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Abstract. The explicit Howe duality correspondence is partially solved in the case

of irreducible type 2 dual reductive pairs defined over a non-Archimedean local field.

Introduction. Let (GLn, GLm) be an irreducible type 2 dual reductive pair defined

over a non-Archimedean local field F. The Weil representation ωnm of GLn(F) x GLm(F)

on the Schwartz-Bruhat space ϊf{Mnm(F)) is given by

ωΛim(Λ, g)f(x) = \dQth\-^2\ det g \n/2f(h " 'xg) (h e GLn(F), g e GLm(F)).

Then a problem on the (explicit) Howe correspondence for (GLn, GLm) is stated as

follows. For a given irreducible admissible representation σ of GLn{F), determine an

irreducible admissible representation σ' oΐGLm(F) such that Hom G L n ( F ) x GLm(io(ωn,m' σ ®

σf)φ0. The purpose of this paper is to study this problem in the case where m = n+l

and σ is generic.

Our starting point is a global theta series lifting of a cusp form on the adele group

GLn(A). For a cusp form φ on GLn(A) and a Schwartz-Bruhat function fe<9?(Mnm(A)),

we define a theta series lifting φ}, where s is a complex parameter with Re(V)«0. This

φs

f is an automorphic form on GLm(A). In Section 1, we calculate a Whittaker function

WφS of φs

f and prove that WφS is identically zero if mφn, n+ 1. In the case where m = «

or m = n+ 1, the function WφS is represented by a convolution of the Whittaker function

Wφ of φ and a certain function Φm(f) related to /. More precisely, we have a formula

of the form

Wψ,f{g) = Wφ(h) I det h }s

AΦm(ωn,m(g)f)(h)dh , (m = n,n+\).
J Un(Λ) \GLn(Λ)

On the basis of this formula, we can define a local theta series lifting of a local Whittaker

function. This is the reason why we study the Howe correspondence in the case where

m — n+\ and σ is generic. The case m = n will be investigated in another paper [17].

We state the results of this paper. Let σ be an irreducible generic representation

of GLn(F). By using a local analogue of the formula mentioned above, one can construct
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a local theta series lifting σ of σ. This σ is an admissible representation of GLn + 1(F)
realized in the space of Whittaker functions and satisfies the following:

(0.1) HomG L n ( F ) x G L n + i ( f )(ωΠ ) Π + 1, σ
v(x)σ)^0, where σ v denotes the contragradi-

ent representation of σ.

To describe the properties of σ, we denote by σx the normalized induced rep-
resentation Indg^^fV® 1 of GLn + 1(F), where Qn + 1(F) denotes the standard upper
triangular parabolic subgroup of GLn + 1(F) with Levi factor GLn(F) x GLX(F). In this
introduction, we assume σx to be irreducible for simplicity. (If σx is not irreducible, we
must modify the definition of σx as will be mentioned in Section 2.) Then we show the
following:

(0.2) σγ is a unique irreducible subrepresentation of σ. Furthermore, the quotient
representation σ/σ1 has no nonzero vectors fixed by the closed subgroup

where GLn{Θ) is the maximal compact subgroup of GLn(F) consisting of integral
matrices.

(0.3) σ is of Whittaker type in the sense of Jacquet, Piatetski-Shapiro and Shalika
[8, (2.1)].

By (0.3), one can define the gamma factor y(s, σxτ,ψ) (cf. [8, (3.1)]) for each
irreducible generic representation τ of GLm (F). Then (0.2) implies that

γ(s, σ x τ,φ) = y(s,σ1 xτ,ψ)

for all irreducible generic representations τ of GLm(F). In light of these results, one can
expect that σ = σ1 for any generic σ. If σ is a generic spherical representation, we really
have σ = σ1.

Prasad [14, (4.6.5)] stated a conjectural form of an irreducible admissible
representation σ' of GLn + ί(F) corresponding to σ by the Howe duality. Since σ1Φσ\
this conjectural form σ' is not consistent with the Howe correspondence if σ is a generic
spherical representation.

NOTATION. For an associative ring R with the identity element, we denote by R*
the group of all invertible elements of R and by Mnm{R) the set of all n x m matrices
with entries in R. If n = m, we write Mn{R) for Mnn{R). For AeMnm(R), %A stands for
its transpose. For A e Mn(R), det A stands for its determinant. The identity matrix in
Mn(R) is denoted by \n.

When a base field F is given, we set Gn = GL(n, F). If m<n, we will regard Gm as
a subgroup of Gn by the embedding
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g o

0 l .

We define algebraic subgroups of Gn as

2?π the set of upper triangular matrices ,

Un the unipotent radical of Bn,

Tn the set of diagonal matrices ,

Zn the center of Gn,

The Weyl group of Gn will be identified with the symmetric group Sn of degree n.

If G is a locally compact abelian group, then £f{G) denotes the space of Schwartz-

Bruhat functions on G.

1. The global theta lifting. In this section, let £ be a global field and A the adele

ring of A:. For a fc-subgroup G of Gn = GL(n, fc), G(A) denotes the corresponding adele

group. We fix a nontrivial additive character φ of k \A and define the character ψn of

Un(A) by

ψn(u) = ψ(u12 + u23 + +un_ln) (u = (uij)eUn(A)).

The Weil representation (ωn m, £f(MΛtm(A))) of Gπ(^) x Gm(Λ) is defined as follows: for

)9 heGn(A) and geGn(A),

con,m(K g)f(x) = I det A | ; m / 2 1 det ^ |^/2/(A " 'xg).

Let μ be a character of Zn\Zn(A). For / e y ( M n m ( ^ ) ) and 5eC,we define a modified

theta series 0(5, μ, / ) as

s,μ,f)=\
JZn\Zn(,

θ(s,μ,f)= I μ(z)|detz|^-/2 Σ f{z~ιx)dz.

From [4, Lemmas 11.5 and 11.6], it follows that the integral on the right-hand side is

absolutely convergent for Re(.s)< — m/2 and the function (ft, #)ι—>0(s, μ, ωπm(ft, #)/) is

slowly increasing on (Gn \Gn(A)) x (Gm \ G m ( ^ ) ) . Let φ be a cusp form on GΠ(Λ)

satisfying φ(zg) = μ(z)φ(g) for any zeZn(^4). Then we define a modified theta lifting φs

f

of φ by

= ί e t h
 \SA

Gn\Gn(A) xeMn,m(k)



524 T. WATANABE

= f φ(h) I det h \>Aθ(s, μ, ωn,m(h, g)f)dh .
J Zn(A)Gn\Gn(A)

Since φ(h) is rapidly decreasing on Zn(A)Gn \Gn(A), this integral is absolutely conver-

gent for Re(5 ) < — m/2, and hence φs

f defines an automorphic form on Gm(A). The

purpose of this section is to calculate a Whittaker function of φs

f. Namely we compute

the integral

WφSf(g) = ̂  φm(uy1φs

f(ug)du.

We set

Wφ{h) =
)Un\Un(A)

If m>n, we define the function Φm(f) on Gn(A) by

where we put εΛtin = (ln9 O)sMn%Jk\

PROPOSITION 1. Let φ be a cusp form on Gn(A), fe£f(MnyTn(A)) and seC with

Re(s)<-m/2.

(1) If m<n—\ or n + 2<m, then WφS is identically zero.

(2) Ifm = n9then

WφSf{g) = I Wφ(h) I det h \AΦn(ωn,n(g)f)(h)dh

provided that the integral on the right-hand side is absolutely convergent.

(3) Ifm = n+\9then

= I
J UUn(A) \Gn(A)

Here the integral on the right-hand side always converges absolutely.

PROOF. For a matrix xeMnm(k), let Xj denote they'-th column vector of x. We

write (x1? x2,..., xm) for x. We define the subset Yj of Mnm(k) as

Yo = {x e Mn,m(k)-

Yj = {xs Mnfm(k) I r a n k O i , ...,x3) = r a n k ( x l 9 . . . , xj9 xj+1) =j) ,

for 1 <7<min(π, m— 1). If m<n, we also set
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Then Mnjn(k) — {ϋ) is a disjoint union of Yj, 0<y<min(n, m), and each Yj is left Gn- and
right £/m-invariant. Let Yj be a complete set of representatives for YJUm. If
0 <j < min(n, m -1), then we can take Yj so that each x e F, has *,-+1 = 0. In the following,
for xeMnm(k), Z(x, Um) stands for the stabilizer of x in Um. Then WφS(g) equals

f φ(h) I det h \A f φju) -1 Σ ωBim(Λ, ug)f(x)dudh
JGn\Gn(Λ) JUm\Um(A) xeMn,m(k)

xΦO

Γ Γ min(«,m)

φ(A)|detA|i ψ^uΓ1 Σ Σ Σ ω(h, ug)f(xγ)dudh
JGn\Gn(Λ) JUm\Urn(Λ) 7 = 0 xeYj γeZ(x,Um)\Um

min(«,m)

y

where we set

φ(h)\deth\s

Λ Σ ([ Ψm(W)du'
Gn \Gn(A) xeYj \Jz(x,Um) \Z(x,Um(A))

f
JZ(x,U

φm(uy1ω(Kug)f(x)dudh.
(A))\Urn(A)

By our choice of representatives, φm is nontrivial on Z(x, Um(A)) if xe Yj and
0<y<min(n, m — Ί). This implies /jM = 0 for 0<7<min(n, m —2). Therefore we have

rC-i+C i f w^«

10 if m>n + 2.

We consider the case m<n. We regard ί/OT as a subgroup of Gπ. Let M™ be the
stabilizer of the matrix ίεm,π =

 ί(lm, 0 ) e M M ( i ) in Gπ, i.e.

0 _ , 0eGπ_m, ueMm>n_Jk)\ .

Since Fm = Gπ'εm,π,/"equals

[ φ{h)\άeth\Λ[ ψjuy1 Σ ωn,jrh,ug)fϊεmjdudh
JGn\Gn(A) JUmXUmiA) γeM™\Gn

= f φ(h)\ det ft \A ί ψ^uy'ω^iu-'h, g)f('εm,π)dudh
J M™ \Gn(A) J Um \UmiA)

= | (I φ(hoh)\άcthoh\Adho)
J M™(A) \Gn(A) \JM™ \M™(A) /
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ί φm(u)- *ωHtJu- % g)f(tεm,n)dudh .
Jum\Um(A)

If m<n, the cuspidality condition of φ implies /™ = 0. \ϊm = n, by formal computation,
we have

Gn(A)\ J Un\Un(A)

ί Wφ{h) I det h \AΦn(ωn,n(g)f)(h)dh .
J Un(A) \Gn(A)

Next, let M n

m - 1 denote the stabilizer ίεm_1>/J =
 ί ( l m _ 1 ,0)eM / J > m _ 1 (^) in Gn. Then

we have

Therefore, I^_ί equals

JGn\Gnι
φ(A)|detA|i

(A) J Um \Um(A)

+ Σ Σ ^JyKug)f{dεm_Un,xm))dudh
γeMrn~1\Gn x m 6M n , i (k)

n r ank( f ε m - i , n ,x w ) = m —1

•L )Um\Um(A)

x Σ ωΠfm(A, ug)f(Cεm _ x §π, xm))dudh .

rankle™ - i ,n»im) = m — 1

The cuspidality of φ implies I^_1=0 for all m<n. This completes the proof of the
statements (1) and (2).

We consider the case m = n + 1 . By calculation similar to that above, we have

J Un(n(A) \Gn(A)

We prove that the integral on the right-hand side converges absolutely. It is sufficient
to show that the integral

Wφ(f) I d
J Tn(A)

converges absolutely, where δn denotes the modular character of Bn(A). By definition,
for / = diag(α1?..., an) e Tn(A\
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-(Λ+D/2 φ(u
1 2

x /
0 α ί 1 ••• O2lu2n

W O 0 ••• a-1

This integral is regarded as a partial Fourier transform of /. Hence there exists a

function Φe9f(An®An) such that

Furthermore ^ ( / ) is majorized by a gauge function ξ on Gn{A) (cf. [6, Proposition

2.3.6, Lemma 8.3.3 and (12.1)]), i.e.

\Wψ(t)\<ξ{t), (teT(A)).

Then it is easy to see that the integral

ί
n(A)

is convergent. This completes the proof.

2. The local theta lifting. From now on, we fix a local non-Archimedean field

F. In this section, we define a local theta lifting from the set of generic representations

of Gn = GL(n,F) to the set of smooth representations of Gn + 1 by using an integral

analogous to that in Proposition 1 (3).

First we define some notation and recall certain notions. Let Θ denote the ring of

integers of F, xn a prime element of F and q the order of Θ/mΘ. The absolute valuation

of F is denoted by | |F, which is normalized as \m\F = q~1. We fix, once and for all, a

nontrivial additive character φ of F with the conductor Θ. We denote by Kn the maximal

compact subgroup GL(n, Θ) of Gn and by 3^n the convolution algebra consisting of all

locally constant and compactly supported functions on Gn. The character φn of Un is

defined to be

for u = (uij)eUn.

Let W(φn) be the space of all locally constant functions W on Gn satisfying

W(ug) = φn{u)W{g) for any ueUn and geGn9 i.e. W(φn) = I n d ^ φ n . Then geGn acts on

W(φn) by right translation: p(g)W(go)= W(gog). An admissible representation σ of Gn

is said to be of Whittaker type if σ is finitely generated and dim HomGn(σ, W(φn)) = 1.

If σ is of Whittaker type, we denote by W(σ, φn) the image of the unique (up to constant)
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nonzero (jπ-morphism from σ to W(ιj/n). Note that the representation (p, W(σ, φn)) need
not be isomorphic to σ. If σ is of Whittaker type and irreducible, then σ is said to be
generic.

A classification of irreducible generic representations of Gn is known by Bernstein
and Zelevinsky [18]. In the following, for a given smooth representation π of Gn and
a complex number z, we denote by π[z] the twist of π by | |z, i.e. π[z](#) = | det g \zπ(g).
Let Q be a standard upper triangular parabolic subgroup of Gn with Levi factor
Gni x Gn2 x x G^, «! + +nk = n. Let π', 1 <i<k, be an irreducible tempered
representation of Gn. and r1>r2> >rfc real numbers. We set

(2.1) I n d g - ί π ^ r J O π 2 ^ ] ® ®π*[r j ) .

Bernstein and Zelevinsky proved that if σ is an irreducible generic representation of
Gn, then σ must be equivalent to a representation of the form (2.1), where the parabolic
subgroup Q, the tempered representations π \ .. .,π kand the real numbers rί> >r k

are uniquely determined by σ (see also [9]). We note that, by a theorem of Jacquet
[11], the irreducible tempered representation π1 of Gn. must be equivalent to a
representation of the form

where Rt denotes a standard upper triangular parabolic subgroup of Gn. with Levi factor

Gnn x Gn.2 x x G Λ i p , flϋ + +nipi = ni an π1'-7 and irreducible square integrable

representation of Gn.. for each 1 <j<pι.

Let σ be an irreducible generic representation of the form (2.1). We define the

representation σί of Gn + 1 as follows. Assume that r1>r2> ••• > r J - > 0 > r / + 1 > ••• >

rk. Let β ' be a standard upper triangular parabolic subgroup of GΠ + 1 with Levi factor

Gnιx xGnjxGίxGnj+ίx -•• x Gv,k. T h e n w e s e t

(2.2) σί = lndp + 1(π1lrί]® ••• O π ^ ] ® 1 < g > ^ + 1 [ r i + 1 ] ( g ) ••• ® π f c [ r k ] ) .

This σι has the following properties (cf. [9, Proposition 3.2] and [18, Theorem 4.2]).

LEMMA 1. (1) σί has a unique irreducible quotient representation.

(2) The representation (p, W(σu φn + 1)) is isomorphic to σx itself even ifσί is not
irreducible.

(3) σx is reducible if and only if there exists at least one π1'-7^] such that πιJ[ri'] =
Stn.. [ ± (riij + 1 )/2], where Stni</ denotes the Steinberg representation ofGn.. (cf. [4, Theorem
7.11]).

It is known by [2, Theorem 2.9] that the induced representation Ind^ ̂  σ (x) 1
given in the Introduction has the same composition factors as that of σx. However, if
Indg^;σ®l is not irreducible, it does not always satisfy the properties (1) and (2)
above, and, furthermore, we cannot apply [8, Proposition (9.4)] to this representation.
([8, Proposition (9.4)] will be used in Section 3, (3.3) below.) This is the reason why
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we define σ1 not by I n d ^ ; σ® 1 but by (2.2).

The local Weil representation (ωnm, ^(Mnm(F))) of Gn x Gm is defined as follows:

for / e £f(MntJF))9 heGnznάge Gm, '

= I det A |f ">21 det g \r/{h ~ xxg).

We write simply ω for ω π w + 1 and ω t for ω π π . For fe^(Mnn+1(F)), we define the

function Φ(/) on Gn by

= ί fn + 1(u) xω{h,u)f{εn)du,

where we put επ = (ln, O)eMnn + ί(F). For each We W(φn), we set

W(h)Φ(ω(g)f)(h)dh= ί
Since Φ(/) has compact support in Gn modulo Un, the integral on the right-hand side

reduces to a finite sum. Furthermore, as a function in geGn + 1, V{Wf) is contained in

W(φn+1). Therefore we have a correspondence

W(φn) x ST(Mn,n + 1(F)) - W(φn+1),

which satisfies the relation

(2-3) P(g)V(p(hW,f)=V(WMh-Kg)f) ( / * e G

Let σ be an irreducible generic representation of Gn. We set

V(σ, φn+1) = { V(Wι f) I We W(σ, φn), f e 9>{M

Then the theta lift σ of σ is defined to be a smooth subrepresentation (p, F(σ, φn+ι))

of W/(^π + 1 ) . It is known by [13, Chapter 3, Section III, Corollary 3] that σ is of finite

length. Thus, by [1, Theorem 4.1], σ is admissible and finitely generated.

Let ξneάfn be the characteristic function of Kn. We define the action of ξn on

The main result of this paper is stated as follows.

THEOREM 1. Let σ be an irreducible generic representation of Gn. Then the inter-

section p(ξn)V(σ, φn + 1)r\p{ξn)W{σu φn+ί) contains a nonzero element. Furthermore, if

σγ is irreducible, we have

p{ξn)V{σ, φn + 1) = p(ξn)W(σ1, φn+1).

This theorem will be proved in Section 5. We note that p(ξn)W(σ1, φn+ι) has infinite

dimension.
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REMARK. When z is a complex number with Re(z)«0, the representation σ[z]x

is just the irreducible representation Ind^ί"1*1 l(x)σ[z]. Here Q' denotes the standard
upper triangular parabolic subgroup with Levi factor GLX x GLn. Then, Jacquet,
Piatetski-Shapiro and Shalika [8, Proposition (6.1)] essentially proved that, for any
irreducible generic representation σ,

(2.4) ^ [ 4 i + 1 )

if Re(z)«0. This fact is derived as follows. Let &"(Mnn + 1(F)) be the subset consisting
of functions / e ^ M ^ + iCO) with supp / c εnGn +1. The subspace &"(λfntn + 1(F)) is
ω(Gn x Gπ + 1)-invariant. For each fe&"(Mn9n + 1(F)) and We W(σ, ψn), the integral

(2.5) φiWtί)(g;m) = \detm\'F\ ω(h,g)f(εn)W(mh)\dcth\z

Fdh

is convergent, and as a function in geGn + 1, φ(Wff) is an element of Ind^+ 1(σ[z]® 1)
(cf. loc. cit. p. 430), where Q" denotes the standard lower parabolic subgroup with Levi
factor GLn x GLX. We note that the representation Ind^+1(σ[z] ® 1) is isomorphic to
σ[z]1. Since σ[z]x is irreducible, the correspondence (W, f)\-+ φ(W,f) *s a surjection from
W(σ,{l/n)x^f(Mnn + ί(F)) onto Ind^+1(σ[z](x) 1). Furthermore, for φ = φiWtf), the
integral

is absolutely convergent by the assumption Re(z)«0. Then the space {W'φ\φe
Ind^+ x(σ[z] ® 1)} gives a Whittaker model of σ[z] 1. By replacing φ{W,f) by its expression
(2.5) and changing order of integrations, we obtain W'φ= V(w®\ \*,f)- Therefore we have
(2.4).

3. Some results of Jacquet, Piatetski-Shapiro and Shalika. First, we recall class
1 Whittaker functions of Gn by Shintani [16]. For an w-tuple k = (kl9 . . . , kn)eZn of
rational integers, we denote by tk the diagonal matrix in Tn whose z-th diagonal entry
is mki for 1 <i<n. We set

kγ>k2> ••• >kn).

Let C\_XU Xϊ1, X2, Xϊ 1

9 9 %m X*ΓX] be the Laurent polynomial ring in in-
determinates Xί,...,Xn and Δn the subalgebra consisting of the elements in
C\_X1, Xγ 1, X2, X21, - ., Xn, Xn1] which are invariant by permutations of in-
determinates. We define the function W( Xί9..., Xn; φ'1) on Gn with values in An

as follows: for ue Un9 tke Tn and keKn,
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W(utkk;Xl9...9Xn;ψ-1)

pn('*)1/2 Π iXi-Xj)-1 Σ sgnτΠ^V"" 4 if *eΛB

n{U X l θ if * * 4 , ,
where δn denotes the modular character of Bn, i.e. δn(tk) = Y\n

i = 1 \m\(g+ί~2i)ki. Then, for
each «-tuple z = (z l 5 . . . , z,,)e(Cx)n of complex numbers, the class 1 Whittaker function
Wz on Gn is given by a specialization of W( X 1 ? . . ., Xn φ~*) at (z l 5 . . . , zn), i.e.
Wz(h)=W(h;zu ...,zn\φ~γ). We denote by Wz(φ~x) the submodule of Wft^"1)
generated by PFZ, i.e. Wz{φ~1) = p{^?

r)Wz.

For ze(C x)", we define an unramified character χz of Bn by

z\lklU) — Z1Z2 Zn , ( Λ 6 Z , ΐ E i nΓΊA n, WG Un) .

Let Ind^χ z be the representation of Gw induced from χz. Then Ind^χ z is of Whittaker
type (cf. [3]). We take a τeSn so that τ(z) = (zτ(1), zτ(2), . . . , zτ(π)) satisfies |z τ ( 1 ) |<
|z τ ( 2 ) |< <|zτ ( l l ) |. It is known by the argument in the proof of [12, Theorem 2.2]
that the space W(Ind^χτ{z), φ'1) coincides with JV^φ'1). We denote the repre-
sentation (p, Wz(φ~1)) by πz. Since πz is isomorphic to a quotient representation of
Indf^ χτ(z), it is also of Whittaker type.

Next, we recall results of Jacquet, Piatetski-Shapiro and Shalika, which will play
an essential role in our proof of Theorem 1. We set

/O - I X

wn=\ \ 1 : \eGn, ηn = '(0,..., 0, \)sMnΛ{F).

\1 •••0/

If heGn, we denote by h' the inverse transpose of h, i.e. h' = 'h~1. Let σ be an admissible
representation of Gn which is of Whittaker type. We define the representation σ' of Gn

by σ'(h) = σ(hι) for heGn. For We W(σ, ψn), we also define the function ^ o n Gn by

W(h)=W(wnh
ι).

Then the set of W with We W(σ, ^B) coincides with the space W(σ\ ψ'1).
For the moment, we fix an irreducible generic representation σ of Gn and the

representation σx of Gn + 1 defined in Section 2. Let π be another irreducible generic
representation of Gn. We denote by ωπ the central character of π. Furthermore, the
local factor and the epsilon factor of π given by Godement and Jacquet [4, Theorem
3.3] is denoted by L(s, π) and ε(s, π, ψ)9 respectively. For We W{σ, ψn), WΈW{π, φ'1)
and φeSf(MnΛ(F)), we set

Ψ(s9 W,W';φ)=ί W{h) W'(h)φ(!hηn) \ det h \s

Fdh .
J Un \Gn
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In a similar fashion, for W1 e W(σu φn+1), We W(π, Φή1), w e s e t

Ψ(s, Wl9 W) = I W1 (( h ° )) W\h)I det h \sf ll2dh .
Jun\Gn \ \ 0 1 / /

Then Jacquet, Piatetski-Shapiro and Shalika [8, Theorems (2.7), (3.1) and Proposition

(9.4)] proved the following. Each of the integrals Ψ(s, W, W'\φ) and Ψ(s, Wl9 W) is

absolutely convergent for Re(5)»0 and they are rational functions of q~s. The integrals

Ψ(s, W, W'\ φ) span a fractional ideal C[<f, q~s]L(s, σ x π) of the ring C[? s, q~s~]. The

factor L(s, σ x π) has the form

(3.1) L(s,σxπ) = PσXπ(q-T1, PσXπ

Furthermore, there is a factor ε(s, σxπ,ψ) of the form c#~m s such that

^-^^- f=ω.(-,)-Φ,,x»,
L ( l - ί , ( j x π )

where φ denotes the Fourier transform of φ, that is,

Similarly, the integrals ^(s, PFl5 ίF') span a fractional ideal C[# s, ̂ "s]L(s, σj x π). Here

the factor L(s, σ1xπ) has the form

(3.3) L(s, σx xπ) = L(s, σ x π)L(s9 π) .

There is a functional equation

L(s, σ1xπ)

We set

y(s, σλ x π, φ) = ε(s, σ xπ, φ)ε(s, π, i
L(s, σx x π)

4. The gamma factor of σ x π. We fix two irreducible generic representations σ

and π of Gn. The purpose of this section is to calculate the integral

s, V, W) = ί v(( θ °
JUn\Gn \ \ " A

Ψ(s, V, W) = ί v(( θ ° )) W(g)\ det g \%

for Ke F(σ, ̂ Π + 1) and ^ r e ^F(π, φ'1). Since we do not yet know whether σ is of

Whittaker type, we cannot apply the results of Jacquet, Piatetski-Shapiro and Shalika.

However we can compute this integral directly in the same way as in [8, (6.3)]. In the
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following, we explain briefly this method. See [8, (6.3)] for details.

We may assume Fto be the form V= ViWtfί®f2), where We W(σ, ψn), fx

and f2 e&>(MnΛ(F)). We set

Kg)=\ Ψn(u) 1ω1{h, g)f1(u)du .

From easy calculation, it follows that

(4.1) Φ ( ω ( ( o 1 )) ( / i®^)V^) = |detΛ|y72C^Φ1(/1)(/z^).

We regard Ψ(s, F, W) as a formal Laurent series in X= q~\ Thus we write Ψ(s, V, W) as

(4.2) X Ψm(V,W)Xm.
m = — oo

This Laurent series has only finitely many nonzero negative terms. Each coefficient

Ψm(V> W) is given by

Γ ίίg oY\
ΨJV, W')=\ V\[ )W(g)\ detg \p 1/2dg ,

JUn\G~ W O iJJ
where Gπ

m denotes the set of geGn with \dGtg\F = q~m. By (4.1), Ψm(V, W) equals

C ( C ~ )
^ W(h)Φ1(f1)(h,g)f2(

thηn)\dQth\F

/2dh>Wf(g)\detg\F1/2dg

I ί W(h)fx(h- ιg)f2('hηn)I det h \y2-"'2dh\ Wig)\ det g \"'2" 1 / 2 d 0

W\g) ί W{gh-')fί{h)f2{h"gηn)\de\h\ϊ!2-ιl2dhdg .

This double integral is abolutely convergent. By changing g to gh, we obtain

(4.3) ί WWfa'gηJ f χm(gh) Wf(gh)Mh)\ det /z \nJ2 ~ ίl2dhdg ,
Ju n\G n JGn

where χm denotes the characteristic function of G™. We take an open compact subgroup

Ω of Gn such that fΩ = Ω and fί(ωh)=f1(h) for ωeΩ. Let W(π, IA^ 1 )^ be the subspace

of PF(π, i/^"1) consisting of all elements fixed by Ω and {}¥[,..., W'p} a basis of

W(π, Ψήl)Ω Then there exist matrix coefficients φl9..., φp of π such that

(4.4) ί W\gωh)dω=

Thus we have

ί W\
JΩ
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ί
J G

xJgh)W'(gh)fί(h)\deth\f-1'2dh=ί W'j(g)\
Gn j=l J Gn

Furthermore, we have

(4-5) χjgh)= Σ X
m' + m" = m

where m' and m" are bounded from below. Consequently, by (4.2), (4.3), (4.4) and
(4.5), we obtain

(4.6) ψ(s, ViWtfι9f2)9 W')= t Ψ(s, W, W)'J2) ί Λ(A)^(A)|detA|Γ"
j = 1 Jon

Here we note that the integral

= ί
JG

is a zeta-integral defined by Godement and Jacquet [4] and there is a functional equa-
tion

(4.7)
.Φ}) Z(fl,s + n/2-l/2,φ})

L()—s, π') L(s,π)

where ψj is a matrix coefficient of π' given by φ'j(h) = φj(hι). Similarly, by using [8,
Proposition 6.2], we obtain

(4.8)

Ψ(l-s, Ptw.f&fύ, &Ί= Σ ni-s , ^ ^;/2)ω.(-l)Z(/i. I s + n/2-l/2, φ)).

Therefore, by (4.6), (4.7), (4.8) and (3.2), we have

' x π, ̂ )ε(s, π, ψ)
L{\ — s, σι x πι)L(l — s, π') L(s, σ x π)L(s, π)

as a formal Laurent series. However, (4.9) itself implies that both sides are polynomials
in (X, X~ *) (cf. [8, (4.4)]). Thus (4.9) may be regarded as an identity of analytic functions.
As a consequence, we obtain the following result.

PROPOSITION 2. For each VeV(σ,ψn + ι) and W'eW(π, φ'1), the integral
Ψ(s, V, W) is absolutely convergent for Re(5ί)»0 and L^^σγ xπ)~1Ψ(s, V, W) is an
element of C[qs, <?~s]. Moreover, there is an equation

Ψ(l-s, V, W') = ωπ(- l)"y(5, σλ x π, ψ)Ψ(s, V, W) .

If π is a spherical representation πz, then we can prove the assertion of Proposition



IRREDUCIBLE TYPE 2 DUAL REDUCTIVE PAIRS 535

2 in another way. Namely, we can calculate the integral Ψ(s, V, Wz) more directly. Since
the integral Ψ(s, V, Wz) will be used in Section 5, we explain this calculation in the rest
of this section. We may assume again that V is of the form ViWtfl®f2). We set

J(s,fi, Wz)(h)= ί Φ1(fί)(Kg)Wz(g)\dQtg\s

F-
1/2dg.

J Vn \Gn

By (4.1), we have formally

(4.10) Ψ(s, ViWtfl9f2)9 Wz)= f W(h)J(s, fl9 Wz){h)fΛhηn)\ det/* \\/2dh .
J Un \Gn

Let /f e £f(Mn(F)) be the characteristic function of Mn(Θ). Then ω^l^ ξn) is a projection
from ^{Mn{F)) to the subspace <y(Mn(F))ωίilntKn) consisting of functions invariant by
ω^l^, Kn). By Howe [5, Theorem 10.2], the space &f(Mn(F))ωιiln-Kn) coincides with the
space ωx{J^n, ln)f?. Thus, corresponding to fu there exists φ1eJί?n such that

(4.H) ω ^ l ^ O / i ^ ω ^ φ ^ l J Λ 0 .

Then we have

J(s,fl9 Wz) = J(s,f1,p(ξn)Wz) = J(s,ω1(φ1, \n)f?, Wx) = p(φi)J(s9f?9 Wz).

We compute the integral /(s, f°, Wz)(h). The next lemma follows from simple calcula-
tion.

LEMMA 2. Let k = (kl9..., kn)eZn and p = (pu .. .,pn)eZn. If pί>k1>p2>
k2> * * • >pn>kn, then we have

*i(/?)(i* g = I det tk |F-
 1/2δn(tkY'21 det tp \y2δn{tpγi2 .

Otherwise, Φi(/i°)(ίfc, tp) is zero.

LEMMA 3. The integralJ(s, / ^ W*) absolutely converges ifRe(s) is sufficiently large,
and we have

J(s,f?, (

PROOF. By Lemma 2 and an explicit formula for Wz, J(s, f®, fVτ)(tk) equals

Σ Φi(/i°)(ίft, tp)wτ{tp)\dett,\yll2δn(tpy'
peΛn

=\dettk\^'2δn(tky>2( π

peΛn

pi>ki(l<i<n)
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x Σ sgnτΠ^oΊ Σ {q-%{i)
τeSn i=l Ui-i>Pi>fci

Here we put k0=+oo for convenience. The sum of (q~szτ(i))
Pί over +co>pί>kί

absolutely converges if Re^) >max 1 < ί<π(log ί | zt |). Then, by calculation of determinants,

we obtain

sgnt 0 -
τeSn

Thus implies the assertion.

For φιeJ^n satisfying (4.11), we define φ{etfn by

(4.12) φs

1(h) = \deth\s

Ir
1/2φ1(h)

By Lemma 3 and (4.10), we have a relation

(4.13) Ψ(s, ViWιfl9f2), W2]

Next, we compute the integral

[~s> y(w,f1®f2)> yyz)-

Un\Gn

By changing g to wng
ιwn, this integral equals

Σ
τeSn

s, W, ,;Λ)

wn O\fg 0
0

f v(W,fl@f2)L
J Un \Gn V

= | i f W(ίι)φ(ω((° D^U-^^XvdhlwMldetgiy^dg
Jun\GnUun\Gn \ \\9 0/J ) J

= ί W(h)\ ί
J Un \Gn tJun \Gn

For ueUn+1, we denote by ux the n x n matrix obtained by eliminating the first column

vector and the (n+ l)-st row vector from u. Then

φU °

= \ act

(\\\
0

\o/
JUn

(u) 1ωί(h,g)f1(uί)du

/
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We take φ{eJ^n to be the same as (4.12) for given /
calculation similar to that in the proof of Lemma 3 that

Vn\Gn

537

. It follows from

and hence

Ψ(l-s,V{WtflΦf2),Wτ)

- π
i = l I -

/
h-1

\

o
\

y
By the change of variable h\-^wnh

ιwn, we obtain

(4.14) Ψ(l-s, ΫiV,Ii9fύ, ^ , Π j\l
Therefore, by (4.13), (4.14) and (3.2), we have

= £ ( S ; ff x ^ φ)

; f2)

L(\ —s9σ[x πι

z) s, σγ x πz)

5. Proof of Theorem 1. Let σ be an irreducible generic representation of Gn. We
set U= V(σ, ψn+ί)+fV(σu ψn+1). By (3.4) and Proposition 2, each Ve U satisfies the
functional equations

(5.1) s 9 V, Wf) = ωπ(- l)"y x π, , F, W),

for all irreducible generic representations π of GΠ and We W(π, ψ'1).

LEMMA 4. Let R be the restriction map V\-> V\Pn + 1from U to IndJ^;* ψn+1. Then
R is injective.

PROOF. We denote by U the space of functions V with VeU and define the
Pn+ i-morphism R: U^lnάln

n

+

+\\j/~^1 by the restriction Kι-> V\Pn + Γ If Ke Ker i?, then we
have ^(s, V, W) = 0, and hence, by (5Λ),Ψ(l-s, V, W) = 0 for all irreducible generic
representations π of Gn and fF'e W(π, ψ'1). Then, by [10, Lemma (3.2)] (cf. [7, Lemma
(3.5)]), we have FeKerA Similarly, if FeKer^, then Ve Ker 7?. Therefore, KeKerT?
is equivalent to KG Ker R. Let FeKer/? and/? 1 ^^" 1 G P ; + 1. Since ρ(pι)V=p(p)V and
Ker^ is Pn + 1 -invariant, we have p(pι)VeKerR, and hence p(p')K6KerΛ. As a result,
Ker 7? is Pι

n + 1 -invariant. Since the action of the center Zn + ί on 17 is through the scalar
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multiplication by the central character of σ, Ker R is both Qn+1- and β^+1-invariant.

Consequently, Ker R is Gn + x-invariant. Thus we have V(g) = ρ(g) V(ln) = 0 for Ve Ker R.

•
Next we consider the integral Ψ(s, V, Wz) for Vep(ξn)U. By (3.4) and (4.15), there

is an equation

)

W(s,V,Wz)

L(l — 5, σ} x πz) L(s, σί x π z)

for each F e p(^Π) £/ and z e (Cx)". We replace the parameter (z1,..., zn) by indeterminates

! ! , . . . , ! „ . Namely, we consider the "integral"

where we put X=q~s. This Ψ(X, V, Xu ..., JSTW) is regarded as an element in the ring

An[[X, X~x]] of formal Laurent series with coefficients in Δn. Then (5.2) and the

argument in the proof of [7, Theorem 4.1] implies that each VGp(ξn)U satisfies the

equation

(5.3) i

= Π BJ.XX,, ψ)Ψ(X, V,XU..., Xn) Π
i = 1 i = 1

Here polynomials Pσ(X) and ε^^, ̂ ) are given by

Us, σ) = Pσ(q'T1 , ε(s, σ, ̂ ) = εσ(^- s, ^) .

From (5.3) and the fact that Ψ(X, V,Xl9..., Xn) has a finite number of nonzero terms

with negative exponents in X(cf. [7, Section 3]), it follows that Ψ(X, V,Xl9...9Xn) is

contained in the polynomial ring An[X, X'1'] and there exists an element Ξ(V, Xu . . . ,

Xn)eAn such that

(5.4) Ξ{V, XX u . . . , XXn) = Ψ(X, V,Xl9...9 Xn) f\ P^XX^l -XXt).

LEMMA 5. Let Vep(ξn)U. If Ξ ( F , X 1 ? . . . , Xn) = 0, then we have V=0.

P R O O F . If Ξ(V, Xl9..., Xn) = 0, then Ψ(X, V9Xl9...9 Xn) = 0. By [7, Lemma

(3.5)], we have R(V) = 0. Therefore, by Lemma 4, we have V=0. •

PROOF OF THEOREM 1. We denote by /(σ) (resp. /(σ^) the subset of Δn consisting

of Ξ(V, Xl9 , ̂ n) with Vep(ξn)V(σ, ψH + 1) (resp. Vep(ξn)W(σu φn + 1)). Then, by the

same argument as in the proof of [7, Theorem (4.1)], both /(σ) and /(σx) are ideals of

Δn and there exist elements V1ep(ξn)V(σ, φn + 1) and Wίep(ξn)W(σ1, φn + 1) such that
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Ξ(vu xu..., xn)=Ξ(w1, xu..., xn)= π

By Lemma 5, we have Vί = Wι. Thus p(ζn)V(σ,φn+1) and p(ξn)W(σ1,φn + ι) have

a nonzero intersection. Furthermore, if σx is irreducible, then we have

(cf. [7, Theorem (4.1)]). This implies p(ξn)V(σ, φn + 1) = p(ξn)W(σ, φn + 1). We complete

the proof of Theorem 1.

We note that if σ : is reducible, then the assertion analogous to [7, Proposition

(2.1)] for σ1 is false. Thus we cannot conclude that I(σί) = Δn in this case.

PROPOSITION 3. Let σ be an irreducible generic representation of Gn. Then σ never

has a super cuspidal sub quotient representation.

PROOF. Suppose σ has an irreducible supercuspidal subquotient σc. Then, by [1,

Proposition 3.30], σc is realized as a subrepresentation of σ. The representation space

V(σ, φn + 1)c of σc in V(σ9 φn + 1) is a Whittaker model of σc. We set

I(σc) = {Ξ(V, Xl9 . . . , Xn)\ Vep(ξn)V(σ, φn+1)c} .

Then, by the proof of [7, Theorem (4.1)], we have I(σc) = An, and hence /(σx) c I(σc).

This implies p(^n + 1)p(ξn)fV(σί,φn + 1)=V(σ,φn + 1)c. Therefore, σc is realized as a

subquotient of σx. This is a contradiction. •

PROPOSITION 4. Lβ/ σ be an irreducible generic representation of Gn. If σ1 is

irreducible, then σ is an admissible representation of Whittaker type and σ1 is a unique

irreducible subrepresentation of σ.

PROOF. We note that any irreducible generic representation of Gn +1 has a nonzero

vector fixed by p(ξn). If V is an irreducible submodule of V(σ, φn+1), then we have

p(ξn)W(σu φn + ί)^p(ζn)V'=£0, and hence W(σl9 φn+1)= V. We prove that the dimen-

sion of H o m G n + l ( ^ ( σ , ^ π + 1 ) , W(φn+1)) equals 1. Let Lo be the natural injection of

V(σ,φn + ί) to W(φn + 1) and LeHomGn + ί(V(σ, φn+1% W(ψn + ί)) an arbitrary nonzero

element. If KerL is nonzero, then W(σί9 ^ π + 1 ) c = K e r L and V(σ,φn + ί)/W(σ1,φn+ί)

contains a nonzero generic irreducible subquotient. Therefore, F(σ, φn+1)/fV(σ1, φn+1)

has a nonzero vector fixed by p(ξn). This contradicts ρ(ξn)(V(σ, ψn+ι)/W(σl9 φn+ί)) = 0.

Thus L must be injective. Then there exists a constant c such that L\W(σuψn + ί) =
cLo\jv(σi,Ψn + iV S i n c e W(°D ^ π +i)c=Ker(L-cL 0 ) , we obtain L-cLo = 0. •

It is expected that σ = σ1 for any irreducible generic representation σ. In fact, this

is the case if σ is an irreducible generic spherical representation. Namely, we have the

following:

PROPOSITION 5. Let z = (zl9 . . . , zn)e(Cx)n and (z, l) = (z l 9 . . . , zn9 l ) e ( C x ) M + 1 . //

the spherical representation πz is irreducible, then π z = π ( 2 1 }.



540 T. WATANABE

PROOF. Since W^φ'1)^ Wz(φn), we may substitute φ'1 by φn in the definitions

of Wz and π z . Let foeS^(MΛtΛ + ί(F)) be the characteristic function oϊ Mnn + 1{Θ). Then,

from (2.4) and the fact that ω(ξn)^(Mnfn + 1(F)) = ω(Jtn + 1)f° (cf. [5, Theorem 10.2]),

it follows that F(πz, φn + 1) is generated by V(W py By calculation similar to that in the

proof of Lemma 3, we obtain V(W f0)= W{zl). Therefore, V(πz, φn + ί) coincides with
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