HILBERT SPACES RELATED TO HARMONIC FUNCTIONS

Keiko Fuita

(Received December 26, 1994, revised May 31, 1995)

Abstract

We construct a Hilbert space with a reproducing kernel by using a measure which is not positive. The space is unitarily isomorphic to a Hilbert space on the spherical sphere under the Fourier transformation. Then we study Poisson transform of Sobolev space on the n-dimensional unit sphere.

Introduction. In the study of harmonic functions on the Euclidean space $\boldsymbol{R}^{\boldsymbol{n + 1}}$, the complex light cone $\tilde{M}=\left\{z \in \boldsymbol{C}^{n+1} ; z^{2} \equiv z_{1}^{2}+z_{2}^{2}+\cdots+z_{n+1}^{2}=0\right\}$ plays an important role. Let

$$
M=\{z=x+i y \in \tilde{M} ;\|x\|=1 / 2\}
$$

be the spherical sphere, where $\|x\|$ is the Euclidean norm.
We define the Fourier transformation \mathscr{F} on $L^{2}(M)$ by

$$
\mathscr{F}: f \mapsto \mathscr{F} f(x)=\int_{M} f(z) \exp (\bar{z} \cdot x) d M(z),
$$

where $d M$ is the normalized $\mathrm{O}(n+1)$-invariant measure on M.
We denote by $\mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ the space of harmonic functions on \boldsymbol{R}^{n+1}. We define a sesquilinear form $(,)_{R^{n+1}}$ by

$$
(f, g)_{\mathbf{R}^{n+1}}=\int_{\mathbf{R}^{n+1}} f(x) \overline{g(x)} d \mu(x)
$$

where the measure $d \mu$ is constructed by means of the function ρ_{n} which is introduced in Ii [2] and Wada [7]. Note that $d \mu$ is not a positive measure.

In this paper, we assume $n \geq 2$ and we shall show that the sesquilinear form (, $)_{\mathbf{R}^{n+1}}$ is a non-degenerate inner product on

$$
L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)=\left\{f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) ;\|f\|_{\boldsymbol{R}^{n+1}}^{2} \equiv(f, f)_{\boldsymbol{R}^{n+1}}<\infty\right\},
$$

although the measure $d \mu$ is not positive and that $\left(L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right),(,)_{\boldsymbol{R}^{n+1}}\right)$ is a Hilbert space with a reproducing kernel. Then we construct the reproducing kernel concretely.

We denote by $\mathcal{O}(\tilde{M}[1])$ the space of holomorphic functions in a neighborhood of $\tilde{M}[1]=\{z=x+i y \in \tilde{M} ;\|x\| \leq 1 / 2\}$ and by $L^{2} \mathcal{O}(M)$ the closure of $\mathcal{O}(\tilde{M}[1])$ in $L^{2}(M)$. The second aim of this paper is to show that $L^{2} \mathcal{O}(M)$ is unitarily isomorphic to $L^{2} \mathscr{A}_{\Delta}\left(R^{n+1}\right)$
under the Fourier transformation \mathscr{F}. The outline of the above results was announced in [1].

Let $S=S^{n}$ be the n-dimensional unit sphere. We know that the Poisson transformation \mathscr{P}_{M} maps $L^{2}(S)$ into $L^{2} \mathcal{O}(M)$. In the last section, we shall determine the image of $L^{2}(S)$ under \mathscr{P}_{M} as a "Hardy-Sobolev" space. This result describes a result of Lebeau [3] more precisely.

The author would like to thank Professor Mitsuo Morimoto of Sophia University for useful advice.

1. A Hilbert space of harmonic functions. We denote by $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$ the space of k-homogeneous harmonic polynomials on \boldsymbol{R}^{n+1} and by $N(k, n)$ the dimension of $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$. We know

$$
N(k, n)=(2 k+n-1)(k+n-2)!/(k!(n-1)!)=O\left(k^{n-1}\right) .
$$

The following lemma is known:
Lemma 1.1. Let $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$ and $g_{l} \in \mathscr{P}_{\Delta}^{l}\left(\boldsymbol{R}^{n+1}\right)$. If $k \neq l$, then

$$
\int_{S} f_{k}(\omega) g_{l}(\omega) d S(\omega)=0
$$

We denote by $\mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ the space of harmonic functions on \boldsymbol{R}^{n+1} equipped with the topology of uniform convergence on compact sets. Let $P_{k, n}(t)$ be the Legendre polynomial of degree k and of dimension $n+1$. Define the k-homogeneous harmonic component f_{k} of $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ by

$$
\begin{equation*}
f_{k}(x)=N(k, n)\left(\sqrt{x^{2}}\right)^{k} \int_{S} f(\tau) P_{k, n}\left(\frac{x}{\sqrt{x^{2}}} \cdot \tau\right) d S(\tau), \quad x \in \boldsymbol{R}^{n+1} \tag{1}
\end{equation*}
$$

where $x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n+1} y_{n+1}$ and $d S$ is the normalized $\mathrm{O}(n+1)$-invariant measure on S. Then, the following lemma is also known:

Lemma 1.2. Let $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ and f_{k} the k-homogeneous harmonic component of f defined by (1). Then the expansion $\sum_{k=0}^{\infty} f_{k}$ converges to f in the topology of $\mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.

We denote the modified Bessel function by

$$
K_{v}(r)=\int_{0}^{\infty} \exp (-r \cosh t) \cosh v t d t, \quad v \in \boldsymbol{R}, \quad 0<r<\infty
$$

Ii [2] and Wada [7] introduced the function

$$
\rho_{n}(r)= \begin{cases}\sum_{l=0}^{(n-1) / 2} a_{n l} r^{l+1} K_{l}(r), & \text { if } n \text { is odd } \\ \sum_{l=0}^{n / 2} a_{n l} r^{l+1 / 2} K_{l-1 / 2}(r), & \text { if } n \text { is even }\end{cases}
$$

where the constants $a_{n l}, l=0,1,2, \ldots,[n / 2]$, are defined uniquely by

$$
\begin{equation*}
\int_{0}^{\infty} r^{2 k+n-1} \rho_{n}(r) d r=\frac{N(k, n) k!\Gamma(k+(n+1) / 2) 2^{2 k}}{\Gamma((n+1) / 2)} \equiv C(k, n), \quad k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

(see [7, Lemma 2.2]). Note that $\rho_{n}(r)$ is not positive but there is $R_{n}>0$ such that $\rho_{n}(r)>0$ for $r \geq R_{n}$. The function ρ_{n} is estimated as follows:

$$
\begin{cases}\left|\rho_{n}(r)\right| \leq \sqrt{r} P_{(n-1) / 2}(r) \exp (-r), & \text { if } n \text { is odd } \tag{3}\\ \rho_{n}(r)=P_{n / 2}(r) \exp (-r), & \text { if } n \text { is even }\end{cases}
$$

where $P_{(n-1) / 2}(r)$ and $P_{n / 2}(r)$ are polynomials of degree [$n / 2$] (see [7, p. 429]).
We define a measure $d \mu$ on \boldsymbol{R}^{n+1} by

$$
\int_{R^{n+1}} f(x) d \mu(x)=\int_{0}^{\infty} \int_{S} f(r \omega) d S(\omega) r^{n-1} \rho_{n}(r) d r
$$

and a sesquilinear form $(,)_{\mathbf{R}^{n+1}}$ by

$$
(f, g)_{\mathbf{R}^{n+1}}=\int_{\mathbf{R}^{n+1}} f(x) \overline{g(x)} d \mu(x) .
$$

Although $\rho_{n}(r)$ is not positive, the sesquilinear form $(,)_{\mathbb{R}^{n+1}}$ is an inner product on

$$
L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)=\left\{f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) ;\|f\|_{\boldsymbol{R}^{n+1}}^{2} \equiv(f, f)_{\boldsymbol{R}^{n+1}}<\infty\right\}
$$

by the following proposition:
Proposition 1.3. Let $f=\sum f_{k} \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\begin{aligned}
(f, f)_{\mathbf{R}^{n+1}} & =\sum_{k=0}^{\infty}\left(f_{k}, f_{k}\right)_{\mathbf{R}^{n+1}} \\
& =\sum_{k=0}^{\infty} C(k, n) \int_{S} f_{k}(\omega) \overline{f_{k}(\omega)} d S(\omega) \geq 0,
\end{aligned}
$$

i.e., either both sides are infinite or both sides are finite and equal.

Proof. For $R>0$ we put $C_{R}(k, n)=\int_{0}^{R} r^{2 k+n-1} \rho_{n}(r) d r$ and

$$
I(R)=\int_{B(R)}|f(x)|^{2} d \mu(x)
$$

where $B(R)=\left\{x \in R^{n+1} ;\|x\|<R\right\}$. Since $\rho_{n}(r)>0$ for $r \geq R_{n}, I(R)$ is monotone increasing for $R \geq R_{n}$ and $(f, f)_{R^{n+1}}=\lim _{R \rightarrow \infty} I(R)$. By Lemmas 1.2 and 1.1,

$$
I(R)=\sum_{k=0}^{\infty} C_{R}(k, n) / C(k, n)\left(f_{k}, f_{k}\right)_{\mathbf{R}^{n+1}} .
$$

Choose sufficiently large $R \geq R_{n}$ so that $C_{R}(k, n)>0, k=0,1,2, \ldots$, and take the limit.

Then by Fatou's lemma we have

$$
\lim _{R \rightarrow \infty} \sum_{k=0}^{\infty} C_{R}(k, n) / C(k, n)\left(f_{k}, f_{k}\right)_{\mathbb{R}^{n+1}}=\sum_{k=0}^{\infty}\left(f_{k}, f_{k}\right)_{\mathbf{R}^{n+1}} .
$$

q.e.d.

Lemma 1.4. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then we have

$$
|f(x)| \leq \sqrt{\Gamma((n+1) / 2)} \exp (\|x\| / 2)\|f\|_{\mathbf{R}^{n+1}} .
$$

Proof. By Lemma 1.2, $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ can be expanded as follows:

$$
f(x)=\sum_{k=0}^{\infty} N(k, n)\|x\|^{k} \int_{S} f_{k}(\omega) P_{k, n}\left(\frac{x}{\|x\|} \cdot \omega\right) d S(\omega)
$$

Since $N(k, n) \int_{S}\left(P_{k, n}(\omega \cdot x /\|x\|)\right)^{2} d S(\omega)=1$, we have

$$
\begin{align*}
|f(x)| & \leq \sum_{k=0}^{\infty} N(k, n)\|x\|^{k} \int_{S}\left|f_{k}(\omega) P_{k, n}\left(\frac{x}{\|x\|} \cdot \omega\right)\right| d S(\omega) \\
& \leq \sum_{k=0}^{\infty}\|x\|^{k} \sqrt{N(k, n) / C(k, n)}\left(C(k, n) \int_{S}\left|f_{k}(\omega)\right|^{2} d S(\omega)\right)^{1 / 2} \\
& \leq\|f\|_{\mathbf{R}^{n+1}} \sum_{k=0}^{\infty}\|x\|^{k} \sqrt{N(k, n) / C(k, n)} \\
& \leq \sqrt{\Gamma((n+1) / 2)}\|f\|_{\mathbf{R}^{n+1}} \sum_{k=0}^{\infty}\|x\|^{k} /\left(k!2^{k}\right) \\
& =\sqrt{\Gamma((n+1) / 2)} \exp (\|x\| / 2)\|f\|_{\mathbf{R}^{n+1}}
\end{align*}
$$

Theorem 1.5. $\left(L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right),(,)_{\mathbf{R}^{n+1}}\right)$ is a Hilbert space.
Proof. We have only to prove the completeness of the pre-Hilbert space $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Let $\left\{f_{N}\right\}$ be a Cauchy sequence in $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then by Lemma 1.4 and the Poisson integral formula, $\left\{f_{N}\right\}$ converges uniformly on every compact set to a function $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Choose sufficiently large $R \geq R_{n}$ so that

$$
\begin{equation*}
C_{R}(k, n)>0, \quad k=0,1,2, \ldots \tag{4}
\end{equation*}
$$

Then divide the integral of $\left\|f_{N}-f\right\|_{\mathbf{R}^{n+1}}^{2}$ into

$$
I_{1}(N)=\int_{B(R)}\left|f_{N}(x)-f(x)\right|^{2} d \mu(x)
$$

and

$$
I_{2}(N)=\int_{\mathbf{R}^{n+1} \backslash B(R)}\left|f_{N}(x)-f(x)\right|^{2} d \mu(x)
$$

Since the integral domain of $I_{1}(N)$ is compact, $\left|I_{1}(N)\right|<\infty$. Since $\rho_{n}(r)>0$ for $r \geq R \geq R_{n}$, by Fatou's lemma and (4),

$$
\begin{aligned}
I_{2}(N) & =\int_{\boldsymbol{R}^{n+1} \backslash B(R)} \liminf _{M \rightarrow \infty}\left|f_{N}(x)-f_{M}(x)\right|^{2} d \mu(x) \\
& \leq \liminf _{M \rightarrow \infty} \int_{\mathbf{R}^{n+1} \backslash B(R)}\left|f_{N}(x)-f_{M}(x)\right|^{2} d \mu(x) \\
& \leq \liminf _{M \rightarrow \infty}\left\|f_{N}(x)-f_{M}(x)\right\|_{R^{n+1}}^{2}
\end{aligned}
$$

Since $\left\{f_{N}\right\}$ is a Cauchy sequence, $I_{2}(N)$ tends to 0 as $N \rightarrow \infty$. Therefore, $\|f\|_{\mathbf{R}^{n+1}} \leq$ $\left\|f-f_{N}\right\|_{\mathbf{R}^{n+1}}+\left\|f_{N}\right\|_{\mathbf{R}^{n+1}}<\infty$ and $\left\|f-f_{N}\right\|_{\mathbf{R}^{n+1}}=I_{1}(N)+I_{2}(N)$ tends to 0 as $N \rightarrow \infty$. q.e.d.

Corollary 1.6. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ and f_{k} the k-homogeneous harmonic component of f defined by (1). Then the expansion $\sum_{k=0}^{\infty} f_{k}$ converges to f in the topology of $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.

From this corollary, Proposition 1.3 and Lemma 1.1, we get the following theorem:
Theorem 1.7. The Hilbert space $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ is the direct sum of the spaces $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right):$

$$
L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)=\bigoplus_{k=0}^{\infty} \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right) .
$$

The mapping $f \mapsto f_{k}$ defined by (1) is the orthogonal projection of $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ onto $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$.

By Lemma 1.4, there is a reproducing kernel on the Hilbert space $L^{2} \mathscr{A}_{\Delta}\left(R^{n+1}\right)$. Now, we construct the reproducing kernel on $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Put

$$
E_{1}(x, y)=\int_{M} \exp (\zeta \cdot x) \exp (y \cdot \bar{\zeta}) d M(\zeta)
$$

Then $E_{1}(x, y)$ is real-valued, symmetric and satisfies

$$
\Delta_{x} E_{1}(x, y) \equiv\left(\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\cdots+\partial^{2} / \partial x_{n+1}^{2}\right) E_{1}(x, y)=0 .
$$

Put

$$
\tilde{P}_{k, n}(z, w)=\left(\sqrt{z^{2}}\right)^{k}\left(\sqrt{w^{2}}\right)^{k} P_{k, n}\left(\frac{z}{\sqrt{z^{2}}} \cdot \frac{w}{\sqrt{w^{2}}}\right)
$$

Lemma 1.8 ([7, Lemma 1.3]).

$$
\int_{M}(\zeta \cdot z)^{k}(w \cdot \bar{\zeta})^{l} d M(\zeta)=\frac{\delta_{k l}}{2^{k} N(k, n) \gamma_{k, n}} \tilde{P}_{k, n}(z, w), \quad z, w \in C^{n+1}
$$

where $\gamma_{k, n}$ is the coefficient of the highest power of the Legendre polynomial $P_{k, n}(t)$:

$$
\gamma_{k, n}=2^{k} \Gamma(k+(n+1) / 2) /(N(k, n) \Gamma((n+1) / 2) k!) .
$$

By this lemma, $E_{1}(x, y)$ is expanded as follows:

$$
\begin{align*}
E_{1}(x, y) & =\sum_{k=0}^{\infty} N(k, n) / C(k, n) \widetilde{P}_{k, n}(x, y) \tag{5}\\
& =\sum_{k=0}^{\infty} \Gamma((n+1) / 2) /\left(k!\Gamma(k+(n+1) / 2) 2^{2 k}\right) \tilde{P}_{k, n}(x, y)
\end{align*}
$$

Therefore, there is a constant C such that

$$
\left|E_{1}(x, y)\right| \leq C \exp (\|x\| /(2 A)) \exp (A\|y\| / 2), \quad x, y \in \boldsymbol{R}^{n+1}
$$

for any $A>0$. Moreover, we have

$$
\left\|E_{1}(\cdot, y)\right\|_{R^{n+1}}^{2} \leq \Gamma((n+1) / 2) J_{0}(i\|y\|)<\Gamma((n+1) / 2) \exp (\|y\|),
$$

where $J_{0}(t)$ is the Bessel function of degree 0 .
In particular, $E_{1}(x, \cdot)$ and $E_{1}(\cdot, y)$ belong to $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.
Theorem 1.9. E_{1} is the reproducing kernel on the Hilbert space $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$; that is, for $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ we have

$$
f(y)=\left(f_{x}, E_{1}(y, x)\right)_{\mathbf{R}^{n+1}}=\int_{\mathbf{R}^{n+1}} f(x) \overline{E_{1}(y, x)} d \mu(x), \quad y \in \boldsymbol{R}^{n+1} .
$$

Proof. Since $E_{1}(y, \cdot) \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$, Corollary 1.6, (5), Lemma 1.1 and (2) imply

$$
\begin{aligned}
& \int_{\boldsymbol{R}^{n+1}} f(x) \overline{E_{1}(y, x)} d \mu(x) \\
& \quad=\int_{0}^{\infty} \int_{S_{l}=0}^{\infty} f_{l}(r \omega) \sum_{k=0}^{\infty} N(k, n) / C(k, n) r^{k} \widetilde{P}_{k, n}(\omega, y) d S(\omega) r^{n-1} \rho_{n}(r) d r \\
& =\int_{0}^{\infty} \sum_{k=0}^{\infty} f_{k}(y) / C(k, n) r^{2 k+n-1} \rho_{n}(r) d r \\
& =\sum_{k=0}^{\infty} f_{k}(y)=f(y)
\end{aligned}
$$

q.e.d.
2. Complex harmonic functions. We denote by $\mathscr{P}_{\Delta}^{k}\left(C^{n+1}\right)$ the space of the k-homogeneous complex harmonic polynomials; that is, if $f \in \mathscr{P}_{\Delta}^{k}\left(C^{n+1}\right), \Delta_{z} f(z) \equiv$ $\left(\partial^{2} / \partial z_{1}^{2}+\cdots+\partial^{2} / \partial z_{n+1}^{2}\right) f(z)=0$.

By definition, $\left.\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{C}^{n+1}\right)\right|_{\boldsymbol{R}^{n+1}}=\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$. For $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$, the harmonic extension \tilde{f}_{k} of f_{k} is given by

$$
\begin{equation*}
\tilde{f}_{k}(z)=N(k, n) \int_{S} f_{k}(\tau) \tilde{P}_{k, n}(z, \tau) d S(\tau), \quad z \in C^{n+1} \tag{6}
\end{equation*}
$$

The cross norm $L(z)$ on C^{n+1} corresponding to the Euclidean norm $\|x\|$ is the Lie norm given by

$$
L(z)=L(x+i y)=\left[\|x\|^{2}+\|y\|^{2}+2 \sqrt{\|x\|^{2}\|y\|^{2}-(x \cdot y)^{2}}\right]^{1 / 2},
$$

and the dual Lie norm $L^{*}(z)$ is given by

$$
\begin{aligned}
L^{*}(z) & =\sup \{|z \cdot \zeta| ; L(\zeta) \leq 1\} \\
& =\frac{1}{\sqrt{2}}\left[\|x\|^{2}+\|y\|^{2}+\sqrt{\left(\|x\|^{2}-\|y\|^{2}\right)^{2}+4(x \cdot y)^{2}}\right]^{1 / 2} .
\end{aligned}
$$

The open and the closed Lie balls of radius R with center at 0 are defined by

$$
\tilde{B}(R)=\left\{z \in C^{n+1} ; L(z)<R\right\}, \quad 0<R \leq \infty,
$$

and by

$$
\tilde{B}[R]=\left\{z \in C^{n+1} ; L(z) \leq R\right\}, \quad 0 \leq R<\infty,
$$

respectively. Put

$$
\tilde{M}(R)=\tilde{B}(R) \cap \tilde{M}, \quad \tilde{M}[R]=\tilde{B}[R] \cap \tilde{M} .
$$

We denote by $\mathcal{O}(\widetilde{B}(R))($ resp. $\mathcal{O}(\tilde{M}(R)))$ the space of holomorphic functions on $\tilde{B}(R)$ (resp. $\tilde{M}(R))$ equipped with the topology of uniform convergence on compact sets. We call

$$
\mathcal{O}_{\Delta}(\widetilde{B}(R))=\left\{f \in \mathcal{O}(\widetilde{B}(R)) ; \Delta_{z} f(z)=0\right\}, \quad 0<R \leq \infty
$$

the space of complex harmonic functions on $\widetilde{B}(R)$.
The following lemmas are known:
Lemma 2.1. The restriction mapping α_{B} establishes the following linear topological isomorphism;

$$
\alpha_{B}: \mathcal{O}_{\Delta}(\widetilde{B}(R)) \xrightarrow{\sim} \mathscr{A}_{\Delta}(B(R)),
$$

where $\mathscr{A}_{\Delta}(B(R))$ is the space of harmonic functions on $B(R)$ equipped with the topology of uniform convergence on compact sets.

Moreover, the inverse mapping α_{B}^{-1} is given by the Poisson integral \mathscr{P} :

$$
\mathscr{P}: f \mapsto \mathscr{P} f(z)=\int_{S} f(\rho \omega) K_{1}(z, \omega / \rho) d S(\omega)
$$

where $0<\rho<R$ and

$$
\begin{equation*}
K_{1}(z, w)=\frac{1-z^{2} w^{2}}{\left(1+z^{2} w^{2}-2 z \cdot w\right)^{(n+1) / 2}}, \quad L(z) L(w)<1 \tag{7}
\end{equation*}
$$

is the Poisson kernel.
Lemma 2.2 (cf. [4]). The restriction mapping α_{M} establishes the following linear topological isomorphism:

$$
\alpha_{M}: \mathcal{O}_{\Delta}(\tilde{B}(R)) \xrightarrow{\sim} \mathcal{O}(\tilde{M}(R)) .
$$

Moreover, the inverse mapping α_{M}^{-1} is given by the Cauchy integral \mathscr{C} :

$$
\mathscr{C}: f \mapsto \mathscr{C} f(z)=\int_{M} f(\rho w) K_{0}(z, \bar{w} / \rho) d M(w),
$$

where $0<\rho<R$ and

$$
\begin{equation*}
K_{0}(z, w)=\frac{1+2 z \cdot w}{(1-2 z \cdot w)^{n}}, \quad w \in \tilde{M}, \quad L(z) L(w)=2 L(z) L^{*}(w)<1 \tag{8}
\end{equation*}
$$

is the Cauchy kernel.
Lemma 2.3 (cf. [2, Lemma 1.7] and [7, Lemma 1.4]). Let $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(C^{n+1}\right)$ and $g_{l} \in \mathscr{P}_{\Delta}^{l}\left(\boldsymbol{C}^{n+1}\right)$. Then

$$
\begin{aligned}
& \int_{M} f_{k}(w) \overline{g_{k}(w)} d M(w)=\frac{\gamma_{k, n}}{2^{k}} \int_{S} f_{k}(\omega) \overline{g_{k}(\omega)} d S(\omega), \\
& \int_{M} f_{k}(w) \overline{g_{l}(w)} d M(w)=0, \quad k \neq l .
\end{aligned}
$$

3. A Hilbert space on the spherical sphere. We denote by $L^{2}(M)$ the space of square integrable functions on M with the inner product

$$
(f, g)_{M}=\int_{M} f(w) \overline{g(w)} d M(w)
$$

and by $\mathscr{P}^{k}(M)$ the space of the k-homogeneous polynomials on M. Define the k-homogeneous component f_{k} of $f \in L^{2}(M)$ by

$$
\begin{equation*}
f_{k}(z)=2^{k} N(k, n) \int_{M} f(w)(z \cdot \bar{w})^{k} d M(w), \quad z \in M \tag{9}
\end{equation*}
$$

The harmonic extension of f_{k} is given by

$$
\tilde{f}_{k}(z)=2^{k} N(k, n) \int_{M} f_{k}(w)(z \cdot \bar{w})^{k} d M(w), \quad z \in C^{n+1}
$$

By Lemma 2.3, $\mathscr{P}^{k}(M)$ and $\mathscr{P}^{l}(M)$ are mutually orthogonal for $k \neq l$.
Let $L^{2} \mathcal{O}(M)$ be the closed subspace of $L^{2}(M)$ generated by $\mathscr{P}^{k}(M), k=0,1,2, \ldots$. Then by definition we have the following lemma:

Lemma 3.1. Let $f \in L^{2} \mathcal{O}(M)$ and f_{k} the k-homogeneous component of f defined by (9). Then the expansion $\sum_{k=0}^{\infty} f_{k}$ converges to f in the topology of $L^{2} \mathcal{O}(M)$; that is, we have the Hilbert direct sum decomposition:

$$
L^{2} \mathcal{O}(M)=\bigoplus_{k=0}^{\infty} \mathscr{P}^{k}(M) .
$$

For any function f on $\tilde{M}(1)$, define the function f^{t} on M by $f^{t}(z)=f(t z)$ for $0<t<1$. If $f \in \mathcal{O}(\tilde{M}(1))$, then $f^{t} \in L^{2} \mathcal{O}(M)$.

Lemma 3.2. If $f \in L^{2} \mathcal{O}(M)$, then there is $\tilde{f} \in \mathcal{O}(\tilde{M}(1))$ such that $\lim _{t \uparrow 1}\left\|f-\tilde{f}^{t}\right\|_{M}=0$.
Conversely, if $\tilde{f} \in \mathcal{O}(\tilde{M}(1))$ satisfies $\sup _{0<t<1}\left\|\tilde{f}^{t}\right\|_{M}<\infty$, then $f=\lim _{t \uparrow 1} \tilde{f}^{t}$ belongs to $L^{2} \mathcal{O}(M)$.

Proof. Let $f=\sum_{k=0}^{\infty} f_{k} \in L^{2} \mathcal{O}(M)$. Define

$$
\tilde{f}(w)=\int_{M} f(\zeta) K_{0}(\bar{\zeta}, w) d M(\zeta), \quad L(w)<1
$$

then $\tilde{f} \in \mathcal{O}(\tilde{M}(1))$. Put $w=t z$ for $z \in M$ and $0<t<1$, then we have $\tilde{f}(w)=\tilde{f}^{t}(z)=\sum_{k=0}^{\infty} f_{k}(t z)$. Since $\left\|f-\tilde{f}^{t}\right\|_{M}^{2}=\sum_{k=0}^{\infty}\left(1-t^{k}\right)^{2}\left\|f_{k}\right\|_{M}^{2}$, we have $\lim _{t \uparrow 1}\left\|f-\tilde{f}^{t}\right\|_{M}=0$ by Fatou's lemma.

Conversely, assume that $\tilde{f} \in \mathcal{O}(\tilde{M}(1))$ satisfies sup ${ }_{0<t<1}\left\|\tilde{f}^{t}\right\|_{M}<\infty$. Expand \tilde{f}^{t} by $\sum_{k=0}^{\infty} f_{k}^{t}$. Then by Fatou's lemma, we have

$$
\infty>\lim _{t \uparrow 1}\left\|\tilde{f}^{t}\right\|_{M}^{2}=\lim _{t \uparrow 1} \sum_{k=0}^{\infty}\left\|\tilde{f}_{k}^{t}\right\|_{M}^{2} \geq \sum_{k=0}^{\infty} \lim _{t \uparrow 1}\left\|\tilde{f}_{k}^{t}\right\|_{M}^{2}=\|f\|_{M}^{2} .
$$

q.e.d.

From this lemma, we have

$$
L^{2} \mathcal{O}(M)=\left\{f \in \mathcal{O}(\tilde{M}(1)) ; \sup _{0<t<1}\left\|f^{t}\right\|_{M}<\infty\right\} .
$$

Corollary 3.3. Let $f \in L^{2} \mathcal{O}(M)$. Then we have

$$
f(z)=\lim _{t \uparrow 1} \mathscr{C} f(t z)=\lim _{t \uparrow 1} \int_{M} f(w) K_{0}(\bar{w}, t z) d M(w), \quad z \in M,
$$

where the limit is taken in $L^{2}(M)$.
4. The Fourier transformation. We define the Fourier transform $\mathscr{F} f$ of $f \in L^{2}(M)$ by

$$
\mathscr{F} f(x)=\int_{M} f(w) \overline{\exp (x \cdot w)} d M(w), \quad x \in \boldsymbol{R}^{n+1}
$$

Then by Lemmas 3.1 and 2.3 and (9), for $f=\sum_{k=0}^{\infty} f_{k} \in L^{2} \mathcal{O}(M)$ we have

$$
\begin{equation*}
\mathscr{F} f(x)=\sum_{k=0}^{\infty} \frac{1}{N(k, n) k!2^{k}} f_{k}(x), \quad x \in \boldsymbol{R}^{n+1} . \tag{10}
\end{equation*}
$$

We call the mapping $\mathscr{F}: f \mapsto \mathscr{F} f$ the Fourier transformation.
Theorem 4.1. The Fourier transformation \mathscr{F} is a unitary isomorphism of $L^{2} \mathcal{O}(M)$ onto $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.

Proof. Let $F \in L^{2} \mathcal{O}(M)$. By Lemmas 3.1 and 2.3 and (10),

$$
\begin{aligned}
\infty>(F, F)_{M} & =\sum_{k=0}^{\infty} \int_{M} F_{k}(w) \overline{F_{k}(w)} d M(w) \\
& =\sum_{k=0}^{\infty} C(k, n) \int_{S} \frac{F_{k}(\omega)}{N(k, n) k!2^{k}} \frac{\overline{F_{k}(\omega)}}{N(k, n) k!2^{k}} d S(\omega) \\
& =(\mathscr{F} F, \mathscr{F} F)_{\mathbf{R}^{n+1}} .
\end{aligned}
$$

Thus \mathscr{F} is an isometric mapping of $L^{2} \mathcal{O}(M)$ into $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.
Now, we prove that \mathscr{F} is surjective. Let $f=\sum_{k=0}^{\infty} f_{k} \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then Proposition 1.3 and Lemmas 1.1 and 2.3 imply

$$
\begin{aligned}
\infty & >\int_{\mathbf{R}^{n+1}} f(x) \overline{f(x)} d \mu(x)=\sum_{k=0}^{\infty} C(k, n) \int_{S} f_{k}(\omega) \overline{f_{k}(\omega)} d S(\omega) \\
& =\sum_{k=0}^{\infty} N(k, n)^{2} k!^{2} 2^{2 k} \int_{M} f_{k}(w) \overline{f_{k}(w)} d M(w) \\
& =\int_{M}\left(\sum_{k=0}^{\infty} N(k, n) k!2^{k} f_{k}(w)\right)\left(\overline{\sum_{l=0}^{\infty} N(l, n) l!2^{l} f_{l}(w)}\right) d M(w) .
\end{aligned}
$$

Therefore, $F(w)=\sum_{k=0}^{\infty} N(k, n) k!2^{k} f_{k}(w)$ belongs to $L^{2} \mathcal{O}(M)$. By (10), $\mathscr{F} F(z)=f(z)$. q.e.d.

Especially for $\left.f \in \mathcal{O}(\tilde{M}[1])\right|_{M} \subset L^{2} \mathcal{O}(M)$, we have

$$
\mathscr{F}: \mathcal{O}(\tilde{M}[1]) \xrightarrow{\sim} \operatorname{Exp}_{\Delta}\left(\boldsymbol{R}^{n+1} ;[1 / 2]\right),
$$

where

$$
\begin{equation*}
\operatorname{Exp}_{\Delta}\left(\boldsymbol{R}^{n+1} ;[1 / 2]\right)=\left\{f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) ; \exists B<1 / 2, \exists C>0 \text { s.t. }|f(x)| \leq C \exp (B\|x\|)\right\} \tag{11}
\end{equation*}
$$

(cf. [4]).
Theorem 4.2. If $f \in \operatorname{Exp}_{\Delta}\left(\boldsymbol{R}^{n+1} ;[1 / 2]\right)$, then

$$
\begin{equation*}
\mathscr{F}^{-1} f(z)=\int_{\mathbf{R}^{n+1}} \exp (x \cdot z) f(x) d \mu(x), \quad z \in M \tag{12}
\end{equation*}
$$

Proof. Because of $|\exp (x \cdot z)| \leq \exp (\|x\| / 2)$ for $z \in M$, the integral on the righthand side in (12) converges absolutely by (3) and (11), which we denote by $F(z)$. Then by the Fubini theorem and Theorem 1.9, $\mathscr{F} F(x)=f(x)$.
q.e.d.

For $f(x) \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ and $0<t<1, \quad \tilde{f}^{t}(x)=f(t x) \in \operatorname{Exp}_{\Delta}\left(\boldsymbol{R}^{n+1},[1 / 2]\right)$ and $\lim _{t \uparrow 1}\left\|f-\tilde{f}^{t}\right\|_{\boldsymbol{R}^{n+1}}=0$. Therefore, we have the following corollary:

Corollary 4.3. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\mathscr{F}^{-1} f(z)=\lim _{t \uparrow 1} \int_{R^{n+1}} \exp (x \cdot z) f(t x) d \mu(x), \quad z \in M
$$

where the limit is taken in $L^{2}(M)$.
Theorem 4.4. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\mathscr{F}^{-1} f(z)=\lim _{R \rightarrow \infty} \int_{B(R)} \exp (x \cdot z) f(x) d \mu(x), \quad z \in M,
$$

where the limit is taken in $L^{2}(M)$.
Proof. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ and f_{k} the k-homogeneous harmonic component of f. Put

$$
\begin{array}{ll}
f^{R}(z)=\int_{B(R)} \exp (x \cdot z) f(x) d \mu(x), & z \in M, \\
f_{k}^{R}(z)=\int_{B(R)} \exp (x \cdot z) f_{k}(x) d \mu(x), & z \in M .
\end{array}
$$

Then by using the Fubini theorem and Lemmas 1.8 and 2.3, we have

$$
\begin{aligned}
\mathscr{F} f_{k}^{R}(w) & =\int_{M} \int_{B(R)} \exp (x \cdot z) f_{k}(x) d \mu(x) \exp (w \cdot \bar{z}) d M(z), \quad x=r \omega, \\
& =C_{R}(k, n) \int_{M} \int_{S} \frac{(\omega \cdot z)^{k}}{k!} f_{k}(\omega) d S(\omega) \exp (w \cdot \bar{z}) d M(z) \\
& =\frac{C_{R}(k, n)}{C(k, n)} f_{k}(\omega) .
\end{aligned}
$$

By the uniform convergence of $\sum_{k=0}^{\infty} f_{k}$ on $B[R]=\left\{x \in \boldsymbol{R}^{n+1} ;\|x\| \leq R\right\}$, we have

$$
\mathscr{F} f^{R}(w)=\sum_{k=0}^{\infty} C_{R}(k, n) / C(k, n) f_{k}(w) .
$$

By Proposition 1.3,

$$
\lim _{R \rightarrow \infty}\left\|f-\mathscr{F} f^{R}\right\|_{R^{n+1}}^{2}=\lim _{R \rightarrow \infty} \sum_{k=0}^{\infty}\left(1-C_{R}(k, n) / C(k, n)\right)^{2}\left\|f_{k}\right\|_{\mathbf{R}^{n+1}}^{2}=0 .
$$

Since \mathscr{F} is a unitary isomorphism, $\mathscr{F}^{-1} f=\lim _{R \rightarrow \infty} f^{R}$ in $L^{2}(M)$. q.e.d.
5. The Poisson transformation. Let $L^{2}(S)$ be the space of square integrable functions on S with respect to the inner product

$$
(f, g)_{S}=\int_{S} f(\omega) \overline{g(\omega)} d S(\omega)
$$

We call $\mathscr{H}^{k}(S)=\left\{\left.P\right|_{s} ; P \in \mathscr{P}_{\Delta}^{k}\left(C^{n+1}\right)\right\}$ the space of k-spherical harmonics. For $f \in L^{2}(S)$, the k-spherical harmonic component f_{k} of f is defined by

$$
\begin{equation*}
f_{k}(\omega)=N(k, n) \int_{S} f(\tau) P_{k, n}(\omega \cdot \tau) d S(\tau) \tag{13}
\end{equation*}
$$

Note that (13) is the restriction of (1) on S and the harmonic extension of $f_{k} \in \mathscr{H}^{k}(S)$ is given by (6). The following lemmas are known:

Lemma 5.1. Let $f \in L^{2}(S)$ and f_{k} be the k-spherical harmonic component of f defined by (13). Then the expansion $\sum_{k=0}^{\infty} f_{k}$ converges to f in the topology of $L^{2}(S)$; that is, we have the Hilbert direct sum decomposition:

$$
L^{2}(S)=\bigoplus_{k=0}^{\infty} \mathscr{H}^{k}(S)
$$

Lemma 5.2. Let $f \in L^{2}(S)$. Then we have

$$
f(\omega)=\lim _{t \uparrow 1} \mathscr{P} f(t \omega)=\lim _{t \uparrow 1} \int_{S} f(\eta) K_{1}(\eta, t \omega) d S(\eta), \quad \omega \in S,
$$

where the limit is taken in $L^{2}(S)$.
Put $\|f\|_{S}^{2}=(f, f)_{S}$. By Lemma 2.3, for $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(C^{n+1}\right)$ we have

$$
\begin{equation*}
\left\|f_{k}\right\|_{S}^{2}=2^{k} / \gamma_{k, n}\left\|f_{k}\right\|_{M}^{2} \tag{14}
\end{equation*}
$$

Thus for $f=\sum f_{k}, f_{k} \in \mathscr{H}^{k}(S)$ we have

$$
\lim _{t \uparrow 1} \sum t^{2 k}\left\|\tilde{f}_{k}\right\|_{M}^{2}=\lim _{t \uparrow 1} \sum \gamma_{k, n} / 2^{k} t^{2 k}\left\|\tilde{f}_{k}\right\|_{S}^{2}
$$

where \tilde{f}_{k} is the harmonic extension of f_{k}.

Since

$$
\begin{equation*}
2^{k} / \gamma_{k, n}=N(k, n) \Gamma((n+1) / 2) k!/ \Gamma(k+(n+1) / 2)=O\left(k^{(n-1) / 2}\right), \tag{15}
\end{equation*}
$$

$\mathscr{P} f(t z)$ converges in $L^{2} \mathscr{O}(M)$ as $t \uparrow 1$. Therefore, we can define the Poisson transform $\mathscr{P}_{M} f$ of $f \in L^{2}(S)$ by

$$
\mathscr{P}_{M} f(z)=\lim _{t \uparrow 1} \int_{S} f(\omega) K_{1}(t z, \omega) d S(\omega), \quad z \in M,
$$

where the limit is taken in $L^{2}(M)$. We call the mapping $\mathscr{P}_{M}: f \mapsto \mathscr{P}_{M} f$ the Poisson transformation.

To determine the image of \mathscr{P}_{M} more exactly, we introduce the following spaces. Let $l \geq 0$ and let Δ_{S} be the Laplace-Beltrami operator on S. Considering $\Delta_{S}^{l} f_{k}=\{-k(k+n-1)\}^{l} f_{k}$ for $f_{k} \in \mathscr{H}^{k}(S)$, we define the Sobolev space on S by

$$
H^{l}(S)=\left\{f \in L^{2}(S) ; \sum_{k=0}^{\infty}\left(1+k^{2}\right)^{l}\left\|f_{k}\right\|_{S}^{2}<\infty\right\},
$$

where f_{k} is the k-spherical harmonic component of f defined by (13). We denote the norm on $H^{l}(S)$ by $\|\cdot\|_{H^{l}(S)}$.

Similarly, we define the "Hardy-Sobolev" space on M by

$$
H^{l} \mathcal{O}(M)=\left\{f \in L^{2} \mathcal{O}(M) ; \sum_{k=0}^{\infty}\left(1+k^{2}\right)^{l}\left\|f_{k}\right\|_{M}^{2}<\infty\right\},
$$

where f_{k} is the k-homogeneous component of f defined by (9). We denote the norm on $H^{l} \mathcal{O}(M)$ by $\|\cdot\|_{H^{l} \mathcal{O}(M)}$. Note that $H^{0}(S)=L^{2}(S)$ and $H^{0} \mathcal{O}(M)=L^{2} \mathcal{O}(M)$.

Because of (14) and (15), for $f \in L^{2}(S)$ we have

$$
\begin{align*}
\left\|\mathscr{P}_{M} f(z)\right\|_{H^{(n-1) / 4}(M)}^{2} & =\lim _{t \uparrow 1} \sum_{k=0}^{\infty} t^{2 k}\left(1+k^{2}\right)^{(n-1) / 4}\left\|\tilde{f}_{k}\right\|_{M}^{2} \tag{16}\\
& =\lim _{t \uparrow 1} \sum_{k=0}^{\infty} t^{2 k} \gamma_{k, n} / 2^{k}\left(1+k^{2}\right)^{(n-1) / 4}\left\|\tilde{f}_{k}\right\|_{S}^{2}<\infty .
\end{align*}
$$

Thus

$$
\mathscr{P}_{M}: L^{2}(S) \rightarrow H^{(n-1) / 4} \mathcal{O}(M) .
$$

Since $\left\|\tilde{f}_{k}\right\|_{S}^{2}=\left\|\alpha_{B} \circ \mathscr{C} \tilde{f}_{k}\right\|_{S}^{2}$ in (16), we can define the Cauchy transform $\mathscr{C}_{S} g$ of $g \in H^{(n-1) / 4} \mathcal{O}(M)$ by

$$
\mathscr{C}_{S} g(\omega)=\lim _{t \uparrow 1} \int_{M} g(z) K_{0}(t \omega, \bar{z}) d M(z), \quad \omega \in S,
$$

where the limit is taken in $L^{2}(S)$. We call the mapping $\mathscr{C}_{S}: g \mapsto \mathscr{C}_{S} g$ the Cauchy transformation.

Proposition 5.3. Let $l \geq 0$. Then the Poisson transformation \mathscr{P}_{M} establishes the following linear topological isomorphism:

$$
\mathscr{P}_{M}: H^{l}(S) \xrightarrow{\sim} H^{l+(n-1) / 4} \mathcal{O}(M) .
$$

Moreover, the inverse mapping of \mathscr{P}_{M} is given by \mathscr{C}_{S}; that is, $\mathscr{P}_{M}^{-1}=\mathscr{C}_{S}$.
Proof. Let $f \in H^{l}(S)$. By the same argument as above, $\mathscr{P}_{M} f$ belongs to $H^{l+(n-1) / 4} \mathcal{O}(M) \subset H^{(n-1) / 4} \mathcal{O}(M)$. Thus we can consider $\mathscr{C}_{S} \circ \mathscr{P}_{M} f$. By (7), (8), Lemma 5.2 and the Fubini theorem, we have

$$
\mathscr{C}_{S} \circ \mathscr{P}_{M} f(\omega)=f(\omega), \quad f \in H^{l}(S)
$$

Therefore $\mathscr{C}_{S} \circ \mathscr{P}_{M}=$ id and \mathscr{P}_{M} is injective.
Let $g \in H^{l+(n-1) / 4} \mathcal{O}(M)$. By the same argument as above, $\mathscr{C}_{S} g$ belongs to $H^{l}(S) \subset L^{2}(S)$. Thus we can consider $\mathscr{P}_{M} \circ \mathscr{C}_{S} g$. By (7), (8), Corollary 3.3 and the Fubini theorem, we have

$$
\mathscr{P}_{M} \circ \mathscr{C}_{S} g(z)=g(z), \quad g \in H^{l+(n-1) / 4} \mathcal{O}(M) .
$$

Therefore \mathscr{P}_{M} is surjective.
The continuities of \mathscr{P}_{M} and \mathscr{P}_{M}^{-1} are clear. q.e.d.
For $f=\sum_{k=0}^{\infty} f_{k} \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$, we have

$$
\Delta_{x} f(x)=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{n}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S}\right) f(\omega)=0, \quad x=r \omega, \quad \omega \in S
$$

Thus $\Delta_{S}^{l} f_{k}=\sum_{k=0}^{\infty}\{-k(k+n-1)\}^{l} f_{k}$ for $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$. Put

$$
H^{l} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)=\left\{f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) ;\left(\left(1+\Delta_{S}\right)^{l} f,\left(1+\Delta_{S}\right)^{l} f\right)_{\mathbf{R}^{n+1}}<\infty\right\},
$$

then we have the following linear topological isomorphism:

$$
\mathscr{F}: H^{l} \mathscr{O}(M) \xrightarrow{\sim} H^{l} \mathscr{A}_{\Delta}\left(R^{n+1}\right) .
$$

References

[1] K. Fuilta, A Hilbert space of harmonic functions, Proc. Japan Acad. 70, Ser. A (1994), 286-289.
[2] K. II, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J. 38 (1986), 57-69.
[3] G. Lebeau, Fonctions harmoniques et spectre singulier, Ann. Scient. Ecole Norm. Sup. 4e série, 13 (1980), 269-291.
[4] M. Morimoto and K. Fuita, Analytic functionals and entire functionals on the complex light cone, Hiroshima Math. J. 25 (1995), 493-512 .
[5] M. Моrimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications 11 PWN-Polish Scientific Publishers, Warsaw, 1983, 223-250.
[6] C. Müller, Spherical Harmonics, Lecture Notes in Math. 17 (1966), Springer.
[7] R. WADA, On the Fourier-Borel transformations of analytic functionals on the complex sphere, Tôhoku Math. J. 38 (1986), 417-432.

Department of Mathematics
Faculty of Education
SAGA University
SAGA 840
Japan

