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Abstract. We classify such polarized surfaces that a certain equality holds between
the self-intersection number and the delta-genus and that the complete linear system has
finite base locus and defines a non-birational map. The surface obtained by the blowing
up at a point of such a surface turns out to be a double cover of a desingularization of
a surface with delta-genus zero. We classify these surfaces according to the shape of the
inverse image of the image of the exceptional curve. Six of the classes consist of fiber
spaces over the projective line and the other class consists of irrational ruled surfaces.
Conversely, we show the existence of polarized surfaces in each of the seven classes.

1. Introduction. Let (M, L) be a polarized manifold, i.e., a pair of an n-

dimensional complete algebraic manifold M and an ample Cartier divisor L on it.

First we recall some definitions and necessary results. The integers χ, (M, L) ( / = 0 , . . . , « )

are the coefficients of the Hubert polynomial

ΛJ]

χ{M9tL) = Σχj(M9L)—9

where t[0] = 1 and tίj] = t(t +1) (t +j -1) (J> 0). The sectional genus of (M, L) is defined

as

By the Riemann-Roch theorem we get 2g(M9 L)-2 = Ln~1 -((w- \)L + KM\ where KM

is a canonical divisor of M. We define the A-genus as

A(M, L): = n + U - h°(M9 L).

A prime divisor Rn-ι in the linear system \L\ is called a rung of (M,L). We have

g(M, L) = g(Rn_1, L\Rnί). If the restriction map

rn_x: H°(M, Θ(L))^H°(RH.l9 0(L]RnJ)

is surjective, then Rn-X is said to be regular. A rung Rn-1 is regular if and only if

A(M, L) = A(Rn_1, L\Rn_ί). We denote by B s | L | the base locus of the linear system \L\.

As to the existence of a regular rung, Fujita proved the following:
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THEOREM 1 (Fujita [2]). Let (M, L) be a polarized manifold. When dim Bs | L \ < 0

and g(M, L)>A(M, L), the following are satisfied:

( i ) If Ln> 2A(M, L)— 1, then (M, L) has a nonsingular regular rung.

(ii) IfLn>2A(M,L\ then B s | L | = 0 .

(iii) If Ln > 2A(M, L) + 1 , then g(M, L) = A(M, L) and L is very ample.

We are interested in polarized manifolds satisfying the equality in the assumptions

of the above theorem. From now on we assume g(M, L) > A(M, L) and dim Bs | L \ < 0.

So far there have been the following results under these assumptions.

(1) Classification in the case Ln = 2A(M, L) (Fujita [3]).

(Γ) Classification and study of deformations in the case n = 2, L 2 = 2A(M, L) and

L = K M (Horikawa[9]) .

(2) Classification in the case Ln = 2A(M, L)-\ and A(M, L)<2 (Fujita [4], [5]).

(2') Classification and study of deformations in the case n = 2, Ln = 2A(M, L) — \

and L = KM (Horikawa [10]).

(2") Classification in the case n = 2,Ln = 2Δ(M, L)-1, A(M, L) = 3 and deg ΦL = 2

(cf. [12]).

Here we are interested in classifying the other polarized surfaces satisfying L2 =

2A(M, L)—\. For surfaces degΦL is one or two. In this paper we classify those in the

case degΦL = 2 using a method similar to that in [5].

In this case, the base locus of | L \ is a point p, and by the blowing up at p, we

obtain a surface M, where E is the exceptional curve, and a degree two morphism

Φ £ : M^W0: = ΦL{M)ciP(H0(M, Θ(L))), where the Λ-genus of the pair of Wo and a

hyperplane section H on it is zero. Moreover, we lift it to a morphism fx from M to a

Hirzebruch surfaces Σ. We carry out the classification by dividing the surfaces into

cases by the type of a divisor/f/i (is ) c M . We lift/i to a finite degree two morphism

from M or M to a surface obtained from Σ by the blowing up at a few points, where

M is a surface obtained from M by the blowing up at a point. We describe the branch

locus of the double covering. We then show the existence of polarized surfaces for each

of these types.

2. Generalities. In the rest of this paper we assume that g(M, L)>A(M, L) and

dim Bs IL \ < 0 . First we obtain the following:

PROPOSITION 1. B s | L | is empty or consists of one point p. In the latter case, any

n general members of\L\ intersect one another transversely at p.

PROOF. Since Ln>2A(M,L)—l, the pair {M,L) has a nonsingular regular rung

Rn_1 by Theorem 1. A pair (i^ M _!, L]Rn_χ) satisfies (L\Rn_ί)
n~1>2A(Rn_ί,L\Rn_1)—l.

Thus (i?,,-!, L\Rn_t) has a nonsingular regular rung Rn-2 Hence we have a sequence of

rungs M^>Rn_ί => ZDR2^R1> By the definition of a regular rung, it is sufficient to

show that Bs |L ( Λ l \ = {p}. We set LRί to be a divisor on the curve Rx which satisfies
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\ = \LRl \+p. We have deg(L(Λl) = degL Λ l + 1 . Hence we obtain A(Rί9 LRί) =

X, L\Rl)— 1, since A(M, L) = A(Ri, L\Rl) and degLΛ l = deg(L|Λl) = L"— 1. Conse-

quently, we have degLK l = 2A(R1, LRί). Moreover, we have g(Rί9 LRί)>A(R1, LRι)

by the Riemann-Roch theorem applied to the algebraic curve Rί. It follows that

Bs I L j / ? l I = 0 by Theorem 1, (ii). Hence we have Bs | L\Rl | = {/?}, and the coefficient for

p of L\Rl —p is equal to zero for any general member L of | L |. Therefore any n general

members of | L \ intersect one another at p with the local intersection number one.

q.e.d.

If Bs I LI = 0 , then we have a morphism

ΦL : A/-> Wo : =

Since Ln = 2A{M, L)-1, we obtain A(M,L)>2 and degΦL deg Wo = 2Λ°(M, 0(L))-

2 π + l . Since Λ ( J F o , # ) > 0 , we have deg W0>h°(M, Θ{L))-n. Hence 2Λ°(M, 0(L))-

2n+l>(h°(M,Θ(L))-n)degΦL. By the ampleness of L, we have A°(M, 0(L))-n> 1.

Consequently, we see that deg ΦL is one or three by the oddness of Ln. When deg ΦL = 3,

we have A(M, L) = 2. This case is classified in [5]. When degΦ L = 1, we have A(M, L)>3

and A(M,L) = A(IVO, H).

If Bs ILIΦ 0 , then Bs | L | consists of a point /?. We now eliminate the base point

in Bs ILI of the rational map ΦL: M^W0\ = ΦL(M)cz P(H°(M, 0(L))). Let π : = M -• M

be the blowing up at /?, and denote by E the exceptional curve over p. We denote by

L the proper transform of a general member of | L |. n general members of | L \ intersect

one another at/? transversely by Proposition 1. Thus we have π*L = L + E, and n general

members of | L \ do not intersect one another on E. Hence | L \ has no base point.

Therefore the rational map

φL : = M -+ WQ : = Φt(M) C= P(H°(M,

is a morphism such that Φι = ΦL o π. We see that deg ΦL is one or two as in the Bs | L \ = 0

case. Moreover, we have A(W0, H) = A(M, L)—\ if degΦ/;=l while A(W0, H) = 0 if

We set Γ0: = Φz(E). The pull-back of Γo by Φ £ can be written as Φ*LΓ0 =

E* + Do, where ε is the multiplicity of E in Φ*Γ 0 and E* is the sum of the components

which are not contracted by Φ/;, while Do is the sum of the components which are

contracted by Φ/> We refer the reader to [5, Lemma 1.5] for the proof of the following:

PROPOSITION 2. Let x be a point of Wo such that X=Φl1{x) is of positive

dimension. Then X is an irreducible reduced curve with E X= 1 and xeΓ0. Moreover,

or XaD0.

From now on we assume the following:

ASSUMPTION, n = 2 and deg Φι = 2.
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Under the above assumption A(W0, H) = 0 holds. Hence WQ is one of the following

[1], [11]:

( I ) Wo is the Hirzebruch surface Σd of degree d, and H = T + ((r - 1 + d)/2)F

where r — d — 3 is an even nonnegative integer, Γis the minimal section and Fis a fiber.

(II) Wo a Pr is the cone over a nonsingular rational curve of degree r — 1 in Pr ~x,

and H is a hyperplane section of Wo.

(III) W0 = P2, and 7/ is a hyperplane.

(IV) Wo is P 2 embedded into P5 by 0(2) and J7 is a hyperplane section of Wo.

In Case (III) we have A(M, L) = 2, and this case is classified in [5]. Moreover, Case

(IV) is impossible because Γo is a line but Wo of Case (IV) has no line.

We consider the Case (I). We set W1:=W0 and Wo is Σd for a d, and His linearly

equivalent to T + ((r- l+d)/2)F. We set/; : = Φ/;. Since L- E= 1, we see that M satisfies

one of the following:

(I-i) E -Λ* T= 1 and E f?F= 0.

(I-ii) E •/* Γ= 0 and ((r - 1 + d)/2)£ •/1*F= 1.

(I-iii) E-f?T<0.

In the case (I-ii), we have A(M, L) = 3, and this case was already classified in [12].

In the case (I-i), consider the natural morphism M-> Wx -+P1, and set Γ : =f1(E)a Wγ.

We have Γ = Γ0 and Γ is a fiber of W1-^P1. The proof of the following theorem is

similar to that of [12, Theorem 2]

THEOREM 2. In the case (I-i), f*Γ is of one of the following types:

(a) f*r = 2E + Xx+X2.

(b) f*Γ = 2E + 2X.

(c) f*Γ = E + E* + X,and E-E* = 0.

(d) f*Γ = E + E*,andE E* = l.

Here Xt and X are irreducible reduced curves which are contracted by / l 5 α«t/ £* w α«

irreducible reduced curve birational to Γ.

In the case (I-iii), we have E'f?T<0 and/ x is generically two-to-one, hence we

have —d=T2<0, and T=f1(E). Moreover, since L-E=l, we have r = d + 3.

THEOREM 3. In the case (I-iii),/fΓ and d are of one of the following types:

(e) f*T = 2E + X,andd=l.

(f) f*T = 2E,andd = 2.

( g) f*T = E + E*9E E* = 0,andd=l.

Here X is an irreducible reduced curve contracted byfl9 and E* is an irreducible reduced

curve birational to T. Moreover, we obtain A(M,L) = 4 for the cases (e) and (g), while

A(M, L) = 5for the case (f).

PROOF. Let D (resp. E*) be the sum of the irreducible reduced curves contracted

(resp. not contracted) by/;. Since 2=f?T f?F=εE-f?F+E* f?F, we obtain ε = 2 or

e = 1. When ε = 2, we have E* = 0, since E* f*F = 0. Since -d = E •/;* Γ, we have d = 1
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or 2. If d = 1, then we have r = d + 3 = 4 and so Δ(M, L) = 4. Moreover, D is an irreducible

reduced curve X by \=DΈ. If d=2, then we have r = d + 3 = 5 and so A(M,L) = 5.

Moreover, we get 2) = 0 by 0 = D E. When ε = 1, we see that £* is an irreducible reduced

curve since E*'f*F=l. Since —d = E'f?T, we have d=\. Thus we have r = d + 3 = 4

and so zl(M, L) = 4. Moreover, we get D = 0 and EΈ* = 0 because of 0 = E £* + Z) E.

q.e.d.

We consider the Case (II). We obtain a desingularization of Φ(r_ 1 ) f + Γ : Γ r_! -> WQ

by the method in [8, p. 46] and [9, Lemma 1.5]. We can lift ΦL : M-> Wo t o / i : M->

Wί = £,._! and £ is contained in a fiber of M - ^ - * ? 1 . We have Γ:=/i(£) =

THEOREM 4. /« rfe C^^ (II),/fΓ fe o / o ^ of the following types:

(a) /1*Γ = 2£ + X1 + J%:2.

(b) f?Γ=2E + 2X.

(c) f*Γ = E + E*+X,andE-E* = O.

(d) f?Γ = E + E*,andE-E* = L

Here Xt and X are irreducible reduced curves contracted by fί9 while E* is an irreducible

reduced curve birational to Γ.

The proof of the above theorem is similar to that of [12, Theorem 2].

3. Classification in Case (I), (a). From this section on, we use the same notation

for a divisor and its total transform, when there is no fear of confusion. In this section,

we assume that/fΓ is in Case (I), (a), i.e., f?Γ = 2E + X1+X2. Then the morphism

/i : M-> Wί is not finite. Hence we lift it to a finite morphism from M to W, where W

is obtained from W1 by the blowing up at two points.

We first study the inverse image of xt: =fi(Xi) by/i

LEMMA 1. The inverse image of Xι by fx is a divisor.

PROOF. The curves Xx and X2 are contracted to distinct points by/x. Thus we

have X1nX2 = 0 , and we get X1-X2 = 0. Therefore we have 0=/JT Xt = (2£+ X1 +

X2) = 2 + Xf, and hence Xf = — 2. Let Sf and 5" be general members of the linear system

which consists of those divisors of the linear system | Γ+((r— \+d)/2)F\ of Wx which

contains xt. S' and S" intersect each other transversely at xt. By S' Γ = S"-Γ=l and

the generality of 5" and S'\ the other intersections of S' and S" are outside Γ.

By Proposition 2 the morphism/j M \ / - *Γ : ^ \ / Γ ^ "^ ^ i \ ^ ' s a finite double cover-

ing. Let/fS' = : C + μiJPi a n d / * r = : C" + μ2Xi. Hence L 2 - 2 < C C// = (5'-μ1A
r

i)

(iS" — μ 2 ^ i ) = S" 5" — 2μ1μ2. Thus we have μ1=μ2 = l- Therefore C and C" are elements

of \L — Xi\, and have no intersection of Γ, since C C" = L2 — 2. Thus Bs|L — X{\ is

empty. q.e.d.

Let σ : W-+ Wλ be the blowing up at X\=fχ(X^) and x2

=/i(^2)? a n d l e t ^ i a n ( i
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Z 2 be the exceptional curves over xx and x2, respectively. Let M : = M. We denote by
Γ the proper transform of Γ. The inverse image of xt by fx is Xt because of the above
lemma. Hence by the universality of the blowing up, there exists a morphism/: M-> W
such that/^σo/^ and/*Z£ = Â . Then/is a finite double covering. Since Pic(VF) =
ZT®ZF®ZZ1®ZZ2, the branch locus is linearly equivalent to 2A = 2ocT+2βF-
2yίZ1—2y2Z2 for a unique quadruple (α, β, yl9 y2) of integers.

THEOREM 5. In Case (I), (a) let σ : W^Wι be the blowing up at the two points
x1=f1(Xι) and x2

=fi(^2) with the exceptional curves Zx and Z2 over xγ and x2,
respectively. Let f be the proper transform ofT. Then M ( = M) is a finite double covering
of W. The branch locus B is linearly equivalent to 2ocT+ 2βF— 2y1Z1— 2y2Z2. The integers
α, β, γί and y2 satisfy <x = y1+y2-l, 2y, — 1 >0 and (oc-2)(r-d- \) + 2(β — d-2)>0.
Moreover, we have the following:

(1) When d>0 andxux2φT, we have 2β>2ocd+l.
(2) When d>0, x2eT, and f is a component of B, we have 2β-l=(2<χ—\)d+

(2y2-2).
(3) When d>0, x2eT and T is not a component of B, we have 2β—l>2ocd +

(2y 2-l).
(4) When d=0, we have β — yt>0.
Conversely, for each quadruple (α, β,yl7 y2) satisfying these conditions, there exists

a polarized surface (M, L) giving rise to the quadruple.

The first half of Theorem 5 is proved as follows: Let A = ocT-\- βF—yίZ1—y2Z2.
Then clearly Be\2A\. Sincef*Γ=f*Γ-f*Z1 -f*Z2 = 2E, the curve Γ is a component
of B. Then we have B = B-\-Γ, where B' is a nonsingular curve. Since the branch locus
£is nonsingular, we have Bnf=0. Hence we have 0 = B' Γ = (2A-Γ) f = 2(oc-y1 -
y 2 +l), and obtain oc = y1 +y2 — 1. Zf is not a component of B' because Ẑ  Γ ^ l . Thus
we obtain 0 < B' Zi = 2yt - 1. Since g(M, L) > A(M, L), we have (α - 2)(r - d -1) + 2(β -
d — 2)>0. Suppose d>0 and xux2φT. T is not a component of B' because Γ Γ= 1.
Thus 0<B' T=(2(xT+(2β- l)F-(2yx - l)Z1-(2γ2-l)Z2)-T= -2xd+2β-\. There-
fore we obtain 2β>2ocd-\-1. Suppose d>0, x2 e Γand that Tis a component of B. Then
we have B' = B"+f, where B" is a nonsingular curve. Then 0 = B" T =((2α- 1)Γ+
(2/ί- l)F-(2y 1 - l)Z 1 -(2y 2 -2)Z 2 ) (Γ-Z 2 )=»(2α»l) r f+(2i ϊ- l )-(2y 2 -2) . Thus
we have (2^—l) = (2α—l)ί/+(272 —2). Moreover, d is odd. Suppose d>0 and x2eT
and that f is not a component of B'. Thus 0 < F T=(2ocT+(2β- l)F-(2y1- l)Z1-
(2y2 - 1)Z2) ( Γ - Z 2 ) = -2ad+(2β- l)-(2y 2 -1). Therefore 2αrf+(2y2- I)<2j8-1.
Suppose rf= 0. If ft e I Γ - Z£ I is a component of 5', then B' f 4 = ΐf = - 1. If f£ is not
a component of £', then 0 < F f£. In either case we have - 1 <Br fi = 2(β-yί). Thus
we have /? — •)>,•> 0. Moreover, 7̂  is not a component of 5'.

We now consider the existence of such polarized surfaces. Suppose d>0 and
xl9x2φT. Because F-(2j8-2αί/-l)F+(2y 1 -l)(Γ+rfF-Z 1 ) + (2y2

and 2β>2ad+ 1 and 2yf— 1 >0, it suffices to prove the following:
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PROPOSITION 3. Bs| T+dF—Z^ is empty.

PROOF. We see that | T+ dF- Zγ \ 3 (d- 1)F+ T+f+Z2 and (T+ dF- Zx) T=
(Γ+ dF-Zx) f = (Γ+ dF-ZJ Z 2 = 0. Hence it suffices to prove that T, f and Z 2 are
not fixed parts of | T+dF—Z1|. By the exact sequence

we have h°(T+dF-Z1)>h°(T+dF)-\ =d+ 1. By the exact sequence

we have h°(T+{d- \)F+f) = h°(T+(d- \)F) = d. Thus Z 2 is not a fixed component.
Similarly Γ is not a fixed component. By the exact sequence

we have ho((d-l)F+Γ + Z2) = h°((d-l)F+Z2). Similarly we have h%d-\)F + Z2) =
h°{(d -1)F) = d. Hence we have h°((d -1)F + Γ + Z2) = d. Thus Γis not a fixed component.

q.e.d.

Suppose d>0, x2eT and that f is a component of B. Because B = Γ+T+B",
where £"~(2α- l)T + (2β- ί)F-(2yί - l)Z1-(2y2-2)Z2, it suffices to prove that | B" \
is base point free. We have B"~(2yί-l){T + dF-Zί) + (2y2-2)(T + (d+l)F-Z2).
Hence it suffices to prove that Bs | T + dF-Z1 \ and Bs | T + (rf+ 1)F-Z 2 | are empty.

PROPOSITION 4. , Bs | T -h (d + 1)F - Z21 is empty.

PROOF. We see that f+\T+(d+l)F\ and Γ + Zι + \T+dF\ are subsets of
\T+(d+l)F-Z2\. Thus the base points are on T n (f u Z J . Since f f = f Z 1 = 0 ,
we see that Γ n Γ = Γ n Z x = 0 . q.e.d.

PROPOSITION 5. Bs | T+dF — Zx | is empty.

PROOF. We see that T+f + 2Z2e\T+dF-Zί\ and (T + d F - Z J - f = ( Γ + d F -
Z J Γ = (T+dF-Z1) -Z2 = 0. Hence it suffices to prove that f, f and Z 2 are not fixed
parts of I T-\-dF—Z1 \. By the exact sequence

0 _> ΘW(T+ dF- ZO -> d?^(r+ dF) -• ^ Z l (Γ+ rfF) ̂  0

we have h°(T+dF-Z1)>h°(T+dF)-l=d+ 1. By the exact sequences

and
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we have h°(dF — Z1+Z2) = d. Hence Γis not a fixed part. As to Z 2 and f, the proof
is similar to Proposition 5. q.e.d.

Supposed d>0 and x2eT and that T is not a component of B. Because B = f+
B\ where B'~(2j8-l-2αd-(2y 2- l))F + (2y1-l)(Γ+ J F - Z 1 ) + (2y2- i χ r + ( d + l ) F -
Z2), it suffices to prove that | B' | is base point free. The proof is similar to the above case.

Suppose d= 0. We see that B'~ 2(β-γJF + (2yί - 1)(Γ+ F-Zx) + (2y2 - 1)(T-Z2).

PROPOSITION 6. Bs| Γ + F —Zj | w empty.

PROOF. Since (Γ + F - Z ^ f 1 = ( T + F - Z 1 ) (T-Z 1) = 0, it suffices to prove that
is not a fixed part of | T-\-F — Z11. By the exact sequence

we see that AO(ΓH-F-Z1)>/2°(T + F ) - 1 = 3. Because (T + F-Z1)-T~F, we have
A°(F) = 2. q.e.d.

Hence we have Bs | B' \ c f2. Moreover, Bs | F | cz f x similarly. Since f1nf2 = 0 ,
we conclude that Bs | B' \ is empty.

We prove the existence of the ample divisor L by a method similar to [12, Proposition
4]. The invariants of M are as follows:

(2(α2)(

+ — ( - d + l ) α + j8 -
2 4

4. Classification in Case (I), (b). In this section, we assume that/fΓ is in Case
(I), (b). Then the morphism fγ : M-> W1 is not finite. Hence we lift it to a finite
morphism from M to W.

We first study the inverse image.

PROPOSITION 7. The inverse image of x by fx consists of a divisor and an isolated

point.

PROOF. Since 0=/1*F Z=(2£ + 2Ar) X, we have X2=-l. Let S' and S" be
general members of | Γ+((r-1 +d)/2)F \ on ^ containing JC. By Sf Γ = 5" Γ= 1 and
the generality of S' and S" the other intersections of S' and S" are outside Γ. By
Proposition 2 the morphism/j M \ / Γ *Γ

 : ^ \ / i ~ ^ ~̂  ^ i\- f ^s a finite double covering.
Let f*S' = : C + μ^X a n d / * r = : C" + μ2X. Since E f*S'= E f*S" = 1, we have μ ^
μ2 = l and C ' n £ = C " n £ = 0 . Thus 0 = X /1*S/ = X C - l , so that XnC' = y' is a
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single point. Similarly we see that I n C " = : y" is a single point. Therefore C and C"

are elements of | L — X\, and have intersection of Γ since C C" = L2— 1. q.e.d.

Thus the inverse image of x by fx has an isolated part. Let y be the base point of

\L — X\. Denote by p : M-^M the blowing up at y with the exceptional curve Y over

j . Let X be the proper transform of X. By Proposition 7, the inverse image of x by p o/\

is the divisor X+2Y. Let σx : W2^> W1 be the blowing up at x, and let Z x be the

exceptional curve over x and Γ the proper transform of Γ, respectively. By the univer-

sality of the blowing up, there exists a morphism/2 : M-> W2 satisfying fγop = σιof2

cindf*Z1=X+2Y.

PROPOSITION 8. The image of X by f2 is equal to the intersection z of Z1 with Γ,

and the morphism f2\Y : Y-^Z1 is an isomorphism.

PROOR. Let q be a point on Z ^ P 1 . Since deg(/2|Y)*g = deg(/2|y)*( — Zx\Zχ =

—f*Z\' ^=1> w e s e e that/2|y : Y^Zγ^Pι is an isomorphism. On the other hand,

since deg(/2|j?)*^ = deg(/2 | j?)*(-Z1),Z l= -f$Z1 X=09 the image of x by fΆχ\ X^>

Zλ ^ P1 is a point. Moreover, since/2* Γ=f2*Γ -f}Zx =2E+X, we have/2(X) e f. Hence

fZ, q.e.d.

Consequently, the morphism f2 is not finite. Hence we carry out the same operation

again. Let σ2 : W^> W2 be the blowing up at z, and let Z 2 be the exceptional curve

over z. We denote by f and Z x the proper transform of Γ and Z l 5 respectively. By

Proposition 8, the inverse image of z is X. Thus by the universality of the blowing up,

there exists a morphism/: M-> Wsuch that f2 = σ2°f and f*Z2 = X. Then/is a finite

double covering. Since Pic( W) = ZT® ZF® ZZγ ®ZZ2, the branch locus is linearly

equivalent to 2A = 2ocT+2βF-2γ1Zi-2y2Z2 for a unique quadruple (<*,β,yί9y2)
 o f

integers.

THEOREM 6. In Case (I), (b) /e/ p : M^M be the blowing up at the base point y

of the linear system \L — X\. Let σ1 : W2 -» ^ Z>e //ze blowing up at x=fx(X\ and let

Z t fe ί/ze exceptional curve over x, α«ί/ Γ ί/ze proper transform of Γ, respectively. The

intersection of Γ and Zx is a point z. Let σ2 : W^> W2 be the blowing up at z, and let

Z2 be the exceptional curve over z. Then M is a finite double covering over W. The branch

locus B is linearly equivalent to 2aT+2βF—2y1Z1—2y2Z2. The integers α, β, yλ and y2

satisfy α = y 1 + y 2 - l , γ 1 = y 2 - l , y2 — 1 >0 and (a-2)(r~d- l) + 2(β-d-2)>0. More-

over, we have the following:

(1) When d>0, xφT,we have 2ad+ 1 <2β.

(2) When d> 0 and xeT,we have 2(ad+y1) < 2β ~ 1.

(3) When d= 0, we have 2β - α - 1 > 0.

Conversely, for each quadruple (α, β, yu y2) satisfying these conditions, there exists

a polarized surface (M, L) giving rise to the quadruple.

The first half of Theorem 6 is proved as follows: Let A = ocT+ βF—y1Zί—y2Z2.



450 M. YOSHIOKA

Then clearly Be\2A\. Since f*f=f*Γ-f*Zι-f*Z2 = 2E, the curve f is a component
of B. Since f*Z1—f*Z2 = 2Y, the curve Zλ is a component of B. Thus we have
B = B' + f + Z l 5 where £' is a nonsingular curve. Since the branch locus B is nonsingular,
we have F n Γ = β ' n Z 1 = 0 . Hence we have α = 7i+7 2 —1 a n d 7i=72~l Because
Z 2 Z 1 = 1, we see that Z 2 is not a component of 5'. Thus we have 0<y 2 — 1. Since
#(M, L)>zJ(M,L), we have ( α - 2 ) ( r - d - l ) + 2(β-d-2)>0. Suppose </>0 and x^Γ.
Because T f=\, we see that Γ is not a component of £'. Thus 0<B' Γ= -2αd+
(2β— 1). Suppose d>0 and xe T. Since f Zj = 1, we see that Γis not a component of
B'. Thus we have 0 < F T = -2ocd-2γ1 + (2β-1). Suppose d=0. Since Zί f=l for
Te\ T-Zι I, we see that f is not a component. Thus we have 0<f B' = 2β-2γ1 — l.

We now consider the existence of such polarized surfaces. Suppose d>0 and xφT.
Because F~(2j8-l-2αd)F + α(2Γ+2dF-Z 1 -Z 2 ) , 2β-l-2ocd>O and α>0, it
suffices to prove that 12T+2dF-Z1-Z2 | has no base point. Since (T+{2d- \)F)+ Γ+
f G|2Γ+2ί/F-Z1-Z2| and (2T+2dF-Zι-Z2)-T=(2T+2dF-Z1-Z2)-Γ = 0, it
suffices to prove that Γ and f are not fixed parts of 12T+2dF-Z1 -Z2 |. By the exact
sequence

0^> ΘW(2T + 2dF - ZJ^ ΘW(2T + 2dF)-+ &Zl

we see that h°(2T-\-2dF-Z1)>h°{2T + 2dF)-\. By the exact sequence

we see that h°(2T + 2dF-Z1-Z2)>h°{2T + 2dF-Z1)-l. Thus h°{2T + 2dF-Z1-
Z2)>h°(2T + 2dF)-2 = 3d+l. Moreover, by the exact sequence

we have h°(T + (2d-l)F) = 3d. Consequently, T is not a fixed component of |2T +
2dF — Z1 — Z2 |. Similarly we see that f is not a fixed component.

Supposed d>0 and xεT. Because B'~(2β-l-ai(2d+l))F + <x(2T + {2d+ 1)F-
Z1-Z2), it suffices to prove that 12T + (2d+l)F-Z1—Z2 I is base point free. 2T-\-Z1 +
I (2d+\)F I and f +12(T + dF) \ are sublinear systems of 12T + (2ί/+ ί)F-Z1 -Z2 |. Since
f n (f u Z J is empty, |2Γ + (2J + 2 ) F - Z 1 - Z 2 | has no base point.

Suppose d=0. We see that F - ( 2 j S - α - l ) F + α(2T + F - Z 1 - Z 2 ) . Thus it suffices
to prove that 12T + F-Z1-Z2 \ is base point free. We see that 2T+Zί+Fe\2T + F-
Z1-Z2\. Since (2Γ + F - Z 1 - Z 2 ) T =(2T + F-Z1 - Z 2 ) Z 1 = 0 , it suffices to prove
that Tand Z x are not fixed components of \2T + F — Zί—Z2\. By the exact sequence

0 -> ΘW(2T + F -ZJ^ ΘW(2T + F)^> ΘZl(2T + F)^Q

we have h°(2T-\-F-Z1)>h°(2T-\-F)-l. By the exact sequence

we see that / i ^ Γ + F - Z ^ Z a J ^ f t ^ T + F - Z J - l . Thus we have h
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Z2)>h°(2T + F)-2 = 4. On the other hand by the exact sequence

we see that h°(T + Zί+Z2) = h°(T + F -Z2). By the exact sequence

0^φw(T + Z1)->Θw(T + Z1+Z2)^ΘZ2(T + Z1+

we see that h°(T + Zί) = h°(T + Z1+Z2). By the exact sequence

we see that h°(T) = h°(T + Z1). Thus we have h°{T + F-Z2) = h°(T) = 2. Consequently,
Tis not a fixed component of\2T + F-Zί-Z2\.

Moreover, by the exact sequence

we see that h°(T + F-Zί) = h°(2T + F-2Zί). By the exact sequence

we see that 3 = h°(T)+l>h°(T + F-Z1). Thus we have 3>/z°(2Γ + F-2Z 1 ). Conse-
quently, Z1 is not a fixed part oί\2T + F — Z1-Z2\. Hence Bs|B' | is empty.

We prove the existence of an ample divisor L by a method similar to [12, Proposition
7]. The invariants are as follows:

5. Classification in Case (I), (c). In this section, we assume that/JΓ is in Case
(I), (c), i.e.,/1*r = £ + JB*H-JSi and £ £* = 0. We divide surfaces of this type into two
subtypes.

PROPOSITION 9. There are the following two subtypes:
(c-1) X-E* = l,
(c-2) XΈ* = 0.

PROOF. Let S be a general member of | T + ((r— l+d)/2)F \ on ^ containing x.
Letf*S = :C + μX. Since £ / * S = l , wehaveμ=l and C n £ = 0 . WehaveZ £* +
C £* = 1 because L £* = 1. Since ^ is not a component of £*, we have X £* > 0. On
the other hand, since | L — X\ has no fixed component, we have C £* >0. q.e.d.
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First we treat the subtype (c-1). The morphism/! : M-> W1 is not finite. Hence
we lift it to a finite morphism. Let σ : W-* Wx be the blowing up at x : = f(X), and let
Zγ be the exceptional curve over x and Γ the proper transform of Γ, respectively. There
exists a double covering/: M^Wγ such that/1 = σo/and/*Z = Arby the universality
of the blowing up. Moreover, /is a finite double covering. Since Pic(W) = ZT® ZF®
ZZ, the branch locus is linearly equivalent to 2A = 2ocT + 2βF — 2γZ for a unique triple
(α, β, y) of integers.

THEOREM 7. In the Case (I), (c-1) let σ : W-> Wx be the blowing up at the point
x = f(X) with the exceptional curve Z over x. Let T be the proper transform of T. Then M
is a finite double covering of W. The branch locus B is linearly equivalent to 2ocT + 2βF —
2γZ. The integers α, β and y satisfy oc = y, y>0 and ((x-2){r-d-l) + 2(β-d-2)>0.
Moreover, we have the following:

(1) When d>0 andxφT, we have 0<-2ocd + 2β.
(2) When d>0,xeTand that Tis a component ofB, we have 0 = — (2α — l)(d + 1) +

2β and 2γ-l>0.
(3) When d> 0,xe T and that Tis not a component ofB, we have 0 < — 2ccd + 2β — 2α.
(4) When d= 0, we have 0<β-y.
Conversely, for each triple (α, β, y) satisfying these conditions, there exists a polarized

surface (M, L) giving rise to the triple.

To prove the first half of Theorem 7 let A = ocT + βF-yZ. Since/*f =E + E* and

EΈ* = 0,/is not branched along f. Thus we have BnΓ = 0. Hence 0 = B f = 2α - 2y.

Since Γ Z = 1 , we see that Z is not a component of B. Thus we have 0<B Z = 2y.

Since g(M, L)>A(M, L), we have (μ-2)(r-d-\) + 2(β-d-2)>0. Suppose d>0 and
xφT. Since T Γ=l, we see that T is not a component of B. Thus we have 0 < #
T= —2θίd + 2β. Suppose d>0, xeT and that T is a component of B. Then we have
B = B' + f, where B' is a nonsingular curve. We have 0 = B' T= -(2oι-l)(d+l) + 2β.
Moreover, we see that d is odd. Since Z T= 1, we see that Z is not a component of
B'. Thus we have 0<B' Z = 2y — 1. Suppose d>0, xeΓand that Γis not a component
of B. We see that 0<B T = -2<x(d+ 1) + 2)S. Suppose d=0. We see that - 1 < β f =
2β-2y.

We consider the existence of such polarized surfaces. Suppose d>0 and xφT.
Because B = (2β-2ocd)F + 2ot(T + dF-Z), it suffices to prove that | T + dF-Z \ is base
point free.

PROPOSITION 10. Bs | T + dF — Z \ is empty.

PROOF. Since T + (d—\)F + Γ e\T + dF — Z\/\t suffices to prove that T and f are
not fixed components. By the exact sequence

we have h°(T + dF - Z) > h°(T + dF) -1 = d +1 . On the other hand, by the exact sequence
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we have h°((d-l)F) = h°(T + {d-l)F) = d. Similarly we have h\d-\)F) = h°{T + {d-
\)F) = d. Consequently, T and Γ are not fixed components. q.e.d.

Suppose d>0, xeT and that T is a component of B. Because β'~(2α- 1)(Γ +
(d+ 1)F-Z), it suffices to prove that | T + (d+ ί)F-Z\ is base point free. We see that
T+\(d+l)F\cz\T + {d+l)F-Z\ and Γ + \T + dF\c:\T + {d+l)-Z\. Since |(d+l)F|
and I T + dF\ are base point free and f F = 0, we see that | T + (d+l)F-Z\ is base
point free. Suppose d>0, xeT and that T is not a component of 5. Because
£~(2j?-2α(d+l))F + 2α(Γ + (d+l)F-Z), it suffices to prove that | Γ + ( d + l ) F - Z | is
base point free. The proof is similar to the above situation. Suppose d=0. Because
£~(2β-2α)F+2α(Γ + F-Z), it suffice to prove that Bs| T + F - Z | = 0 . We see that
f + F and T+ Γ belong to | T + F - Z |. Thus the base points are on T n f, but T f = 0 ,
a contradiction.

We prove the existence of an ample divisor L by a method similar to [12, Proposition
4]. The invariants are as follows:

q(M) = 0.

Let us now treat the subtype (c-2). We lift/i : M-> ^ to a finite double covering
/ : M-> W. We first study the inverse image.

PROPOSITION 11. The inverse image ofx byfx is a divisor and an isolated part on E*.

PROOF. Since 0 = f*F X = (E + £* + X) X, we have X2 = - 1. Let S' and S" be
general members of | T + ((r-1 +d)/2)F | on ^ containing x. By S' Γ = S" F = 1 and
the generality of <S' and 5" the other intersections of Sf and S" are outside of Γ. By
Proposition 2 the morphism/j Λ/\/~ »r : M\ff 1Γ -• ^ \ F is a finite double covering.
Let ffS^'.C + μiX and f?S" = : C" + μ2X. Since E-f?S' = E f?S"=\9 we have
μί=μ2 = l and C ' n £ = C " n £ = 0 . Thus C and C" intersect each other on ̂ r or £*.
The intersection of C and Cr/ is a base point y oΐ\L — X\.

Suppose that the base point y of | L — X\ lies on X. Let σ : M^M be the blowing
up at j . By the above observation, the fixed part of \p*L — X\ is Y. Moreover, the
variable part |p*£— X— Y\ has no base point. Thus the inverse image oϊx by/0op is
the divisor X+ Y. Let σ : W^W1bc the blowing up at x, and let Z be the exceptional
curve over x and Γ the proper transform of F, respectively. By the universality of the
blowing up, there exists a morphism/: M-+ JFsuch that/1op = <jo/and/*Z=X+ y.
Moreover, f*f=f*Γ-f*Z=E+E*-Y, a contradiction to the fact that f*Γ is an
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effective divisor. q.e.d.

Let p : Λ/-+ M be the blowing up at the base point j of | L — X\, and let Y be the
exceptional curve over y. We denote by E* the proper transform of £*. Let σ : JΓ-> Wγ

be the blowing up at x, and let Z be the exceptional curve over z. We denote by f the
proper transform of Γ. By the argument similar to that for Case (I), (b), we get a
morphism/: M-> ̂ such thatfλ °ρ = σof and/*Z=X+ 7. Let ̂  be a point of Z^P1.
We have deg(/j x)*^-deg(/j x)*(-Z) | z=-/*Z JST= 1. Thus/j x :X->Z is surjective.
Similarly,/jy : Γ—»Z is surjective. Thus/is a finite double covering. Since Pic(VF) =
ZT@ZF@ZZ, the branch locus is linearly equivalent to 2A = 2ocT + 2βF-2yZ for a
unique triple (α, β, y) of integers.

THEOREM 8. In Case (I), (c-2) let p : M-+M be the blowing up at the base point

y of the linear system \L — X\. Let σ : W-* Wx be the blowing up at x : =f1(X), and let

Z be the exceptional curve over x, and Γ the proper transform of Γ. Then M is a finite

covering over W. The branch locus B is linearly equivalent to 2ocT + 2βF — 2yZ. The

integers α, β and y satisfy ot = y, y = Q, β>0 and β>2d — r + 3.

Conversely, for each triple (α, β, y) satisfying these conditions, there exists a polarized

surface (M, L) giving rise to the triple.

The first half of Theorem 8 is proved as follows: Let A = ocT+βF— yZ. Then clearly
Be\2A |. Sincef*Γ = E + E* and £ £* = 0,/is not branched along f. Thus we see that
0 = B- f = 2oc — 2y. Since f*Z = X+ Γand X- Y=0, we see that /is not branched along
Z. Thus we have 0 = B-Z=2y. Supposed d>0 and xφ T. Since T-Γ= 1, we see that T
is not a component of B. Thus we have 0 < B T= 2β. Since g(M, L) > A(M, L), we have
β>2d — r-\-2>. Suppose d>0 and xeT. Since T-Z=\, we see that Γis not a component
of B. Thus we have 0<B f=2β. Suppose d=0. For Te\T-Z\ we have f Z = l .
Thus f is not a component of 5. Hence we have 0<B f=2β.

We prove the existence of an ample divisor L by using [12, Lemma 6]. The in-
variants are as follows:

K2

M = S ( 2 - β ) , p g ( M ) = 0, q ( M ) = β - l .

6. Classification in Case (I), (d). In this section, we assume that f?Γ is in Case
(1), (d), i.e.,/fΓ = £ + £*, and £ £* = 1. The morphism / : = / ; : M-> W1 = : W is a
finite covering. Since Pic(W) = ZT@ZF, the branch locus is linearly equivalent to
2A = 2ocT-\-2βF for a unique pair (α, β) of integers.

THEOREM 9. /« Case (I), (d) the surface M is a finite double covering over W. The

branch locus B is linearly equivalent to 2ocT+2βF. The integers a and β satisfy α = 1,

β>dand2β>r + d + ?>.

Conversely, for each pair (α, β) satisfying these conditions, there exists a polarized

surface (M, L) giving rise to the pair.
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The first half of Theorem 9 is proved as follows: Let A = aT+βF. Then clearly

Be\2A\. Since f1Γ = E + E* and E E* = \, we see that B and Γ intersect each other at

fx(E n E*) with multiplicity 2. Thus we have B-Γ = 2oc = 2, and 0<B T= -2oιd+2β.

Since g(M, L)> A(M, L), we have 2β>r + d + 3.
The existence of such a surface is checked as follows: A general member Bof\2A\

is nonsingular and irreducible. By B F = 2, we see that (ΦF)\B : £ -• P 1 is a finite double
covering. Since B is irreducible, (ΦF)|β has branch points. There exists a finite double
covering f\M-*W such that f*Γ and E £ * = 1.

We prove the existence of an ample divisor L by using [12, Lemma 6]. The in-
variants are as follows:

K2

M=-l2β-6d + 2A, Pg(M) = 0, q(M) = 0.

7. Classification in Case (I), (e). In this section, we assume that/*Γ is in Case
(1), (e), i.e.,ffT=2E+Xsind d=\. Then the morphism/i : M-> Wί is not finite. Hence
we lift it to a finite morphism. Let σ : W^>Wίbe the blowing up at x : = f(X), and let
Z be the exceptional curve over x and Γ the proper transform of Γ, respectively. There
exists a double covering/: M^WX such that/1 = σo/and/*Z=Xby the universality
of the blowing up. Moreover, / is a finite double covering. Since J>ic(W) = ZT©
ZF@ZZ, the branch locus is linearly equivalent to 2A = 2<xT+2βF-2yZ for a unique
triple (α, β, y).

THEOREM 10. In Case (I), (e) let σ : W^> W1 be the blowing up at the point x = f(X)
with the exceptional curve Z over x. Let T be the proper transform of T. Then M is a
finite double covering of W. The branch locus B is linearly equivalent to 2ocT-\-2βF—2γZ.
The integers oc, β and y satisfy 2j8 = (2α-l) + (2y-l), 2 α - l > 0 , 2 y - l > 0 , (2α-l)>
(2y-\) and (a-2)(r-2) + 2(β-3)>0.

Conversely, for each triple (α, β, y) satisfying these conditions, there exists a polarized
surface (M, L) giving rise to the triple.

The first half of Theorem 10 is proved as follows: Let A = aT+βF-yZ. Then
clearly Be\ 2A |. Since f*T=2E, the curve T is a component of B. Then we have B =
B' + T, where B' is a nonsingular curve. Since the branch locus B is nonsingular, we
have 0 = Bf f =2β-(2oc- l)-(2y-1). Since f F= 1, we see that Fis not a component
and 0 < F F = 2 α - l . Since Z f = l , we have 2y— 1 >0. Since g(M, L)>A(M, L), we
have (α-2Xr-2) + 2(]8-3)>0. Suppose f is not a component of B'. Then 0<B'-f=
(2α-l)-(2y-l) . Suppose f is a component of B'. Then we have B~T+Γ + B". We
see that 0 = F ' f =(2α-l)-(2y-2), a contradiction.

We consider the existence of such polarized surfaces. We see that Bf ~2(ot — y)(T +
F) + {2y-\)(T + 2F-Z). Thus it suffices to prove Bs| T + 2F-Z\ = 0. We have
f+\2F\^\T + 2F-Z\ and Γ + | T + F | c | Γ + 2 F - Z | . Since f f = 0 , we see that
I T + 2F - ZI is base point free.
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We prove the existence of an ample divisor L by useing [12, Lemma 6]. The
invariants are as follows:

q(M) = 0.

8. Classification in Case (I), (f). In this section, we assume that ff T is in Case
(I), (f), i.e., f?T=2E and d=2. Then the morphism^ : M-> W1 is a finite covering.
We s e t / : = / ! . Since Y\c(W) = ZT® ZF, the branch locus is linearly equivalent to
2A = 2ocT + 2βF for a unique pair (α, β) of integers.

THEOREM 11. In Case (I), (f) the surface M is a finite double covering over W. The
branch locus B is linearly equivalent to 2ocT+2βF. The integers a andβ satisfy β = 2θi—\,

Conversely, for each pair (α, β) satisfying these conditions, there exists a polarized
surface (M, L) giving rise to the pair.

The first half of Theorem 11 is proved as follows: Let A = OLT+ βF. Then clearly
Be\2A |. Since/*Γ=2£, the curve T is a component of B. Then we have B= T+B',
where B' is a nonsingular curve. Thus 0 = F T= -2(2α-l) + 2j9. Since T F=l, we
see that Fis not a component of B'. Thus we have 0 < B' F= 2α. Since ̂ f(M, L) > zl(M, L),
we have (α-2)(r-3) + 2(jS-4)>0.

We consider the existence of such polarized surfaces. We see that Bf ~ (2α— 1)(Γ+
2/0- Since Bs | Γ+ 2F| = 0 , we have Bs | (2α- 1)(T + 2F) | = 0 .

We prove the existence of an ample divisor L by using [12, Lemma 6]. The in-
variants are as follows:

X^ = 4(α-2)(α-4)+l, /^(M) = α 2 -3α + 2, q(M) = 0.

9. Classification in Case (I), (g). In this section, we assume that /* T is in Case
(I), (g), i.e.,/1*Γ=£ + £*, EΈ* = 0 and d=\. Then the morphism/i : M-> Wγ is a
finite covering. We SQtf:=f1. Since Pic(W) = ZT® ZF, the branch locus is linearly
equivalent to 2A = 2ocT+2βF for a unique pair (α, β) of integers.

THEOREM 12. In Case (I), (g) the surface M is a finite double covering over W. The
branch locus B is linearly equivalent to 2ocT+2βF. The integers α and β satisfy oc = β,
α>0 andm-2(r+l)>0.

Conversely, for each pair (α, β) satisfying these conditions, there exists a polarized
surface (M, L) giving rise to the pair.

The first half of Theorem 12 is proved as follows: Let A = aT+βF. Then clearly
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Be\2A\. Since/* T=E+E* and E E* = 0, we see that/is not branched along T. Thus

0 = B-T=-2(x + 2β. Since T F= 1, we see that F is not a component of £. Thus we

have 0<T-F=2oc. Since g(M, L)>A{M, L), we have r α - 2 ( r + l ) > 0 .

Conversely, since B~2OL(T+F), there exist such polarized surfaces.

The invariants are as follows:

10. Classification in Case (II). In this section, we assume that we are in Case

(II). This case is similar to the Case (I) where the points x=f1(X) and Xi=fι(Xi) are

not on T by Proposition 2. Thus we have the following results:

Case (II), (a): Let σ : W-> Wx be the blowing up at the two points xι =fί(X1) and

x2=fi(X2)
 w i t n the exceptional curves Z1 and Z 2 over jq and x29 respectively. Let T

be the proper transform of T. Then M is a finite double covering of W. The branch

locus B is linearly equivalent to 2(xT+2βF-2yίZi-2y2Z2. The integers α, β, y1 and

y2 satisfy a = γί +γ2-l92γt-1>0, 2yS>2α(r—1)+1 and 2 ( j ί - r - l ) > 0 .

Conversely, for each quadruple (α, β, yu γ2) satisfying these conditions, there exist

a polarized surface (M, L) giving rise to the quadruple.

The invariants are as follows:

?(M)=0.

Case (II), (b): Let p : M^M be the blowing up at the base point j^ of the linear

system \L — X\. Let σ1 : W "̂*" ^ i be the blowing up at j ^ / ^ X ) , and let Z x be the

exceptional curve over x, and Γ the proper transform of Γ, respectively. The intersection

of f with Zγ is a point z. Let σ 2 : FF-» W2 be the blowing up at z, and let Z 2 be the

exceptional curve over z. Then M is a finite double covering over W. The branch locus

Bis linearly equivalent to 2aT+2βF—2yιZ1—2y2Z1. The integers α, jβ, )Ί and y2 satisfy

α = y 1 + y 2 - l , y 1 =y 2 —1, y 2 - l > 0 , 2j3>2α(r-l)+l and j 8 - r - l > 0 .

Conversely, for each quadruple (α, β,yu y2) satisfying these conditions, there exists

a polarized surface (M, L) giving rise to the quadruple.

The invariants are as follows:
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1 12
+ - ( - r + 2)α + β - — ,

q(M) = 0.

Case (II), (c): We have the following two subtypes.
(c-1) X E* = l,
(c-2) XΈ* = 0.
Subtype (c-1): Let σ : W-> W1 be the blowing up at the point x = f(X) with the

exceptional curve Z over x. Let T be the proper transform of T. Then Mis a finite
double covering of W. The branch locus B is linearly equivalent to 2ocT+2βF—2yZ.
The integers α, β and y satisfy <x = y, y>0, β>oc(r— 1) and /? — r—l>0.

Conversely, for each triple (α, β, y) satisfying these conditions, there exists a
polarized surface (M, L) giving rise to the triple.

The invariants are as follows:

q(M) = 0.

Subtype (c-2): Let p : M-^M be the blowing up at the base point y of the linear
system \L-X\. Let σ: W^W1 be the blowing up at *:=./iP0, and let Z be the
exceptional curve over x, and Γ the proper transform of Γ. Then M is a finite covering
over W. The branch locus B is linearly equivalent to 2ocT-\-2βF—2yZ. The integers α,
/? and y satisfy <x = y, y = 0, β>0 and β>r + 2.

Conversely, for each triplet (α, β, y) satisfying these conditions, there exists a
polarized surface (M, L) giving rise to the triple.

The invariants are as follows:

K2

M = S ( 2 - β ) , p g ( M ) = 0, q ( M ) = β - l .

Case (II), (d): The surface M is a finite double covering over W. The brahch locus
B is linearly equivalent to 2aT-\-2βF. The integer α and β satisfy α= 1 and β>r—\.

The invariants are as follows:
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