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Abstract. We prove a gradient estimate and Liouville type theorems for the
solutions of the Poisson equation on a complete manifold whose Ricci curvature is
suitably restricted.

1. Introduction and results. Throughout this paper M will denote a complete,

connected, non-compact Riemannian manifold of dimension m>2. Our main aim is to

establish various a priori estimates for the gradient of solutions to the Poisson equation

Au = f(u) on M under suitable assumptions on the Ricci curvature (unless otherwise

specified, the function / will be assumed to be of class C 1). Our first result is:

THEOREM 1. Let FeC2 (R) be a function such that

(1) (i) i n f ^ = 0 (ii) F(u) = f(u).
R

Let u be a bounded solution of

(2) ΔW = /(M) on M

and assume that Ricci(M)>0. Then

(3) \Vu\2(x)<2F(u(x)) for all xeM.

COROLLARY 1. Under the assumptions of Theorem 1, suppose that there exists

xQeM such that F(u(x0)) = 0. Then u is constant.

The special case where M is Rm with its Euclidean metric is due to Modica [7].

One of the difficulties to recover Modica's theorem in our non-flat context is to prove

that bounded solutions to (2) have bounded gradient. Towards this end, we use a

method inspired by the old work of Ahlfors [1]: basically, we obtain estimates by

studying the inequality AG < 0 which holds at any relative maximum of G, where G is

a suitable function of w, | Vw|2 and r, the distance function from a base point. More

generally, our analysis leads us to the following gradient estimate which should prove

useful in other contexts:
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PROPOSITION 1. Suppose that Ricci(M)> —A, where A is a nonnegative constant.

Let u be a bounded solution of the Poisson equation (0.2). Then | Vw | is bounded on M.

An important tool in our analysis is the Weitzenbόck formula; however, when we

apply it to the study of (2) on manifolds whose Ricci curvature is allowed to be negative

we must require a strong convexity assumption on F (see (4) below). That is not

surprising, at least because we know through work of Serrin [11] that the convexity

of F implies that bounded solutions of (2) on Rm are constant. Denoting by Ba(p) the

geodesic ball of radius a centered at a point peM, our results are:

THEOREM 2. Suppose that Ricci(M)> —A, A>0. Let u be a solution of (2) such

that

(4) f\u)>A on M.

We set N(a) = Svφ{\ u\) on Ba(p), and require that

(5) l i m i n

a

Thus u is constant.

THEOREM 3. Suppose that Ricci(M)> —A,A>0. Let u be a solution of (2) which

verifies (4) and such that

(6) (i) I Vw I is bounded on M (ii) Inf {| Vw |} = 0 .
M

Thus u is constant.

REMARKS 1. (i) Because of Proposition 1 above, the assumptions (6) are

automatically satisfied if u is bounded.

(ii) Theorem 2 includes as a special case the well-known fact that harmonic

functions with sublinear growth on complete manifolds with nonnegative Ricci curva-

ture are constant (see [12]).

Our techniques can also be adapted to estimate the rate of decay of ground states,

i.e. positive solutions which tend to zero as the distance function r(x) from a base point

increases to + oo (see [8], [9], for instance). To illustrate this more precisely, we state

PROPOSITION 2. Suppose that Ricci(M) > 0. Let u be a ground state for the equation

(7) Au = uq-λu on M (q>\,λ>0)

such that

(8) 0<u<λ1/iq'l) on M.

Then
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(9) HminfΓ(φ<+oo ,
a —• + oo

where T(a) = Inf{uiq-1)} on Ba(p).

We mention here that methods related to those of the present paper have been

used to derive a priori estimates in other geometric problems: see [3], [4] and [10],

for instance.
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1. Proof of the results.

PROOF OF THEOREM 2, PROPOSITIONS 1 AND 2. Step 1. We denote by Ba{p) the

geodesic ball of radius a centered at a point peM, and by r the distance function from

p. On Ba(p) we consider the function

(10) G = (a2-r2)2\Vu\2g(u),

where u is a solution of the Poisson equation Δw = f(u) and g is a positive differentiate

function to be chosen later. If there exists a positive maximum qeBa{p) of G, then at

q we must have

(Π) (i) V(logG) = 0 and (ii) Δ(logG)<0.

(Note that, using a trick of Calabi (see [2] or [3]), we can assume that r is C 2 in a

neighborhood of q). In the following lemma we compute explicitly (11) (ii) and derive

two inequalities which will play a key role in the proof of our theorems.

LEMMA 12. Suppose that Ricci(M)> — A, A >0. IfqeBa(p) is a positive maximum

of the function G in (10), then the following two inequalities hold at q:

j f + , I6a\ 2 -inuHiA-^m
~r2) (a2-r2)2 g{ύ) J

2g\u)

and
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24a2

(14)
(a2-r2) (a2-r2)2

where m = dim M and C is a positive constant which depends only on M.

PROOF OF LEMMA 12. From the definition of G and computing we see that (11)

(i) is equivalent to

g'(u)Vu V|V»| 2 2W 2

g(u) \Vu\2 (a2-r2) U

We recall that, for any differentiable function ψ, we have

div|>(w)Vw] = φ(u)Au + φ\u)\Vu\2 .

Then a simple computation shows that (11) (ii) takes the form

Π6) Q > 2Δr 2|Vr*|» g\u)Au [g{u)g\u){gf{u)\

" ( 2 2 ) ( 2 2 ) 2 K ) 1 2 M J1

Δ|Vw| 2 |V|Vw
2|2

|Vw|2 |Vw|4

Now, from the Weitzenbόck formula

(17) ΔI Vw 12 = 21 Hess(w) | 2 + 2 Ricci(M)( Vw, Wu) + 2<VΔw, Vw>

and the assumption Ricci(M)> — A, together with Au = f(u), we deduce

(18) Δ| Vw| 2>2| Hess(w)|2-2A\ Vu|2 + 2f\u)\ Vw|2 .

On the other hand, the Schwartz inequality immediately gives

(19) IVI Vu | 2 | 2 < 4 | Vw |21 Hess(w) | 2 .

Putting together (18) and (19) we obtain

(20) ^ > 4

| V M | 2 2 | V W | 4

Next, we recall that, since Ricci(M)> —A,

(21) Ar2<C(l

where C is a positive constant which depends only on M (see [5]). Now we use (20)

and (21) in (16), together with Au = f(u) and the Gauss lemma (i.e., | Vr | = 1): that yields
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2C(ί+Aa) 8α2 g'(u)f{u)
( } ~ (a2-r2) (a2-r2)2 g(u)

Finally, we observe that (15) implies

~'~ '* ~ 2g\u) (a2-r2f {(a2-r2)\g(u)\

Now (13) follows readily by the inequality (23) put into (22).

In order to prove (14), we recall Newton's inequality

(24) I Hess(w) | 2 >(l/m) | Δ M | 2 (m = d i m M ) .

Next, we use the inequality

which holds for any ε > 0, to deduce that

(25) 1j^>_W_^(M)
ί7(«) | V | 2 8 2 ( )

Putting (24) and (25) into (18) we obtain

|V«|2 - φ ) 8 3

2(M)

Now the inequality (14) follows from the argument used in the proof of (13), if we

replace (20) by (26). D

In order to apply successfully Lemma 12, the most delicate point is a good choice

of the function g(u), as illustrated in the next steps.

Step 2 (End of the proof of Theorem 2). Assume that, for some peM,

IVw|2(/?)>ε2>0 (note that the hypothesis (5) does not depend upon the choice of/?).

We derive a contradiction. We use (14) with g(u) = [3N(a) — u~]~d, with d>0 to be

determined. Since q is a positive maximum for the function G, we obtain

\Vu\\q)>
(a2-r2(q))2g(q) 2\a2-r\q))2

Next, we substitute the expression of g(u) into (14): also, we divide both sides of (14)

by I Vu\2{q) and use (27) together with f'(u)>A: That leads us to
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4d2"'2
U >

a2ε2 aN(a)ε 16N2(a)

Now we choose d so small as to have the last term in (28) greater than zero and let a
tend to +00. Then it is easy to see that (28) contradicts (5), so ending the proof of
Theorem 2. •

Step 3 (End of the proof of Proposition 1). Let N= Sup{| u |} on M. We proceed
as in Step 2 above, with g(u) = [3N-u]~d and a=l: Then (28) takes the form

0 > 2 ( 2 C ( 1 + ^ ) + 24 + 2A + 2fl) 4d2
ε2 Nε 16N2

where R = Sup{\f'(u)\} on M and dis small as above. We observe the (29) must hold
at any point peM at which \Vu\2(p)>ε2; but, if ε2 is large, then (29) does not hold.
This is a contradiction unless | Vw | is bounded. •

Step 4 (End of the proof of Proposition 2). Let u be a solution of Au = f(u) on
M. Assuming that / is of class C2, we introduce the following two functions:

(30) W(a) = Inf{-f"(u)f(u)} on Ba(p)

(3D ^ ) = I n f { / > ) / ( M ) j on Ba(p).
I I/'Ml J

In particular, if f(u) = [uq — λu] we have

(32) »̂ (έi) = Inf{^-l)i/ («- 1 )[-iί («" 1 ) + A]} on

(33) Λ( f l) = i n f | ^ - l ) i | t o - i > y - i _ ϊ y ^ j on Ba(p).

Now Proposition 2 follows immediately if we take f(ύ) = uq — λu in the following more
general result:

THEOREM A. Suppose that Ricci(M)>0 and let u be a solution of Au = f(u) on M,
where f is of class C2. Let W{a\ R(a) be as in (30), (31) and assume that W(a)>0for
all a>0. Then either

(34) I i m i n f ^ ( φ 2 < + o o ,
α-» + oo

or

(35) lim inf R(a)a < + oo .
a-* + oo

PROOF OF THEOREM A. We set g(u)=l/f2(u) (note that, since W is a positive
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function, f{u) cannot vanish at any point of M). In particular, it is clear that there

exist a point p of M and ε>0 such that | Vu\2(p)>ε2/g(p). If qeBa{p) is a maximum

of the function G in (10), we have

(36) Wu\2(q)>-
a4ε2

g(q)(a2-r2(q))2 '

Next, we apply (13) with g(u)=l/f2(u) and A=0; we also divide both sides of the

inequality (13) by | Vu\\q) and use (36). That leads us to

(37) 0 > -
ε/W(φ.

It is now easy—using the definition of Wand R—to conclude that, if both (34) and (35)

are false, then we contradict (37), so ending Theorem A and Step 4. •

PROOF OF THEOREMS 1 AND 3. These two theorems are special cases of the following

more general result:

THEOREM B. Suppose that Ricci(M)> —A, A>0. Let u be a solution ofAu = f(u)

on M such that (6) holds and assume that there exists a function Q such that

(38) (i) Q(u\Q\u) are bounded (ii) Inf{β(κ)} = 0.
M

(iii) [β'(iι)-2/(i/)]β'(n)>0 (iv) I2f'(u)-2A-Q"(u)-]>O.

Then

(39) |Vw|2<β(w) on M.

Indeed, because of Remark 1 (i), Theorem 1 follows immediately by applying Theorem

B with Q(u) = 2F(u) and A =0. Theorem 3 is Theorem B in the special case Q = 0. Thus

we are left with the following:

PROOF OF THEOREM B. We apply the method of [7] to the function

(40) P = \Vu\2-Q{u).

Although some parts of our analysis reproduce [7], we include the details for the sake

of completeness. First we need to establish the following lemma:

LEMMA 41. Let α, ε, L > 0, A, N>0 be fixed constants. Then there exists a function
rlε,a = ΐ1: La> +oo)->i? with the following properties:

(42) ( i ) η is of class C2 on (α, + oo);

(ii) η(a)=\ , η>0, ηf<0, lim η(r) = 0;
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(iii) limηεa(r) = 1 for each r>a;
ε->0

ε r

PROOF OF LEMMA 41. We define gε: [0, !]-•/? by setting

and observe that gf

ε<0 so that # ε : [0, 1]-•[(), #ε(0)] has an inverse (gε)
 x: [0, #ε(0)]-

[0, 1]. We define Aβtβ: [α, + oo)-*J? by setting

We observe that Aε a is increasing, /zε>fl(β) = 0 and hεa is bounded above by the positive

number Aε = \imhεa(ί) as t increases to + oo. Renormalizing it to (gε(0)/Aε)hεa, we set

o n

Having defined η in this way, properties (42) (i), (ii) and (iii) are easily verified.

As for (42) (iv), we consider the identity

f
Jη(r)

Differentiating this with respect to r, taking the logarithm of the resulting equa-

tion and differentiating the result once more we obtain (42) (iv). •

We are now in a position to prove Theorem B. Let us fix d>0: because of (6),

there exists peM such that

(43) \Vu\\p)<d.

We define a function v: M/Ba(p)->R by setting φc) = η(r(x))P(x), where P(x) is the

function in (40) and η = ηε,a is as in Lemma 41. We may assume that v>0 somewhere,

for otherwise, since η>0, P<0 on M/Ba(p). Because of the assumptions (6) and (38)

(i), P is bounded: thus (42) (ii) implies that v(x) tends to 0 as r(x) tends to + oo. First

we prove that, for an arbitrary ε > 0, we have

(44) φc)<max<ε, maxφc)
I dBa(p)

For this purpose, it is enough to show that v(xj<ε at any interior maximum point x,

if there is any. At x we must have Vv = 0 and Δι;<0, which are equivalent to
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VP = - PVr and 0 > Pη '(r)Ar + Pη"(r) + η(r)AP + 2η '(r)<VP, Vr>
η(r)

respectively. From these we deduce

(45) 0 > Pη f(r)Ar + Pη "(r) + η(r)AP - 2 p .
η(r)

Now we need to estimate AP: we compute it directly using (40) and apply Weitzenbόck's

formula as in (18) to obtain

(46) AP>2\Hess(u)\2-2A\Vu\2 + 2fXu)\Vu\2-f(u)QXu)-Q'Xu)\Vu\2

>2\Hess(u)\2-f(u)Q'(u),

where the last inequality is due to the assumption (38) (iv). Next, we observe that, since

η'(r)

η(r)
PVr+Q'(u)Vu

n v)
Now, by the Schwartz inequality as in (19),

(47) 21 Hess(w) |21 Vw \2>— [ P2+-
2 η2(r) 2

Using (47) into (46) we get

(48) I Wu
2 η η(ή

η\r)

n(r)

-(Q')2(ιή-f(u)Q'(u)}\Vu

2 η\r) η(r)

where the last inequality follows from (38) (iii). Now we put (48) into (45) to get

1 {η')\r)
(49) r)Ar + η \ r ) 2 ^

η{r) ) 2 η(r)

If I Vw|2(x)<ε, then υ<P and Q>0 imply immediately that v(x)<ε. Thus we may as-

sume I Vw|2(x)>ε. Set

L = Sup{2|VW |2}, iV=Sup{|V«||β'(iι)|}
M M

and recall that (see [5]), since Ricci(M)> —A,
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Then it is easy to deduce from (49) and (42) (iv) that, at x,

so proving (44). Now we let ε tend to 0 in (44). Because of (42) (iii) and the fact that

v<P, we deduce that on M/Ba(p)

P<max<0,
I dBa(p)

Letting a tend to 0 in this last inequality we conclude that P < max {0, max P(p)} on

M. Finally, we use (40), (43) and (38) (ii) to get P=\ Vu\2-Q(u)<\ Vu\2(p)<d on M.

Since d>0 was arbitrary, we conclude that P<0 on M, as required to end Theorem

B. •

PROOF OF COROLLARY 1. This is a routine modification of the argument of [7]

and so we omit it. •

REMARK 2. Combining the methods of Theorem 2 with those of Karp [6], it is

not difficult to obtain various conditions which imply that M has infinite volume. For

instance:

PROPOSITION 3. Suppose that Ricci(M)> — A, A>0. Let u be a solution of the

Poίsson equation (2) such that (4) holds and Vw is not parallel. If there exist constants

B, C > 0 and q>\ such that

I Vw \q(x) < [Br 2{x) log(2 + r{x)) + C] on M,

then M has infinite volume.
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