Tôhoku Math. J. 47 (1995), 613–614

ADDENDUM: ON *Q*-STRUCTURES OF QUASISYMMETRIC DOMAINS

(Tôhoku Math. J. 47 (1995), 357-390)

ICHIRO SATAKE

(Received August 22, 1995)

In A3, Theorem 3 (p. 389), the condition (β) was unnecessary and could be dropped. Actually, one can prove the following

LEMMA A. Let \mathscr{S}_I be a quasisymmetric domain with a Q-structure (in the sense of the text) and suppose that \mathscr{S}_I is symmetric and $\mathfrak{G} = \text{Lie Aut } \mathscr{S}_I$ has a Q-structure extending the given Q-structure of $\mathfrak{G}_{\text{Aff}}$. Then, for any Cartan involution θ of \mathfrak{G} at (ie, 0) $\in \mathscr{S}_I$ with e semirational, the map $\theta | U$ is Q-rational.

PROOF. By the assumption $X_0 = (1_U, (1/2)1_V)$ ($\in \mathfrak{G}_{Aff}$) is Q-rational, so that the subspaces $\mathfrak{G}_{\nu/2}$ ($\nu = 0, \pm 1, \pm 2$) are all defined over Q. The Cartan involution θ induces a linear isomorphism $\mathfrak{G}_1 \rightleftharpoons \mathfrak{G}_{-1} = U$ and one has $(\operatorname{ad} e)^2 \mathfrak{G}_1 \subset \mathfrak{G}_{-1}$; moreover, $(\operatorname{ad} e)^2$ is Q-rational for e semirational. Hence our assertion follows from the relation

 $\theta | U = 2((ad e)^2 | \mathfrak{G}_1)^{-1}$.

(Cf. [S7, (10), (11b), and (12)] in the References of the text.) q.e.d.

Therefore Theorem 3 can be stated in the following form.

THEOREM 3A. Let \mathscr{S}_I be a quasisymmetric domain with a Q-structure, and suppose that \mathscr{S}_I is symmetric. Then $\mathfrak{G} = \text{Lie Aut } \mathscr{S}_I$ has a unique Q-structure extending the given Q-structure of $\mathfrak{G}_{\text{Aff}}$. A Cartan involution θ of \mathfrak{G} at $(ie, 0) \in \mathscr{S}_I$ is Q-rational if and only if e is semirational and compatible with I. (In particular, there exists always a Q-rational Cartan involution of \mathfrak{G} .)

The uniqueness in the first assertion and the second assertion on Cartan involutions are shown in the same way as in the proof of Theorem 3 by just replacing condition (β) by Lemma A above. To prove the existence in the first assertion, take a semirational element $e \in \mathscr{C}$, compatible with *I*, and let θ be the Cartan involution of \mathfrak{G} at (ie, 0). Then θ induces a **Q**-rational Cartan involution of $\mathfrak{G}_0 = \mathfrak{g}_1 + \mathfrak{k}_2$. Define the **Q**-structure of the subspaces $\mathfrak{G}_{\nu/2}$ ($\nu = 1, 2$) so that the maps $\theta : \mathfrak{G}_{-\nu/2} \rightarrow \mathfrak{G}_{\nu/2}$ are **Q**-rational. Then, by virtue of (88), (89), (90), and the Lemma (in the text), it is easy to see that the Lie product $(x, y) \rightarrow [x, y]$ is **Q**-rational. Thus one obtains a **Q**-structure of \mathfrak{G} extending the given **Q**-structure of \mathfrak{G}_{Aff} . I. SATAKE

Department of Mathematics Chuo University 1–13–27 Kasuga, Bunkyo-ku Tokyo 112 Japan

614