (16). Hence, if one defines a bilinear map $A : V \times V \to U$ by (12) and (15), then A is an alternating bilinear map satisfying the condition (1). In this manner, one recovers the data (U, V, A, \mathcal{C}) satisfying (i), (ii), to which the triple (e, a, β) is belonging. Clearly equivalent admissible triples give rise to one and the same data (U, V, A, \mathcal{C}) .

Thus we have shown that to give a data (U, V, A, \mathscr{C}) (with $\mathfrak{S}(V, A, \mathscr{C}) \neq \emptyset$) satisfying (i), (ii) is equivalent to giving (U, \mathscr{C}) satisfying (i), a real vector space V, and an equivalence class of admissible triples (e, a, β) belonging to (U, V, \mathscr{C}) (for which $\mathfrak{S}(V, a, \beta) \neq \emptyset$).

2.5. Complete reducibility. Let $(U, V, A, \mathcal{C}, I)$ be a data satisfying the conditions (i), (ii), and let (e, a, β) be an admissible triple belonging to it. Let

$$(U,\mathscr{C}) = \prod_{i=1}^{l} (U^{(i)},\mathscr{C}^{(i)})$$

be the direct decomposition of (U, \mathcal{C}) into irreducible factors. Then each $\mathcal{C}^{(i)}$ is an irreducible self-dual homogeneous cone in $U^{(i)}$. If one sets

$$G_1^{(i)} = \text{Aut}(U^{(i)}, \mathcal{C}^{(i)}), \qquad g_1^{(i)} = \text{Lie } G_1^{(i)},$$

then one has

(22)
$$g_1 = \bigoplus_{i=1}^{l} g_1^{(i)}, \qquad g_1^{(i)} = \{1_{U^{(i)}}\}_{\mathbb{R}} \oplus g_1^{(i)s},$$

where $g_1^{(i)s}$ (the semisimple part of $g_1^{(i)}$) is simple or reduces to $\{0\}$. One has

$$e = \sum_{i=1}^{l} e^{(i)}, \qquad e^{(i)} \in \mathscr{C}^{(i)}.$$

One also has the following decomposition of the representation space ([S2] or [S6, p. 237, Prop. 5.2]):

(23)
$$V = \bigoplus_{i=1}^{l} V^{(i)}, \qquad \beta = \bigoplus \beta^{(i)},$$
$$a = \sum a^{(i)}, \qquad I = \sum I^{(i)},$$

where $V^{(i)} = \beta(1_{U^{(i)}})V$, $(e^{(i)}, a^{(i)}, \beta^{(i)})$ is an admissible triple belonging to $(U^{(i)}, V^{(i)}, \mathscr{C}^{(i)})$, and $I^{(i)} \in \mathfrak{S}(V^{(i)}, a^{(i)}, \beta^{(i)})$.

It follows that one has $A = \sum A^{(i)}$ with

$$A^{(i)}: V^{(i)} \times V^{(i)} \rightarrow U^{(i)}$$

each $(U^{(i)}, V^{(i)}, A^{(i)}, \mathscr{C}^{(i)}, I^{(i)})$ $(1 \le i \le l)$ being a data satisfying the conditions (i), (ii), to which the triple $(e^{(i)}, a^{(i)}, \beta^{(i)})$ is belonging.

Thus one obtains the direct decompositions of the domains:

(24)
$$\mathscr{S}(U, V, A, \mathscr{C}, I) = \prod_{i=1}^{l} \mathscr{S}(U^{(i)}, V^{(i)}, A^{(i)}, \mathscr{C}^{(i)}, I^{(i)}),$$

(25)
$$\mathfrak{S}(V,A,\mathscr{C}) = \prod_{i=1}^{l} \mathfrak{S}(V^{(i)},A^{(i)},\mathscr{C}^{(i)}),$$

which are known to be the unique irreducible decompositions of \mathcal{S}_I and \mathfrak{S} (as complex manifolds) ([S6, p. 237, Th. 5.3]).

3. Q-structures of a quasisymmetric domain.

- 3.1. Definition of a **Q**-structure. Let $(U, V, A, \mathcal{C}, I)$ be a data defining a quasisymmetric domain \mathcal{S}_I and (e, a, β) an admissible triple belonging to it. By a **Q**-structure of \mathcal{S}_I we mean a pair of **Q**-structures of U, V, i.e., a pair of **Q**-vector spaces U_0, V_0 such that $U = U_0 \otimes_{\mathbf{Q}} \mathbf{R}$, $V = V_0 \otimes_{\mathbf{Q}} \mathbf{R}$, satisfying the conditions (Q1), (Q2) below.
- (Q1) The Lie algebra g_1 and the bilinear map A are defined over Q.

This condition implies that the groups \tilde{V} , G, and G_i (i=1,2) are defined over Q; hence so is the "algebraic" subgroup G'_1 in (10). It follows that the representation $\beta: \mathfrak{g}_1 \to \mathfrak{gl}(V)$ is also defined over Q.

Under the condition (Q1), we can always choose e in $U_0 = U(\mathbf{Q})$. Then the corresponding Cartan involution θ_1 of \mathfrak{g}_1 and hence \mathfrak{t}_1 , \mathfrak{p}_1 , the linear map $u \mapsto T_u$ (hence the normalized inner product $\langle \rangle$) are defined over \mathbf{Q} . The bilinear form $a = A_e$ is also defined over \mathbf{Q} . Conversely, if the triple (e, a, β) is defined over \mathbf{Q} , then so is A. Thus we can rephrase the condition (Q1) as

(Q1') The Lie algebra g_1 is defined over Q, and the triple (e, a, β) can be taken to be defined over Q.

Next we state the condition (Q2):

(Q2) The Cartan involution of g_2 defined by I is **Q**-rational.

This means that the point I in the symmetric domain $\mathfrak{S} = \mathfrak{S}(V, A, \mathscr{C})$ is "rational" (with respect to the given Q-structure) in the sense of [S8]. It follows that G_I and G_{2I} are defined over Q. [Note that (Q2) does not necessarily imply that GL(V, I) or Her(V, a, I) are defined over Q, and that under (Q1) there may be no rational points in \mathfrak{S} .]

3.2. **Q**-irreducible **Q**-forms. We assume that a **Q**-structure (U_0, V_0) satisfying the conditions (Q1), (Q2) is given. By virtue of the complete reducibility we may (hence will) further assume, without any loss of generality, that (U, \mathcal{C}) is **Q**-irreducible, i.e. no proper partial product in the direct decomposition (21) is defined over **Q**. The **Q**-structure of \mathcal{G}_I is then called **Q**-irreducible.

In the case V=0, the domain \mathcal{S}_I is a symmetric tube domain, for which our problem of classifying **Q**-structures becomes trivial. Hence, in what follows, we will always assume that U is **Q**-irreducible and $V \neq 0$. Then the representation β is faithful and φ is injective. Note that, if dim $U^{(1)}=1$, one has $\mathfrak{g}_1^{(1)}=0$ and our theory becomes also trivial.

The Galois group $\mathscr{G}=\operatorname{Gal} \overline{\mathbb{Q}}/\mathbb{Q}$ acts transitively on the set $\{U^{(i)}\ (1\leq i\leq l)\}$. Hence, if one puts $\mathscr{G}_1=\{\sigma\in\mathscr{G}\ |\ U^{(1)\sigma}=U^{(1)}\}$, then the field $F\subset\overline{\mathbb{Q}}$ corresponding to \mathscr{G}_1 by Galois theory is a totally real number field of degree l. If one sets $\mathscr{G}=\coprod_{i=1}^l\mathscr{G}_1\sigma_i$ with a set of representatives $\{\sigma_i\}$ $(\sigma_1=1)$ for $\mathscr{G}_1\setminus\mathscr{G}$, then one has $U^{(i)}=U^{(1)\sigma_i}$. In the notation of 2.5, $\mathfrak{g}_1^{(1)}$ and $e^{(1)}$ are then defined over F. Moreover, $V^{(1)}=\beta(1_{U^{(1)}})V$ is defined over F and hence so are also $a^{(1)}$, $\beta^{(1)}$, $A^{(1)}$, etc. and the Cartan involution of $\mathfrak{g}_2^{(1)}$ defined by $I^{(1)}$. The corresponding objects $\mathfrak{g}_1^{(i)}$, etc. for $2\leq i\leq l$ are obtained from these by the conjugation σ_i . By abuse of notation, we sometimes express this situation by writing $\mathfrak{g}_1=R_{F/\mathbb{Q}}(\mathfrak{g}_1^{(1)})$, etc. Note that if dim $U^{(1)}>1$, \mathfrak{g}_1^s (the semisimple part of \mathfrak{g}_1) is \mathbb{Q} -simple and "pure" (i.e. all \mathbb{R} -simple factors $\mathfrak{g}_1^{(i)}$ s are mutually \mathbb{R} -isomorphic). The representations $\beta^{(i)}$ are also mutually \mathbb{R} -equivalent in an obvious sense.

By the above observation, we see that the problem of determining all Q-structures of \mathcal{S}_I satisfying the conditions (Q1), (Q2) can be solved in the following steps.

- 0. Fix a totally real number field F of degree l.
- 1. Find all *F*-structures of $(U^{(1)}, V^{(1)})$ such that $\mathfrak{g}_1^{(1)}$ and the faithful representation $\beta^{(1)}$ are defined over *F*. Such an *F*-structure of $(U^{(1)}, V^{(1)})$ will be called *admissible*. Then we set $U = R_{F/\mathbf{Q}}U^{(1)}$, $\mathfrak{g}_1 = R_{F/\mathbf{Q}}(\mathfrak{g}_1^{(1)})$, and $(V, \beta) = R_{F/\mathbf{Q}}(V^{(1)}, \beta^{(1)})$. The $(U^{(i)}, V^{(i)})$ $(i \ge 2)$ are given the conjugate admissible F^{σ_i} -structures.
- 2. Choose $e \in \mathcal{C} \cap U(\mathbf{Q})$ and find a non-degenerate alternating bilinear form $a^{(1)}$ on $V^{(1)} \times V^{(1)}$ defined over F such that $(e^{(1)}, a^{(1)}, \beta^{(1)})$ is admissible. Then all the conjugates $(e^{(1)\sigma_i}, a^{(1)\sigma_i}, \beta^{(1)\sigma_i})$ $(2 \le i \le l)$ are automatically admissible.

In this way one obtains an admissible triple (e, a, β) defined over Q, which determines an alternating bilinear map A defined over Q. Thus one has a Q-structure of \mathcal{S}_I satisfying (Q1).

3. Finally, find all rational points I in the symmetric domain $\mathfrak{S} = \mathfrak{S}(V, A, \mathscr{C})$ with respect to the given Q-structure.

The solution of the step 3 was already given in [S8]. We give solutions of the steps 1 and 2 in the succeeding sections.

3.3. The **R**-primary case. For simplicity, in the rest of this section, we assume that the representation $(V^{(1)}, \beta^{(1)})$ is **R**-primary, i.e. a direct sum of mutually equivalent **R**-irreducible representations. Actually, it is known ([S2]) that this is the case except for the case where $\mathscr{C}^{(1)}$ is a quadratic cone $\mathscr{P}(1, n_1 - 1)$ with $n_1 \equiv 2 \pmod{4}$.

In what follows, a division R-algebra D_1 is always endowed with its standard involution $\xi \mapsto \overline{\xi}$. We denote by δ_1 and d_1 the degree of D_1 over its center and the degree of the center over R, respectively; i.e., $\delta_1 = 1$ for $D_1 = R$, C and $\delta_1 = 2$ for $D_1 = H$, and $d_1 = 1$ for $D_1 = R$, H and $d_1 = 2$ for $D_1 = C$.

Let $(V_1^{(1)}, \beta_1^{(1)})$ be an **R**-irreducible representation of $\mathfrak{g}_1^{(1)}$ contained in $(V^{(1)}, \beta^{(1)})$ and put $V_2^{(1)} = \operatorname{Hom}_{\mathfrak{g}_1^{(1)}}(V_1^{(1)}, V^{(1)})$. Then there exists a uniquely determined division **R**-algebra D_1 such that $V_1^{(1)}$ is a right D_1 -module and the $\mathfrak{g}_1^{(1)}$ -endomorphisms of $V_1^{(1)}$ are given by the right multiplication μ_{ξ} ($\xi \in D_1$). Then $V_2^{(1)}$ has a natural structure of a left D_1 -module defined by $\xi v_2 = v_2 \circ \mu_{\xi}$, and one has a tensor product decomposition:

$$(26a) V^{(1)} = V_1^{(1)} \otimes_{D_1} V_2^{(1)},$$

(26b)
$$\beta^{(1)} = \beta_1^{(1)} \otimes 1$$
.

Suppose that $(U^{(1)}, V^{(1)})$ is given an admissible *F*-structure. Then, $(V^{(1)}(F), \beta^{(1)})$ is *F*-primary. Hence, in a manner similar to the above, one has an *F*-irreducible representation (V_1, β_1) over $F, V_2 = \operatorname{Hom}_{\mathfrak{g}_1^{(1)}(F)}(V_1, V^{(1)}(F))$, and a division *F*-algebra D_0 , such that V_1 and V_2 are right and left D_0 -modules, respectively, and

(27a)
$$V^{(1)}(F) = V_1 \otimes_{D_0} V_2,$$

(27b)
$$\beta^{(1)} | V^{(1)}(F) = \beta_1 \otimes 1,$$

(cf. [S1, pp. 230–231, Prop. 1, 2], or [S6, Ch. IV, §1]).

Since \mathfrak{g}_1^s is pure, one has decompositions of $V^{(i)} = V^{(1)\sigma_i}$ similar to (26a) with the same D_1 for all $1 \le i \le l$. To be more precise, let $c_1^{(i)}$ be a primitive idempotent in $D_0^{\sigma_i}(\mathbf{R}) = D_0^{\sigma_i} \otimes_{\mathbf{F} \sigma_i} \mathbf{R}$ and fix an \mathbf{R} -isomorphism

$$\psi_1^{(i)}\colon D_1 \stackrel{\sim}{\longrightarrow} c_1^{(i)} D_0^{\sigma_i}(\pmb{R}) c_1^{(i)} \,.$$

Then the D_1 -module $V_1^{(i)} = (V_1^{\sigma_i}(\mathbf{R})c_1^{(i)}, \psi_1^{(i)})$ gives an \mathbf{R} -irreducible representation of $\mathfrak{g}_1^{(i)}$ contained in $(V^{(i)}, \beta^{(i)})$. (In particular, one may assume that $V_1^{(1)}$ is given in this manner.) Hence, putting $V_2^{(i)} = (c_1^{(i)}V_2^{\sigma_i}(\mathbf{R}), \psi_1^{(i)})$, one has

(28a)
$$V^{(i)} = V_1^{(i)} \otimes_{D_1} V_2^{(i)},$$

(28b)
$$\beta^{(i)} = \beta_1^{(i)} \otimes 1 \qquad (1 \le i \le l).$$

One denotes the degree of D_0 over its center Z by δ_0 , and the D_0 -rank of V_j (j=1,2) by v_j . Let $D_0(\mathbf{R}) \simeq M_{s_1}(D_1)$; then one has $\delta_0 = \delta_1 s_1$ and

(29)
$$\dim_{\mathbf{R}} V_{i}^{(i)} = v_{i} s_{1} \delta_{1}^{2} d_{1}, \quad \dim_{\mathbf{R}} V^{(i)} = v_{1} v_{2} \delta_{0}^{2} d_{1} \qquad (1 \le i \le l, j = 1, 2).$$

Since one has $Z^{\sigma_i}(\mathbf{R}) = \mathbf{R}$ or $\simeq \mathbf{C}$ simultaneously for $1 \le i \le l$, according as $d_1 = 1$ or 2, Z is either = F or a totally imaginary quadratic extension of F.

3.4. The algebra \mathscr{A}_1 . Let \mathscr{A}_1 denote the **R**-subalgebra of $\operatorname{End}_{\mathbf{R}}V^{(1)}$ generated by $\beta^{(1)}(g_1^{(1)})$. Then \mathscr{A}_1 is **R**-simple and $\mathscr{A}_1 \simeq \operatorname{End}_{D_1}(V_1^{(1)}) \sim D_1$. Moreover, \mathscr{A}_1 is defined over F and $\mathscr{A}_1(F) \simeq \operatorname{End}_{D_0}(V_1) \sim D_0$. \mathscr{A}_1 is of degree $v_1 \delta_0 d_1 = v_1 s_1 \delta_1 d_1$ over R.

LEMMA 2. For each Cartan involution θ_1 of $\mathfrak{g}_1^{(1)}$ there exists a uniquely determined involution ι_1 of \mathcal{A}_1 such that one has

(30)
$$\beta^{(1)}(\theta_1 x) = -\beta^{(1)}(x)^{i_1}.$$

Such an involution ι_1 is positive.

PROOF. Let θ_1 be a Cartan involution of $\mathfrak{g}_1^{(1)}$. Then θ_1 extends to a Cartan involution θ_1' of $(\mathscr{A}_1)_{\text{Lie}}$, which is reductive. Then there exists a positive involution ι_1 of \mathscr{A}_1 such that one has $\theta_1' y = -y^{\iota_1}$ for $y \in \mathscr{A}_1$. This ι_1 satisfies (30). Since \mathscr{A}_1 is generated by $\beta^{(1)}(\mathfrak{g}_1^{(1)})$, ι_1 is uniquely determined.

It follows that, if one has an admissible F-structure on $(U^{(1)}, V^{(1)})$ and if $e \in \mathscr{C} \cap U(\mathbf{Q})$, then the involution ι_1 corresponding to θ_1 determined by $e^{(1)}$ is defined over F, and for each i the conjugate $\iota_1^{\sigma_i}$ corresponds to the Cartan involution $\theta_1^{\sigma_i}$ of $\mathfrak{g}_1^{(i)}$ determined by $e^{(i)} = e^{(1)\sigma_i} \in \mathscr{C}^{(i)}$. Thus ι_1 is totally positive, i.e., all the conjugates $\iota_1^{\sigma_i}$ are positive. Otherwise expressed, $R_{F/\mathbf{Q}}(\iota_1)$ is a positive involution of the simple \mathbf{Q} -algebra $R_{F/\mathbf{Q}}(\mathscr{A}_1)(\mathbf{Q})$. It follows that D_0 has also a totally positive involution ι_0 such that $\iota_0 | Z = \iota_1 | Z$.

As is well known, for the algebra D_0 with a totally positive involution one has only the following four possibilities:

- (Type 1.1) $D_0 = F$; $\delta_0 = 1$, $D_1 = R$,
- (Type 1.2) D_0 is a totally indefinite quaternion algebra over F; $\delta_0 = 2$, $D_1 = R$,
- (Type 2) D_0 is a totally definite quaternion algebra over F; $\delta_0 = 2$, $D_1 = H$,
- (Type 3) D_0 is a central division algebra over a CM-field Z with an involution of the second kind with respect to Z/F; $\delta_0 \ge 1$, $D_1 = C$.

Note that in case $\delta_0 = \delta_1$ the (unique) positive involution ι_0 of D_0 is induced by the canonical involution of D_1 .

We identify $\mathcal{A}_1(F)$ with $\operatorname{End}_{D_0}(V_1)$ and set

(31)
$$\varphi_1(u) = 2\beta_1(T_u)$$
 for $u \in U^{(1)}$.

Then φ_1 is a linear map: $U^{(1)} \to \operatorname{Her}(\mathscr{A}_1, \iota_1)$ and the pair (β_1, φ_1) satisfies the relations similar to (β_1) , (β_2) :

(32)
$$\varphi_1(x(u)) = \beta_1(x)\varphi_1(u) + \varphi_1(u)\beta_1(x)^{i_1},$$

$$\beta_1(\theta_1(x)) = -\beta_1(x)^{i_1}, \quad \varphi_1(e^{(1)}) = 1.$$

One notes that, given a "base point" $e^{(1)} \in \mathscr{C}^{(1)}$, the involution ι_1 and the map φ_1 are uniquely characterized by (32). These relations also imply that φ_1 is a Jordan algebra homomorphism of $U^{(1)}$ into $(\mathscr{A}_1)_{\text{Jordan}}$ and that $\varphi_1(\mathscr{C}^{(1)})$ is contained in the cone of all positive elements in $\text{Her}(\mathscr{A}_1, \iota_1)$.

Proposition 1. The normalized inner product of $U^{(1)}$ corresponding to $e^{(1)}$ is given by

(33)
$$\langle u, u' \rangle = r_1(v_1 \delta_0 d_1)^{-1} \operatorname{tr}(\varphi_1(u) \varphi_1(u')) \quad (u, u' \in U^{(1)}),$$

where $r_1 = \mathbf{R}$ -rank $\mathfrak{g}_1^{(1)}$ and tr denotes the reduced trace $\operatorname{tr}_{\mathscr{A}_1/\mathbf{R}}$.

Put $\langle u, u' \rangle' = \operatorname{tr}(\varphi_1(u)\varphi_1(u'))$. Then by (32) one has

$$\langle xu, u' \rangle' = -\langle u, \theta_1(x)u' \rangle'$$
 for $x \in \mathfrak{g}_1^{(1)}$.

Hence one has $\langle \rangle' = c \langle \rangle$ with a real constant c. Putting $u = u' = e^{(1)}$, one has by (8) $c = r_1^{-1} \operatorname{tr}(1) = r_1^{-1} v_1 \delta_0 d_1$, as desired.

3.5. We shall now show that, conversely, one can obtain admissible *F*-structures of $(U^{(1)}, V^{(1)})$ from an *F*-algebra structure of \mathscr{A}_1 .

THEOREM 1. Let \mathcal{A}_1 be the subalgebra of $\operatorname{End}_{\mathbf{R}}V^{(1)}$ generated by $\beta^{(1)}(\mathfrak{g}_1^{(1)})$. Then an F-algebra structure of \mathcal{A}_1 gives rise to an admissible F-structure of $(U^{(1)}, V^{(1)})$ if and only if the following conditions (a), (b), (c) are satisfied:

- (a) $\beta^{(1)}(g_1^{(1)})$ is a linear subspace of \mathcal{A}_1 defined over F.
- (b) There exists a totally positive involution ι_1 of $\mathcal{A}_1(F)$ leaving $\beta^{(1)}(\mathfrak{g}_1^{(1)})(F)$ invariant.
- (c) Let $\mathcal{A}_1(F) \sim D_0$, $\mathcal{A}_1 \sim D_1$ and let δ_0 and δ_1 be the degree of D_0 and D_1 over the center. Then the multiplicity of the **R**-irreducible representation $\beta_1^{(1)}$ in $\beta_1^{(1)}$ is divisible by $s_1 = \delta_0/\delta_1$.

PROOF. The "only if" part is clear from what we said in 3.4. To prove the "if" part, we construct an admissible F-structure of $(U^{(1)}, V^{(1)})$, starting from an F-algebra structure of \mathcal{A}_1 satisfying the conditions (a), (b), (c).

Take a primitive idempotent c_1 in $\mathcal{A}_1(F)$ and fix an F-isomorphism

$$\psi_1: D_0 \xrightarrow{\sim} c_1 \mathscr{A}_1(F)c_1$$
.

Then $V_1 = (\mathcal{A}_1(F)c_1, \psi_1)$ is a (right) D_0 -module of rank v_1 and one can make an identification $\mathcal{A}_1(F) = \operatorname{End}_{D_0}(V_1)$. By the condition (a) one has an F-Lie algebra structure on $\mathfrak{g}_1^{(1)}$ such that $\beta_1 = \beta^{(1)} | \mathfrak{g}_1^{(1)}(F)$ is an F-linear representation of $\mathfrak{g}_1^{(1)}(F)$ in $\mathcal{A}_1(F) = \operatorname{End}_{D_0}(V_1)$. Then, defining $V_j^{(1)}(j=1,2)$ as explained in 3.3, one obtains the

decomposition (26a), (26b). By the condition (c), the multiplicity of $\beta_1^{(1)}$ in $\beta^{(1)}$ can be written as v_2s_1 , and one has the relation (29) for i=1.

Now an *F*-structure of $V^{(1)}$ is defined as follows. Fix an **R**-isomorphism $D_0(\mathbf{R}) \simeq M_{s_1}(D_1)$ and the matrix units $(e_{ij}^{(1)})_{1 \le i,j \le s_1}$ in $D_0(\mathbf{R})$ such that $c_1^{(1)} = e_{11}^{(1)}$. Then there exist injective $g_1^{(1)}$ -equivariant linear maps

$$\phi_i \colon V_1(\mathbf{R}) = \bigoplus_{k=1}^{s_1} V_1^{(1)} e_{1k}^{(1)} \to V^{(1)} \qquad (1 \le i \le v_2)$$

such that one has $V^{(1)} = \bigoplus \phi_i(V_1(\mathbf{R}))$. Hence one can define an F-structure on $V^{(1)}$ so that

$$V^{(1)}(F) = \bigoplus_{i=1}^{v_1} \phi_i(V_1)$$
.

Then, in the manner explained in 3.3, one obtains the decomposition (27a), (27b).

An F-structure of $U^{(1)}$ is defined as follows. Take a totally positive involution ι_1 of $\mathscr{A}_1(F)$ leaving $\beta_1(\mathfrak{g}_1^{(1)}(F))$ invariant. Let θ_1 be a Cartan involution of $\mathfrak{g}_1^{(1)}$ defined by (30) and let $e^{(1)}$ be the corresponding point in $U^{(1)}$ (determined up to a scalar multiplication). One defines an F-structure of $U^{(1)}$ so that

$$U^{(1)}(F) = \{ u \in U^{(1)} \mid T_u \in \mathfrak{p}_1^{(1)}(F) \} .$$

Then, clearly, $U^{(1)}(F)$ is invariant under $\mathfrak{g}_1^{(1)}(F)$, and one has $e^{(1)} \in U^{(1)}(F)$, $\varphi_1(U^{(1)}(F)) \subset \operatorname{Her}(\mathscr{A}_1(F), \iota_1)$. Thus one obtains an admissible F-structure of $(U^{(1)}, V^{(1)})$. q.e.d.

In the above notation, since $\theta_1^{(i)} = \theta_1^{\sigma_i}$ is a Cartan involution of $g_1^{(i)}$, one may, replacing $e^{(1)}$ by $\alpha e^{(1)}$ with $\alpha \in F^{\times}$ if necessary, assume that $e^{(i)} = e^{(1)\sigma_i} \in \mathscr{C}^{(i)}$ for all $1 \le i \le l$, i.e. $e = \sum e^{(i)} \in \mathscr{C}$.

REMARK. The F-algebra structure of \mathcal{A}_1 satisfying (a) is uniquely determined by that of $\mathfrak{g}_1^{(1)}$. The admissible F-structure of $(U^{(1)}, V^{(1)})$ compatible with a given F-structure of $\mathfrak{g}_1^{(1)}$ is uniquely determined up to $\mathfrak{g}_1^{(1)}$ -automorphisms of $(U^{(1)}, V^{(1)})$.

3.6. Determination of $a^{(1)}$. Let $\varepsilon \in \{\pm 1\}$. In general, by a (D_0, ι_0) - ε -hermitian form h_1 on a right D_0 -module V_1 we mean an F-bilinear map $h_1 : V_1 \times V_1 \to D_0$ satisfying the following conditions:

$$h_1(v_1, v_1'\xi) = h_1(v_1, v_1')\xi , \quad h_1(v_1', v_1) = \varepsilon h_1(v_1, v_1')^{\iota_0}$$

for $v_1, v_1' \in V_1$, $\xi \in D_0$.

The dual V_1^* of V_1 (as an F-vector space) is viewed as a left D_0 -module in a natural manner. Then the hermitian form h_1 may be identified with an ε -symmetric (D_0, ι_0) -semilinear map $h_1: V_1 \to V_1^*$ by the relation

(34)
$$\operatorname{tr}_{D_0/F}(h_1(v_1, v_1')) = \langle v_1, h_1(v_1') \rangle.$$

Similarly, a (D_0, ι_0) - ε' -hermitian form h_2 on a left D_0 -module V_2 (satisfying this time $h_2(\xi v_2, v_2') = \xi h_2(v_2, v_2')$, etc.) is identified with an ε' -symmetric (D_0, ι_0) -semilinear map $h_2: V_2 \rightarrow V_2^*$ by a relation similar to (34), V_2^* being viewed as a right D_0 -module.

Now suppose one has an admissible *F*-structure on $(U^{(1)}, V^{(1)})$ and $e \in \mathcal{C} \cap U^{(1)}(\mathbf{Q})$. Let ι_1 be the totally positive involution of $\mathscr{A}_1(F) = \operatorname{End}_{D_0}(V_1)$ corresponding to $e^{(1)}$ in the sense of Lemma 2. Then ι_1 can be written in the form

(35)
$$\iota_1 = \iota_1(h_1) \colon y \mapsto h_1^{-1} {}^t y h_1$$

with a (D_0, ι_0) - η -hermitian form h_1 on V_1 $(\eta = \pm 1)$ uniquely determined up to a scalar multiplication of F^{\times} . (In the case of Type 3, one may, hence will, assume that $\eta = 1$.)

The hermitian form h_1 can be taken to be "totally positive (definite)". To be more precise, let $c_1^{(i)}$, $\psi_1^{(i)}$, $V_1^{(i)}$ be as defined in 3.3 and extend $\iota_0^{\sigma_i}$ to an **R**-linear involution of $D_0^{\sigma_i}(\mathbf{R})$. Then as is easily seen, there exist $b_1^{(i)} \in D_0^{\sigma_i}(\mathbf{R})^{\times}$ $(1 \le i \le l)$ such that one has

(36)
$$\psi_1^{(i)}(\xi)^{i_0^{\sigma_i}} = b_1^{(i)^{-1}} \psi_1^{(i)}(\overline{\xi}) b_1^{(i)} \qquad (\xi \in D_1);$$

in particular, one has

$$c_1^{(i)i_0^{\sigma_i}} = b_1^{(i)^{-1}} c_1^{(i)} b_1^{(i)}$$
.

The elements $c_1^{(i)}b_1^{(i)}=b_1^{(i)}c_1^{(i)i_0^{\sigma_i}}$ are uniquely determined by the $c_1^{(i)}$ up to scalar multiplications of $Z(\mathbf{R})^{\times}$. In particular, one has

(37)
$$b_1^{(i)}{}^{\sigma_i}c_1^{(i)}{}^{\sigma_i}=\eta_i c_1^{(i)}b_1^{(i)} \quad \text{with} \quad \eta_i=\pm 1.$$

(In the case of Type 3, one chooses $b_1^{(i)}$ so that $\eta_i = 1$.) Then there exist $D_1 - \eta \eta_i$ -hermitian forms $h_1^{(i)}$ on $V_1^{(i)}$ determined by the relation

(38)
$$\psi_1^{(i)}(h_1^{(i)}(v_1c_1^{(i)}, v_1'c_1^{(i)})) = c_1^{(i)}b_1^{(i)}h_1^{\sigma_i}(v_1, v_1')c_1^{(i)} \qquad \text{for} \quad v_1, v_1' \in V_1^{\sigma_i}.$$

Since ι_1 is totally positive, one has $\eta \eta_i = 1$ $(1 \le i \le l)$ and the $h_1^{(i)}$'s are definite. Hence one has $\eta = -1$ for Type 1.2 and $\eta = 1$ for all other cases. For the given choice of $b_1^{(i)}$'s one may choose h_1 in such a way that all the $h_1^{(i)}$ are positive definite.

REMARK. The above definition of the "positivity" of h_1 depends on the choice of the $b_1^{(i)}$'s, which is usually made in the following manner. Fix isomorphisms $M^{(i)}: D_0^{\sigma_i}(\mathbf{R}) \cong M_{s_1}(D_1)$ and the matrix units $(\varepsilon_{jk}^{(i)})_{1 \leq j,k \leq s_1}$ in $D_0^{\sigma_i}(\mathbf{R})$ in such a way that

$$M^{(i)}(\psi_1^{(i)}(\xi)) = \xi M^{(i)}(\varepsilon_{11}^{(i)})$$
 for $\xi \in D_1$;

in particular, $\varepsilon_{11}^{(i)} = c_1^{(i)}$. Then one chooses $b_1^{(i)}$ so that

$$\varepsilon_{ki}^{(i)i_0^{\sigma_i}} = b_1^{(i)^{-1}} \varepsilon_{ik}^{(i)} b_1^{(i)};$$

then by (37) one has $b_1^{(i)}{}^{\sigma_i} = \eta_1 b_1^{(i)}$. By these conditions the $b_1^{(i)}$ are uniquely determined up to scalar multiplications of \mathbb{R}^{\times} . Now, for Type 1.1 and 2 one has $s_1 = 1$, $c_1^{(i)} = 1$, so that one may put $b_1^{(i)} = 1$. For Type 1.2, one has $s_1 = 2$, $\eta_i = -1$, and one takes $b_1^{(i)}$ so that

$$M^{(i)}(b_1^{(i)}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

For Type 3, one chooses $b_1^{(i)}$ so that $M^{(i)}(b_1^{(i)})$ is positive definite. We also note that in this notation (38) is equivalent to saying that

(38')
$$M^{(i)}(b_1^{(i)}h_1^{\sigma_i}(v_1, v_1')) = (h_1^{(i)}(v_1\varepsilon_{j1}^{(i)}, v_1'\varepsilon_{k1}^{(i)}))_{1 \le j, k \le s_1}$$
 for $v_1, v_1' \in V_1^{\sigma_i}$ (cf. [S6, Ch. IV, §3]).

THEOREM 2. Suppose that $(U^{(1)}, V^{(1)})$ is given an admissible F-structure, $e \in \mathcal{C} \cap U^{(1)}(\mathbf{Q})$, and h_1 is a totally positive (D_0, ι_0) - η -hermitian form on V_1 such that $\iota_1 = \iota_1(h_1)$ is the involution corresponding to $e^{(1)}$. Then $(e^{(1)}, a^{(1)}, \beta^{(1)})$ is an admissible triple belonging to $(U^{(1)}, V^{(1)}, \mathcal{C}^{(1)})$ defined over F if and only if $a^{(1)}$ is of the form

(39)
$$a^{(1)}(v_1 \otimes_{D_0} v_2, v_1' \otimes_{D_0} v_2') = \operatorname{tr}_{D_0/F}(h_1(v_1, v_1')^{\iota_0}h_2(v_2, v_2'))$$
 for $v_j, v_j' \in V_j$, $j = 1, 2$, where h_2 is a (D_0, ι_0) - $(-\eta)$ -hermitian form on V_2 . (Cf. [S1, p. 234, Prop. 3], or [S6, Ch. IV, §2].)

PROOF. Assume that $(e^{(1)}, a^{(1)}, \beta^{(1)})$ is an admissible triple defined over F. Then by $(\beta 2)$ and (30) the involution $\iota = \iota(a^{(1)})$ leaves \mathscr{A}_1 invariant and $\iota | \mathscr{A}_1 = \iota_1$. Since one has

$$\operatorname{End}_F(V^{(1)}(F)) = \operatorname{End}_{D_0}(V_1) \otimes_Z \operatorname{End}_{D_0}(V_2) ,$$

there exists an involution ι_2 of $\operatorname{End}_{D_0}(V_2)$ such that $\iota_2|Z=\iota_0|Z$ and

$$(y_1 \otimes_Z y_2)^i = y_1^{i_1} \otimes_Z y_2^{i_2} \qquad (y_j \in \operatorname{End}_{D_0}(V_j), \quad j = 1, 2).$$

Hence, making the natural identification $V^{(1)}(F)^* = V_2^* \otimes_{D_0} V_1^*$, one has a (D_0, ι_0) - $(-\eta)$ -hermitian map $h_2: V_2 \to V_2^*$ such that

$$a^{(1)}(v_1 \otimes_{D_0} v_2) = h_1(v_1) \otimes_{D_0} h_2(v_2)$$
,

which is equivalent to (39). The converse is clear.

q.e.d.

With the same notation as in Theorem 2, let $(e^{(i)}, a^{(i)}, \beta^{(i)}) = (e^{(1)}, a^{(1)}, \beta^{(1)})^{\sigma_i}$ $(1 \le i \le l)$; then they are admissible triples belonging to $(U^{(i)}, V^{(i)}, \mathscr{C}^{(i)})$ defined over F^{σ_i} . Let $c_1^{(i)}, \psi_1^{(i)}, b_1^{(i)}$ be as above. Then for each $1 \le i \le l$ there is D_1 -skew-hermitian form $h_2^{(i)}$ on the left D_1 -module $V_2^{(i)}$ determined by the relation

(40)
$$\psi_1^{(i)}(h_2^{(i)}(c_1^{(i)}v_2, c_1^{(i)}v_2')) = c_1^{(i)}h_2^{\sigma_i}(v_2, v_2')b_1^{(i)^{-1}}c_1^{(i)} \qquad \text{for} \quad v_2, v_2' \in V_2^{\sigma_i},$$
 and one has

(41)
$$a^{(i)}(v_1 \otimes_{D_1} v_2, v_1' \otimes_{D_1} v_2') = \operatorname{tr}_{D_1/R} (h_1^{(i)}(v_1, v_1') h_2^{(i)}(v_2, v_2'))$$
 for $v_j, v_j' \in V_j^{(i)}, j = 1, 2$

(cf. [S6, Ch. IV, §3]).

3.7. The description of \mathfrak{S} . Let

$$I \in \mathfrak{S} = \mathfrak{S}(V, a, \beta), \qquad I = \sum_{i=1}^{l} I^{(i)},$$

$$I^{(i)} \in \mathfrak{S}^{(i)} = \mathfrak{S}(V^{(i)}, a^{(i)}, \beta^{(i)}).$$

Then, since $I^{(i)}$ is $\beta^{(i)}(g_1^{(i)})$ -invariant, one has

(42)
$$I^{(i)} = 1 \otimes_{D_1} I_2^{(i)} \qquad (1 \le i \le l),$$

with a complex structure $I_2^{(i)} \in \text{End}_{D_1}(V_2^{(i)})$, which by (41) satisfies the condition

(43)
$$h_2^{(i)}(v_2, I^{(i)}v_2') \quad (v_2, v_2' \in V_2^{(i)})$$
 is D_1 -hermitian and positive definite.

Let $\mathfrak{S}(V_2^{(i)}, h_2^{(i)})$ denote the space of D_1 -linear complex structures on $V_2^{(i)}$ satisfying the condition (43). Then one has

(44)
$$\mathfrak{S}(V^{(i)}, a^{(i)}, \beta^{(i)}) \simeq \mathfrak{S}(V_2^{(i)}, h_2^{(i)}).$$

This implies, in particular, that for any Q-rational admissible triple (e, a, β) one has

$$\mathfrak{S}(V, a, \beta) \simeq \prod_{i=1}^{l} \mathfrak{S}(V_2^{(i)}, h_2^{(i)}) \neq \emptyset$$
.

The symmetric domain \mathfrak{S} (with the given \mathbf{Q} -structure) is denoted as $R_{F/\mathbf{Q}}\mathfrak{S}(V_2, D_0, h_2)$. In the case where D_0 is of Type 1.1, Type 1.2, and Type 2, \mathfrak{S} is also written as $R_{F/\mathbf{Q}}(\mathrm{III}_{v_2/2}^{(1)})$, $R_{F/\mathbf{Q}}(\mathrm{III}_{v_2}^{(2)}, D_0, h_2)$, and $R_{F/\mathbf{Q}}(\mathrm{III}_{v_2}^{(2)}, D_0, h_2)$, respectively.

Note that the corresponding group G_2 has no compact factors (and hence determined uniquely by \mathfrak{S}) except for the following two cases. The group G_2 corresponding to $R_{F/\mathbb{Q}}(\mathrm{II}_1^{(2)}, D_0, h_2)$ is compact, so that the corresponding domain \mathfrak{S} reduces to a point. The group G_2 corresponding to $R_{F/\mathbb{Q}}(\mathrm{II}_2^{(2)}, D_0, h_2)$ (under the assumption that \mathfrak{S} has rational points) is isogenous to the direct product of two \mathbb{Q} -simple groups G_2' , G_2'' , one of which is compact and the other is isomorphic to the group corresponding to $R_{F/\mathbb{Q}}(\mathrm{III}_1^{(1)})$. (These cases are usually excluded from the classification.)

3.8. In the case where D_0 is of Type 3, one has to determine furthermore the signature of $h_2^{(i)}$. For that purpose, let σ_i' and σ_i'' denote two imbeddings of the center Z of D_0 into C extending $\sigma_i : F \rightarrow R$; then one has $\sigma_i'' = \sigma_0 \circ \sigma_i'$, σ_0 denoting the complex conjugation of C. We determine $\psi_1^{(i)}$ and (σ_i', σ_i'') in such a way that

(45)
$$\psi_{1}^{(i)}(\alpha^{\sigma'_{i}}) = \overline{\psi}_{1}^{(i)}(\alpha^{\sigma''_{i}}) = \alpha^{\sigma_{i}}c_{1}^{(i)} \qquad (\alpha \in \mathbb{Z}).$$

Then we say that the $\psi_1^{(i)}$ are compatible with the "CM-type" (σ_i') of the CM-field Z.

In this case, since $D_1 = C$ is commutative, we don't distinguish left and right C-vector spaces. Then, the $(V_i^{(i)}, \psi_i^{(i)})$ being C-vector spaces, one has direct decompositions

(46)
$$V_{i}^{(i)} \otimes_{\mathbf{R}} C = V_{i}^{(i)\prime} \oplus V_{i}^{(i)\prime\prime}, \quad V_{i}^{(i)\prime\prime} = V_{i}^{(i)\prime\sigma_{0}}, \quad (1 \le i \le l, j = 1, 2),$$

where

$$V_{j}^{(i)\prime} = \left\{ v \in V_{j}^{(i)} \otimes_{\mathbf{R}} \mathbf{C} \middle| v \psi_{1}^{(i)}(\xi) = \xi v \text{ for } \xi \in \mathbf{C} \right\},$$

$$V_{i}^{(i)\prime\prime} = \left\{ v \in V_{i}^{(i)} \otimes_{\mathbf{R}} \mathbf{C} \middle| v \psi_{1}^{(i)}(\xi) = \overline{\xi} v \text{ for } \xi \in \mathbf{C} \right\},$$

and $\dim_{\mathbf{C}} V_{j}^{(i)'} = \dim_{\mathbf{C}} V_{j}^{(i)''} = v_{j} \delta_{0}$.

Let $\beta_1^{(i)\prime}$ and $\beta_1^{(i)\prime\prime} = \beta_1^{(i)\prime\sigma_0}$ denote the restrictions to $V_1^{(i)\prime}$ and $V_1^{(i)\prime\prime}$ of the natural extension of the representation $\beta_1^{(i)}$ to $V_1^{(i)} \otimes_{\mathbf{R}} \mathbf{C}$. Then they are absolutely irreducible and the primary decomposition of $(V^{(i)} \otimes_{\mathbf{R}} \mathbf{C}, \beta^{(i)})$ is given by

$$(47) V^{(i)} \otimes_{\mathbf{R}} \mathbf{C} = V_1^{(i)\prime} \otimes_{\mathbf{C}} V_2^{(i)\prime} \oplus V_1^{(i)\prime\prime} \otimes_{\mathbf{C}} V_2^{(i)\prime\prime}.$$

Now, for the given complex structure $I^{(i)}$ on $V^{(i)}$, set

$$V_{+}^{(i)} = \{ v \in V^{(i)} \otimes_{\mathbf{R}} \mathbf{C} \mid I^{(i)}v = \sqrt{-1}v \}$$
.

Then $V_{+}^{(i)}$ is $\beta^{(i)}(\mathfrak{g}_{+}^{(i)})$ -invariant, and the primary decomposition of it is of the form

$$V_{+}^{(i)} = V_{1}^{(i)'} \otimes_{\mathbf{C}} W_{2}^{(i)'} \oplus V_{1}^{(i)''} \otimes_{\mathbf{C}} W_{2}^{(i)''},$$

where $W_2^{(i)\prime}$ and $W_2^{(i)\prime\prime}$ are complex subspaces of $V_2^{(i)\prime}$ and $V_2^{(i)\prime\prime}$ of dimension p_i and q_i , respectively. Since one has

$$V^{(i)} \otimes_{\mathbf{R}} C = V^{(i)}_+ \oplus V^{(i)\sigma_0}_+$$

one has

$$(49) V_2^{(i)\prime} = W_2^{(i)\prime} \oplus W_2^{(i)\prime\prime\sigma_0};$$

in particular, $p_i + q_i = v_2 \delta_0$ ($1 \le i \le l$). Thus one has

(50)
$$(V^{(i)}, I^{(i)}, \beta^{(i)}) \simeq (V^{(i)}_+, p_i \beta_1^{(i)'} \oplus q_i \beta_1^{(i)'}).$$

Otherwise expressed, one has

(51)
$$V^{(i)} = R_{C/R}(V_1^{(i)'} \otimes_C V_2^{(i)'}),$$
$$I^{(i)} = R_{C/R}(1 \otimes_C I_2^{(i)'}),$$

where $I_2^{(i)'}$ is a complex structure on $V_2^{(i)'}$, defined by

(51a)
$$I_2^{(i)'} = \begin{cases} \sqrt{-1} & \text{on } W_2^{(i)'}, \\ -\sqrt{-1} & \text{on } W_2^{(i)''\sigma_0}. \end{cases}$$

Let $h_j^{(i)\prime}$ denote the $(-1)^{j-1}$ -hermitian forms on $V_j^{(i)\prime}$ obtained from $h_j^{(i)}$ by the C-isomorphism $(V_j^{(i)}, \psi_1^{(i)}) \simeq V_j^{(i)\prime}$; then $h_2^{(i)\prime}(w_2, w_2')$ $(w_2, w_2' \in V_2^{(i)})$ is C-linear in w_2 . For the sake of consistency, we set

$$\widetilde{h}_{2}^{(i)'}(w_{2}, w_{2}') = \overline{h_{2}^{(i)'}(w_{2}, w_{2}')}$$

to obtain a skew-hermitian form which is C-linear in w'_2 . Then by (41) one has

(52)
$$a^{(i)}(v_1 \otimes_{\mathbf{C}} v_2, v_1' \otimes_{\mathbf{C}} v_2') = 2 \operatorname{Re}(h_1^{(i)}(w_1, w_1') \widetilde{h}_2^{(i)}(w_2, w_2')),$$

where

$$v_i = w_i + \bar{w}_i$$
, $v'_i = w'_i + \bar{w}'_i$, $v_i, v'_i \in V_i^{(i)}$, $w_i, w'_i \in V_i^{(i)}$ $(1 \le i \le l, j = 1, 2)$,

and the symbol $\otimes_{\mathbf{C}}$ in (52) stands for the tensor product over $\psi_1^{(i)}(\mathbf{C})$. Since $a^{(i)}I^{(i)}$ and the hermitian form $h_1^{(i)'}$ are positive definite, one has by (51), (51a) and (52) that the hermitian form $\sqrt{-1}\tilde{h}_2^{(i)'}$ on $V_2^{(i)'}$ is of signature (p_i, q_i) . In this sense, we say that h_2 (or I_2) is of signature $(p_i, q_i)_{1 \le i \le l}$ with respect to the given "CM-type" (σ'_i) . In this case \mathfrak{S} is written as

(53)
$$\mathfrak{S} = \prod \mathfrak{S}(V_2^{(i)}, \, \tilde{h}_2^{(i)}) = R_{F/\mathbf{Q}} \mathfrak{S}(V_2, D_0/Z, h_2).$$

For the given skew-hermitian form h_2 , the CM-type $(\sigma_i')_{1 \le i \le l}$ can be so chosen that one has $p_i \ge q_i$ for $1 \le i \le l$. When $\mathfrak S$ has rational points, the reductive group G_2 is (strictly) pure, so that there exist integers p, q such that $p_i = p$, $q_i = q$ $(1 \le i \le l)$. Then the symmetric domain $\mathfrak S$ in (53) is denoted as

$$R_{F/\mathbf{0}}(I_{p,q}^{(\delta_0)}, D_0/Z, h_2)$$
.

The corresponding group G_2 has no compact factors, except for the case q=0, in which case the group G_2 itself is compact. Note also that the group corresponding to $R_{F/\mathbf{Q}}(\mathrm{I}_{3,1}^{(1)}, Z, h_2)$ is \mathbf{Q} -isogenous to the one corresponding to $R_{F/\mathbf{Q}}(\mathrm{II}_3^{(2)}, D_0, h_2)$ for a suitable totally definite quaternion algebra D_0 over F and a D_0 -skew-hermitian form h_2 of 3 variables.

REMARK. When p>q, there exist rational points in $\mathfrak S$ if and only if one has $\delta_0|q$ and Q-rank $G_2=q/\delta_0$. If this is the case, I is rational, if and only if there exists a D_0 -submodule W_2 of V_2 of rank q/δ_0 such that

$$W_2^{(i)\prime} = (W_2^{\perp})^{\sigma_i'}(C) \cap V_2^{(i)\prime}, \qquad W_2^{(i)\prime\prime} = W_2^{\sigma_i''}(C) \cap V_2^{(i)\prime\prime}.$$

^{\perp} denoting the orthogonal complement with respect to h_2 . When p=q, the situation is a little more complicated ([S8]).

4. The standard case.

4.1. Admissible F-structures of $(U^{(1)}, V^{(1)})$. According to the classification theory of irreducible self-dual homogeneous cones, $\mathscr{C}^{(1)}$ is isomorphic to one of the following cones:

$$\mathscr{P}_{r_1}(R) (r_1 \ge 1), \quad \mathscr{P}_{r_2}(C) (r_1 \ge 2), \quad \mathscr{P}_{r_2}(H) (r_1 \ge 3), \quad \mathscr{P}(1, n_1 - 1) (n_1 \ge 3).$$

We call the first three cases *standard* and the fourth *non-standard* or *quadratic*. Note that $\mathcal{P}_1(\mathbf{R})$ is the unique case for which $r_1 = n_1 = 1$ and that the quadratic case is characterized by $r_1 = 2$; in particular, one has the isomorphisms $\mathcal{P}_2(\mathbf{R}) \simeq \mathcal{P}(1, 2)$,

 $\mathscr{P}_2(C) \simeq \mathscr{P}(1, 3)$. (For convenience, we exclude $\mathscr{P}_2(H) \simeq \mathscr{P}(1, 5)$ from the standard case. Because of the assumption $V \neq 0$, the exceptional case $\mathscr{P}_3(O)$ is also excluded.)

In the standard case, one has

(54)
$$g_1 \simeq (g_1^{(1)})^l, \qquad g_1^{(1)} = \{1_{U^{(1)}}\}_{\mathbf{R}} \oplus g_1^{(1)s}, g_1^{(1)s} \simeq \mathfrak{sl}_{\mathbf{r}_1}(D_1), \qquad D_1 = \mathbf{R}, \mathbf{C}, \mathbf{H}.$$

We know ([S2]) that the representation $(V^{(1)}, \beta^{(1)})$ is **R**-primary. In (26a, b) $V_1^{(1)}$ is a D_1 -module of rank r_1 and $\beta_1^{(1)}$ is a Lie algebra isomorphism

(55)
$$\beta_1^{(1)} : \mathfrak{g}_1^{(1)} \xrightarrow{\sim} \left\{ y \in \operatorname{End}_{D_1}(V_1^{(1)}) \middle| \operatorname{tr} y \in \mathbf{R} \right\},$$

tr denoting here the reduced trace of $\operatorname{End}_{D_1}(V^{(1)})$ over its center. Thus one has $\mathscr{A}_1 \simeq \operatorname{End}_{D_1}(V_1^{(1)}) \simeq M_{r_1}(D_1)$ and $r_1 = v_1 \delta_0/\delta_1$.

It follows that, if one has an F-algebra structure on \mathcal{A}_1 with a totally positive involution ι_1 , then the conditions (a), (b) in Proposition 2 are automatically satisfied. Hence, in the standard case, an F-algebra structure of \mathcal{A}_1 gives rise to an admissible F-structure of $(U^{(1)}, V^{(1)})$ if and only if there exists a totally positive involution ι_1 of $\mathcal{A}_1(F)$ and the condition (c) in Proposition 2 is satisfied.

Now, suppose one has an F-algebra structure on \mathcal{A}_1 satisfying these conditions and fix an admissible F-structure of $(U^{(1)}, V^{(1)})$ compatible with it. Then one has (27a, b) with

(56)
$$\mathscr{A}_{1}(F) = \operatorname{End}_{D_{0}} V_{1} ,$$

$$\beta_{1} : \mathfrak{g}_{1}^{(1)s}(F) \xrightarrow{\sim} \mathfrak{sl}(V_{1}/D_{0}) .$$

Hence in this case one has F-rank $g_1^{(1)} = v_1$.

REMARK. Our argument shows that, in our case, the *F*-forms of $\mathfrak{g}_1^{(1)}$ corresponding to the unitary groups do not occur. (In fact, for such an *F*-form the representation $\beta^{(1)}$ is not defined over *F*).

On the other hand, one has

(57)
$$U^{(1)} = S(V_1^{(1)} \otimes_{D_1} V_1^{(1)}),$$

where S denotes the symmetrizer and the second factor $V_1^{(1)}$ in the right hand side is viewed as a left D_1 -space by $\xi v_1 = v_1 \overline{\xi}$ $(v_1 \in V_1^{(1)}, \xi \in D_1)$. $U_1^{(1)}$ is also identified with the space of all symmetric D_1 -semilinear maps: $V_1^{(1)*} \to V_1^{(1)}$. Then the action of $g_1^{(1)}$ on $U_1^{(1)}$ is given by

(58)
$$x(u) = \beta_1^{(1)}(x) \circ u + u \circ {}^t\beta_1^{(1)}(x)$$

for $x \in \mathfrak{g}_1^{(1)}$ and $u \in U^{(1)}$.

From (57) one also has an F-structure of $U^{(1)}$ such that

(59)
$$U^{(1)}(F) = S_{\eta}(V_1 \otimes_{D_0} V_1),$$

 S_{η} denoting the η -symmetrizer $S_{\eta} = (1/2)(1+\eta\tau)$, where τ is the transposition and $\eta = -1$ if D_0 is of Type 1.2 and $\eta = 1$ otherwise. Thus $U^{(1)}(F)$ is identified with the space of all η -symmetric (D_0, ι_0) -semilinear maps: $V_1^* \to V_1$. Then the action of $\mathfrak{g}_1^{(1)}(F)$ on $U^{(1)}(F)$ is given by a formula similar to (58).

4.2. Now let $e \in \mathscr{C} \cap U(Q)$, $e = (e^{(i)})$, and consider $e^{(1)}$ as a (D_0, ι_0) -semilinear isomorphism $V_1^* \stackrel{\sim}{\to} V_1$. Then its inverse $e^{(1)^{-1}} : V_1 \to V_1^*$ may be viewed as a (D_0, ι_0) - η -hermitian form on V_1 , which we denote by h_1 , i.e.,

(60)
$$\operatorname{tr}_{D_0/F}(h_1(v_1, v_1')) = \langle v_1, e^{(1)^{-1}} v_1' \rangle \qquad (v_1, v_1' \in V_1).$$

PROPOSITION 2. Let φ_1 and ι_1 be as defined in 3.4. Then, for $u \in U^{(1)}(F)$ and $y \in \mathcal{A}_1(F)$, one has

(61)
$$\varphi_1(u) = u \circ e^{(1)^{-1}},$$

(62)
$$y^{i_1} = e^{(1)} \circ {}^t y \circ e^{(1)^{-1}} .$$

(Thus one has $\iota_1 = \iota_1(h_1)$, i.e., our notation is consistent.)

PROOF. For the proof, we denote the right hand sides of (61) and (62) by $\varphi'_1(u)$ and $y^{i'_1}$, respectively. Then it is clear that one has $\varphi'_1(u) \in \operatorname{Her}(\mathscr{A}_1, \iota'_1)$ and, for $x \in \mathfrak{g}_1^{(1)}(F)$,

$$\varphi_1'(x(u)) = (\beta_1(x) \circ u + u \circ {}^t\beta_1(x)) \circ e^{(1)^{-1}} = \beta_1(x) \circ \varphi_1'(u) + \varphi_1'(u) \circ \beta_1(x)^{i_1'}.$$

Hence φ'_1 is an *F*-isomorphism $U^{(1)} \simeq \operatorname{Her}(\mathscr{A}_1, \iota'_1)$ satisfying the first and the third equations in (32). In particular, one has

$$x(e^{(1)}) = 0 \iff \beta_1(x) + \beta_1(x)^{i_1'} = 0$$
,

which shows that the map $y \mapsto -y^{i_1'}$ ($y \in \mathcal{A}_1$) induces the Cartan involution θ_1 of $\mathfrak{g}_1^{(1)}$ corresponding to $e^{(1)}$. Thus the second equation in (32) is also satisfied. Hence by the uniqueness of ι_1 and φ_1 one has $\varphi'_1 = \varphi_1$, $\iota'_1 = \iota_1$.

By (19) and (61) the Jordan product in $U^{(1)}$ is given by

$$uu' = \frac{1}{2} (u \circ e^{(1)^{-1}} \circ u' + u' \circ e^{(1)^{-1}} \circ u),$$

and by (33) the normalized inner product on $U^{(1)}$ corresponding to $e^{(1)}$ is given by

(63)
$$\langle u, u' \rangle = (\delta_1 d_1)^{-1} \operatorname{tr}_{\mathscr{A}_1/\mathbb{R}} (u e^{(1)^{-1}} u' e^{(1)^{-1}}).$$

Finally one obtains the following

PROPOSITION 3. Suppose we are in the standard case. Let $(e^{(1)}, a^{(1)}, \beta^{(1)})$ be an admissible triple defined over F belonging to $(U^{(1)}, V^{(1)}, \mathscr{C}^{(1)})$, $h_1 = e^{(1)^{-1}}$, and let h_2 be a

 (D_0, ι_0) - $(-\eta)$ -hermitian form on V_2 satisfying (39). Then the corresponding alternating bilinear map $A^{(1)}: V^{(1)} \times V^{(1)} \to U^{(1)}$ is given as follows:

(64)
$$A^{(1)}(v_1 \otimes_{D_0} v_2, v_1' \otimes_{D_0} v_2') = \eta \delta_1 d_1 S_{\eta}(v_1 h_2(v_2, v_2') \otimes_{D_0} v_1')$$

$$for \quad v_1, v_1' \in V_1 \quad and \quad v_2, v_2' \in V_2.$$

PROOF. For $u \in U^{(1)}(F)$ one has

$$\begin{split} \langle u, A^{(1)}(v_1 \otimes_{D_0} v_2, v_1' \otimes_{D_0} v_2') \rangle &= A_{\mathbf{u}}(v_1 \otimes_{D_0} v_2, v_1' \otimes_{D_0} v_2') \\ &= a^{(1)}(v_1 \otimes_{D_0} v_2, (ue^{(1)^{-1}})v_1' \otimes_{D_0} v_2') \\ &= \operatorname{tr}_{D_0/F}(h_1(v_1, (ue^{(1)^{-1}})v_1')^{l_0}h_2(v_2, v_2')) \\ &= \operatorname{tr}_{D_0/F}(h_1(v_1 h_2(v_2, v_2'), (ue^{(1)^{-1}})v_1')) \\ &= \langle v_1 h_2(v_2, v_2'), (e^{(1)^{-1}}ue^{(1)^{-1}})v_1' \rangle \\ &= \eta \operatorname{tr}_{\mathscr{A}(F)/F}((v_1 h_2(v_2, v_2') \otimes_{D_0} v_1')e^{(1)^{-1}}ue^{(1)^{-1}}) \\ &= \eta \delta_1 d_1 \langle u, S_{\eta}(v_1 h_2(v_2, v_2') \otimes_{D_0} v_1') \rangle , \end{split}$$

whence follows (64).

q.e.d.

4.3. Classification. In the classification theory, the quasisymmetric domain \mathcal{S}_I with a Q-structure described above is expressed by the following symbols, according as D_0 is of Type 1.1, 1.2, 2, or 3.

 $D_0/Z, h_2'$).

In general, it is known that, for any boundary point p of an irreducible symmetric domain \mathcal{D} , the "fiber" over p, i.e., the union of all geodesic lines in \mathcal{D} tending to p, is an irreducible quasisymmetric domain and, if p belongs to the *first* boundary component, it is of type $(III_{1;\nu_2/2}^{(1)})_I$. For instance, for the symmetric domain $\tilde{\mathcal{F}} = R_{F/Q}(II_{2+\nu_2'}^{(2)}, D_0, h_2')$, resp. $R_{F/Q}(II_{1+p,1+q}^{(1)}, Z, h_2')$ $(p+q=\nu_2')$, the fiber over a rational point I in the first rational boundary component $\mathfrak{S} = R_{F/Q}(III_{2}^{(2)}, D_0, h_2)$, resp. $R_{F/Q}(II_{p,q}^{(1)}, Z, h_2)$ is of type $R_{F/Q}(III_{1;\nu_2/2}^{(1)})_I$ $(\nu_2=2\nu_2')$. [But, because of the existence of compact factors in $GL_1(H)$ and $GL_1(C)$, the automorphism group of the fiber induced by the paraboric subgroup is, in general, smaller than $Aff(R_{F/Q}(III_{1;\nu_2/2}^{(1)})_I)$.] In particular, the domain $R_{F/Q}(III_{1;\nu_2/2}^{(1)})_I$ can be identified with the symmetric domain $R_{F/Q}(III_{1+\nu_2',1}^{(1)}, Z, h_2')$ (along with the automorphism group), where Z, h_2' are determined as follows. Let a_2 be a non-degenerate alternating bilinear form on $V_2 = V^{(1)}(F)$, $I \in R_{F/Q} \mathcal{S}(V_2, a_2)$, and let Z be the CM-field attached to I, i.e., $Z = F(\sqrt{-\alpha_1})$, where α_1 is a totally positive element in F such that $\sum \sqrt{\alpha_1^{\sigma_i}} I^{(i)}$ is Q-rational. Then h_2 is a Z-skew-hermitian form on V_2 given by

$$h_2(v, v') = a_2(v, v') - \sqrt{-1} a_2(v, I^{(1)}v'),$$

which is totally positive with respect to the CM-type (σ'_i) determined by $\sqrt{-\alpha_1}^{\sigma'_i} = \sqrt{-1} \sqrt{\alpha_1^{\sigma_i}}$, and h'_2 is a Z-skew-hermitian form of $2 + v'_2$ variables in the same Witt class as h_2 .

5. The quadratic case.

5.1. F-structures of $(U^{(1)}, \mathfrak{g}_1^{(1)})$. We keep the notation of §3. In the quadratic case, one has

(65)
$$\mathscr{C}^{(1)} \simeq \mathscr{P}(1, n_1 - 1) = \left\{ (\xi_i) \in \mathbf{R}^{n_1} \, \middle| \, \xi_1^2 - \sum_{i=2}^{n_1} \xi_i^2 > 0 \right\},$$
$$g_1 \simeq (g_1^{(1)})^l, \quad g_1^{(1)s} \simeq \mathfrak{so}(1, n_1 - 1),$$

where $n_1 = \dim U^{(1)} \ge 3$. In this case, $r_1 = R$ -rank $g_1^{(1)} = 2$.

One obtains all F-forms of $\mathfrak{g}_1^{(1)}$ in the following manner. F is a totally real number field of degree l. Suppose that $U^{(1)}$ is given an F-structure and $S^{(1)}$ is a symmetric bilinear form on $U^{(1)} \times U^{(1)}$ defined over F. Put $(U, S) = R_{F/Q}(U^{(1)}, S^{(1)})$. We assume that all $S^{(i)} = S^{(1)^{\sigma_i}}$ ($1 \le i \le l$) are of signature $(1, n_1 - 1)$. Then one has an F-structure of $\mathfrak{g}_1^{(1)}$ given by

$$\mathfrak{g}_{1}^{(1)\mathrm{s}}(F) \!=\! \mathfrak{so}(U^{(1)}\!(F),\,S^{(1)}) \!=\! \big\{ x \!\in\! \mathfrak{gl}(U^{(1)}\!(F)) \,\big|\, {}^{t} x S^{(1)} \!+\! S^{(1)} x \!=\! 0 \big\} \;.$$

For convenience, one fixes an F-rational orthogonal basis $\{e_i\}$ of $U^{(1)}$ such that

$$S^{(1)} \sim \operatorname{diag}(\alpha_1, \ldots, \alpha_{n_1})$$
,

where α_1 is totally positive and $\alpha_2, \ldots, \alpha_{n_1}$ are totally negative.

REMARK. When n_1 is even, there is a possibility of F-forms of $\mathfrak{g}_1^{(1)}$ defined by a quaternion skew-hermitian form h of $n_1/2$ variables with respect to a totally indefinite quaternion algebra over F. However, since h should give rise to a symmetric bilinear form of signature $(1, n_1 - 1)$ at every real place, an easy observation of the root diagrams shows that $\mathfrak{g}_1^{(1)}$ is F-anisotropic. By a theorem of Kneser ([Sc, Lem. 10.3.5, Th. 10.4.1]), this can happen only for $n_1 \le 6$. For $n_1 = 4$, by virtue of the isomorphism $\mathcal{P}(1, 3) \simeq \mathcal{P}_2(C)$, the F-forms of this type were already treated in §4, so that we may exclude them from the general discussion of the quadratic case. For $n_1 = 6$, such F-forms come from a central division algebra of degree 4, which can not have positive involutions. Hence F-forms of this type do not occur. For $n_1 = 8$, there is also a possibility of F-forms of $\mathfrak{g}_1^{(1)}$ coming from the triality. But, for the reason similar to the one given in [S1, p. 270], such F-forms do not occur either.

5.2. The Clifford algebras. Let $C = C(U^{(1)}, S^{(1)})$ denote the Clifford algebra of $S^{(1)}$ and let C^+ denote its even part. C and C^+ are semisimple R-algebra defined over F. Put

(66)
$$\tilde{e} = e_1 \cdots e_{n_1} \in C(F) ,$$

$$\Delta = \tilde{e}^2 = (-1)^{n_1(n_1 - 1)/2} \alpha_1 \cdots \alpha_{n_1} \in F^{\times}$$
(the discriminant of $S^{(1)}$).

By our assumption, Δ is totally positive (resp. totally negative) for $n_1 \equiv 1$, 2 (resp. $\equiv 0$, 3) (mod 4).

When n_1 is odd, C^+ is a central simple R-algebra of degree $2^{(n_1-1)/2}$ defined over F. When n_1 is even, the center of C^+ is $\{1, \tilde{e}\}_{R}$. Hence, if $n_1 \equiv 0 \pmod 4$, the center Z of $C^+(F)$ is a totally imaginary quadratic extension of F, isomorphic to $F(\sqrt{\Delta})$ with $\Delta \ll 0$ (totally negative). Thus C^+ is simple and of degree $2^{n_1/2-1}$ over its center $Z(R) \simeq C$. If $n_1 \equiv 2 \pmod 4$, one has $\Delta \gg 0$ (totally positive) and

(67)
$$C^{+} = C_{1}^{+} \oplus C_{2}^{+}, \qquad \frac{1}{2} (1 + (-1)^{i-1} \sqrt{\Delta^{-1}} \tilde{e}) \in C_{1}^{+}$$

with central simple **R**-algebras C_i^+ (i=1,2) of degree $2^{n_1/2-1}$. (The ordering of C_1^+ , C_2^+ may be determined by the orientation of $U^{(1)}$.) If, moreover, $\Delta \sim 1$ over F (i.e., $\Delta \in (F^{\times})^2$), then each C_i^+ is defined over F and one has $C_1^+(F) \simeq C_2^+(F)$ (by the map $x \mapsto e_1^{-1} x e_1$). If $n_1 \equiv 2 \pmod{4}$ and $\Delta \not\sim 1$, $C^+(F)$ is simple with center $Z \simeq F(\sqrt{\Delta})$, which is a totally real quadratic extension of F. In this case, one has $C^+(F) \simeq C_i^+(F(\sqrt{\Delta}))$ (i=1,2).

Let ρ denote the canonical involution of C^+ (i.e., one has $(e_{i_1} \cdots e_{i_k})^{\rho} = e_{i_k} \cdots e_{i_1}$). Then it is easy to see that

$$(68) \rho': x \mapsto e_1 x^{\rho} e_1^{-1}$$

is a totally positive involution of C^+ ; when n_1 is even and $\Delta \sim 1$, we mean by this that ρ' induces a totally positive involution on each simple factor C_i^+ (i=1, 2) ([S6, p. 282, Prop. 5.1]).

Let D_0 be a division algebra over F such that $C^+(F)$ (or $C_i^+(F)$) $\sim D_0$. Then the degree δ_0 of D_0 (over its center) is ≤ 2 . One has F-rank $g_1^{(1)} = 1$ if $\delta_0 = 2$ and $n_1 \leq 4$, and F-rank $g_1^{(1)} = 2$ otherwise. One has

(69)
$$D_0(\mathbf{R}) \sim D_1 = \begin{cases} \mathbf{R} & \text{if} \quad n_1 \equiv 1, 2, 3 \pmod{8}, \\ \mathbf{C} & \text{if} \quad n_1 \equiv 0, 4 \pmod{8}, \\ \mathbf{H} & \text{if} \quad n_1 \equiv 5, 6, 7 \pmod{8}. \end{cases}$$

Thus D_0 is of Type 1, if $n_1 \equiv 1$, 3 (mod 8) or $\equiv 2 \pmod{8}$ and $\Delta \sim 1$, of Type 2, if $n_1 \equiv 5$, 7 (mod 8) or $\equiv 6 \pmod{8}$ and $\Delta \sim 1$, and of Type 3, if $n_1 \equiv 0 \pmod{4}$. When $n_1 \equiv 2 \pmod{4}$ and $\Delta \sim 1$, D_0 is of Type 1 or 2 over $F(\sqrt{\Delta})$ according as $n_1 \equiv 2$ or 6 (mod 8).

5.3. F-structures of $(V^{(1)}, \beta^{(1)})$: the case $n_1 \not\equiv 2 \pmod{4}$. In this case $\beta^{(1)}$ is **R**-primary and the **R**-irreducible factor is given by the spin representation. As is well known, there exists a canonical F-isomorphism

$$\beta_1: \mathfrak{g}_1^{(1)} \xrightarrow{\sim} \beta_1(\mathfrak{g}_1^{(1)}) \subset (C^+)_{Lie}$$

such that one has

(70)
$$x(u) = [\beta_1(x), u]$$
 for $x \in \mathfrak{g}_1^{(1)}$ and $u \in U^{(1)}$,

(71)
$$\beta_1(\mathfrak{g}_1^{(1)}) = \{ y \in C^+ \mid y + y^\rho \in \mathbf{R}, \ [y, U^{(1)}] \subset U^{(1)} \}.$$

If one denotes by κ the unique R-irreducible representation of the simple R-algebra C^+ , then the spin representation of $\mathfrak{g}_1^{(1)}$ is given by $\kappa \circ \beta_1$. Therefore, identifying $\beta^{(1)}(x)$ $(x \in \mathfrak{g}_1^{(1)})$ with $\beta_1(x)$, one may make an identification $\mathscr{A}_1 = C^+$. It is then clear that the natural F-algebra structure of $\mathscr{A}_1 = C^+$ (which is the unique F-algebra structure making $\beta^{(1)}$ and β_1 defined over F) satisfies the conditions (a), (b) in Proposition 2 with $\iota_1 = \rho'$. Hence the natural F-algebra structure of \mathscr{A}_1 gives rise to an admissible F-structure of $(U^{(1)}, V^{(1)})$, if and only if the condition (c) in Proposition 2 is satisfied. For simplicity, one puts $e^{(1)} = e_1$; then one recovers the same F-structure of $U^{(1)}$ given in 5.1.

In the notation of §3, one has

$$v_1 \delta_0 = \begin{cases} 2^{(n_1 - 1)/2} \\ 2^{n_1/2 - 1} \end{cases} \qquad d_1 = \begin{cases} 1 & \text{if } n_1 \text{ is odd,} \\ 2 & \text{if } n_1 \equiv 0 \pmod{4}. \end{cases}$$

5.4. Now, fix $e^{(1)} = e_1 \in U^{(1)}(F)$ with $\alpha_1 = S^{(1)}(e_1, e_1) \gg 0$. Then one has

PROPOSITION 4. For $u \in U^{(1)}(F)$ and $y \in C^+(F)$, one has

(72)
$$\varphi_1(u) = ue_1^{-1} ,$$

(73)
$$y^{i_1} = e_1 y^{\rho} e_1^{-1} .$$

PROOF. We know (73) already ([S6, Prop. 5.1]). To prove (72), define φ_1 by (72) for a moment. Then it is enough to show that $\varphi_1(u) \in \text{Her}(C^+, \rho')$, $\varphi_1(e_1) = 1$, and that φ_1 satisfies the first relation in (32), because these properties characterize φ_1 . The first two properties of φ_1 are obvious. From (70) one has

$$\varphi_1(x(u)) = (\beta_1(x)u - u\beta_1(x))e_1^{-1} = \beta_1(x)\varphi_1(u) + \varphi_1(x)e_1\beta_1(x)^{\rho}e_1^{-1}$$

which proves the first relation in (32).

q.e.d.

By an easy computation, one has

$$\frac{1}{2} \left(\varphi_1(u) \varphi_1(u') + \varphi_1(u') \varphi_1(u) \right) = S(e_1, e_1)^{-1} \left(S(u, e_1) \varphi_1(u') + S(u'_1, e_1) \varphi_1(u) - S(u, u') \right).$$

This shows that the Jordan product in $U^{(1)}$ is given by

$$u \circ u' = S(e_1, e_1)^{-1}(S(u, e_1)u' + S(u', e_1)u - S(u, u')e_1)$$
.

It follows that the normalized inner product on $U^{(1)}$ is given by

(74)
$$\langle u, u' \rangle = 2S(u, e_1)S(u', e_1) - S(u, u')S(e_1, e_1)$$
.

On the other hand, let c_1 be a primitive idempotent of $C^+(F)$ and ψ_1 an F-isomorphism: $D_0 \cong c_1 C^+(F) c_1$. Then the (D_0, ι_0) - η -hermitian form h_1 on $V_1 = (C^+(F)c_1, \psi_1)$ is given by

(75)
$$h_1(v_1, v_1') = \psi_1^{-1}(b_1 e_1 v_1^{\rho} e_1^{-1} v_1') \qquad (v_1, v_1' \in V_1),$$

where b_1 is an element of $C^+(F)^{\times}$ such that

$$\psi_1(\xi_1)^{i_1} = b_1^{-1} \psi_1(\xi_1^{i_0}) b_1$$
, $b_1^{i_1} = \eta b_1$.

Finally to obtain an explicit form of $A^{(1)}$, let $\langle \rangle_{C^+}$ denote the inner product on C^+ defined by

$$\langle x, y \rangle_{C^+} = \operatorname{tr}_{C^+/\mathbb{R}}(x^{i_1}y)$$
.

For $x \in C^+$, let $[x]_U$ denote the element of $U^{(1)}$ such that $\varphi_1([x]_U)$ coincides with the $\varphi_1(U^{(1)})$ -component of x with respect to the inner product $\langle \ \rangle_{C^+}$.

PROPOSITION 5. Suppose we are in the quadratic case with $n_1 \not\equiv 2 \pmod{4}$. Let $(e^{(1)}, a^{(1)}, \beta^{(1)})$ be an admissible triple with $e^{(1)} = e_1$ defined over F belonging to $(U^{(1)}, V^{(1)}, \mathscr{C}^{(1)})$ and let h_1 and h_2 be as given in (75) and (39). Then the corresponding alternating bilinear map $A^{(1)}: V^{(1)} \times V^{(1)} \to U^{(1)}$ is given as follows:

(76)
$$A^{(1)}(v_1 \otimes_{D_0} v_2, v_1' \otimes_{D_0} v_2') = \frac{1}{2} \eta v_1 \delta_0 d_1 [v_1 \psi_1(h_2(v_2, v_2')) b_1 v_1'^{i_1}]_U.$$

PROOF. For $u \in U^{(1)}(F)$, $v_1, v_1' \in V_1 = C^+(F)c_1, v_2, v_2' \in V_2$, one has

$$\begin{split} A_{\mathbf{u}}&(v_1 \otimes_{D_0} v_2, v_1' \otimes_{D_0} v_2') = a^{(1)}(v_1 \otimes_{D_0} v_2, (ue_1^{-1})v_1' \otimes_{D_0} v_2') \\ &= \operatorname{tr}_{D_0/F}(h_1(v_1, (ue_1^{-1})v_1')^{i_0}h_2(v_2, v_2')) \\ &= \operatorname{tr}_{D_0/F}(h_1(v_1h_2(v_2, v_2'), (ue_1^{-1})v_1')) \\ &= \operatorname{tr}_{C^+/\mathbf{R}}(b_1\psi_1(h_2(v_2, v_2'))^{i_1}v_1^{i_1}ue_1^{-1}v_1') \\ &= \langle ue_1^{-1}, \eta v_1\psi_1(h_2(v_2, v_2'))b_1v_1'^{i_1}\rangle_{C^+} \\ &= \frac{1}{2} \eta v_1\delta_0 d_1 \langle u, [v_1\psi_1(h_2(v_2, v_2'))b_1v_1'^{i_1}]_U \rangle \;, \end{split}$$

which proves our assertion.

q.e.d.

5.5. Classification. In the classification theory, the domains \mathcal{S}_I and \mathfrak{S} in the present case are denoted as

$$R_{F/\mathbf{Q}}(IV_{n_1;\nu_2}, S^{(1)}, h_2)_I \quad (n_1 \ge 3, \ne 2 \pmod{4}), \quad R_{F/\mathbf{Q}} \mathfrak{S}(V_2, D_0, h_2).$$

(When D_0 is of Type 1.1, i.e., when $D_0 = F$, one omits h_2 .)

The total space $\widetilde{\mathcal{F}}$ is symmetric for the following three cases. For $n_1=3$, by virtue of the isomorphism $\mathscr{P}(1,2)\simeq \mathscr{P}_2(R)$, the domain $R_{F/Q}(\mathrm{IV}_{3;\nu_2},S^{(1)},h_2)_I$ is identified with $R_{F/Q}(\mathrm{III}_{2,\nu_2/2}^{(1)})_I$ or $R_{F/Q}(\mathrm{III}_{2,\nu_2}^{(2)},D_0,h_2)_I$ $(D_0=C^+(F))$ according as $D_0=F$ or not. Hence the corresponding $\widetilde{\mathcal{F}}$ is the Siegel domain expression of $R_{F/Q}(\mathrm{III}_{2+\nu_2\delta_0/2}^{(\delta_0)})$ over the $2/\delta_0$ -th rational boundary component $\mathfrak{S}=R_{F/Q}(\mathrm{III}_{\nu_2\delta_0/2}^{(\delta_0)})$. For $n_1=4$, by virtue of the isomorphism $\mathscr{P}(1,3)\simeq \mathscr{P}_2(C)$, the domain $R_{F/Q}(\mathrm{IV}_{4;\nu_2},S^{(1)},h_2)_I$ is identified with $R_{F/Q}(\mathrm{I}_{2;(p,q)}^{(\delta_0)},D_0/Z,h_2)_I$ $(D_0=C^+(F),Z=F(\sqrt{\Delta}),p+q=\delta_0\nu_2)$, so that the corresponding $\widetilde{\mathscr{F}}$ is the Siegel domain expression of $R_{F/Q}(\mathrm{I}_{p,q}^{(\delta_0)},p_2+q_2)$, over the $2/\delta_0$ -th boundary component $\mathfrak{S}=R_{F/Q}(\mathrm{I}_{p,q}^{(\delta_0)},D_0/Z,h_2)$. In particular, $R_{F/Q}(\mathrm{IV}_{4;\nu_2},S^{(1)},h_2)_I$ with q=0 is identified with the symmetric domain $R_{F/Q}(\mathrm{I}_{2+\nu_2\delta_0,2}^{(\delta_0)},D_0/Z,h_2')$. In the case $R_{F/Q}(\mathrm{IV}_{8;1},S^{(1)},h_2)_I$, the domain \mathfrak{S} reduces to a point $I(I=\sum |\Delta^{\sigma_i}|^{-1/2}\widetilde{e}^{(i)})$ and $\widetilde{\mathscr{F}}=\mathscr{F}_I$ is a symmetric domain of the exceptional type $(V)^I$ with a Q-structure of Q-rank 2.

5.6. The case $n_1 \equiv 2 \pmod{4}$. In this case, there exist two R-irreducible (spin) representations of $\mathfrak{g}_1^{(1)}$. Let π_i denote the projection $C^+ \to C_i^+$ and κ_i the R-irreducible representation of C_i^+ (i=1,2). Define the injective homomorphism $\beta_1:\mathfrak{g}_1^{(1)}\to C^+$ as in 5.3. Then the two spin representations of $\mathfrak{g}_1^{(1)}$ are given by $\kappa_i \circ \pi_i \circ \beta_1$ (i=1,2). In general, the representation ($V^{(1)},\beta^{(1)}$) has two R-primary components corresponding to these R-irreducible representations.

Let \mathscr{A}_1 denote the enveloping algebra of $\beta^{(1)}(\mathfrak{g}_1^{(1)})$ in $\operatorname{End}_{\mathbf{R}}V^{(1)}$. Then there exists a uniquely determined (algebra) homomorphism $\lambda\colon C^+\to\mathscr{A}_1$ such that one has $\beta^{(1)}=\lambda\circ\beta_1$. Suppose that the *F*-structure of $(U^{(1)},S^{(1)})$ is extended to an admissible *F*-structure of $(U^{(1)},V^{(1)})$ (under the condition similar to the condition (c) in Theorem 1). Then C^+ and \mathscr{A}_1 have natural *F*-algebra structures such that β_1 and λ are defined over *F*.

When $\Delta \not\sim 1$ over F, the F-algebra $C^+(F)$ is F-simple, and λ gives an F-isomorphism $C^+(F) \simeq \mathscr{A}_1(F)$. The center Z of $\mathscr{A}_1(F)$ is a totally real quadratic extension of F, isomorphic to $F(\sqrt{\Delta})$. Hence $\beta^{(1)}$ is F-primary, but not R-primary, and we obtain a result similar to the one given in §3 with some modifications. For instance, (27a), (26a) must be modified in the form:

$$\begin{split} V^{(1)}(F) &= R_{Z/F}(V_1 \otimes_{D_0} V_2) \;, \\ V^{(1)} &= V_1^{(1)'} \otimes_{D_1} V_2^{(1)'} \oplus V_1^{(1)''} \otimes_{D_1} V_2^{(1)''} \;, \end{split}$$

where V_1 , $V_1^{(1)\prime}$, and $V_1^{(1)\prime\prime}$ are simple left ideals of $C^+(F)$, C_1^+ , and C_2^+ , respectively. In this case, $v_1\delta_0 = 2^{n_1/2-1}$, and one has

$$\dim_{\mathbf{R}} V_j^{(i)\prime} = \dim_{\mathbf{R}} V_j^{(i)\prime\prime} = v_j s_1 \delta_1^2$$
,
 $\dim_{\mathbf{R}} V^{(i)} = 2v_1 v_2 \delta_0^2$.

In the classification theory, the domains \mathcal{S}_I and \mathfrak{S} are denoted as

$$\begin{split} R_{F(\sqrt{A})/\mathbf{Q}}(\mathrm{IV}_{n_1;\,\nu_2,\nu_2},\,S^{(1)},\,h_2)_I \quad & (n_1 \geq 6,\,\equiv 2(4))\;, \\ R_{F(\sqrt{A})/\mathbf{Q}} \mathfrak{S}(V_2,\,D_0,\,h_2)\;. \end{split}$$

When $\Delta \sim 1$ over F, $C^+(F)$ is decomposed as (67), in which each simple component $C_i^+(F)$ is invariant under ρ' . Hence one has either $\mathscr{A}_1(F) \simeq C^+(F)$ or $C_i^+(F)$ (i=1,2), according as $\beta^{(1)}$ has two or one F-primary component(s). For each F-primary component (which is also \mathbb{R} -primary) one has formulas similar to the ones given in the F-primary case, replacing β_1 , φ_1 by $\pi_i \circ \beta_1$, $\pi_i \circ \varphi_1$. Thus in this case, (27a), (26a) should be modified as follows:

$$\begin{split} V^{(1)}(F) &= V_1' \otimes_{D_0} V_2' \oplus V_1'' \otimes_{D_0} V_2'' \;, \\ V^{(1)} &= V_1^{(1)'} \otimes_{D_1} V_2^{(1)'} \oplus V_1^{(1)''} \otimes_{D_1} V_2^{(1)''} \;, \end{split}$$

 $V'_1, V''_1, V^{(1)'}_1$, and $V^{(1)''}_1$ being simple left ideals of $C_1^+(F)$, $C_2^+(F)$, C_1^+ , and C_2^+ , respectively. Denoting the ranks of D_0 -modules V'_i and V''_i (i=1,2) by v'_i and v''_i , one has

$$v_1' = v_1'' = 2^{n_1/2 - 1} \delta_0^{-1}, \quad v_2', v_2'' \ge 0,$$

and

$$\begin{split} \dim_{\mathbf{R}} V_{j}^{(i)\prime} &= \nu_{j}' s_{1} \delta_{1}^{2} \;, \quad \dim_{\mathbf{R}} V_{j}^{(i)\prime\prime} = \nu_{j}'' s_{1} \delta_{1}^{2} \;, \\ \dim_{\mathbf{R}} V^{(i)} &= \nu_{1}' (\nu_{2}' + \nu_{2}'') \delta_{0}^{2} \;. \end{split}$$

In this case, the domains \mathcal{S}_I and \mathfrak{S} are denoted as

$$\begin{split} R_{F/\mathbf{Q}}(\mathrm{IV}_{n_1;\,\nu_2',\nu_2''},\,S^{(1)},\,h_2',\,h_2'')_I & \quad (n_1 \geq 6,\,\equiv 2(4))\;, \\ R_{F/\mathbf{Q}}\,\mathfrak{S}(V_2',\,D_0,\,h_2') \times R_{F/\mathbf{Q}}\,\mathfrak{S}(V_2'',\,D_0,\,h_2')\;. \end{split}$$

[One may choose the orientation of $U^{(1)}$ so that $v_2 \ge v_2''$ and, when $v_2'' = 0$, one omits the second factor $R_{F/O} \in (V_2'', D_0, h_2'')$.]

In general, if p is a point in the *second* boundary component of an irreducible symmetric doamin, then the fiber over p is an irreducible quasisymmetric domain of type $(IV_{n_1;v_2})$ or $(IV_{n_1;v_2,0})$. Thus, for $n_1=6$, by virtue of the isomorphism $\mathcal{P}(1,5)\simeq\mathcal{P}_2(H)$, the domain $R_{F/Q}(IV_{6;v_2,0},S^{(1)},h_2)_I$ ($\Delta\sim 1$) is identified (through the first spin representation) with the fiber over a rational point I in the second rational boundary component $\mathfrak{S}=R_{F/Q}(II_{v_2}^{(2)},D_0,h_2)$ in the Siegel domain expression of $\mathcal{F}=R_{F/Q}(II_{4+v_2}^{(2)},D_0,h_2')$, where $D_0=C_1^+(F)$ is a totally definite quaternion algebra over F. In particular, $R_{F/Q}(IV_{6;1,0},S^{(1)},h_2)$ is identified with the symmetric domain $R_{F/Q}(II_5^{(2)},D_0,h_2')$. For $n_1=10$, the domain $R_{F/Q}(IV_{10;2/\delta_0,0},S^{(1)},h_2)_I$ ($\Delta\sim 1$) is identified with the fiber over a rational point I in the second rational boundary component $\mathfrak{S}=R_{F/Q}(III_1^{(\delta_0)},D_0,h_2)$ in the Siegel domain expression of a symmetric domain of the *exceptional* type $(VI)^I$ with a Q-structure of Q-rank $1+2/\delta_0$.

Appendix: The symmetric case.

A.1. The condition (iii). First we introduce some notation. For $v, v' \in V$, set

(76)
$$\varphi H_I(v, v') = \varphi(A(v, v'))I + \varphi(A(v, Iv')).$$

Then one has

$$I \cdot \varphi H_{I}(v, v') = -\varphi H_{I}(Iv, v') = \varphi H_{I}(v, Iv') = \varphi H_{I}(v, v')I$$
.

Thus $\varphi H_I(v, v')$ is *C*-linear in v' and *C*-semilinear in v with respect to the complex structure of V defined by I. It follows that one has

(77)
$$\varphi H_{I}(v, v')v'' = 2i(\varphi(A(v_{-}, v'_{+}))v''_{+} - \varphi(A(v_{+}, v'_{-}))v''_{-}).$$

Moreover, for $g_2 \in G_2$, one has

(78)
$$g_2^{-1}\varphi H_I(g_2v, g_2v')g_2 = \varphi H_{g_2^{-1}Ig_2}(v, v').$$

The following result is known (cf. [S6, p. 223–224, Th. 3.5]).

PROPOSITION 6. A quasisymmetric domain \mathcal{S}_I is symmetric if and only if the following condition is satisfied:

(iii)
$$A(v, \varphi H_I(v', v'')v'') = A(\varphi H_I(v'', v)v', v'')$$
 for $v, v', v'' \in V$,

or equivalently,

(iii')
$$A(\bar{w}, \varphi(A(\bar{w}', w''))w'') = A(\varphi(A(\bar{w}, w'')\bar{w}', w'') \quad \text{for } w, w', w'' \in V_+.$$

COROLLARY. If \mathscr{G}_I is symmetric for one $I \in \mathfrak{S}$, then \mathscr{G}_I is symmetric for all $I \in \mathfrak{S}$. This follows from Proposition 9 and (78).

REMARK. It is known ([S6, p. 228, Lem. 4.6]) that (iii) is equivalent to any one of the following conditions.

(iii₁)
$$\varphi H_I(v, \varphi(u)v')v' = \varphi(u)\varphi H_I(v, v')v',$$

(iii'₁)
$$\varphi H_I(\varphi(u)v, v')v' = \varphi H_I(v, v')\varphi(u)v'$$
$$(v, v' \in V, u \in U).$$

By the classification, we see that an irreducible domain \mathcal{S}_I is symmetric if and only if either one has $g_1 = \{1_U\}_R$ or g_2 is compact. Note that there are some discrepancy of the notation between this paper and [S6, Ch. V]. In the latter, the complex structure I on V is fixed, so that (V, I) is identified with V_+ . One has the following dictionary (on the left hand side is the notation in [S6]):

$$4H(v, v') = A(v, Iv') + iA(v, v'), 2R_u = \varphi(u),$$

$$8R(H(v, v'))(\text{on } V_+) = \varphi H_I(v, v')(\text{on } V_+) = 2i\varphi(A(v_-, v'_+)).$$

A.2. Infinitesimal automorphisms of \mathscr{G}_I . Let $\operatorname{Aut}\mathscr{G}_I$ denote the group of biholomorphic automorphisms of \mathscr{G}_I and let $\mathfrak{G} = \operatorname{Lie} \operatorname{Aut}\mathscr{G}_I$. Then $X \in \mathfrak{G}$ can be expressed by the corresponding "infinitesimal automorphism" of \mathscr{G}_I , i.e. the differential operator \tilde{X} on $C^{\infty}(\mathscr{S}_I)$ defined by

$$(\widetilde{X}f)(u,w) = \frac{d}{dt} f(\exp(tX)^{-1}(u,w))\big|_{t=0};$$

in notation, we write $X \leftrightarrow \tilde{X}$. Let (e_{α}) and (e'_{λ}) be bases of U_C and V_+ over C, respectively, and let (u_{α}) and (w_{λ}) the corresponding complex coordinates of U_C and V_+ . Then \tilde{X} is expressed in the form

(79)
$$\widetilde{X} = \sum_{\alpha=1}^{n} p_{\alpha}(u, w) \frac{\partial}{\partial u_{\alpha}} + \sum_{\lambda=1}^{m} q_{\lambda}(u, w) \frac{\partial}{\partial w_{\lambda}}.$$

Setting $p(u, w) = \sum_{\alpha=1}^{n} p_{\alpha}(u, w)e_{\alpha}$, $q(u, w) = \sum_{\lambda=1}^{m} q_{\lambda}(u, w)e'_{\lambda}$, we write

$$\tilde{X} = p(u, w) \frac{\partial}{\partial u} + q(u, w) \frac{\partial}{\partial w}$$
.

First, for the Heisenberg group \tilde{V} , the Lie algebra Lie \tilde{V} is naturally identified with $U \oplus V$ (as a vector space). Viewing Lie \tilde{V} as a subalgebra of \mathfrak{G} , one has by (7)

(80)
$$a+b \leftrightarrow -(a-A(b_{-},w))\frac{\partial}{\partial u}-b_{+}\frac{\partial}{\partial w} \qquad (a \in U, b \in V).$$

Clearly one has

(81)
$$[a+b, a'+b'] = -A(b, b') \qquad (a, a' \in U, b, b' \in V).$$

For the linear group G_I , one embeds $\text{Lie } G_I = \mathfrak{g}_1 \oplus \mathfrak{k}_2$ into $\mathfrak{gl}(U) \times \mathfrak{gl}(V)$. Then, for $(X_1, Y_1) \in \text{Lie } G_I$, one has

(82)
$$(X_1, Y_1) \leftrightarrow -X_1 u \frac{\partial}{\partial u} - Y_1 w \frac{\partial}{\partial w} .$$

Clearly one has

$$[(X_1, Y_1), a+b] = X_1 a + Y_1 b,$$

$$[(X_1, Y_1), (X_2, Y_2)] = ([X_1, X_2], [Y_1, Y_2]).$$

When \mathcal{S}_I is symmetric, let θ be the Cartan involution of \mathfrak{G} at $(ie, 0) \in \mathcal{S}_I$. Then one has a gradation of \mathfrak{G} according to $\operatorname{ad}(-1_U, (-1/2)1_V)$ of the following form:

(83)
$$\mathfrak{G} = \sum_{\nu=-2}^{2} \mathfrak{G}_{\nu/2} , \qquad \theta \mathfrak{G}_{\nu/2} = \mathfrak{G}_{-\nu/2} .$$

$$\mathfrak{G}_{-1} = U , \quad \mathfrak{G}_{-1/2} = V , \quad \mathfrak{G}_{0} = \text{Lie } G_{I} = \mathfrak{g}_{1} \oplus \mathfrak{f}_{2} ,$$

and θ induces the Cartan involution $\theta_1 \oplus \theta_2$ on \mathfrak{G}_0 (cf. [M], [S6, p. 211, (A), p. 220, Prop. 3.3]). In order to describe the action of θ on U, V, it is convenient to use the following notation:

$$(u \square u')u'' = \{u, u', u''\} = (uu')u'' + u(u'u'') - u'(uu''),$$

$$u \square u' = T_{....'} + [T_{...}, T_{..'}].$$

By (18) and (19) one has

(84)
$$\varphi(\{u, u', u''\}) = \frac{1}{2} (\varphi(u)\varphi(u')\varphi(u'') + \varphi(u'')\varphi(u')\varphi(u)),$$

(85)
$$\{u, A(v, v'), u'\} = \frac{1}{2} (A(\varphi(u)v, \varphi(u')v') + A(\varphi(u')v, \varphi(u)v')).$$

Proposition 7. One has

(86)
$$\theta a \leftrightarrow -\{u, a, u\} \frac{\partial}{\partial u} - \varphi(u)\varphi(a)w \frac{\partial}{\partial w},$$

(87)
$$\theta b \leftrightarrow -iA(\varphi(u)b_{-}, w) \frac{\partial}{\partial u} -i(\varphi(u)b_{+} + \varphi(A(b_{-}, w))w) \frac{\partial}{\partial w}.$$

This was given in [S6, p. 224, Th. 3.6]. A more direct proof can be given as follows. The symmetry at (ie, 0), denoted also by θ , is given by

$$\theta: (u, w) \mapsto (-u^{-1}, -i\varphi(u)^{-1}w),$$

where u^{-1} denotes the inverse of u in the Jordan algebra (U, e) and one has

 $\varphi(u^{-1}) = \varphi(u)^{-1}$ (cf. [S6, p. 139, Exc. 3]). Hence, for $a \in U$, one has $(\exp \theta a)(u, w) = (\theta \circ (\exp a) \circ \theta)(u, w) = \theta(-u^{-1} + a, -i\varphi(u)^{-1}w)$ $= ((u^{-1} - a)^{-1}, \varphi(u^{-1} - a)^{-1}\varphi(u)^{-1}w).$

Here one has

$$(u^{-1}-a)^{-1} = (1-u \square a)^{-1}u = u - \{u, a, u\} + \cdots$$

$$\varphi(u^{-1}-a)^{-1}\varphi(u)^{-1} = 1 - \varphi(u)\varphi(a) + \cdots$$

([S6, p. 26, Exc. 6] and (84)). Hence one obtains (86). The relation (87) is obtained similarly by using (iii₁), (77), (85).

By direct computations from (80), (86) and (87) one obtains

[a,
$$\theta a'$$
] = $(-2a \square a', -\varphi(a)\varphi(a'))$,

$$[b, \theta b'] = (-4\Phi_{h,h'}, -4\Psi_{h,h'}),$$

where

$$\begin{split} & 4\Phi_{b,b'}\colon u \mapsto A(b,\varphi(u)Ib')\;,\\ & 4\Psi_{b,b'}\colon v \mapsto \frac{1}{2}\left(\varphi H_I(b',v)b - \varphi H_I(b,v)b' + \varphi H_I(b',b)v\right)\;. \end{split}$$

(For (90) one uses (iii'). Cf. [S6, p. 231–233, Exc. 5 and Rem.])

A.3. **Q**-structures of \mathfrak{G} . Now we assume that there is given a **Q**-structure of the quasisymmetric domain \mathcal{S}_I in the sense of 3.1. This means that one has a **Q**-structure of $\mathfrak{G}_{Aff} = \mathfrak{G}_{-1} + \mathfrak{G}_{-1/2} + \mathfrak{G}_0$ such that $(1_U, (1/2)1_V) \in \mathfrak{g}_1$ is **Q**-rational. Then, since $I \in \mathfrak{S}$ is "rational", there exists a totally positive element $\alpha_1 \in F$ such that $\sum_{i=1}^{I} \sqrt{\alpha_1^{\sigma_i}} I^{(i)}$ is **Q**-rational. [We say that I is a rational point with CM-field $F(\sqrt{-\alpha_1})$, endowed with the standard CM-type (σ_i') defined by $\sqrt{-\alpha_1}^{\sigma_i'} = \sqrt{-1} \sqrt{\alpha_1^{\sigma_i}}$.] In what follows, for $\lambda_i \in R$ $(1 \le i \le l)$ and $x = \sum x^{(i)}$, we write

$$(\lambda_i) \cdot x = \sum_{i=1}^l \lambda_i x^{(i)}.$$

In this section, we don't assume that e is Q-rational. e is called *semirational* if there exists a totally positive element $\alpha \in F$ such that $(\sqrt{\alpha^{\sigma_i}}) \cdot e$ is Q-rational. We say that e or θ is *compatible with* the complex structure I if $(\sqrt{\alpha^{\sigma_i}}) \cdot e$ is Q-rational.

LEMMA. Let $e, e' \in U, e' = (\lambda_i) \cdot e$ and denote the symbols relative to e' by the corresponding symbols relative to e with a prime. Then one has

$$T'_a = (\lambda_i)^{-1} \cdot T_a$$
, $\varphi'(a) = (\lambda_i)^{-1} \cdot \varphi(a)$,
 $\{u, u', u''\}' = (\lambda_i)^{-2} \cdot \{u, u', u''\}$,
 $\theta' a = (\lambda_i)^{-2} \cdot \theta a$, $\theta' b = (\lambda_i)^{-1} \cdot \theta b$

for $a, u, u', u'' \in U, b \in V$.

The proof is straightforward.

THEOREM 3. Assume that \mathcal{S}_I is symmetric and let θ be the Cartan involution of \mathfrak{G} at $(ie,0)\in\mathcal{S}_I$. Then, there exists a unique \mathbf{Q} -structure of \mathfrak{G} satisfying the following conditions:

- (a) It extends the given Q-structure of \mathfrak{G}_{Aff} .
- (β) Whenever e is semirational, the restriction $\theta | U$ is **Q**-rational.

The Cartan involution θ is **Q**-rational with respect to this **Q**-structure of \mathfrak{G} if and only if θ is compatible with I.

PROOF. First we prove the uniqueness in the first statement. Suppose one has a Q-structure of \mathfrak{G} satisfying the conditions (α), (β). (Note that, by the above lemma, the condition (β) is satisfied if $\theta \mid U$ is Q-rational for one semirational e.) Then the Q-structures on the vector spaces $\mathfrak{G}_{\nu/2}$ are uniquely determined except for $\nu=1$. As for $\mathfrak{G}_{1/2}=\theta V$, one has by (89)

$$\theta Ib = -[\theta e, b] \qquad (b \in V)$$
.

Hence, if $(\sqrt{\alpha^{\sigma_i}}) \cdot e$ is Q-rational, then the map $b \mapsto (\sqrt{\alpha^{\sigma_i}}) \cdot \theta Ib$ is Q-rational. By this condition, which is independent of the choice of the semirational e by the above lemma, the Q-structure of $\mathfrak{G}_{1/2}$ is also uniquely determined. Conversely, by virtue of (88), (89), (90) and the above lemma, one sees that, defining the Q-structure of $\mathfrak{G}_{1/2}$ and \mathfrak{G}_1 as indicated above, one obtains a Q-structure of \mathfrak{G} satisfying the conditions (α) , (β) . From this and the definition the second statement is clear.

REMARK. The above theorem remains valid for the case V=0. In that case, any Cartan involution with semirational e is Q-rational.

REFERENCES

- [11] M.-N. ISHIDA, T-complexes and Ogata's zeta zero values, in "Automorphic Functions and Geometry of Arithmetic Varieties", Adv. St. in Pure Math., Vol. 15, Kinokuniya & North-Holland, 1989, pp. 351–364.
- [12] M.-N. ISHIDA, The duality of cusp singularities, Math. Ann. 294 (1992), 81–97.
- [KMO] W. KAUP, Y. MATSUSHIMA AND T. OCHIAI, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math. 92 (1970), 475–497.
- [M] S. MURAKAMI, On Automorphisms of Siegel Domains, Lect. Notes in Math. 286, Springer-Verlag, 1972.

- [O1] S. OGATA, Special values of zeta functions associated to cusp singularities, Tôhoku Math. J. 37 (1985), 367–384.
- [O2] S. OGATA, Hirzebruch's conjecture on cusp singularities, Math. Ann. 296 (1993), 69-86.
- [PS] I. I. PIATETSKII-SHAPIRO, Geometry of Classical Domains and Theory of Automorphic Functions (Russian), Fizmatgiz, Moscow, 1961; (English transl.) Gordon and Breach, New York, 1969.
- [S1] I. SATAKE, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math. 117 (1967), 215–279.
- [S2] I. SATAKE, Linear imbeddings of self-dual homogeneous cones, Nagoya Math. J. 46 (1972), 121–145; Corrections, ibid. 60 (1976), 219.
- [S3] I. SATAKE, On classification of quasi-symmetric domains, Nagoya Math. J. 62 (1976), 1-12.
- [S4] I. SATAKE, On symmetric and quasi-symmetric Siegel domains, in "Several Complex Variables", Proc. of Symp. in Pure Math., Vol. 30, Amer. Math. Soc., 1977, pp. 309–315.
- [S5] I. SATAKE, La déformation des formes hermitiennes et son application aux domaines de Siegel, Ann. Sci. l'Ecole Norm. Sup. 11 (1978), 445–449.
- [S6] I. SATAKE, Algebraic Structures of Symmetric Domains, Iwanami Shoten & Princeton Univ. Press, 1980.
- [S7] I. SATAKE, On the rational structures of symmetric domains, I, in "Int. Symp. in Memory of Hua Loo Keng, Vol. II, Analysis" (Beijing, 1988), Science Press & Springer-Verlag, 1991, pp. 231–259.
- [S8] I. SATAKE, On the rational structures of symmetric domains, II, Determination of rational points of classical domains, Tôhoku Math. J. 43 (1991), 401-424.
- [S9] I. SATAKE, On Q-structures of quasi-symmetric domains, RIMS Kokyuroku 844, 1993, pp. 138–153.
- [SO1] I. SATAKE AND S. OGATA, Zeta functions associated to cones and their special values, in "Automorphic Forms and Geometry of Arithmetic Varieties", Adv. Stud. in Pure Math., Vol. 15, Kinokuniya & North-Holland, 1989, pp. 1–27.
- [Sc] W. SCHARLAU, Quadratic and Hermitian Forms, Springer-Verlag, 1985.

Department of Mathematics Chuo University 1–13–27 Kasuga, Bunkyoku Tokyo 112 Japan