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Abstract. We completely determine a class of Bohman-Korovkin-Wulbert

operators from a function space on a compact Hausdorff space into the Banach space

of continuous complex-valued functions on another space with respect to the special

test functions.

1. Introduction and results. Let X and Y be normed spaces and B(X, Y) the set
of all bounded linear operators from X into Y. For a subset S of X and a subset B of
B(X, Y), an operator T in B(X, Y) is said to be a Bohman-Korovkin-Wulbert operator
(BKW-operator, for shortly) for S and B if every net {Tλ} in B such that limλ || Tλ\\ = \\T\\
and limA \\Tλ(s)-T(s)\\ =0 for all seS converges strongly to Γ(cf. [6]). We will omit Y
(resp. B) when X= F(resp. B = B(X, Y)). Bohman [1] showed that the identity operator
idC([0 1]} on C([0, 1]) is a BKW-operator for {1, x, x2} and special interpolation operators
on C([0, 1]). Korovkin [2] showed that idC ( [ ( U ] ) is also a BKW-operator for {1, x, x2}
and positive operators on C([0, 1]). Moreover, Wulbert [8] showed that idC([0 1]} is a
BKW-operator for {1, x, x2}. "BKW" is an abbreviation for Bohman, Korovkin and
Wulbert. Micchelli [4] posed (as suggested in Lorentz [5]) a problem of describing all
positive BKW-operators on C(Ω) for suitable test functions on Ω and positive operators
on C(Ω). However, we are interested in describing all BKW-operators from a function
space into another space for suitable test functions.

In [7], we completely described all BKW-operators (resp. all norm one unital
BKW-operators) from a function space on the unit interval [0, 1] into the Banach space
of continuous complex-valued functions on a compact Hausdorff space for the special
test functions {1, x} (resp. {1, x, x2}). Here we consider BKW-operators for general
function spaces and obtain generalizations of the results in [7].

Throughout this paper, let Ω and Φ be compact Hausdorff spaces and let h be a
nonconstant real-valued function in C(Ω) and X a function space on Ω such that
span{l, h}φX, where "span" denotes the linear span. Set
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m = min h{ω),
ωeΩ

M=maxh(ω),

ωeΩ

Ωm = {ωeΩ:h(ω) = m},

ΩM = {ω e Ω: h(ω) = M} and

Ωh = {ωeΩ:#{h-1(h(ω))} = \} .

In this notation, we completely describe all BKW-operators from X into C(Φ) for

the test functions {1, h) as follows:

THEOREM 1. (i) If Ωm consists of a single point ω0 and ΩM consists of a single

point ωί9 then every BKW-operator T from X into C(Φ) for the test functions {1, h) is

of the form T(f) = f(ωo)u + f(ω1)v for every fsX, where u and v are functions in C(Φ)

satisfying the following two conditions:

(1) \u{φ)\ + \υ(φ)\ = \\T\\forallφeΦ.

(2) //u(φ)Φ0 and v(φ)Φ0, then \ u(φ) + v(φ)\Φ\\T\\.

In this case, the functions u and v are given by u=T(l — K) and v = (Th), where

h = (M—m)~ί(h — ml). In particular, every norm one unital BKW-operator Tfrom X into

C(Φ)for {1, h) is of the form T(f) = f(ω0)χ + f(ω1)(l — χ)for every feX, where χ is the

characteristic function on a closed and open subset of Φ.

(ii) If Ωm consists of a single point ω0 and ΩM possesses more than two points,

then every BKW-operator T from X into C(Φ) for the test functions {1, h} is of the form

T(f) = f(ωo)u for every fsX, where u is a functions in C(Φ) such that \ u(φ)\ = \\T\\ for

all φeΦ. In particular, every norm one unital BKW-operator T from X into C(Φ) for

{1, h} is of the form T(f)=f(ωo)l for every feX.

(iii) If ΩM consists of a single point ωx and Ωm possesses more than two points,

then every BKW-operator T from X into C(Φ) for the test functions {1, h} is of the form

T(f) = f(ω1)vfor every feX, where v is a function in C(Φ) such that \ v(φ) \ = \\ T\\ for all

φeΦ. In particular, every norm one unital BKW-operator Tfrom X into C(Φ) for {1, h]

is of the form T(f) = f(ω1)l for every feX.

(iv) If both Ωm and ΩM possess more than two points, then the only zero operator

from X into C(Φ) is a BKW-operator for the test functions {1, h}.

Furthermore, we completely describe all norm one unital BKW-operators from X

into C(Φ) for the test functions {1, h, h2} as follows:

THEOREM 2. Suppose that {1, h, h2, h3}^X, X* ={μeX* : ||μ|| =μ(l)}, where X*

denotes the space dual to X and that h(Ω) = [m, Λf].

( i ) If Ωm consists of a single point ω0 and ΩM consists of a single point ωu then

every norm one unital BKW-operator T from X into C(Φ)for the test functions {1, h, h2}
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is of the form

{Tftφ)=

f(ξ(φ)),

f(ωo){M- h(ξ(φ))} + fiω - m}

M—m

if φeΦ\G

if φeG

for every feX, where ξ is a map from Φ into Ω and G is an open subset of Φ such that
m<h(ξ(φ))<Mfor all φeG, that ξ(φ) = ω0 or ωγfor all φedG, that ξ(Φ\G)aΩh, that
h o ξ is continuous on Φ and that ξ | (Φ\G) is continuous on Φ\G. Here dG denotes the
topologίcal boundary of G in Ω.

(ii) If either Ωm or ΩM possesses more than two points, then every norm one unital
BK\V'-operator T from X into C(Φ) for the test functions {1, h, h2} is of the form

for every φeΦ and feX, where ξ is a continuous map from Φ into Ωh.

The following are examples of h in Theorems 1 and 2 when Ω = [0, 1]:
( i ) p>09 h(w) = wp(0<w<\).

(ii)

(iii)

h(w) =

h(w) =

— w, if 0<w<α

α

0, if α<w<l.

1 w, if 0<w<α

α

0, if α<w<l.

0, if 0<w<α

W — OL

(iv) l, h(w) =

α — α
, if α<w<α'

1, if af<w<βf

w~" if β'<w<β
β'-β

0, if jS<w<l.

2. Lemmas. For Sa X and FaX*, we set

Us(F) = {μeF:μ = vif veF and μ\S=v\S} .

The set US(F) is called the uniqueness set of F for S, and plays an essential role in the
Korovkin type approximation theory. Let X* = {μeX*: ||μ|| <p} for p>0. The
following lemma, which is basic in our argument, is an immediate consequence of
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[7, Theorem 1.4]:

LEMMA 1. Let S^X and TeB(X, C(Φ)). Then T is a BKW-operator for S if and

only if T*(δφ)e Us(X*τ\\)for each φeΦ, where T* is the adjoint operator of T and δφ is

the evaluation at φeΦ.

Let C be the set of all complex numbers. Then we have the following:

LEMMA 2. ( i ) IfΩm consists of a single point ω0 and ΩM consists of a single point

ω1, then

(ii) If Ωm consists of a single point ω0 and ΩM possesses more than two points,

then U{lM(X*1) = {aδωo\X:\a\ = l}.

(iii) If ΩM consists of a single point ωγ and Ωm possesses more than two points,

(iv) If both Ωm and ΩM possess more than two points, the U{lih){XX) is empty.

PROOF. Set h = (M-m)~1(h — m\). Then span{l, Λ} = span{l, h) and hence

^{i,/ι}(^*)= {̂i,£} W ) Therefore, we may assume without loss of generality that ra = 0

and M= 1. Let μ e U{lth)(X1[). Put a = μ(l- h) and b = μ(h). Then | a | < 1 and | b \ < 1. For

any α, β e C, we have

\a(l-
0 < ί < l

In particular, for oc = ά/\a\ and β = F/\b\, we have \a\ + \b\<ma.xo^t<ί {|α|(l — ί) +

I β\t} = \. Now choose £ o e£2 w and ξx e Ω M arbitrarily and set v = aδξo\X+bδξι \X, hence

| | V | | < | ^ | + | 6 | < 1 . Also v(l) = a + b = μ(l) and v(h) = b = μ(h). Then we have μ = aδξo\X+

bδξί IX, because μeU{uh){X1[). Moreover by [7, Lemma 2.1] we have ||μ|| = 1, so that

1 < I a I +1 b I and hence | a \ +1 b \ = 1.

If Ωm consists of a single point ω0 and ΩM possesses two points ω1 and ω 2 , then

by the above argument, we have μ = aδωo \ X+ bδωi | X and μ = aδωo \ X+ bδω2 \ X. Hence

b{x(ω1) — x(ω2)}=0 for all xeX. This implies b = 0, since ^separates the points of Ω.

Accordingly μ = aδωo \ X and | a \ = 1. Also, if both Ωm and ΩM possess more than two

points, then a = b = 0, a contradiction. Hence U{lyh](X%) must be empty and so (iv) has

been shown.

Suppose that Ωm consists of a single point ω 0 and ΩM consists of a single point

ωx. In this case, if aφO and b=£0, then \a + b\^\. Indeed, if\a + b\ = l, then we can

find t>0 such that b = ta. Also choose a function 0 e X \ s p a n { l , h) and put

f=g-g(ωo)l + {g(ωo)-g(ω1)}h .

Then fεX and fφO, hence there exists ω2eΩ such that f(ω2)φ0. Note that ω2φ

ω 0 , ωl9 so 0<h{ω2)< 1 by hypothesis. Set s = h(ω2). Then (s — t + st)/s< 1, hence we can
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take a positive number p such that max{0, (s — t + st)/s} <p< 1. Set

. (\-p)a (i-s)b-s(l-p)a
ot = pa, β = — , y =\—s 1—s

and

μ i = xδωo\X+βδω2\X+γδωί\X.

Then we can easily see that μί(l) = μ(l) and μ1(h) = μ(h). Also we have

P)N , \(l-s)t-s(l-p)\\a\

+
=p\a\ +

1-s 1-s

\-p (l-s)t-s(l-p)\ ( .
—!- + ± }- ~\ si

1 1 J V

s-t + st
\ since <p

1 - s J V s

hence H μ J ^ l . However μί(f) = βf(ω2)Φ0 and μ(f) = af(ωo) + bf(ω1) = 09 so μxφμ,

a contradiction to μ e U{lih}(Xf).

Conversely, it is easy to see that {aδωo \ X: | a \ = 1} c C/{1Λ>(A"f) when ί2m = {ω0}, so

(ii) has been shown in view of the above argument. Since C/{1>_h}= U{lth)9 (iii) follows

immediately from (ii). To show (i), assume that Ωm = {ω0} and ΩM = { ω j , and let a,beC

be such that | a | +1b\ = 1 and \a + b\φ\ if α ^ 0 , bφ0. Then we need to show that

<*δωo\X+bδωι \Xe U{lih){XX). To do so, let μeX\ be such that μ(l) = α + Z> and μ{h) = b.

By the Hahn-Banach extension theorem, we can find a Radon measure μ on Ω such

that μ X = μ and ||μ|| = ||μ||. Let μ = u\μ\ be the polar decomposition of μ, i.e.,

ί f(ω)dμ{ω)=\ f(ω)u(ω)d\ μ |(
JΩ JΩ

for all feLι{Ω, \ μ |), where | μ | is the total variation of μ and u is a measurable function

on Ω with | w(ω) | = 1 for all ω e Ω (see [3, Corollary 19.38]). Then we have the following

inequality:

(l-h(ω))u(ω)d\fi\(ω) Ih(ω)u(ω)d\μ|(

< f (ί-h(ω))d\fi\(ω)+ f MωMI/ί|(ω)= ί
JΩ JΩ Jί

)= d\β\= \\fi\\ = \\μ\\ < 1 .
JΩ

If aφO and 6^0, then by [7, Lemma 2.2] we have {1 -h(ω)}u(ω) = eia{l -h(ω)} (| μ |-a.e.)

and h(ω)u(ω) = eiβh(ω) (|μ|-a.e.), where α = Arg(α) and β = Arg(b). Hence we have

1 = I (1 -h(ω))eia + h(ω)eiβ | (| μ |-a.e.). Since | a + b \ φ 1 and hence α ̂ β (mod 2π), it follows
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that | μ | ( Ω \ { ω 0 , ωί}) = 0, i.e., supp(|μ|)c={ω0, ω j by the above equation. If a = Q,

then the above inequality implies that $Ω{l—h(ω)}d\μ\(ω) = 0 and hence supp(|μ|) =

{ ω j . If 6 = 0, then the same inequality implies that $Ωh(ω)d\μ\(ω) = 0 and hence

supp( |μ |)={ω 0 } . Then | μ | can be expressed as \μ\ = cδωo + dδωi for some complex

numbers c and d. Therefore μ = cu(ωo)δωo + du(ω1)δωι. Hence we can easily see that

μ = aδωo\X+bδωi\X. We thus obtain aδωo\X+bδωι\XεU{lth){Xΐ). q.e.d.

LEMMA 3. Assume that {1, A, A2, h3}cX, X% = {μeX* : ||μ \\ =μ(l)} and h{Ω) =

[m,M].

(i) If Ωm consists of a single point ω0 and ΩM consists of a single point ω l 5 then

U{ίM2}(Xf)nX%={δω\X:ωeΩh}ϋ{(\-a)δωo\X+aδωί\X:0<a<\}.

(ii) If either Ωm or ΩM possesses more than two points, then U{ίthfh2}(X*)n

X*+ = {δω\X:ωeΩh}.

PROOF. Set h = (M—m)~1(h — ml). Then span{l, A, A2} = span{l, A, A2} and hence

U{i,h,h2}{X*)= U{iXP}(X*)- Therefore we may assume without loss of generality that

m = 0 and M=\. Let 0 < # < l and ωeΩh. Then δω\X is in X%. To show that

δω\XeU{1M2}{XX\ let veX* be such that v(hk) = δω(hk) for k = 0, 1,2. Then

l = v ( l ) < | | v | | < l . Choose a Radon measure v on Ω such that v|JΓ=v and ||v|| = ||v||.

Then ||v|| = v(l) = 1, so v is positive and also we have

v((A - A(ω)l)2) = v(A2) - 2A(ω)v(A) + A(ω)2v(l) = A(ω)2 - 2A(ω)2 + A(ω)2 = 0 .

Hence, the support of v consists of the single point ω, since (h(ξ) — h(ω))2 >0 for all

£ e ί 2 \ { ω } . This immediately implies that v = δω, so v = δω\X and hence

δω\XeU{lthih2}(Xf). Suppose next that Ωm = {ω0} and ΩM={ωί}, hence (l — a)δωo\X

+ aδωι\Xis in X*. To show that (l-a)δωo\X+aδωι \Xe ί/{1,M2}(Zf), let veXX be

such that v(hk) = ((\-a)δωo + aδωi)(hk) for k = 0, 1,2. Then l = v ( l ) < | | v | | < l . Choose a

Radon measure v on Ω such that v | j f = v and ||v|| = ||v||. Then v is positive and

v(A — A2) = v(A — h2) = a — a = 0. Hence, the support of v is contained in {ω0, ω j , since

h(ξ)-h(ξ)2>0 for all ξeΩ\{ωθ9ωί}. This immediately implies that v = (l-a)<5<D0|A
r

+ aδωι IX, and hence (1 -a)δωo \ X+aδωi \ Xe U{iχh2){Xΐ).

Conversely, let μeU^^X^nXt. By [7, Lemma 2. 1], ||μ|| = 1, and so μ(l)= 1.

Choose a positive Radon mesure μ on Ω such that μ | X=μ and ||μ|| = ||μ||. Put α = μ(A)

and β = μ(h2). Then we have 0<α, β<\, β<oc and a2<β by Schwarz's inequality. If

0 < β = α < l , then μ = (l — α)<5#0|X+(xδώί | X for every ώ o e Ω m and ώxeΩM because

^ e ^{iΛΛ 2 }(^ί) n ^+ Therefore since X separates the points of Ω, we have

μ = (l — oί)δωo\X+<xδωi | X only when Ωm = {ω0} and ΩM = {ω1). If also oc2 = β, then

μ((A-αl)2) = β - 2 α 2 + α 2 = 0. But since μ^O, there must b e ω e Ω such that A(ω) = α.

Then μ(hk) = δω(hk) for A: = 0, 1,2 and hence μ = δω \ X because μeU{lthth2)(X1[). In this

case, the point ω must be in Ωh. Actually, if ξ is a point of £2 such that h(ξ) = h(ω), then

μ = δξ IX by the above argument and hence ξ = ω because X separates the points of Ω.

We finally show that the case 0 < α 2 < β < α < l does not occur. Suppose the contrary.
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Let ωoeΩm and ωx eΩM be fixed arbitrarily. For each 0<λ< 1, we can take a point

ωλeΩ such that h(ωλ) = λ because h(Ω) = [0, 1]. Set

μλ = "(λ)δωo IX+ b{λ)δωλ IX+ c(λ)δωί IX,

where a{λ) = {λ - (1 + λ)oc + j3}M, Z?(A) = (α - β)M(l - A) and c(λ) = (β- λoc)/{\ - λ). Then we

have μ Λ ( l ) = l = μ ( l ) , μλ(h) = oc = μ(h) and μλ(h2) = β = μ(h2). Note that 0 < ( α - β ) / ( l -

oc)<β/oc<\ and so take real numbers s and / such that (α —β)/(l ~oc)<s<t<β/(x. Then

we see that φ ) > 0 , a(t)>0, b(s)>0, b(t)>0, φ ) > 0 and c(ί)>0, so that | |μ j = ||μ f | | = 1,

and hence μs = μ = μt because μe U{ίχh2}(Xf). Therefore we have

~h3) = b(s){h(ωs) - h(ωs)
3} - b(ί){h(ωt) - h(ω$)

a contradiction. q.e.d.

The proof of the following fundamental result is straightforward, and left to the

reader.

LEMMA 4. Let Ψ be a topologίcal space, G an open subset of Ψ. Let f and g be

two maps from Ψ to another topological space such that f(x) = g(x)for each xedG. Iff

is continuous on Ψ\G and g is continuous on Ψ, then k defined on Ψ by

Γ/M, if XeΨ\G

lg(x), if xeG

is continuous on Ψ.

3. The proofs of the main theorems. _

PROOF OF THEOREM 1. (i) Let T be a bounded linear operator from X into C(Φ).

Without loss of generality, we may assume that the norm of T is one. By Lemma 1, T

is a BKW-operator from X into C(Φ) for the test functions {1, h} if and only if

T*(δφ)e U{lth)(XΪ) for all φeΦ. Also by Lemma 2-(i), T*(δφ)G U{lth){Xfj for all φeΦ if

and only if for each φeΦ, there exists a pair of complex numbers (u(φ), v(φ)) such that

T*(δφ) = u(φ)δωo IX+ v(φ)δωι \ X, \ u(φ) \ +1 v(φ)\ = 1 and | u(φ) + v(φ) \ Φ 1 when u(φ) Φ 0 and

υ(φ)Φ0. Note that T*(δφ) = u(φ)δωo\X+v(φ)δωι \X means that (Tf)(φ) = f(ωo)u(φ) +

fiω^viφ) for all fe X. We thus obtain that T{f) = f{ωQ)u + / ( ω j ϋ for all feX. Moreover,

this equality easily implies that u=T(l — h) and v=T(h\ where h = (M-m)~1(h — ml\

and so u and v are in C{Φ). In particular, if T is unital, then we have

for all φeΦ and hence Φ = ΦuuΦv and ΦunΦv = 0, where Φu = {φeΦ:u(φ)φ0} and

Φυ ={φeΦ:v(φ)Φ0}. Hence u and v equal the characteristic functions on Φu and Φv,

respectively. Of course, u + v = l, so that by putting χ = w, we obtain that the desired
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equality and (i).
The same argument implies (ii) and (iv). Since Γis a BKW-operator for {1, h) if

and only if it is a BKW-operator for {1, — h}, (iii) immediately follows from (ii).
q.e.d.

PROOF OF THEOREM 2. We may assume without loss of generality that m = 0 and
M=\.

(i) Suppose that Ωm consists of a single point ω 0 and ΩM consists of a single
point ω1. Let T be a norm one unital BKW-operator from X into C(Φ) for the test
functions {1, h, h2}. IfφeΦ, then T*(δφ)eU{1M2}(Xf) by Lemma 1, and so \\T*(δφ)\\ = 1
by [7, Lemma 2.1]. Note also that (T*δφ)(\)=l(φ)= 1. Therefore T*(δφ)eX* for all
φeΦ. Hence by Lemma 3-(i), we have Φ = Fτu Gτ, where Fτ is the set of all φ e Φ such
that T*{δφ) e {δω IX: ω e Ωh} and Gτ is the set of all φ e Φ such that T*(δφ) e {(1 - a)δωo \X
+ aδωί\X:0<a<\}. Note that FTnGT = 0 and hence Fτ equals the set of all φeΦ
such that T*(δφ)e{δφ\X:ωeΩ}. Therefore since the map: φ->T*(δφ) is weak*-
continuous on Φ and the set {δω\X:ωeΩ} is weak*-closed in X*, Fτ must be closed
and so Gτ is open. Now let φeΦ. If φeFτ, then we can find a unique point ωeΩh

such that T*{δφ) = δω\X. Set ω = ξ(φ). Then we have

for each / e l . If φεGτ, then there is a unique number 0 < α < l such that
T*(δφ) = (l—a)δωo\X+aδωί\X. Moreover, there is a point ωeΩ such that a = h(ω)
because h(Ω) = [0, 1]. Set ω = ξ(φ). Then we have

(Tf)(φ) = f(ωo){ 1 - h(ξ(φ))} + /(ωJAtf (<?))

for each feX. Of course, ξ is a map from Φ into Ω such that ξ(Φ\Gτ)<^Ωh and
0<Λ(ξ(φ))<l for each φeGτ. Also since h(ξ(φ)) = (Th)(φ) for each φeΦ, we see that
hoξ is continuous on Φ. To see that ξ | Fτ is continuous on FΓ, let φeFτ and let {φλ}
be a net of F Γ which converges to φ. Consider any subnet [ζ{φλ)} of the net {ξ(φλ)}.
Then there exists a convergent subnet {ζ(φλ")} of {ζ(φλ)}. Let ω be the limit point of
{ζ(ψλ")} Then we have

h(ω) = lim/*(ξ(φ;r)) = urn (ΓΛ)(φA.) = (ΓΛXφ) = h(ξ(φ)),
A " A "

and so ω = ξ(φ) because ξ(φ)eΩh. This observation implies that \imλξ(φλ) = ξ(φ) and
hence ξ\Fτ is continuous on F τ . We next see that ξ(φ) = ω0 or ωx for each φedGτ.
To do so, let φ e dGτ. Then ξ(φ) e Ωh and Γ*(^^) = δξ{φ) \ X. Also since φ is in the closure
of GΓ, we can take a net {φA} of Gτ which converges to φ. Then for each λ, we have

^ ω i IX and hence
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λ λ

= f(ωo){\-h(ξ(φ))}+f(ω1)h(ξ(φ))

for all fe X. In particular, by putting / = h2, we have h{ξ(φ))2 = h(ξ{φ)) and so h(ξ(φ)) = 0
or 1, hence ξ(φ) = ω0 or ω t since Ωm consists of a single point ω 0 and ΩM consists of
a single point ωί.

Conversely, let ξ be a map from Φ into Ω and G is an open subset of Φ such that
for all φeG, that ξ(φ) = ω0 or ωx for all φedG, that ^(Φ\G)cΩ h , that

: is continuous on Ω and that ξ | (Φ\G) is continuous on Φ\G. For each fe X, put

if φeΦ\G

if ω eG .

Since ξ(φ) = ω0 or ωx for all φedG, it follows that

(ωί)h(ξ(φ))

for all φedG. Then for each / e l , 7^(/) is a complex-valued continuous function on
Φ by Lemma 4. Moreover, we can easily see that Tξ is a norm one unital linear operator
from X into C(Φ). Note also that

T*(δφ)e{δω\X:ωeΩh}v{(l-a)δωo\X+aδωi\X:0<a<\}

for all φeΦ. Then 7̂  is a BKW-operator for the test functions {1, /z, h2} by Lemmas
1 and 3-(i).

(ii) Suppose that either Ωm or ΩM possesses more than two points. Let T be a
norm one unital BKW-operator from X into C(Φ) for the test functions {1, Λ, h2}. If
φeΦ, then T*(δφ)e ί/{i,Λ,Λ2}(A

r*)n X% as observed in the proof of (i). Hence we can find
a unique point ωeΩh such that T*(δφ) = δω | X by Lemmas 3-(ii). Set ω = ξ(φ). Then we
have

(Tf)(φ) = f(ξ(φ))

for each feX. Of course, ξ is a map from Φ into Ωh and we see that ξ is continuous
on Φ by the same method used in the proof of (i).

Conversely, let ξ be a continuous map from Φ into Ωh. Set (Tξf)(φ) = f(ξ(φ)) for
each / e l and φeΦ. Then we can easily see that Tξ is a norm one unital linear
operator from X into C(Φ) such that Γ|(^)G{(5ω X:ωeΩh} for all φeΦ. Then Tξ

is a KBW-operator for the test functions {1, h, h2} by Lemmas 1 and 3-(ii). q.e.d.
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