THE LOCAL THETA CORRESPONDENCE OF IRREDUCIBLE TYPE 2 DUAL REDUCTIVE PAIRS

Takao Watanabe

(Received May 9, 1994, revised April 6, 1995)

Abstract

The explicit Howe duality correspondence is partially solved in the case of irreducible type 2 dual reductive pairs defined over a non-Archimedean local field.

Introduction. Let $\left(G L_{n}, G L_{m}\right)$ be an irreducible type 2 dual reductive pair defined over a non-Archimedean local field F. The Weil representation $\omega_{n, m}$ of $G L_{n}(F) \times G L_{m}(F)$ on the Schwartz-Bruhat space $\mathscr{S}\left(M_{n, m}(F)\right)$ is given by

$$
\omega_{n, m}(h, g) f(x)=|\operatorname{det} h|^{-m / 2}|\operatorname{det} g|^{n / 2} f\left(h^{-1} x g\right) \quad\left(h \in G L_{n}(F), g \in G L_{m}(F)\right) .
$$

Then a problem on the (explicit) Howe correspondence for $\left(G L_{n}, G L_{m}\right)$ is stated as follows. For a given irreducible admissible representation σ of $G L_{n}(F)$, determine an irreducible admissible representation σ^{\prime} of $G L_{m}(F)$ such that $\operatorname{Hom}_{G L_{n}(F) \times G L_{m}(F)}\left(\omega_{n, m}, \sigma \otimes\right.$ $\left.\sigma^{\prime}\right) \neq 0$. The purpose of this paper is to study this problem in the case where $m=n+1$ and σ is generic.

Our starting point is a global theta series lifting of a cusp form on the adele group $G L_{n}(\boldsymbol{A})$. For a cusp form φ on $G L_{n}(\boldsymbol{A})$ and a Schwartz-Bruhat function $f \in \mathscr{S}\left(M_{n, m}(\boldsymbol{A})\right)$, we define a theta series lifting φ_{f}^{s}, where s is a complex parameter with $\operatorname{Re}(s) \ll 0$. This φ_{f}^{s} is an automorphic form on $G L_{m}(\boldsymbol{A})$. In Section 1, we calculate a Whittaker function $W_{\varphi_{J}^{s}}$ of φ_{f}^{s} and prove that $W_{\varphi_{J}^{s}}$ is identically zero if $m \neq n, n+1$. In the case where $m=n$ or $m=n+1$, the function $W_{\varphi_{f}^{s}}$ is represented by a convolution of the Whittaker function W_{φ} of φ and a certain function $\Phi_{m}(f)$ related to f. More precisely, we have a formula of the form

$$
W_{\varphi_{f}^{s}}(g)=\int_{U_{n}(\boldsymbol{A}) \backslash G L_{n}(\boldsymbol{A})} W_{\varphi}(h)|\operatorname{det} h|_{A}^{s} \Phi_{m}\left(\omega_{n, m}(g) f\right)(h) d h, \quad(m=n, n+1) .
$$

On the basis of this formula, we can define a local theta series lifting of a local Whittaker function. This is the reason why we study the Howe correspondence in the case where $m=n+1$ and σ is generic. The case $m=n$ will be investigated in another paper [17].

We state the results of this paper. Let σ be an irreducible generic representation of $G L_{n}(F)$. By using a local analogue of the formula mentioned above, one can construct

[^0]a local theta series lifting $\tilde{\sigma}$ of σ. This $\tilde{\sigma}$ is an admissible representation of $G L_{n+1}(F)$ realized in the space of Whittaker functions and satisfies the following:
(0.1) $\operatorname{Hom}_{G L_{n}(F) \times G L_{n+1}(F)}\left(\omega_{n, n+1}, \sigma^{\vee} \otimes \tilde{\sigma}\right) \neq 0$, where σ^{\vee} denotes the contragradient representation of σ.

To describe the properties of $\tilde{\sigma}$, we denote by σ_{1} the normalized induced representation $\operatorname{Ind}_{Q_{n+1}(F)}^{G L_{n+1}(F)} \sigma \otimes 1$ of $G L_{n+1}(F)$, where $Q_{n+1}(F)$ denotes the standard upper triangular parabolic subgroup of $G L_{n+1}(F)$ with Levi factor $G L_{n}(F) \times G L_{1}(F)$. In this introduction, we assume σ_{1} to be irreducible for simplicity. (If σ_{1} is not irreducible, we must modify the definition of σ_{1} as will be mentioned in Section 2.) Then we show the following:
(0.2) σ_{1} is a unique irreducible subrepresentation of $\tilde{\sigma}$. Furthermore, the quotient representation $\tilde{\sigma} / \sigma_{1}$ has no nonzero vectors fixed by the closed subgroup

$$
\left\{\left.\left(\begin{array}{cc}
k & 0 \\
0 & 1
\end{array}\right) \right\rvert\, k \in G L_{n}(\mathcal{O})\right\}
$$

where $G L_{n}(\mathcal{O})$ is the maximal compact subgroup of $G L_{n}(F)$ consisting of integral matrices.
(0.3) $\tilde{\sigma}$ is of Whittaker type in the sense of Jacquet, Piatetski-Shapiro and Shalika [8, (2.1)].

By (0.3), one can define the gamma factor $\gamma(s, \tilde{\sigma} \times \tau, \psi)$ (cf. [8, (3.1)]) for each irreducible generic representation τ of $G L_{m}(F)$. Then (0.2) implies that

$$
\gamma(s, \tilde{\sigma} \times \tau, \psi)=\gamma\left(s, \sigma_{1} \times \tau, \psi\right)
$$

for all irreducible generic representations τ of $G L_{m}(F)$. In light of these results, one can expect that $\tilde{\sigma}=\sigma_{1}$ for any generic σ. If σ is a generic spherical representation, we really have $\tilde{\sigma}=\sigma_{1}$.

Prasad [14, (4.6.5)] stated a conjectural form of an irreducible admissible representation σ^{\prime} of $G L_{n+1}(F)$ corresponding to σ by the Howe duality. Since $\sigma_{1} \neq \sigma^{\prime}$, this conjectural form σ^{\prime} is not consistent with the Howe correspondence if σ is a generic spherical representation.

Notation. For an associative ring R with the identity element, we denote by R^{\times} the group of all invertible elements of R and by $M_{n, m}(R)$ the set of all $n \times m$ matrices with entries in R. If $n=m$, we write $M_{n}(R)$ for $M_{n, n}(R)$. For $A \in M_{n, m}(R),{ }^{t} A$ stands for its transpose. For $A \in M_{n}(R)$, $\operatorname{det} A$ stands for its determinant. The identity matrix in $M_{n}(R)$ is denoted by 1_{n}.

When a base field F is given, we set $G_{n}=G L(n, F)$. If $m<n$, we will regard G_{m} as a subgroup of G_{n} by the embedding

$$
g \mapsto\left(\begin{array}{cc}
g & 0 \\
0 & 1_{n-m}
\end{array}\right)
$$

We define algebraic subgroups of G_{n} as

$$
\begin{aligned}
& B_{n} \text { the set of upper triangular matrices, } \\
& U_{n} \text { the unipotent radical of } B_{n}, \\
& T_{n} \text { the set of diagonal matrices, } \\
& Z_{n} \text { the center of } G_{n}, \\
& P_{n}=\left\{\left(\begin{array}{ll}
g & u \\
0 & 1
\end{array}\right), g \in G_{n-1}, u \in M_{n-1,1}(F)\right\}, \\
& Q_{n}=Z_{n} P_{n} .
\end{aligned}
$$

The Weyl group of G_{n} will be identified with the symmetric group S_{n} of degree n.
If G is a locally compact abelian group, then $\mathscr{S}(G)$ denotes the space of SchwartzBruhat functions on G.

1. The global theta lifting. In this section, let k be a global field and \boldsymbol{A} the adele ring of k. For a k-subgroup G of $G_{n}=G L(n, k), G(A)$ denotes the corresponding adele group. We fix a nontrivial additive character ψ of $k \backslash \boldsymbol{A}$ and define the character ψ_{n} of $U_{n}(A)$ by

$$
\psi_{n}(u)=\psi\left(u_{12}+u_{23}+\cdots+u_{n-1 n}\right) \quad\left(u=\left(u_{i j}\right) \in U_{n}(\boldsymbol{A})\right) .
$$

The Weil representation $\left(\omega_{n, m}, \mathscr{S}\left(M_{n, m}(\boldsymbol{A})\right)\right)$ of $G_{n}(\boldsymbol{A}) \times G_{m}(\boldsymbol{A})$ is defined as follows: for $f \in \mathscr{S}\left(M_{n, m}(\boldsymbol{A})\right), h \in G_{n}(\boldsymbol{A})$ and $g \in G_{m}(\boldsymbol{A})$,

$$
\omega_{n, m}(h, g) f(x)=|\operatorname{det} h|_{\boldsymbol{A}}^{-m / 2}|\operatorname{det} g|_{A}^{n / 2} f\left(h^{-1} x g\right) .
$$

Let μ be a character of $Z_{n} \backslash Z_{n}(\boldsymbol{A})$. For $f \in \mathscr{S}\left(M_{n, m}(\boldsymbol{A})\right)$ and $s \in \boldsymbol{C}$, we define a modified theta series $\theta(s, \mu, f)$ as

$$
\theta(s, \mu, f)=\int_{Z_{n} \backslash Z_{n}(A)} \mu(z)|\operatorname{det} z|_{A}^{s-m / 2} \sum_{\substack{x \in M_{n, m}(k) \\ x \neq 0}} f\left(z^{-1} x\right) d z
$$

From [4, Lemmas 11.5 and 11.6], it follows that the integral on the right-hand side is absolutely convergent for $\operatorname{Re}(s)<-m / 2$ and the function $(h, g) \mapsto \theta\left(s, \mu, \omega_{n, m}(h, g) f\right)$ is slowly increasing on $\left(G_{n} \backslash G_{n}(\boldsymbol{A})\right) \times\left(G_{m} \backslash G_{m}(\boldsymbol{A})\right)$. Let φ be a cusp form on $G_{n}(\boldsymbol{A})$ satisfying $\varphi(z g)=\mu(z) \varphi(g)$ for any $z \in Z_{n}(\boldsymbol{A})$. Then we define a modified theta lifting φ_{f}^{s} of φ by

$$
\varphi_{f}^{s}(g)=\int_{G_{n} \backslash \boldsymbol{G}_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{\substack { \boldsymbol{A} \\
\begin{subarray}{c}{x \in M_{n, m}(k \neq 0 \\
x \neq 0{ \boldsymbol { A } \\
\begin{subarray} { c } { x \in M _ { n , m } (k \neq 0 \\
x \neq 0 } }\end{subarray}} \omega_{n, m}(h, g) f(x) d h
$$

$$
=\int_{Z_{n}(\boldsymbol{A}) G_{n} \backslash G_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{A}^{s} \theta\left(s, \mu, \omega_{n, m}(h, g) f\right) d h .
$$

Since $\varphi(h)$ is rapidly decreasing on $Z_{n}(\boldsymbol{A}) G_{n} \backslash G_{n}(\boldsymbol{A})$, this integral is absolutely convergent for $\operatorname{Re}(s)<-m / 2$, and hence φ_{f}^{s} defines an automorphic form on $G_{m}(\boldsymbol{A})$. The purpose of this section is to calculate a Whittaker function of φ_{f}^{s}. Namely we compute the integral

$$
W_{\varphi_{f}^{s}}(g)=\int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \varphi_{f}^{s}(u g) d u
$$

We set

$$
W_{\varphi}(h)=\int_{U_{n} \backslash U_{n}(\boldsymbol{A})} \psi_{n}(u)^{-1} \varphi(u h) d u
$$

If $m \geq n$, we define the function $\Phi_{m}(f)$ on $G_{n}(A)$ by

$$
\Phi_{m}(f)(h)=\int_{U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \omega_{n, m}(h, u) f\left(\varepsilon_{n, m}\right) d u
$$

where we put $\varepsilon_{n, m}=\left(1_{n}, 0\right) \in M_{n, m}(k)$.
Proposition 1. Let φ be a cusp form on $G_{n}(\boldsymbol{A}), f \in \mathscr{S}\left(M_{n, m}(\boldsymbol{A})\right)$ and $s \in \boldsymbol{C}$ with $\operatorname{Re}(s)<-m / 2$.
(1) If $m \leq n-1$ or $n+2 \leq m$, then $W_{\varphi_{J}^{s}}$ is identically zero.
(2) If $m=n$, then

$$
W_{\varphi_{S}^{s}}(g)=\int_{U_{n}(\boldsymbol{A}) \backslash G_{n}(\boldsymbol{A})} W_{\varphi}(h)|\operatorname{det} h|_{A}^{s} \boldsymbol{\Phi}_{n}\left(\omega_{n, n}(g) f\right)(h) d h
$$

provided that the integral on the right-hand side is absolutely convergent.
(3) If $m=n+1$, then

$$
W_{\varphi_{f}^{s}}(g)=\int_{U_{n}(\boldsymbol{A}) \backslash \boldsymbol{G}_{n}(\boldsymbol{A})} W_{\varphi}(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \Phi_{n+1}\left(\omega_{n, n+1}(g) f\right)(h) d h .
$$

Here the integral on the right-hand side always converges absolutely.
Proof. For a matrix $x \in M_{n, m}(k)$, let x_{j} denote the j-th column vector of x. We write $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ for x. We define the subset \boldsymbol{Y}_{j} of $M_{n, m}(k)$ as

$$
\begin{aligned}
& \boldsymbol{Y}_{0}=\left\{x \in M_{n, m}(k)-\{0\} \mid x_{1}=0\right\} \\
& \boldsymbol{Y}_{j}=\left\{x \in M_{n, m}(k) \mid \operatorname{rank}\left(x_{1}, \ldots, x_{j}\right)=\operatorname{rank}\left(x_{1}, \ldots, x_{j}, x_{j+1}\right)=j\right\},
\end{aligned}
$$

for $1 \leq j \leq \min (n, m-1)$. If $m \leq n$, we also set

$$
\boldsymbol{Y}_{m}=\left\{x \in M_{n, m}(k) \mid \operatorname{rank}\left(x_{1}, \ldots, x_{m}\right)=m\right\} .
$$

Then $M_{n, m}(k)-\{0\}$ is a disjoint union of $\boldsymbol{Y}_{j}, 0 \leq j \leq \min (n, m)$, and each \boldsymbol{Y}_{j} is left $\boldsymbol{G}_{n^{-}}$and right U_{m}-invariant. Let Y_{j} be a complete set of representatives for $\boldsymbol{Y}_{j} / U_{m}$. If $0 \leq j \leq \min (n, m-1)$, then we can take Y_{j} so that each $x \in Y_{j}$ has $x_{j+1}=0$. In the following, for $x \in M_{n, m}(k), Z\left(x, U_{m}\right)$ stands for the stabilizer of x in U_{m}. Then $W_{\varphi_{f}^{s}}(g)$ equals

$$
\begin{aligned}
& \int_{G_{n} \backslash G_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \sum_{\substack{x \in M_{n, m(k)}^{x \neq 0}}} \omega_{n, m}(h, u g) f(x) d u d h \\
& =\int_{G_{n} \backslash G_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \sum_{j=0}^{\min (n, m)} \sum_{x \in Y_{j}} \sum_{\gamma \in Z\left(x, U_{m}\right) \backslash U_{m}} \omega(h, u g) f(x \gamma) d u d h \\
& =\sum_{j=0}^{\min (n, m)} I_{j}^{m},
\end{aligned}
$$

where we set

$$
\begin{aligned}
I_{j}^{m}= & \int_{G_{n} \backslash G_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{A}^{s} \sum_{x \in Y_{j}}\left(\int_{Z\left(x, U_{m}\right) \backslash Z\left(x, U_{m}(\mathbf{A})\right)} \psi_{m}\left(u^{\prime}\right) d u^{\prime}\right) \\
& \times \int_{Z\left(x, U_{m}(\mathbf{A})\right) \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \omega(h, u g) f(x) d u d h .
\end{aligned}
$$

By our choice of representatives, ψ_{m} is nontrivial on $Z\left(x, U_{m}(\boldsymbol{A})\right)$ if $x \in Y_{j}$ and $0 \leq j \leq \min (n, m-2)$. This implies $I_{j}^{m}=0$ for $0 \leq j \leq \min (n, m-2)$. Therefore we have

$$
W_{\varphi_{f}^{s}}(g)=\left\{\begin{array}{lll}
I_{m-1}^{m}+I_{m}^{m} & \text { if } & m \leq n \\
I_{m-1}^{m} & \text { if } & m=n+1 \\
0 & \text { if } & m \geq n+2
\end{array}\right.
$$

We consider the case $m \leq n$. We regard U_{m} as a subgroup of G_{n}. Let M_{n}^{m} be the stabilizer of the matrix ${ }^{t} \varepsilon_{m, n}={ }^{t}\left(1_{m}, 0\right) \in M_{n, m}(k)$ in G_{n}, i.e.

$$
M_{n}^{m}=\left\{\left.\left(\begin{array}{cc}
1_{m} & u \\
0 & g
\end{array}\right) \right\rvert\, g \in G_{n-m}, u \in M_{m, n-m}(k)\right\}
$$

Since $Y_{m}=G_{n}{ }^{t} \varepsilon_{m, n}, I_{m}^{m}$ equals

$$
\begin{aligned}
& \int_{G_{n} \backslash G_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \sum_{\gamma \in M_{n}^{m} \backslash \boldsymbol{G}_{n}} \omega_{n, m}(r h, u g) f\left(\varepsilon_{\varepsilon_{m, n}}\right) d u d h \\
& \quad=\int_{M_{n}^{m} \backslash \boldsymbol{G}_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \omega_{n, m}\left(u^{-1} h, g\right) f\left(\varepsilon_{m, n}\right) d u d h \\
& =\int_{M_{n}^{m}(\boldsymbol{A}) \backslash \boldsymbol{G}_{n}(\boldsymbol{A})}\left(\int_{M_{n}^{m} \backslash \boldsymbol{M}_{n}^{m}(\boldsymbol{A})} \varphi\left(h_{0} h\right)\left|\operatorname{det} h_{0} h\right|_{\boldsymbol{A}}^{s} d h_{0}\right)
\end{aligned}
$$

$$
\times \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \omega_{n, m}\left(u^{-1} h, g\right) f\left(\varepsilon_{m, n}\right) d u d h .
$$

If $m<n$, the cuspidality condition of φ implies $I_{m}^{m}=0$. If $m=n$, by formal computation, we have

$$
\begin{aligned}
I_{m}^{m} & =\int_{G_{n}(\boldsymbol{A})}\left(\int_{U_{n} \backslash U_{n}(\boldsymbol{A})} \psi_{n}(u)^{-1} \varphi(u h) d u\right)|\operatorname{det} h|_{A}^{s} \omega_{n, n}(h, g) f\left(1_{n}\right) d h \\
& =\int_{U_{n}(\boldsymbol{A}) \backslash G_{n}(\boldsymbol{A})} W_{\varphi}(h)|\operatorname{det} h|_{A}^{s} \Phi_{n}\left(\omega_{n, n}(g) f\right)(h) d h .
\end{aligned}
$$

Next, let M_{n}^{m-1} denote the stabilizer ${ }^{t} \varepsilon_{m-1, n}={ }^{t}\left(1_{m-1}, 0\right) \in M_{n, m-1}(k)$ in G_{n}. Then we have

$$
\boldsymbol{Y}_{m-1}=\left\{\gamma^{-1}\left({ }^{t} \varepsilon_{m-1, n}, x_{m}\right) \mid \gamma \in M_{n}^{m-1} \backslash G_{n}, \operatorname{rank}\left({ }^{(} \varepsilon_{m-1, n}, x_{m}\right)=m-1\right\} .
$$

Therefore, I_{m-1}^{m} equals

$$
\begin{aligned}
& \int_{G_{n} \backslash \boldsymbol{G}_{n}(\boldsymbol{A})} \varphi(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \\
& +\sum_{\gamma \in M_{n}^{m-1} \backslash G_{n}} \sum_{\substack{x_{m} \in M_{n, 1}(k) \\
\text { rank }\left(\varepsilon_{m-1, n}, x_{m}\right)=m-1}} \omega_{n, m}(\gamma h, u g) f\left(\left({ }^{(} \varepsilon_{m-1, n}, x_{m}\right)\right) d u d h \\
& =\int_{M_{n}^{m-1}(\boldsymbol{A}) \backslash \boldsymbol{G}_{n}(\boldsymbol{A})}\left(\int_{M_{n}^{m-1} \backslash M_{n}^{m-1}(\boldsymbol{A})} \varphi\left(h_{0} h\right)\left|\operatorname{det} h_{0} h\right|_{\boldsymbol{A}}^{s} d h_{0}\right) \int_{U_{m} \backslash U_{m}(\boldsymbol{A})} \psi_{m}(u)^{-1} \\
& \left.\times \sum_{\substack{\left(x_{m} \in M_{n, 1}(k) \\
\text { rank }\left(\varepsilon_{m}-1, n, x_{m}\right)=m-1\right.}} \omega_{n, m}(h, u g) f\left({ }^{t^{t} \varepsilon_{m-1, n}}, x_{m}\right)\right) d u d h .
\end{aligned}
$$

The cuspidality of φ implies $I_{m-1}^{m}=0$ for all $m \leq n$. This completes the proof of the statements (1) and (2).

We consider the case $m=n+1$. By calculation similar to that above, we have

$$
I_{m-1}^{m}=\int_{U_{n}(\boldsymbol{A}) \backslash G_{n}(\boldsymbol{A})} W_{\varphi}(h)|\operatorname{det} h|_{\boldsymbol{A}}^{s} \Phi_{n+1}\left(\omega_{n, n+1}(g) f\right)(h) d h
$$

We prove that the integral on the right-hand side converges absolutely. It is sufficient to show that the integral

$$
\int_{T_{n}(\boldsymbol{A})} W_{\varphi}(t)|\operatorname{det} t|_{A}^{s} \Phi_{n+1}(f)(t) \delta_{n}(t)^{-1} d t
$$

converges absolutely, where δ_{n} denotes the modular character of $B_{n}(\boldsymbol{A})$. By definition, for $t=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in T_{n}(\boldsymbol{A})$,

$$
\begin{aligned}
\Phi_{n+1}(f)(t)= & |\operatorname{det} t|^{-(n+1) / 2} \int_{U_{n+1} \backslash U_{n+1}(\boldsymbol{A})} \varphi\left(u_{12}+\cdots+u_{n n+1}\right)^{-1} \\
& \times f\left(\left(\begin{array}{ccccc}
a_{1}^{-1} & a_{1}^{-1} u_{12} & \cdots & a_{1}^{-1} u_{1 n} & a_{1}^{-1} u_{1 n+1} \\
0 & a_{2}^{-1} & \cdots & a_{2}^{-1} u_{2 n} & a_{2}^{-1} u_{2 n+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n}^{-1} & a_{n}^{-1} u_{n n+1}
\end{array}\right)\right) d u_{12} \cdots+d u_{n n+1}
\end{aligned}
$$

This integral is regarded as a partial Fourier transform of f. Hence there exists a function $\Phi \in \mathscr{S}\left(\boldsymbol{A}^{n} \oplus \boldsymbol{A}^{n}\right)$ such that

$$
\left|\Phi_{n+1}(f)(t)\right| \leq \Phi\left(t, t^{-1}\right)
$$

Furthermore $W_{\varphi}(t)$ is majorized by a gauge function ξ on $G_{n}(A)$ (cf. [6, Proposition 2.3.6, Lemma 8.3.3 and (12.1)]), i.e.

$$
\left|W_{\varphi}(t)\right| \leq \xi(t), \quad(t \in T(A))
$$

Then it is easy to see that the integral

$$
\int_{T_{n}(A)} \xi(t)|\operatorname{det} t|_{A}^{s} \Phi\left(t, t^{-1}\right) \delta_{n}(t)^{-1} d t
$$

is convergent. This completes the proof.
2. The local theta lifting. From now on, we fix a local non-Archimedean field F. In this section, we define a local theta lifting from the set of generic representations of $G_{n}=G L(n, F)$ to the set of smooth representations of G_{n+1} by using an integral analogous to that in Proposition 1 (3).

First we define some notation and recall certain notions. Let \mathcal{O} denote the ring of integers of F, ∞ a prime element of F and q the order of $\mathcal{O} / \varpi \mathcal{O}$. The absolute valuation of F is denoted by $|\cdot|_{F}$, which is normalized as $|\varpi|_{F}=q^{-1}$. We fix, once and for all, a nontrivial additive character ψ of F with the conductor \mathcal{O}. We denote by K_{n} the maximal compact subgroup $G L(n, \mathcal{O})$ of G_{n} and by \mathscr{H}_{n} the convolution algebra consisting of all locally constant and compactly supported functions on G_{n}. The character ψ_{n} of U_{n} is defined to be

$$
\psi_{n}(u)=\psi\left(u_{12}+u_{23}+\cdots+u_{n-1 n}\right)
$$

for $u=\left(u_{i j}\right) \in U_{n}$.
Let $\boldsymbol{W}\left(\psi_{n}\right)$ be the space of all locally constant functions W on G_{n} satisfying $W(u g)=\psi_{n}(u) W(g)$ for any $u \in U_{n}$ and $g \in G_{n}$, i.e. $W\left(\psi_{n}\right)=\operatorname{Ind}_{U_{n}}^{G_{n}} \psi_{n}$. Then $g \in G_{n}$ acts on $\boldsymbol{W}\left(\psi_{n}\right)$ by right translation: $\rho(g) W\left(g_{0}\right)=W\left(g_{0} g\right)$. An admissible representation σ of G_{n} is said to be of Whittaker type if σ is finitely generated and $\operatorname{dim} \operatorname{Hom}_{G_{n}}\left(\sigma, \boldsymbol{W}\left(\psi_{n}\right)\right)=1$. If σ is of Whittaker type, we denote by $\boldsymbol{W}\left(\sigma, \psi_{n}\right)$ the image of the unique (up to constant)
nonzero G_{n}-morphism from σ to $\boldsymbol{W}\left(\psi_{n}\right)$. Note that the representation $\left(\rho, \boldsymbol{W}\left(\sigma, \psi_{n}\right)\right)$ need not be isomorphic to σ. If σ is of Whittaker type and irreducible, then σ is said to be generic.

A classification of irreducible generic representations of G_{n} is known by Bernstein and Zelevinsky [18]. In the following, for a given smooth representation π of G_{n} and a complex number z, we denote by $\pi[z]$ the twist of π by $|\cdot|^{2}$, i.e. $\pi[z](g)=|\operatorname{det} g|^{2} \pi(g)$. Let Q be a standard upper triangular parabolic subgroup of G_{n} with Levi factor $G_{n_{1}} \times G_{n_{2}} \times \cdots \times G_{n_{k}}, n_{1}+\cdots+n_{k}=n$. Let $\pi^{i}, 1 \leq i \leq k$, be an irreducible tempered representation of $G_{n_{i}}$ and $r_{1}>r_{2}>\cdots>r_{k}$ real numbers. We set

$$
\begin{equation*}
\operatorname{Ind}_{Q}^{G_{n}}\left(\pi^{1}\left[r_{1}\right] \otimes \pi^{2}\left[r_{2}\right] \otimes \cdots \otimes \pi^{k}\left[r_{k}\right]\right) . \tag{2.1}
\end{equation*}
$$

Bernstein and Zelevinsky proved that if σ is an irreducible generic representation of G_{n}, then σ must be equivalent to a representation of the form (2.1), where the parabolic subgroup Q, the tempered representations π^{1}, \ldots, π^{k} and the real numbers $r_{1}>\cdots>r_{k}$ are uniquely determined by σ (see also [9]). We note that, by a theorem of Jacquet [11], the irreducible tempered representation π^{i} of $G_{n_{i}}$ must be equivalent to a representation of the form

$$
\operatorname{Ind}_{R_{i}}^{G_{n_{i}}}\left(\pi^{i, 1} \otimes \pi^{i, 2} \otimes \cdots \otimes \pi^{i, p_{i}}\right)
$$

where R_{i} denotes a standard upper triangular parabolic subgroup of $G_{n_{i}}$ with Levi factor $G_{n_{i 1}} \times G_{n_{i 2}} \times \cdots \times G_{n_{i p_{2}}}, n_{i 1}+\cdots+n_{i p_{i}}=n_{i}$ an $\pi^{i, j}$ and irreducible square integrable representation of $G_{n_{i j}}$ for each $1 \leq j \leq p_{i}$.

Let σ be an irreducible generic representation of the form (2.1). We define the representation σ_{1} of G_{n+1} as follows. Assume that $r_{1}>r_{2}>\cdots>r_{j} \geq 0>r_{j+1}>\cdots>$ r_{k}. Let Q^{\prime} be a standard upper triangular parabolic subgroup of G_{n+1} with Levi factor $G_{n_{1}} \times \cdots \times G_{n_{j}} \times G_{1} \times G_{n_{j+1}} \times \cdots \times G_{n_{k}}$. Then we set

$$
\begin{equation*}
\sigma_{1}=\operatorname{Ind}_{Q^{G+1}}^{G_{n}}\left(\pi^{1}\left[r_{1}\right] \otimes \cdots \otimes \pi^{j}\left[r_{j}\right] \otimes 1 \otimes \pi^{j+1}\left[r_{j+1}\right] \otimes \cdots \otimes \pi^{k}\left[r_{k}\right]\right) \tag{2.2}
\end{equation*}
$$

This σ_{1} has the following properties (cf. [9, Proposition 3.2] and [18, Theorem 4.2]).
Lemma 1. (1) σ_{1} has a unique irreducible quotient representation.
(2) The representation $\left(\rho, W\left(\sigma_{1}, \psi_{n+1}\right)\right)$ is isomorphic to σ_{1} itself even if σ_{1} is not irreducible.
(3) σ_{1} is reducible if and only if there exists at least one $\pi^{i, j}\left[r_{i}\right]$ such that $\pi^{i, j}\left[r_{i}\right]=$ $\mathrm{St}_{n_{i j}}\left[\pm\left(n_{i j}+1\right) / 2\right]$, where $\mathrm{St}_{n_{i j}}$ denotes the Steinberg representation of $G_{n_{i j}}$ (cf. [4, Theorem 7.11]).

It is known by [2, Theorem 2.9] that the induced representation $\operatorname{Ind}_{Q_{n+1}}^{G_{n+1}} \sigma \otimes 1$ given in the Introduction has the same composition factors as that of σ_{1}. However, if $\operatorname{Ind}_{Q_{n+1}}^{G_{n+1}} \sigma \otimes 1$ is not irreducible, it does not always satisfy the properties (1) and (2) above, and, furthermore, we cannot apply [8, Proposition (9.4)] to this representation. ([8, Proposition (9.4)] will be used in Section 3, (3.3) below.) This is the reason why
we define σ_{1} not by $\operatorname{Ind}_{Q_{n+1}}^{G_{n+1}} \sigma \otimes 1$ but by (2.2).
The local Weil representation $\left(\omega_{n, m}, \mathscr{S}\left(M_{n, m}(F)\right)\right)$ of $G_{n} \times G_{m}$ is defined as follows: for $f \in \mathscr{S}\left(M_{n, m}(F)\right), h \in G_{n}$ and $g \in G_{m}$,

$$
\omega_{n, m}(h, g) f(x)=|\operatorname{det} h|_{F}^{-m / 2}|\operatorname{det} g|_{F}^{n / 2} f\left(h^{-1} x g\right) .
$$

We write simply ω for $\omega_{n, n+1}$ and ω_{1} for $\omega_{n, n}$. For $f \in \mathscr{S}\left(M_{n, n+1}(F)\right)$, we define the function $\Phi(f)$ on G_{n} by

$$
\Phi(f)(h)=\int_{U_{n+1}} \psi_{n+1}(u)^{-1} \omega(h, u) f\left(\varepsilon_{n}\right) d u
$$

where we put $\varepsilon_{n}=\left(1_{n}, 0\right) \in M_{n, n+1}(F)$. For each $W \in \boldsymbol{W}\left(\psi_{n}\right)$, we set

$$
V_{(W, f)}(g)=\int_{U_{n} \backslash G_{n}} W(h) \Phi(\omega(g) f)(h) d h \quad\left(g \in G_{n+1}\right) .
$$

Since $\Phi(f)$ has compact support in G_{n} modulo U_{n}, the integral on the right-hand side reduces to a finite sum. Furthermore, as a function in $g \in G_{n+1}, V_{(W, f)}$ is contained in $\boldsymbol{W}\left(\psi_{n+1}\right)$. Therefore we have a correspondence

$$
\boldsymbol{W}\left(\psi_{n}\right) \times \mathscr{S}\left(M_{n, n+1}(F)\right) \rightarrow \boldsymbol{W}\left(\psi_{n+1}\right),
$$

which satisfies the relation

$$
\begin{equation*}
\rho(g) V_{(\rho(h) W, f)}=V_{\left(W, \omega\left(h^{-1}, g\right) f\right)} \quad\left(h \in G_{n}, g \in G_{n+1}\right) \tag{2.3}
\end{equation*}
$$

Let σ be an irreducible generic representation of G_{n}. We set

$$
\boldsymbol{V}\left(\sigma, \psi_{n+1}\right)=\left\{V_{(W, f)} \mid W \in \boldsymbol{W}\left(\sigma, \psi_{n}\right), \quad f \in \mathscr{S}\left(M_{n, n+1}(F)\right)\right\}
$$

Then the theta lift $\tilde{\sigma}$ of σ is defined to be a smooth subrepresentation $\left(\rho, \boldsymbol{V}\left(\sigma, \psi_{n+1}\right)\right)$ of $\boldsymbol{W}\left(\psi_{n+1}\right)$. It is known by [13, Chapter 3, Section III, Corollary 3] that $\tilde{\sigma}$ is of finite length. Thus, by [1, Theorem 4.1], $\tilde{\sigma}$ is admissible and finitely generated.

Let $\xi_{n} \in \mathscr{H}_{n}$ be the characteristic function of K_{n}. We define the action of ξ_{n} on $\boldsymbol{W}\left(\psi_{n+1}\right)$ by

$$
\rho\left(\xi_{n}\right) W_{1}(g)=\int_{K_{n}} W_{1}\left(g\left(\begin{array}{cc}
k & 0 \\
0 & 1
\end{array}\right)\right) d k \quad\left(W_{1} \in \boldsymbol{W}\left(\psi_{n+1}\right), g \in G_{n+1}\right) .
$$

The main result of this paper is stated as follows.
Theorem 1. Let σ be an irreducible generic representation of G_{n}. Then the intersection $\rho\left(\xi_{n}\right) \boldsymbol{V}\left(\sigma, \psi_{n+1}\right) \cap \rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)$ contains a nonzero element. Furthermore, if σ_{1} is irreducible, we have

$$
\rho\left(\xi_{n}\right) \boldsymbol{V}\left(\sigma, \psi_{n+1}\right)=\rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)
$$

This theorem will be proved in Section 5. We note that $\rho\left(\xi_{n}\right) W\left(\sigma_{1}, \psi_{n+1}\right)$ has infinite dimension.

Remark. When z is a complex number with $\operatorname{Re}(z) \ll 0$, the representation $\sigma[z]_{1}$ is just the irreducible representation $\operatorname{Ind}_{Q^{\prime}}^{G L_{n+1}} 1 \otimes \sigma[z]$. Here Q^{\prime} denotes the standard upper triangular parabolic subgroup with Levi factor $G L_{1} \times G L_{n}$. Then, Jacquet, Piatetski-Shapiro and Shalika [8, Proposition (6.1)] essentially proved that, for any irreducible generic representation σ,

$$
\begin{equation*}
\boldsymbol{W}\left(\sigma[z]_{1}, \psi_{n+1}\right) \subset \boldsymbol{V}\left(\sigma[z], \psi_{n+1}\right) \tag{2.4}
\end{equation*}
$$

if $\operatorname{Re}(z) \ll 0$. This fact is derived as follows. Let $\mathscr{S}^{\prime}\left(M_{n, n+1}(F)\right)$ be the subset consisting of functions $f \in \mathscr{S}\left(M_{n, n+1}(F)\right)$ with supp $f \subset \varepsilon_{n} G_{n+1}$. The subspace $\mathscr{S}^{\prime}\left(M_{n, n+1}(F)\right)$ is $\omega\left(G_{n} \times G_{n+1}\right)$-invariant. For each $f \in \mathscr{S}^{\prime}\left(M_{n, n+1}(F)\right)$ and $W \in \boldsymbol{W}\left(\sigma, \psi_{n}\right)$, the integral

$$
\begin{equation*}
\phi_{(W, f)}(g ; m)=|\operatorname{det} m|_{F}^{z} \int_{G_{n}} \omega(h, g) f\left(\varepsilon_{n}\right) W(m h)|\operatorname{det} h|_{F}^{z} d h \quad\left(g \in G_{n+1}, m \in G_{n}\right) \tag{2.5}
\end{equation*}
$$

is convergent, and as a function in $g \in G_{n+1}, \phi_{(W, f)}$ is an element of $\operatorname{Ind}_{Q^{n}}^{G_{n+1}}(\sigma[z] \otimes 1)$ (cf. loc. cit. p. 430), where $Q^{\prime \prime}$ denotes the standard lower parabolic subgroup with Levi factor $G L_{n} \times G L_{1}$. We note that the representation $\operatorname{Ind}_{Q^{\prime},+1}^{G_{n+1}}(\sigma[z] \otimes 1)$ is isomorphic to $\sigma[z]_{1}$. Since $\sigma[z]_{1}$ is irreducible, the correspondence $(W, f) \mapsto \phi_{(W, f)}$ is a surjection from $\boldsymbol{W}\left(\sigma, \psi_{n}\right) \times \mathscr{S}^{\prime}\left(M_{n, n+1}(F)\right)$ onto $\operatorname{Ind}_{Q^{n}}^{G_{n+1}}(\sigma[z] \otimes 1)$. Furthermore, for $\phi=\phi_{(W, f)}$, the integral

$$
W_{\phi}^{\prime}(g)=\int_{M_{n, 1}(F)} \phi_{(W, f)}\left(\left(\begin{array}{cc}
1_{n} & x \\
0 & 1
\end{array}\right) g ; 1_{n}\right) \psi_{n+1}\left(\left(\begin{array}{cc}
1_{n} & x \\
0 & 1
\end{array}\right)\right)^{-1} d x
$$

is absolutely convergent by the assumption $\operatorname{Re}(z) \ll 0$. Then the space $\left\{W_{\phi}^{\prime} \mid \phi \in\right.$ $\left.\operatorname{Ind}_{Q^{\prime \prime+1}}^{G_{n+1}}(\sigma[z] \otimes 1)\right\}$ gives a Whittaker model of $\sigma[z]_{1}$. By replacing $\phi_{(W, f)}$ by its expression (2.5) and changing order of integrations, we obtain $W_{\phi}^{\prime}=V_{\left(W \otimes|\cdot|^{z}, f\right)}$. Therefore we have (2.4).
3. Some results of Jacquet, Piatetski-Shapiro and Shalika. First, we recall class 1 Whittaker functions of G_{n} by Shintani [16]. For an n-tuple $k=\left(k_{1}, \ldots, k_{n}\right) \in Z^{n}$ of rational integers, we denote by $t_{\boldsymbol{k}}$ the diagonal matrix in T_{n} whose i-th diagonal entry is $\varpi^{k_{i}}$ for $1 \leq i \leq n$. We set

$$
\Lambda_{n}=\left\{\boldsymbol{k} \in \boldsymbol{Z}^{n} \mid k_{1} \geq k_{2} \geq \cdots \geq k_{n}\right\} .
$$

Let $C\left[X_{1}, X_{1}^{-1}, X_{2}, X_{2}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ be the Laurent polynomial ring in indeterminates X_{1}, \ldots, X_{n} and Δ_{n} the subalgebra consisting of the elements in $C\left[X_{1}, X_{1}^{-1}, X_{2}, X_{2}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ which are invariant by permutations of indeterminates. We define the function $W\left(\cdot ; X_{1}, \ldots, X_{n} ; \psi_{n}^{-1}\right)$ on G_{n} with values in Δ_{n} as follows: for $u \in U_{n}, t_{k} \in T_{n}$ and $k \in K_{n}$,

$$
\begin{aligned}
& W\left(u t_{\boldsymbol{k}} k ; X_{1}, \ldots, X_{n} ; \psi_{n}^{-1}\right) \\
& \quad=\psi_{n}(u)^{-1} \times \begin{cases}\delta_{n}\left(t_{k}\right)^{1 / 2} \prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)^{-1} \sum_{\tau \in S_{n}} \operatorname{sgn} \tau \prod_{i=1}^{n} X_{\tau(i)}^{k_{i}+n-i} & \text { if } \boldsymbol{k} \in \Lambda_{n} \\
0 & \text { if } \boldsymbol{k} \notin \Lambda_{n},\end{cases}
\end{aligned}
$$

where δ_{n} denotes the modular character of B_{n}, i.e. $\delta_{n}\left(t_{k}\right)=\prod_{i=1}^{n}|\varpi|_{F}^{(n+1-2 i) k_{i}}$. Then, for each n-tuple $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right) \in\left(\boldsymbol{C}^{\times}\right)^{n}$ of complex numbers, the class 1 Whittaker function W_{z} on G_{n} is given by a specialization of $W\left(\cdot ; X_{1}, \ldots, X_{n} ; \psi_{n}^{-1}\right)$ at $\left(z_{1}, \ldots, z_{n}\right)$, i.e. $W_{z}(h)=W\left(h ; z_{1}, \ldots, z_{n} ; \psi_{n}^{-1}\right)$. We denote by $\boldsymbol{W}_{z}\left(\psi_{n}^{-1}\right)$ the submodule of $\boldsymbol{W}\left(\psi_{n}^{-1}\right)$ generated by W_{z}, i.e. $\boldsymbol{W}_{z}\left(\psi_{n}^{-1}\right)=\rho\left(\mathscr{H}_{n}\right) W_{z}$.

For $z \in\left(C^{\times}\right)^{n}$, we define an unramified character χ_{z} of B_{n} by

$$
\chi_{z}\left(t_{k} t^{\prime} u\right)=z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}}, \quad\left(\boldsymbol{k} \in \boldsymbol{Z}^{n}, t^{\prime} \in T_{n} \cap K_{n}, u \in U_{n}\right) .
$$

Let $\operatorname{Ind}_{B_{n}}^{G_{n}} \chi_{z}$ be the representation of G_{n} induced from χ_{z}. Then $\operatorname{Ind}_{B_{n}}^{G_{n}} \chi_{z}$ is of Whittaker type (cf. [3]). We take a $\tau \in S_{n}$ so that $\tau(z)=\left(z_{\tau(1)}, z_{\tau(2)}, \ldots, z_{\tau(n)}\right)$ satisfies $\left|z_{\tau(1)}\right| \leq$ $\left|z_{\tau(2)}\right| \leq \cdots \leq\left|z_{\tau(n)}\right|$. It is known by the argument in the proof of [12, Theorem 2.2] that the space $\boldsymbol{W}\left(\operatorname{Ind}_{B_{n}}^{G_{n}} \chi_{\tau(z)}, \psi_{n}^{-1}\right)$ coincides with $\boldsymbol{W}_{z}\left(\psi_{n}^{-1}\right)$. We denote the representation $\left(\rho, \boldsymbol{W}_{z}\left(\psi_{n}^{-1}\right)\right.$) by π_{z}. Since π_{z} is isomorphic to a quotient representation of $\operatorname{Ind}_{B_{n}}^{G_{n}} \chi_{\tau(z)}$, it is also of Whittaker type.

Next, we recall results of Jacquet, Piatetski-Shapiro and Shalika, which will play an essential role in our proof of Theorem 1. We set

$$
w_{n}=\left(\begin{array}{ccc}
0 & \cdots & 1 \\
\vdots & 1 & \vdots \\
1 & \cdots & 0
\end{array}\right) \in G_{n}, \quad \eta_{n}=t(0, \ldots, 0,1) \in M_{n, 1}(F) .
$$

If $h \in G_{n}$, we denote by h^{h} the inverse transpose of h, i.e. $h^{l}={ }^{t} h^{-1}$. Let σ be an admissible representation of G_{n} which is of Whittaker type. We define the representation σ^{l} of G_{n} by $\sigma^{l}(h)=\sigma\left(h^{l}\right)$ for $h \in G_{n}$. For $W \in \boldsymbol{W}\left(\sigma, \psi_{n}\right)$, we also define the function \tilde{W} on G_{n} by

$$
\tilde{W}(h)=W\left(w_{n} h^{2}\right) .
$$

Then the set of \tilde{W} with $W \in \boldsymbol{W}\left(\sigma, \psi_{n}\right)$ coincides with the space $\boldsymbol{W}\left(\sigma^{2}, \psi_{n}^{-1}\right)$.
For the moment, we fix an irreducible generic representation σ of G_{n} and the representation σ_{1} of G_{n+1} defined in Section 2. Let π be another irreducible generic representation of G_{n}. We denote by ω_{π} the central character of π. Furthermore, the local factor and the epsilon factor of π given by Godement and Jacquet [4, Theorem 3.3] is denoted by $L(s, \pi)$ and $\varepsilon(s, \pi, \psi)$, respectively. For $W \in \boldsymbol{W}\left(\sigma, \psi_{n}\right), W^{\prime} \in \boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right)$ and $\varphi \in \mathscr{S}\left(M_{n, 1}(F)\right)$, we set

$$
\Psi\left(s, W, W^{\prime} ; \varphi\right)=\int_{U_{n} \backslash G_{n}} W(h) W^{\prime}(h) \varphi\left({ }^{t} h \eta_{n}\right)|\operatorname{det} h|_{F}^{s} d h
$$

In a similar fashion, for $W_{1} \in W\left(\sigma_{1}, \psi_{n+1}\right), W^{\prime} \in \boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right)$, we set

$$
\Psi\left(s, W_{1}, W^{\prime}\right)=\int_{U_{n} \backslash G_{n}} W_{1}\left(\left(\begin{array}{ll}
h & 0 \\
0 & 1
\end{array}\right)\right) W^{\prime}(h)|\operatorname{det} h|_{F}^{s-1 / 2} d h .
$$

Then Jacquet, Piatetski-Shapiro and Shalika [8, Theorems (2.7), (3.1) and Proposition (9.4)] proved the following. Each of the integrals $\Psi\left(s, W, W^{\prime} ; \varphi\right)$ and $\Psi\left(s, W_{1}, W^{\prime}\right)$ is absolutely convergent for $\operatorname{Re}(s) \gg 0$ and they are rational functions of q^{-s}. The integrals $\Psi\left(s, W, W^{\prime} ; \varphi\right)$ span a fractional ideal $C\left[q^{s}, q^{-s}\right] L(s, \sigma \times \pi)$ of the ring $\boldsymbol{C}\left[q^{s}, q^{-s}\right]$. The factor $L(s, \sigma \times \pi)$ has the form

$$
\begin{equation*}
L(s, \sigma \times \pi)=P_{\sigma \times \pi}\left(q^{-s}\right)^{-1}, \quad P_{\sigma \times \pi} \in C[X], \quad P_{\sigma \times \pi}(0)=1 \tag{3.1}
\end{equation*}
$$

Furthermore, there is a factor $\varepsilon(s, \sigma \times \pi, \psi)$ of the form $c q^{-m s}$ such that

$$
\begin{equation*}
\frac{\Psi\left(1-s, \tilde{W}, \tilde{W}^{\prime} ; \hat{\varphi}\right)}{L\left(1-s, \sigma^{2} \times \pi^{l}\right)}=\omega_{\pi}(-1)^{n-1} \varepsilon(s, \sigma \times \pi, \psi) \frac{\Psi\left(s, W, W^{\prime} ; \varphi\right)}{L(s, \sigma \times \pi)}, \tag{3.2}
\end{equation*}
$$

where $\hat{\varphi}$ denotes the Fourier transform of φ, that is,

$$
\hat{\varphi}(x)=\int_{M_{n, 1}(F)} \psi\left({ }^{t} x y\right) \varphi(y) d y .
$$

Similarly, the integrals $\Psi\left(s, W_{1}, W^{\prime}\right)$ span a fractional ideal $\boldsymbol{C}\left[q^{s}, q^{-s}\right] L\left(s, \sigma_{1} \times \pi\right)$. Here the factor $L\left(s, \sigma_{1} \times \pi\right)$ has the form

$$
\begin{equation*}
L\left(s, \sigma_{1} \times \pi\right)=L(s, \sigma \times \pi) L(s, \pi) . \tag{3.3}
\end{equation*}
$$

There is a functional equation

$$
\begin{equation*}
\frac{\Psi\left(1-s, \tilde{W}_{1}, \tilde{W}^{\prime}\right)}{L\left(1-s, \sigma_{1}^{\iota} \times \pi^{\iota}\right)}=\omega_{\pi}(-1)^{n} \varepsilon(s, \sigma \times \pi, \psi) \varepsilon(s, \pi, \psi) \frac{\Psi\left(s, W_{1}, W^{\prime}\right)}{L\left(s, \sigma_{1} \times \pi\right)} \tag{3.4}
\end{equation*}
$$

We set

$$
\gamma\left(s, \sigma_{1} \times \pi, \psi\right)=\varepsilon(s, \sigma \times \pi, \psi) \varepsilon(s, \pi, \psi) \frac{L\left(1-s, \sigma_{1}^{l} \times \pi^{\imath}\right)}{L\left(s, \sigma_{1} \times \pi\right)} .
$$

4. The gamma factor of $\tilde{\sigma} \times \pi$. We fix two irreducible generic representations σ and π of G_{n}. The purpose of this section is to calculate the integral

$$
\Psi\left(s, V, W^{\prime}\right)=\int_{U_{n} \backslash G_{n}} V\left(\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)\right) W^{\prime}(g)|\operatorname{det} g|_{F}^{s-1 / 2} d g
$$

for $V \in V\left(\sigma, \psi_{n+1}\right)$ and $W^{\prime} \in \boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right)$. Since we do not yet know whether $\tilde{\sigma}$ is of Whittaker type, we cannot apply the results of Jacquet, Piatetski-Shapiro and Shalika. However we can compute this integral directly in the same way as in [8, (6.3)]. In the
following, we explain briefly this method. See $[8,(6.3)]$ for details.
We may assume V to be the form $V=V_{\left(W, f_{1} \otimes f_{2}\right)}$, where $W \in \boldsymbol{W}\left(\sigma, \psi_{n}\right), f_{1} \in \mathscr{S}\left(M_{n}(F)\right)$ and $f_{2} \in \mathscr{S}\left(M_{n, 1}(F)\right)$. We set

$$
\Phi_{1}\left(f_{1}\right)(h, g)=\int_{U_{n}} \psi_{n}(u)^{-1} \omega_{1}(h, g) f_{1}(u) d u .
$$

From easy calculation, it follows that

$$
\Phi\left(\omega\left(\left(\begin{array}{ll}
g & 0 \tag{4.1}\\
0 & 1
\end{array}\right)\right)\left(f_{1} \otimes f_{2}\right)\right)(h)=|\operatorname{det} h|_{F}^{1 / 2} \hat{f}_{2}\left(t h \eta_{n}\right) \Phi_{1}\left(f_{1}\right)(h, g) .
$$

We regard $\Psi\left(s, V, W^{\prime}\right)$ as a formal Laurent series in $X=q^{-s}$. Thus we write $\Psi\left(s, V, W^{\prime}\right)$ as

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} \Psi_{m}\left(V, W^{\prime}\right) X^{m} \tag{4.2}
\end{equation*}
$$

This Laurent series has only finitely many nonzero negative terms. Each coefficient $\Psi_{m}\left(V, W^{\prime}\right)$ is given by

$$
\Psi_{m}\left(V, W^{\prime}\right)=\int_{U_{n} \backslash G_{n}^{m}} V\left(\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)\right) W^{\prime}(g)|\operatorname{det} g|_{F}^{-1 / 2} d g
$$

where G_{n}^{m} denotes the set of $g \in G_{n}$ with $|\operatorname{det} g|_{F}=q^{-m}$. By (4.1), $\Psi_{m}\left(V, W^{\prime}\right)$ equals

$$
\begin{aligned}
& \int_{U_{n} \backslash G_{n}^{m}}\left\{\int_{U_{n} \backslash G_{n}} W(h) \Phi_{1}\left(f_{1}\right)(h, g) \hat{f}_{2}\left({ }^{t} h \eta_{n}\right)|\operatorname{det} h|_{F}^{1 / 2} d h\right\} W^{\prime}(g)|\operatorname{det} g|_{F}^{-1 / 2} d g \\
& =\int_{U_{n} \backslash G_{n}^{m}}\left\{\int_{G_{n}} W(h) f_{1}\left(h^{-1} g\right) \hat{f}_{2}\left(t h \eta_{n}\right)|\operatorname{det} h|_{F}^{1 / 2-n / 2} d h\right\} W^{\prime}(g)|\operatorname{det} g|_{F}^{n / 2-1 / 2} d g \\
& =\int_{U_{n} \backslash G_{n}^{m}} W^{\prime}(g) \int_{G_{n}} W\left(g h^{-1}\right) f_{1}(h) \hat{f}_{2}\left(h^{2 t} g \eta_{n}\right)|\operatorname{det} h|_{F}^{n / 2-1 / 2} d h d g .
\end{aligned}
$$

This double integral is abolutely convergent. By changing g to $g h$, we obtain

$$
\begin{equation*}
\int_{U_{n} \backslash G_{n}} W(g) \hat{f}_{2}\left({ }^{t} g \eta_{n}\right) \int_{G_{n}} \chi_{m}(g h) W^{\prime}(g h) f_{1}(h)|\operatorname{det}|_{F}^{n / 2-1 / 2} d h d g, \tag{4.3}
\end{equation*}
$$

where χ_{m} denotes the characteristic function of G_{n}^{m}. We take an open compact subgroup Ω of G_{n} such that ${ }^{t} \Omega=\Omega$ and $f_{1}(\omega h)=f_{1}(h)$ for $\omega \in \Omega$. Let $W\left(\pi, \psi_{n}^{-1}\right)^{\Omega}$ be the subspace of $\boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right)$ consisting of all elements fixed by Ω and $\left\{W_{1}^{\prime}, \ldots, W_{p}^{\prime}\right\}$ a basis of $\boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right)^{\Omega}$. Then there exist matrix coefficients $\phi_{1}, \ldots, \phi_{p}$ of π such that

$$
\begin{equation*}
\int_{\Omega} W^{\prime}(g \omega h) d \omega=\sum_{1 \leq j \leq p} W_{j}^{\prime}(g) \phi_{j}(h) . \tag{4.4}
\end{equation*}
$$

Thus we have

$$
\int_{G_{n}} \chi_{m}(g h) W^{\prime}(g h) f_{1}(h)|\operatorname{det} h|_{F}^{n / 2-1 / 2} d h=\sum_{j=1}^{p} W_{j}^{\prime}(g) \int_{G_{n}} \chi_{m}(g h) \phi_{j}(h) f_{1}(h)|\operatorname{det} h|_{F}^{n / 2-1 / 2} d h .
$$

Furthermore, we have

$$
\begin{equation*}
\chi_{m}(g h)=\sum_{m^{\prime}+m^{\prime \prime}=m} \chi_{m^{\prime}}(g) \chi_{m^{\prime \prime}}(h), \tag{4.5}
\end{equation*}
$$

where m^{\prime} and $m^{\prime \prime}$ are bounded from below. Consequently, by (4.2), (4.3), (4.4) and (4.5), we obtain

$$
\begin{equation*}
\Psi\left(s, V_{\left(W, f_{1} \otimes f_{2}\right)}, W^{\prime}\right)=\sum_{j=1}^{p} \Psi\left(s, W, W_{j}^{\prime} ; \hat{f}_{2}\right) \int_{G_{n}} f_{1}(h) \phi_{j}(h)|\operatorname{det} h|_{F}^{s+n / 2-1 / 2} d h \tag{4.6}
\end{equation*}
$$

Here we note that the integral

$$
Z\left(f_{1}, s+n / 2-1 / 2, \phi_{j}\right)=\int_{G_{n}} f_{1}(h) \phi_{j}(h)|\operatorname{det} h|_{F}^{s+n / 2-1 / 2} d h
$$

is a zeta-integral defined by Godement and Jacquet [4] and there is a functional equation

$$
\begin{equation*}
\frac{Z\left(\hat{f}_{1}, 1-s+n / 2-1 / 2, \phi_{j}^{l}\right)}{L\left(1-s, \pi^{\imath}\right)}=\varepsilon(s, \pi, \psi) \frac{Z\left(f_{1}, s+n / 2-1 / 2, \phi_{j}\right)}{L(s, \pi)} \tag{4.7}
\end{equation*}
$$

where ϕ_{j}^{l} is a matrix coefficient of π^{l} given by $\phi_{j}^{l}(h)=\phi_{j}\left(h^{l}\right)$. Similarly, by using [8, Proposition 6.2], we obtain

$$
\begin{equation*}
\Psi\left(1-s, \tilde{V}_{\left(W, f_{1} \otimes f_{2}\right)}, \tilde{W}^{\prime}\right)=\sum_{j=1}^{p} \Psi\left(1-s, \tilde{W}, \tilde{W}_{j}^{\prime} ; f_{2}\right) \omega_{\pi}(-1) Z\left(\hat{f}_{1}, 1-s+n / 2-1 / 2, \phi_{j}^{l}\right) . \tag{4.8}
\end{equation*}
$$

Therefore, by (4.6), (4.7), (4.8) and (3.2), we have

$$
\begin{equation*}
\frac{\Psi\left(1-s, \tilde{V}, \tilde{W}^{\prime}\right)}{L\left(1-s, \sigma^{2} \times \pi^{\imath}\right) L\left(1-s, \pi^{\prime}\right)}=\omega_{\pi}(-1)^{n} \varepsilon(s, \sigma \times \pi, \psi) \varepsilon(s, \pi, \psi) \frac{\Psi\left(s, V, W^{\prime}\right)}{L(s, \sigma \times \pi) L(s, \pi)} \tag{4.9}
\end{equation*}
$$

as a formal Laurent series. However, (4.9) itself implies that both sides are polynomials in $\left(X, X^{-1}\right)(c f .[8,(4.4)])$. Thus (4.9) may be regarded as an identity of analytic functions. As a consequence, we obtain the following result.

Proposition 2. For each $V \in V\left(\sigma, \psi_{n+1}\right)$ and $W^{\prime} \in W\left(\pi, \psi_{n}^{-1}\right)$, the integral $\Psi\left(s, V, W^{\prime}\right)$ is absolutely convergent for $\operatorname{Re}(s) \gg 0$ and $L\left(s, \sigma_{1} \times \pi\right)^{-1} \Psi\left(s, V, W^{\prime}\right)$ is an element of $C\left[q^{s}, q^{-s}\right]$. Moreover, there is an equation

$$
\Psi\left(1-s, \tilde{V}, \tilde{W}^{\prime}\right)=\omega_{\pi}(-1)^{n} \gamma\left(s, \sigma_{1} \times \pi, \psi\right) \Psi\left(s, V, W^{\prime}\right)
$$

If π is a spherical representation π_{z}, then we can prove the assertion of Proposition

2 in another way. Namely, we can calculate the integral $\Psi\left(s, V, W_{z}\right)$ more directly. Since the integral $\Psi\left(s, V, W_{z}\right)$ will be used in Section 5, we explain this calculation in the rest of this section. We may assume again that V is of the form $V_{\left(W, f_{1} \otimes f_{2}\right)}$. We set

$$
J\left(s, f_{1}, W_{z}\right)(h)=\int_{U_{n} \backslash G_{n}} \Phi_{1}\left(f_{1}\right)(h, g) W_{z}(g)|\operatorname{det} g|_{F}^{s-1 / 2} d g .
$$

By (4.1), we have formally

$$
\begin{equation*}
\Psi\left(s, V_{\left(W, f_{1} \otimes f_{2}\right)}, W_{z}\right)=\int_{U_{n} \backslash G_{n}} W(h) J\left(s, f_{1}, W_{z}\right)(h) \hat{f}_{2}\left(t h \eta_{n}\right)|\operatorname{det} h|_{F}^{1 / 2} d h . \tag{4.10}
\end{equation*}
$$

Let $f_{1}^{0} \in \mathscr{S}\left(M_{n}(F)\right)$ be the characteristic function of $M_{n}(\mathcal{O})$. Then $\omega_{1}\left(1_{n}, \xi_{n}\right)$ is a projection from $\mathscr{S}\left(M_{n}(F)\right)$ to the subspace $\mathscr{S}\left(M_{n}(F)\right)^{\omega_{1}\left(1_{n}, K_{n}\right)}$ consisting of functions invariant by $\omega_{1}\left(1_{n}, K_{n}\right)$. By Howe [5, Theorem 10.2], the space $\mathscr{S}\left(M_{n}(F)\right)^{\omega_{1}\left(1_{n}, K_{n}\right)}$ coincides with the space $\omega_{1}\left(\mathscr{H}_{n}, 1_{n}\right) f_{1}^{0}$. Thus, corresponding to f_{1}, there exists $\varphi_{1} \in \mathscr{H}_{n}$ such that

$$
\begin{equation*}
\omega_{1}\left(1_{n}, \xi_{n}\right) f_{1}=\omega_{1}\left(\varphi_{1}, 1_{n}\right) f_{1}^{0} \tag{4.11}
\end{equation*}
$$

Then we have

$$
J\left(s, f_{1}, W_{z}\right)=J\left(s, f_{1}, \rho\left(\xi_{n}\right) W_{z}\right)=J\left(s, \omega_{1}\left(\varphi_{1}, 1_{n}\right) f_{1}^{0}, W_{z}\right)=\rho\left(\varphi_{1}\right) J\left(s, f_{1}^{0}, W_{z}\right)
$$

We compute the integral $J\left(s, f_{1}^{0}, W_{z}\right)(h)$. The next lemma follows from simple calculation.

Lemma 2. Let $\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \boldsymbol{Z}^{n}$ and $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \boldsymbol{Z}^{n}$. If $p_{1} \geq k_{1} \geq p_{2} \geq$ $k_{2} \geq \cdots \geq p_{n} \geq k_{n}$, then we have

$$
\Phi_{1}\left(f_{1}^{0}\right)\left(t_{\boldsymbol{k}}, t_{\boldsymbol{p}}\right)=\left|\operatorname{det} t_{\boldsymbol{k}}\right|_{F}^{-1 / 2} \delta_{n}\left(t_{\boldsymbol{k}}\right)^{1 / 2}\left|\operatorname{det} t_{\boldsymbol{p}}\right|_{F}^{1 / 2} \delta_{n}\left(t_{\boldsymbol{p}}\right)^{1 / 2}
$$

Otherwise, $\Phi_{1}\left(f_{1}^{0}\right)\left(t_{\boldsymbol{k}}, t_{\boldsymbol{p}}\right)$ is zero.
Lemma 3. The integral $J\left(s, f_{1}^{0}, W_{\mathrm{z}}\right)$ absolutely converges if $\operatorname{Re}(s)$ is sufficiently large, and we have

$$
J\left(s, f_{1}^{0}, W_{z}\right)(h)=\left(\prod_{i=1}^{n}\left(1-q^{-s} z_{i}\right)\right)^{-1}|\operatorname{det} h|_{F}^{s-1 / 2} W_{z}(h) .
$$

Proof. By Lemma 2 and an explicit formula for $W_{z}, J\left(s, f_{1}^{0}, W_{z}\right)\left(t_{k}\right)$ equals

$$
\begin{aligned}
& \sum_{\boldsymbol{p} \in A_{n}} \Phi_{1}\left(f_{1}^{0}\right)\left(t_{\boldsymbol{k}}, t_{\boldsymbol{p}}\right) W_{\boldsymbol{z}}\left(t_{\boldsymbol{p}}\right)\left|\operatorname{det} t_{\boldsymbol{p}}\right|_{F}^{s-1 / 2} \delta_{n}\left(t_{\boldsymbol{p}}\right)^{-1} \\
& \quad=\left|\operatorname{det} t_{\boldsymbol{k}}\right|_{F}^{-1 / 2} \delta_{n}\left(t_{\boldsymbol{k}}\right)^{1 / 2} \sum_{\substack{\boldsymbol{p} \in \Lambda_{n} \\
k_{i-1} \geq p_{i} \geq k_{i}(1 \leq i \leq n)}}\left|\operatorname{det} t_{\boldsymbol{p}}\right|_{F}^{\mid s} W_{z}\left(t_{\boldsymbol{p}}\right) \delta_{n}\left(t_{\boldsymbol{p}}\right)^{-1 / 2} \\
& \quad=\left|\operatorname{det} t_{\boldsymbol{k}}\right|_{F}^{-1 / 2} \delta_{n}\left(t_{\boldsymbol{k}}\right)^{1 / 2}\left(\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)\right)^{-1}
\end{aligned}
$$

$$
\times \sum_{\tau \in S_{n}} \operatorname{sgn} \tau \prod_{i=1}^{n} z_{\tau(i)}^{n-i}\left\{\sum_{k_{i-1} \geq p_{i} \geq k_{i}}\left(q^{-s} z_{\tau(i)}\right)^{p_{i}}\right\} .
$$

Here we put $k_{0}=+\infty$ for convenience. The sum of $\left(q^{-s} z_{\tau(i)}\right)^{p_{1}}$ over $+\infty>p_{1} \geq k_{1}$ absolutely converges if $\operatorname{Re}(s)>\max _{1 \leq i \leq n}\left(\log _{q}\left|z_{i}\right|\right)$. Then, by calculation of determinants, we obtain

$$
\sum_{\tau \in S_{n}} \operatorname{sgn} \tau \prod_{i=1}^{n} z_{\tau(i)}^{n-i}\left\{\sum_{k_{i-1} \geq p_{i} \geq k_{i}}\left(q^{-s} z_{\tau(i)}\right)^{p_{i}}\right\}=\left(\prod_{i=1}^{n}\left(1-q^{-s} z_{i}\right)\right)^{-1} \sum_{\tau \in S_{n}} \operatorname{sgn} \tau \prod_{i=1}^{n} z_{\tau(i)}^{n-i}\left(q^{-s} z_{\tau(i)}\right)^{k_{i}} .
$$

Thus implies the assertion.
For $\varphi_{1} \in \mathscr{H}_{n}$ satisfying (4.11), we define $\varphi_{1}^{s} \in \mathscr{H}_{n}$ by

$$
\begin{equation*}
\varphi_{1}^{s}(h)=|\operatorname{det} h|_{F}^{s-1 / 2} \varphi_{1}(h) . \tag{4.12}
\end{equation*}
$$

By Lemma 3 and (4.10), we have a relation

$$
\begin{equation*}
\Psi\left(s, V_{\left(W, f_{1} \otimes f_{2}\right)}, W_{z}\right)=\left(\prod_{i=1}^{n}\left(1-q^{-s} z_{i}\right)\right)^{-1} \Psi\left(s, W, \rho\left(\varphi_{1}^{s}\right) W_{z} ; \hat{f}_{2}\right) . \tag{4.13}
\end{equation*}
$$

Next, we compute the integral

$$
\Psi\left(1-s, \tilde{V}_{\left(W, f_{1} \otimes f_{2}\right)}, \tilde{W}_{z}\right)=\int_{U_{n} \backslash G_{n}} V_{\left(W, f_{1} \otimes f_{2}\right)}\left(w_{n+1}\left(\begin{array}{cc}
g^{i} & 0 \\
0 & 1
\end{array}\right)\right) W_{z}\left(w_{n} g^{l}\right)|\operatorname{det} g|_{F}^{1 / 2-s} d g
$$

By changing g to $w_{n} g^{l} w_{n}$, this integral equals

$$
\begin{aligned}
& \int_{U_{n} \backslash G_{n}} V_{\left(W, f_{1} \otimes f_{2}\right)}\left(w_{n+1}\left(\begin{array}{cc}
w_{n} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right)\right) W_{z}(g)|\operatorname{det} g|_{F}^{s-1 / 2} d g \\
& =\int_{U_{n} \backslash G_{n}}\left\{\int_{U_{n} \backslash G_{n}} W(h) \Phi\left(\omega\left(\left(\begin{array}{ll}
0 & 1 \\
g & 0
\end{array}\right)\right)\left(f_{1} \otimes f_{2}\right)\right)(h) d h\right\} W_{z}(g)|\operatorname{det} g|_{F}^{s-1 / 2} d g \\
& =\int_{U_{n} \backslash G_{n}} W(h)\left\{\int_{U_{n} \backslash G_{n}} \Phi\left(\omega\left(\left(\begin{array}{ll}
0 & 1 \\
g & 0
\end{array}\right)\right)\left(f_{1} \otimes f_{2}\right)\right)(h) W_{z}(g)|\operatorname{det} g|_{F}^{s-1 / 2} d g\right\} d h .
\end{aligned}
$$

For $u \in U_{n+1}$, we denote by u_{1} the $n \times n$ matrix obtained by eliminating the first column vector and the $(n+1)$-st row vector from u. Then

$$
\begin{aligned}
& \Phi\left(\omega\left(\left(\begin{array}{cc}
0 & 1 \\
g & 0
\end{array}\right)\right)\left(f_{1} \otimes f_{2}\right)\right)(h) \\
& \quad=|\operatorname{det} h|_{F}^{-1 / 2} f_{2}\left(h^{-1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)\right) \int_{U_{n+1}} \psi_{n+1}(u)^{-1} \omega_{1}(h, g) f_{1}\left(u_{1}\right) d u
\end{aligned}
$$

We take $\varphi_{1}^{s} \in \mathscr{H}_{n}$ to be the same as (4.12) for given $f_{1} \in \mathscr{S}\left(M_{n}(F)\right)$. It follows from calculation similar to that in the proof of Lemma 3 that

$$
\begin{aligned}
& \int_{U_{n} \backslash G_{n}}\left\{\int_{U_{n+1}} \psi_{n+1}(u)^{-1} \omega_{1}(h, g) f_{1}\left(u_{1}\right) d u\right\} W_{z}(g)|\operatorname{det} g|_{F}^{s-1 / 2} d g \\
& \quad=\left(\prod_{i=1}^{n} \frac{-q^{1-s} z_{i}}{1-q^{1-s} z_{i}}\right)|\operatorname{det} h|_{F}^{s-1 / 2} \rho\left(\varphi_{1}^{s}\right) W_{z}(h),
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \Psi\left(1-s, \tilde{V}_{\left(W, f_{1} \otimes f_{2}\right)}, \tilde{W}_{z}\right) \\
& \quad=\left(\prod_{i=1}^{n} \frac{-q^{1-s} z_{i}}{1-q^{1-s} z_{i}}\right) \int_{U_{n} \backslash G_{n}} W(h) \rho\left(\varphi_{1}^{s}\right) W_{z}(h) f_{2}\left(h^{-1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)\right)|\operatorname{det} h|_{F}^{s-1} d h .
\end{aligned}
$$

By the change of variable $h \mapsto w_{n} h^{h} w_{n}$, we obtain

$$
\begin{equation*}
\Psi\left(1-s, \tilde{V}_{\left(W, f_{1} \otimes f_{2}\right)}, \tilde{W}_{z}\right)=\left(\prod_{i=1}^{n} \frac{-q^{1-s} z_{i}}{1-q^{1-s} z_{i}}\right) \Psi\left(1-s, \tilde{W}, \widehat{\rho\left(\varphi_{1}^{s}\right) W_{z}} ; f_{2}\right) . \tag{4.14}
\end{equation*}
$$

Therefore, by (4.13), (4.14) and (3.2), we have

$$
\begin{equation*}
\frac{\Psi\left(1-s, \tilde{V}_{\left(W, f_{1} \otimes f_{2}\right)}, \tilde{W}_{z}\right)}{L\left(1-s, \sigma_{1}^{2} \times \pi_{z}^{\iota}\right)}=\varepsilon\left(s, \sigma \times \pi_{z}, \psi\right) \frac{\Psi\left(s, V_{\left(W, f_{1} \otimes f_{2}\right)}, W_{z}\right)}{L\left(s, \sigma_{1} \times \pi_{z}\right)} . \tag{4.15}
\end{equation*}
$$

5. Proof of Theorem 1. Let σ be an irreducible generic representation of G_{n}. We set $\boldsymbol{U}=\boldsymbol{V}\left(\sigma, \psi_{n+1}\right)+\boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)$. By (3.4) and Proposition 2, each $\boldsymbol{V} \in \boldsymbol{U}$ satisfies the functional equations

$$
\begin{equation*}
\Psi\left(1-s, \tilde{V}, \tilde{W}^{\prime}\right)=\omega_{\pi}(-1)^{n} \gamma\left(s, \sigma_{1} \times \pi, \psi\right) \Psi\left(s, V, W^{\prime}\right) \tag{5.1}
\end{equation*}
$$

for all irreducible generic representations π of G_{n} and $W^{\prime} \in \boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right)$.
Lemma 4. Let R be the restriction map $\left.V \mapsto V\right|_{P_{n+1}}$ from \boldsymbol{U} to $\operatorname{Ind}_{U_{n+1}}^{P_{n+1}} \psi_{n+1}$. Then R is injective.

Proof. We denote by $\tilde{\boldsymbol{U}}$ the space of functions \tilde{V} with $V \in \boldsymbol{U}$ and define the P_{n+1}-morphism $\tilde{R}: \widetilde{U} \rightarrow \operatorname{Ind}_{U_{n+1} P_{n+1}^{n_{n+1}}} \psi_{n+1}^{-1}$ by the restriction $\left.\tilde{V} \mapsto \tilde{V}\right|_{P_{n+1}}$. If $V \in \operatorname{Ker} R$, then we have $\Psi\left(s, V, W^{\prime}\right)=0$, and hence, by $(5.1), \Psi\left(1-s, \tilde{V}, \tilde{W}^{\prime}\right)=0$ for all irreducible generic representations π of G_{n} and $W^{\prime} \in \boldsymbol{W}\left(\pi, \psi_{n}^{-1}\right.$). Then, by [10, Lemma (3.2)] (cf. [7, Lemma (3.5)]), we have $\tilde{V} \in \operatorname{Ker} \tilde{R}$. Similarly, if $\tilde{V} \in \operatorname{Ker} \tilde{R}$, then $V \in \operatorname{Ker} R$. Therefore, $V \in \operatorname{Ker} R$ is equivalent to $\tilde{V} \in \operatorname{Ker} \tilde{R}$. Let $V \in \operatorname{Ker} R$ and $p^{t}={ }^{t} p^{-1} \in P_{n+1}^{l}$. Since $\widetilde{\rho\left(p^{t}\right) V}=\rho(p) \tilde{V}$ and $\operatorname{Ker} \tilde{R}$ is P_{n+1}-invariant, we have $\widetilde{\rho\left(p^{i}\right) V} \in \operatorname{Ker} \tilde{R}$, and hence $\rho\left(p^{i}\right) V \in \operatorname{Ker} R$. As a result, Ker R is P_{n+1}^{t}-invariant. Since the action of the center Z_{n+1} on \boldsymbol{U} is through the scalar
multiplication by the central character of $\sigma, \operatorname{Ker} R$ is both $Q_{n+1^{-}}$and Q_{n+1}^{l}-invariant. Consequently, $\operatorname{Ker} R$ is G_{n+1}-invariant. Thus we have $V(g)=\rho(g) V\left(1_{n}\right)=0$ for $V \in \operatorname{Ker} R$.

Next we consider the integral $\Psi\left(s, V, W_{z}\right)$ for $V \in \rho\left(\xi_{n}\right) \boldsymbol{U}$. By (3.4) and (4.15), there is an equation

$$
\begin{equation*}
\frac{\Psi\left(1-s, \tilde{V}, \tilde{W}_{z}\right)}{L\left(1-s, \sigma_{1}^{2} \times \pi_{z}^{l}\right)}=\varepsilon\left(s, \sigma \times \pi_{z}, \psi\right) \frac{\Psi\left(s, V, W_{z}\right)}{L\left(s, \sigma_{1} \times \pi_{z}\right)} \tag{5.2}
\end{equation*}
$$

for each $V \in \rho\left(\xi_{n}\right) U$ and $\boldsymbol{z} \in\left(\boldsymbol{C}^{\times}\right)^{n}$. We replace the parameter $\left(z_{1}, \ldots, z_{n}\right)$ by indeterminates X_{1}, \ldots, X_{n}. Namely, we consider the "integral"

$$
\Psi\left(X, V, X_{1}, \ldots, X_{n}\right)=\int_{U_{n} \backslash G_{n}} V\left(\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right)\right) W\left(g, X_{1}, \ldots, X_{n} ; \psi_{n}^{-1}\right)|\operatorname{det} g|_{F}^{s-1 / 2} d g
$$

where we put $X=q^{-s}$. This $\Psi\left(X, V, X_{1}, \ldots, X_{n}\right)$ is regarded as an element in the ring $\Delta_{n}\left[\left[X, X^{-1}\right]\right]$ of formal Laurent series with coefficients in Δ_{n}. Then (5.2) and the argument in the proof of [7, Theorem 4.1] implies that each $V \in \rho\left(\xi_{n}\right) \boldsymbol{U}$ satisfies the equation

$$
\begin{align*}
& \Psi\left(q^{-1} X^{-1}, \tilde{V}, X_{1}^{-1}, \ldots, X_{n}^{-1}\right) \prod_{i=1}^{n} P_{\sigma^{2}}\left(q^{-1} X^{-1} X_{i}^{-1}\right)\left(1-q^{-1} X^{-1} X_{i}^{-1}\right) \tag{5.3}\\
& \quad=\prod_{i=1}^{n} \varepsilon_{\sigma}\left(X X_{i}, \psi\right) \Psi\left(X, V, X_{1}, \ldots, X_{n}\right) \prod_{i=1}^{n} P_{\sigma}\left(X X_{i}\right)\left(1-X X_{i}\right)
\end{align*}
$$

Here polynomials $P_{\sigma}(X)$ and $\varepsilon_{\sigma}(X, \psi)$ are given by

$$
L(s, \sigma)=P_{\sigma}\left(q^{-s}\right)^{-1}, \quad \varepsilon(s, \sigma, \psi)=\varepsilon_{\sigma}\left(q^{-s}, \psi\right)
$$

From (5.3) and the fact that $\Psi\left(X, V, X_{1}, \ldots, X_{n}\right)$ has a finite number of nonzero terms with negative exponents in X (cf. [7, Section 3]), it follows that $\Psi\left(X, V, X_{1}, \ldots, X_{n}\right)$ is contained in the polynomial ring $\Delta_{n}\left[X, X^{-1}\right]$ and there exists an element $\Xi\left(V, X_{1}, \ldots\right.$, $\left.X_{n}\right) \in \Delta_{n}$ such that

$$
\begin{equation*}
\Xi\left(V, X X_{1}, \ldots, X X_{n}\right)=\Psi\left(X, V, X_{1}, \ldots, X_{n}\right) \prod_{i=1}^{n} P_{\sigma}\left(X X_{i}\right)\left(1-X X_{i}\right) \tag{5.4}
\end{equation*}
$$

Lemma 5. Let $V \in \rho\left(\xi_{n}\right) \boldsymbol{U}$. If $\Xi\left(V, X_{1}, \ldots, X_{n}\right)=0$, then we have $V=0$.
Proof. If $\Xi\left(V, X_{1}, \ldots, X_{n}\right)=0$, then $\Psi\left(X, V, X_{1}, \ldots, X_{n}\right)=0$. By [7, Lemma (3.5)], we have $R(V)=0$. Therefore, by Lemma 4, we have $V=0$.

Proof of Theorem 1. We denote by $I(\tilde{\sigma})\left(\right.$ resp. $\left.I\left(\sigma_{1}\right)\right)$ the subset of Δ_{n} consisting of $\Xi\left(V, X_{1}, \ldots, X_{n}\right)$ with $V \in \rho\left(\xi_{n}\right) \boldsymbol{V}\left(\sigma, \psi_{n+1}\right)\left(\right.$ resp. $\left.V \in \rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)\right)$. Then, by the same argument as in the proof of [7, Theorem (4.1)], both $I(\tilde{\sigma})$ and $I\left(\sigma_{1}\right)$ are ideals of Δ_{n} and there exist elements $V_{1} \in \rho\left(\xi_{n}\right) V\left(\sigma, \psi_{n+1}\right)$ and $W_{1} \in \rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)$ such that

$$
\Xi\left(V_{1}, X_{1}, \ldots, X_{n}\right)=\Xi\left(W_{1}, X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P_{\sigma}\left(X_{i}\right)\left(1-X_{i}\right)
$$

By Lemma 5, we have $V_{1}=W_{1}$. Thus $\rho\left(\xi_{n}\right) \boldsymbol{V}\left(\sigma, \psi_{n+1}\right)$ and $\rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)$ have a nonzero intersection. Furthermore, if σ_{1} is irreducible, then we have

$$
I(\tilde{\sigma})=I\left(\sigma_{1}\right)=\Delta_{n}
$$

(cf. [7, Theorem (4.1)]). This implies $\rho\left(\xi_{n}\right) \boldsymbol{V}\left(\sigma, \psi_{n+1}\right)=\rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma, \psi_{n+1}\right)$. We complete the proof of Theorem 1.

We note that if σ_{1} is reducible, then the assertion analogous to [7, Proposition (2.1)] for σ_{1} is false. Thus we cannot conclude that $I\left(\sigma_{1}\right)=\Delta_{n}$ in this case.

Proposition 3. Let σ be an irreducible generic representation of G_{n}. Then $\tilde{\sigma}$ never has a supercuspidal subquotient representation.

Proof. Suppose $\tilde{\sigma}$ has an irreducible supercuspidal subquotient $\tilde{\sigma}_{c}$. Then, by [1, Proposition 3.30], $\tilde{\sigma}_{c}$ is realized as a subrepresentation of $\tilde{\sigma}$. The representation space $\boldsymbol{V}\left(\sigma, \psi_{n+1}\right)_{c}$ of $\tilde{\sigma}_{c}$ in $\boldsymbol{V}\left(\sigma, \psi_{n+1}\right)$ is a Whittaker model of $\tilde{\sigma}_{c}$. We set

$$
I\left(\tilde{\sigma}_{c}\right)=\left\{\Xi\left(V, X_{1}, \ldots, X_{n}\right) \mid V \in \rho\left(\xi_{n}\right) V\left(\sigma, \psi_{n+1}\right)_{c}\right\} .
$$

Then, by the proof of [7, Theorem (4.1)], we have $I\left(\tilde{\sigma}_{c}\right)=\Delta_{n}$, and hence $I\left(\sigma_{1}\right) \subset I\left(\tilde{\sigma}_{c}\right)$. This implies $\rho\left(\mathscr{H}_{n+1}\right) \rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)=\boldsymbol{V}\left(\tilde{\sigma}, \psi_{n+1}\right)_{c}$. Therefore, $\tilde{\sigma}_{c}$ is realized as a subquotient of σ_{1}. This is a contradiction.

Proposition 4. Let σ be an irreducible generic representation of G_{n}. If σ_{1} is irreducible, then $\tilde{\sigma}$ is an admissible representation of Whittaker type and σ_{1} is a unique irreducible subrepresentation of $\tilde{\sigma}$.

Proof. We note that any irreducible generic representation of G_{n+1} has a nonzero vector fixed by $\rho\left(\xi_{n}\right)$. If \boldsymbol{V}^{\prime} is an irreducible submodule of $\boldsymbol{V}\left(\sigma, \psi_{n+1}\right)$, then we have $\rho\left(\xi_{n}\right) \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right) \supset \rho\left(\xi_{n}\right) \boldsymbol{V}^{\prime} \neq 0$, and hence $\boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)=\boldsymbol{V}^{\prime}$. We prove that the dimension of $\operatorname{Hom}_{G_{n+1}}\left(\boldsymbol{V}\left(\sigma, \psi_{n+1}\right), \boldsymbol{W}\left(\psi_{n+1}\right)\right)$ equals 1 . Let L_{0} be the natural injection of $\boldsymbol{V}\left(\sigma, \psi_{n+1}\right)$ to $\boldsymbol{W}\left(\psi_{n+1}\right)$ and $L \in \operatorname{Hom}_{G_{n+1}}\left(\boldsymbol{V}\left(\sigma, \psi_{n+1}\right), \boldsymbol{W}\left(\psi_{n+1}\right)\right)$ an arbitrary nonzero element. If $\operatorname{Ker} L$ is nonzero, then $\boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right) \subset \operatorname{Ker} L$ and $\boldsymbol{V}\left(\sigma, \psi_{n+1}\right) / \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)$ contains a nonzero generic irreducible subquotient. Therefore, $\boldsymbol{V}\left(\sigma, \psi_{n+1}\right) / \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)$ has a nonzero vector fixed by $\rho\left(\xi_{n}\right)$. This contradicts $\rho\left(\xi_{n}\right)\left(\boldsymbol{V}\left(\sigma, \psi_{n+1}\right) / \boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)\right)=0$. Thus L must be injective. Then there exists a constant c such that $\left.L\right|_{\boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)}=$ $\left.c L_{0}\right|_{\boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right)}$. Since $\boldsymbol{W}\left(\sigma_{1}, \psi_{n+1}\right) \subset \operatorname{Ker}\left(L-c L_{0}\right)$, we obtain $L-c L_{0}=0$.

It is expected that $\tilde{\sigma}=\sigma_{1}$ for any irreducible generic representation σ. In fact, this is the case if σ is an irreducible generic spherical representation. Namely, we have the following:

Proposition 5. Let $z=\left(z_{1}, \ldots, z_{n}\right) \in\left(C^{\times}\right)^{n}$ and $(z, 1)=\left(z_{1}, \ldots, z_{n}, 1\right) \in\left(C^{\times}\right)^{n+1}$. If the spherical representation π_{z} is irreducible, then $\tilde{\pi}_{z}=\pi_{(z, 1)}$.

Proof. Since $\boldsymbol{W}_{\boldsymbol{z}}\left(\psi_{n}^{-1}\right) \cong \boldsymbol{W}_{\boldsymbol{z}}\left(\psi_{n}\right)$, we may substitute ψ_{n}^{-1} by ψ_{n} in the definitions of W_{z} and π_{z}. Let $f^{0} \in \mathscr{S}\left(M_{n, n+1}(F)\right)$ be the characteristic function of $M_{n, n+1}(\mathcal{O})$. Then, from (2.4) and the fact that $\omega\left(\xi_{n}\right) \mathscr{S}\left(M_{n, n+1}(F)\right)=\omega\left(\mathscr{H}_{n+1}\right) f^{0}$ (cf. [5, Theorem 10.2]), it follows that $V\left(\pi_{z}, \psi_{n+1}\right)$ is generated by $V_{\left(W_{z}, f^{0}\right)}$. By calculation similar to that in the proof of Lemma 3, we obtain $V_{\left(W_{z}, f^{0}\right)}=W_{(z, 1)}$. Therefore, $\boldsymbol{V}\left(\pi_{z}, \psi_{n+1}\right)$ coincides with $\boldsymbol{W}_{(z, 1)}\left(\psi_{n+1}\right)$.

References

[1] I. N. Bernstein and A. V. Zelevinsky, Representations of the group $G L(n, F)$ where F is a non-Archimedean local field, Russian Math. Surveys 31 (1976), 1-68.
[2] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups I., Ann. Sci. Ec. Norm. Sup. 10 (1977), 441-472.
[3] W. Casselman and J. Shalika, The unramified principal series of p-adic groups II, Compositio Math. 41 (1980), 207-231.
[4] R. Godement and H. JacQuet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[5] R. Howe, θ-series and invariant theory, Proc. Symp. Pure Math. Amer. Math. Soc., 33, Part I (1979), 275-285.
[6] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Automorphic forms on GL(3) I, II, Ann. Math. 109 (1979), 169-212, 213-258.
[7] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), 199-214.
[8] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.
[9] H. Jacquet and J. Shalika, The Whittaker models of induced representations, Pacific J. Math. 109 (1983), 107-120.
[10] H. JacQuet and J. Shalika, A lemma of highly ramified ε-factors, Math. Ann. 271 (1985), 319-332.
[11] H. JACQUET, Generic representations, in Non-commutative harmonic analysis, Lecture Notes in Math. 587, Springer-Verlag, Berlin Heidelberg, New York, 1976, pp. 91-100.
[12] J.-S. Li, Some results on the unramified principal series of p-adic groups, Math. Ann. 292 (1992), 747-761.
[13] C. Moeglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
[14] D. Prasad, Weil representation, Howe duality, and the theta correspondence, CRM Proc. and Lecture Notes 1, Centre de Recherches Math. (1993), 105-127.
[15] S. Rallis, Langlands' functoriality and the Weil representation, Amer. J. Math. 104 (1982), 469-515.
[16] T. Shintani, On an explicit formula for class-1 Whittaker functions on $G L_{n}$ over p-adic fields, Proc. Japan Acad. 52 Ser. A. No. 4 (1976), 180-182.
[17] T. Watanabe, The global theta correspondence of ($G L_{n}, G L_{n}$), preprint.
[18] A. Zelevinski, Induced representations of p-adic reductive groups II, Ann. Sci. Ec. Norm. Sup. 13 (1980), 165-210.

Department of Mathematics

Osaka University
Toyonaka, Osaka 560
Japan

[^0]: Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 11F70; Secondary 11F27, 22E50.

