BOHMAN-KOROVKIN-WULBERT OPERATORS FROM A FUNCTION SPACE INTO A COMMUTATIVE C^{*}-ALGEBRA FOR SPECIAL TEST FUNCTIONS

Dedicated to Professor Satoru Igari on his sixtieth birthday

Sin-Ei Takahasi

(Received October 25, 1994, revised March 22, 1995)

Abstract

We completely determine a class of Bohman-Korovkin-Wulbert operators from a function space on a compact Hausdorff space into the Banach space of continuous complex-valued functions on another space with respect to the special test functions.

1. Introduction and results. Let X and Y be normed spaces and $B(X, Y)$ the set of all bounded linear operators from X into Y. For a subset S of X and a subset B of $B(X, Y)$, an operator T in $B(X, Y)$ is said to be a Bohman-Korovkin-Wulbert operator (BKW-operator, for shortly) for S and B if every net $\left\{T_{\lambda}\right\}$ in B such that $\lim _{\lambda}\left\|T_{\lambda}\right\|=\|T\|$ and $\lim _{\lambda}\left\|T_{\lambda}(s)-T(s)\right\|=0$ for all $s \in S$ converges strongly to T (cf. [6]). We will omit Y (resp. B) when $X=Y($ resp. $B=B(X, Y)$). Bohman [1] showed that the identity operator $\mathrm{id}_{C([0,1])}$ on $C([0,1])$ is a BKW-operator for $\left\{\mathbf{1}, x, x^{2}\right\}$ and special interpolation operators on $C([0,1])$. Korovkin [2] showed that $\mathrm{id}_{C([0,1])}$ is also a BKW-operator for $\left\{\mathbf{1}, x, x^{2}\right\}$ and positive operators on $C([0,1])$. Moreover, Wulbert [8] showed that $\mathrm{id}_{C([0,1])}$ is a BKW-operator for $\left\{\mathbf{1}, x, x^{2}\right\}$. "BKW" is an abbreviation for Bohman, Korovkin and Wulbert. Micchelli [4] posed (as suggested in Lorentz [5]) a problem of describing all positive BKW-operators on $C(\Omega)$ for suitable test functions on Ω and positive operators on $C(\Omega)$. However, we are interested in describing all BKW-operators from a function space into another space for suitable test functions.

In [7], we completely described all BKW-operators (resp. all norm one unital BKW-operators) from a function space on the unit interval [0,1$]$ into the Banach space of continuous complex-valued functions on a compact Hausdorff space for the special test functions $\{\mathbf{1}, x\}$ (resp. $\left\{\mathbf{1}, x, x^{2}\right\}$). Here we consider BKW-operators for general function spaces and obtain generalizations of the results in [7].

Throughout this paper, let Ω and Φ be compact Hausdorff spaces and let h be a nonconstant real-valued function in $C(\Omega)$ and X a function space on Ω such that $\operatorname{span}\{\mathbf{1}, h\} \subsetneq X$, where "span" denotes the linear span. Set

[^0]\[

$$
\begin{aligned}
& m=\min _{\omega \in \Omega} h(\omega), \\
& M=\max _{\omega \in \Omega} h(\omega), \\
& \Omega_{m}=\{\omega \in \Omega: h(\omega)=m\}, \\
& \Omega_{M}=\{\omega \in \Omega: h(\omega)=M\} \text { and } \\
& \Omega_{h}=\left\{\omega \in \Omega: \#\left\{h^{-1}(h(\omega))\right\}=1\right\} .
\end{aligned}
$$
\]

In this notation, we completely describe all BKW-operators from X into $C(\Phi)$ for the test functions $\{\mathbf{1}, h\}$ as follows:

Theorem 1. (i) If Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}, then every BKW-operator T from X into $C(\Phi)$ for the test functions $\{\mathbf{1}, h\}$ is of the form $T(f)=f\left(\omega_{0}\right) u+f\left(\omega_{1}\right) v$ for every $f \in X$, where u and v are functions in $C(\Phi)$ satisfying the following two conditions:
(1) $|u(\varphi)|+|v(\varphi)|=\|T\|$ for all $\varphi \in \Phi$.
(2) If $u(\varphi) \neq 0$ and $v(\varphi) \neq 0$, then $|u(\varphi)+v(\varphi)| \neq\|T\|$.

In this case, the functions u and v are given by $u=T(1-\tilde{h})$ and $v=(T \tilde{h})$, where $\tilde{h}=(M-m)^{-1}(h-m \mathbf{1})$. In particular, every norm one unital BKW-operator T from X into $C(\Phi)$ for $\{\mathbf{1}, h\}$ is of the form $T(f)=f\left(\omega_{0}\right) \chi+f\left(\omega_{1}\right)(1-\chi)$ for every $f \in X$, where χ is the characteristic function on a closed and open subset of Φ.
(ii) If Ω_{m} consists of a single point ω_{0} and Ω_{M} possesses more than two points, then every BKW-operator T from X into $C(\Phi)$ for the test functions $\{\mathbf{1}, h\}$ is of the form $T(f)=f\left(\omega_{0}\right) u$ for every $f \in X$, where u is a functions in $C(\Phi)$ such that $|u(\varphi)|=\|T\|$ for all $\varphi \in \Phi$. In particular, every norm one unital BKW-operator T from X into $C(\Phi)$ for $\{\mathbf{1}, h\}$ is of the form $T(f)=f\left(\omega_{0}\right) \mathbf{1}$ for every $f \in X$.
(iii) If Ω_{M} consists of a single point ω_{1} and Ω_{m} possesses more than two points, then every BKW-operator T from X into $C(\Phi)$ for the test functions $\{1, h\}$ is of the form $T(f)=f\left(\omega_{1}\right) v$ for every $f \in X$, where v is a function in $C(\Phi)$ such that $|v(\varphi)|=\|T\|$ for all $\varphi \in \Phi$. In particular, every norm one unital BKW-operator T from X into $C(\Phi)$ for $\{\mathbf{1}, h\}$ is of the form $T(f)=f\left(\omega_{1}\right) \mathbf{1}$ for every $f \in X$.
(iv) If both Ω_{m} and Ω_{M} possess more than two points, then the only zero operator from X into $C(\Phi)$ is a BKW-operator for the test functions $\{\mathbf{1}, h\}$.

Furthermore, we completely describe all norm one unital BKW-operators from X into $C(\Phi)$ for the test functions $\left\{\mathbf{1}, h, h^{2}\right\}$ as follows:

Theorem 2. Suppose that $\left\{1, h, h^{2}, h^{3}\right\} \subset X, X_{+}^{*}=\left\{\mu \in X^{*}:\|\mu\|=\mu(\mathbf{1})\right\}$, where X^{*} denotes the space dual to X and that $h(\Omega)=[m, M]$.
(i) If Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}, then every norm one unital BKW-operator T from X into $C(\Phi)$ for the test functions $\left\{\mathbf{1}, h, h^{2}\right\}$
is of the form

$$
(T f)(\varphi)= \begin{cases}f(\xi(\varphi)), & \text { if } \varphi \in \Phi \backslash G \\ \frac{f\left(\omega_{0}\right)\{M-h(\xi(\varphi))\}+f\left(\omega_{1}\right)\{h(\xi(\varphi))-m\}}{M-m}, & \text { if } \varphi \in G\end{cases}
$$

for every $f \in X$, where ξ is a map from Φ into Ω and G is an open subset of Φ such that $m<h(\xi(\varphi))<M$ for all $\varphi \in G$, that $\xi(\varphi)=\omega_{0}$ or ω_{1} for all $\varphi \in \partial G$, that $\xi(\Phi \backslash G) \subset \Omega_{h}$, that $h \circ \xi$ is continuous on Φ and that $\xi \mid(\Phi \backslash G)$ is continuous on $\Phi \backslash G$. Here ∂G denotes the topological boundary of G in Ω.
(ii) If either Ω_{m} or Ω_{M} possesses more than two points, then every norm one unital BKW-operator T from X into $C(\Phi)$ for the test functions $\left\{\mathbf{1}, h, h^{2}\right\}$ is of the form

$$
(T f)(\varphi)=f(\xi(\varphi))
$$

for every $\varphi \in \Phi$ and $f \in X$, where ξ is a continuous map from Φ into Ω_{h}.
The following are examples of h in Theorems 1 and 2 when $\Omega=[0,1]$:
(i) $p>0, h(w)=w^{p}(0 \leq w \leq 1)$.
(ii) $0<\alpha<1, h(w)=\left\{\begin{array}{l}\frac{1}{\alpha} w, \text { if } 0 \leq w \leq \alpha \\ 0, \text { if } \alpha<w \leq 1 .\end{array}\right.$
(iii) $0<\alpha<1, h(w)=\left\{\begin{array}{l}1-\frac{1}{\alpha} w, \text { if } 0 \leq w \leq \alpha \\ 0, \text { if } \alpha<w \leq 1 .\end{array}\right.$
(iv) $0<\alpha<\alpha^{\prime}<\beta^{\prime}<\beta<1, h(w)=\left\{\begin{array}{l}0, \text { if } 0 \leq w \leq \alpha \\ \frac{w-\alpha}{\alpha^{\prime}-\alpha}, \text { if } \alpha<w \leq \alpha^{\prime} \\ 1, \text { if } \alpha^{\prime}<w \leq \beta^{\prime} \\ \frac{w-\beta}{\beta^{\prime}-\beta}, \text { if } \beta^{\prime}<w \leq \beta \\ 0, \text { if } \beta<w \leq 1 .\end{array}\right.$
2. Lemmas. For $S \subset X$ and $F \subset X^{*}$, we set

$$
U_{S}(F)=\{\mu \in F: \mu=v \text { if } v \in F \text { and } \mu|S=v| S\} .
$$

The set $U_{S}(F)$ is called the uniqueness set of F for S, and plays an essential role in the Korovkin type approximation theory. Let $X_{\rho}^{*}=\left\{\mu \in X^{*}:\|\mu\| \leq \rho\right\}$ for $\rho>0$. The following lemma, which is basic in our argument, is an immediate consequence of
[7, Theorem 1.4]:
Lemma 1. Let $S \subset X$ and $T \in B(X, C(\Phi))$. Then T is a BKW-operator for S if and only if $T^{*}\left(\delta_{\varphi}\right) \in U_{S}\left(X_{\|T\|}^{*}\right)$ for each $\varphi \in \Phi$, where T^{*} is the adjoint operator of T and δ_{φ} is the evaluation at $\varphi \in \Phi$.

Let \boldsymbol{C} be the set of all complex numbers. Then we have the following:
Lemma 2. (i) If Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}, then

$$
U_{\{1, h\}}\left(X_{1}^{*}\right)=\left\{a \delta_{\omega_{0}}\left|X+b \delta_{\omega_{1}}\right| X: a, b \in \boldsymbol{C},|a|+|b|=1 \text { and }|a+b| \neq 1(\text { if } a \neq 0, b \neq 0)\right\}
$$

(ii) If Ω_{m} consists of a single point ω_{0} and Ω_{M} possesses more than two points, then $U_{\{1, h\}}\left(X_{1}^{*}\right)=\left\{a \delta_{\omega_{0}}|X:|a|=1\}\right.$.
(iii) If Ω_{M} consists of a single point ω_{1} and Ω_{m} possesses more than two points, then $U_{(1, h)}\left(X_{1}^{*}\right)=\left\{a \delta_{\omega_{1}}|X:|a|=1\}\right.$.
(iv) If both Ω_{m} and Ω_{M} possess more than two points, the $U_{\{1, h\}}\left(X_{1}^{*}\right)$ is empty.

Proof. Set $\tilde{h}=(M-m)^{-1}(h-m \mathbf{1})$. Then $\operatorname{span}\{\mathbf{1}, h\}=\operatorname{span}\{\mathbf{1}, \tilde{h}\}$ and hence $U_{\{1, h\}}\left(X_{1}^{*}\right)=U_{\{1, \tilde{n}\}}\left(X_{1}^{*}\right)$. Therefore, we may assume without loss of generality that $m=0$ and $M=1$. Let $\mu \in U_{\{1, h\}}\left(X_{1}^{*}\right)$. Put $a=\mu(1-h)$ and $b=\mu(h)$. Then $|a| \leq 1$ and $|b| \leq 1$. For any $\alpha, \beta \in \boldsymbol{C}$, we have

$$
|\alpha a+\beta b|=|\mu(\alpha(\mathbf{1}-h)+\beta h)| \leq\|\mu\|\|\alpha(\mathbf{1}-h)+\beta h\|_{\infty} \leq \max _{0 \leq t \leq 1}|\alpha(1-t)+\beta t| .
$$

In particular, for $\alpha=\bar{a} /|a|$ and $\beta=\bar{b} /|b|$, we have $|a|+|b| \leq \max _{0 \leq t \leq 1}\{|\alpha|(1-t)+$ $|\beta| t\}=1$. Now choose $\xi_{0} \in \Omega_{m}$ and $\xi_{1} \in \Omega_{M}$ arbitrarily and set $v=a \delta_{\xi_{0}}\left|X+b \delta_{\xi_{1}}\right| X$, hence $\|v\| \leq|a|+|b| \leq 1$. Also $v(\mathbf{1})=a+b=\mu(\mathbf{1})$ and $v(h)=b=\mu(h)$. Then we have $\mu=a \delta_{\xi_{0}} \mid X+$ $b \delta_{\xi_{1}} \mid X$, because $\mu \in U_{\{1, h\}}\left(X_{1}^{*}\right)$. Moreover by [7, Lemma 2.1] we have $\|\mu\|=1$, so that $1 \leq|a|+|b|$ and hence $|a|+|b|=1$.

If Ω_{m} consists of a single point ω_{0} and Ω_{M} possesses two points ω_{1} and ω_{2}, then by the above argument, we have $\mu=a \delta_{\omega_{0}}\left|X+b \delta_{\omega_{1}}\right| X$ and $\mu=a \delta_{\omega_{0}}\left|X+b \delta_{\omega_{2}}\right| X$. Hence $b\left\{x\left(\omega_{1}\right)-x\left(\omega_{2}\right)\right\}=0$ for all $x \in X$. This implies $b=0$, since X separates the points of Ω. Accordingly $\mu=a \delta_{\omega_{0}} \mid X$ and $|a|=1$. Also, if both Ω_{m} and Ω_{M} possess more than two points, then $a=b=0$, a contradiction. Hence $U_{\{1, h\}}\left(X_{1}^{*}\right)$ must be empty and so (iv) has been shown.

Suppose that Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}. In this case, if $a \neq 0$ and $b \neq 0$, then $|a+b| \neq 1$. Indeed, if $|a+b|=1$, then we can find $t>0$ such that $b=t a$. Also choose a function $g \in X \backslash \operatorname{span}\{\mathbf{1}, h\}$ and put

$$
f=g-g\left(\omega_{0}\right) \mathbf{1}+\left\{g\left(\omega_{0}\right)-g\left(\omega_{1}\right)\right\} h .
$$

Then $f \in X$ and $f \neq 0$, hence there exists $\omega_{2} \in \Omega$ such that $f\left(\omega_{2}\right) \neq 0$. Note that $\omega_{2} \neq$ ω_{0}, ω_{1}, so $0<h\left(\omega_{2}\right)<1$ by hypothesis. Set $s=h\left(\omega_{2}\right)$. Then $(s-t+s t) / s<1$, hence we can
take a positive number ρ such that $\max \{0,(s-t+s t) / s\}<\rho<1$. Set

$$
\alpha=\rho a, \quad \beta=\frac{(1-\rho) a}{1-s}, \quad \gamma=\frac{(1-s) b-s(1-\rho) a}{1-s}
$$

and

$$
\mu_{1}=\alpha \delta_{\omega_{0}}\left|X+\beta \delta_{\omega_{2}}\right| X+\gamma \delta_{\omega_{1}} \mid X .
$$

Then we can easily see that $\mu_{1}(\mathbf{1})=\mu(\mathbf{1})$ and $\mu_{1}(h)=\mu(h)$. Also we have

$$
\begin{aligned}
|\alpha|+|\beta|+|\gamma| & =\rho|a|+\frac{(1-\rho)|a|}{1-s}+\frac{|(1-s) t-s(1-\rho)||a|}{1-s} \\
& =|a|\left\{\rho+\frac{1-\rho}{1-s}+\frac{(1-s) t-s(1-\rho)}{1-s}\right\} \quad\left(\text { since } \frac{s-t+s t}{s}<\rho\right) \\
& =|\alpha|(1+t)=|a|+|b|=1,
\end{aligned}
$$

hence $\left\|\mu_{1}\right\| \leq 1$. However $\mu_{1}(f)=\beta f\left(\omega_{2}\right) \neq 0$ and $\mu(f)=a f\left(\omega_{0}\right)+b f\left(\omega_{1}\right)=0$, so $\mu_{1} \neq \mu$, a contradiction to $\mu \in U_{\{1, h\}}\left(X_{1}^{*}\right)$.

Conversely, it is easy to see that $\left\{a \delta_{\omega_{0}}|X:|a|=1\} \subset U_{\{1, h\}}\left(X_{1}^{*}\right)\right.$ when $\Omega_{m}=\left\{\omega_{0}\right\}$, so (ii) has been shown in view of the above argument. Since $U_{\{1,-h\}}=U_{\{1, h\}}$, (iii) follows immediately from (ii). To show (i), assume that $\Omega_{m}=\left\{\omega_{0}\right\}$ and $\Omega_{M}=\left\{\omega_{1}\right\}$, and let $a, b \in \boldsymbol{C}$ be such that $|a|+|b|=1$ and $|a+b| \neq 1$ if $a \neq 0, b \neq 0$. Then we need to show that $a \delta_{\omega_{0}}\left|X+b \delta_{\omega_{1}}\right| X \in U_{\{1, h\}}\left(X_{1}^{*}\right)$. To do so, let $\mu \in X_{1}^{*}$ be such that $\mu(\mathbf{1})=a+b$ and $\mu(h)=b$. By the Hahn-Banach extension theorem, we can find a Radon measure $\tilde{\mu}$ on Ω such that $\tilde{\mu} \mid X=\mu$ and $\|\tilde{\mu}\|=\|\mu\|$. Let $\tilde{\mu}=u|\tilde{\mu}|$ be the polar decomposition of $\tilde{\mu}$, i.e.,

$$
\int_{\Omega} f(\omega) d \tilde{\mu}(\omega)=\int_{\Omega} f(\omega) u(\omega) d|\tilde{\mu}|(\omega)
$$

for all $f \in L^{1}(\Omega,|\tilde{\mu}|)$, where $|\tilde{\mu}|$ is the total variation of $\tilde{\mu}$ and u is a measurable function on Ω with $|u(\omega)|=1$ for all $\omega \in \Omega$ (see [3, Corollary 19.38]). Then we have the following inequality:

$$
\begin{aligned}
1 & =|a|+|b|=|\mu(1-h)|+|\mu(h)| \\
& =\left|\int_{\Omega}(1-h(\omega)) u(\omega) d\right| \tilde{\mu}|(\omega)|+\left|\int_{\Omega} h(\omega) u(\omega) d\right| \tilde{\mu}|(\omega)| \\
& \leq \int_{\Omega}(1-h(\omega)) d|\tilde{\mu}|(\omega)+\int_{\Omega} h(\omega) d|\tilde{\mu}|(\omega)=\int_{\Omega} d|\tilde{\mu}|=\|\tilde{\mu}\|=\|\mu\| \leq 1 .
\end{aligned}
$$

If $a \neq 0$ and $b \neq 0$, then by [7, Lemma 2.2] we have $\{1-h(\omega)\} u(\omega)=e^{i \alpha}\{1-h(\omega)\}(|\tilde{\mu}|$-a.e. $)$ and $h(\omega) u(\omega)=e^{i \beta} h(\omega) \quad(|\tilde{\mu}|-$ a.e. $)$, where $\alpha=\operatorname{Arg}(a)$ and $\beta=\operatorname{Arg}(b)$. Hence we have $1=\left|(1-h(\omega)) e^{i \alpha}+h(\omega) e^{i \beta}\right|(|\tilde{\mu}|-$ a.e.). Since $|a+b| \neq 1$ and hence $\alpha \neq \beta(\bmod 2 \pi)$, it follows
that $|\tilde{\mu}|\left(\Omega \backslash\left\{\omega_{0}, \omega_{1}\right\}\right)=0$, i.e., $\operatorname{supp}(|\tilde{\mu}|) \subset\left\{\omega_{0}, \omega_{1}\right\}$ by the above equation. If $a=0$, then the above inequality implies that $\int_{\Omega}\{1-h(\omega)\} d|\tilde{\mu}|(\omega)=0$ and hence $\operatorname{supp}(|\tilde{\mu}|)=$ $\left\{\omega_{1}\right\}$. If $b=0$, then the same inequality implies that $\int_{\Omega} h(\omega) d|\tilde{\mu}|(\omega)=0$ and hence $\operatorname{supp}(|\tilde{\mu}|)=\left\{\omega_{0}\right\}$. Then $|\tilde{\mu}|$ can be expressed as $|\tilde{\mu}|=c \delta_{\omega_{0}}+d \delta_{\omega_{1}}$ for some complex numbers c and d. Therefore $\tilde{\mu}=c u\left(\omega_{0}\right) \delta_{\omega_{0}}+d u\left(\omega_{1}\right) \delta_{\omega_{1}}$. Hence we can easily see that $\mu=a \delta_{\omega_{0}}\left|X+b \delta_{\omega_{1}}\right| X$. We thus obtain $a \delta_{\omega_{0}}\left|X+b \delta_{\omega_{1}}\right| X \in U_{\{1, h\}}\left(X_{1}^{*}\right)$. q.e.d.

Lemma 3. Assume that $\left\{1, h, h^{2}, h^{3}\right\} \subset X, X_{+}^{*}=\left\{\mu \in X^{*}:\|\mu\|=\mu(\mathbf{1})\right\}$ and $h(\Omega)=$ [$m, M]$.
(i) If Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}, then $U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right) \cap X_{+}^{*}=\left\{\delta_{\omega} \mid X: \omega \in \Omega_{h}\right\} \cup\left\{(1-a) \delta_{\omega_{0}}\left|X+a \delta_{\omega_{1}}\right| X: 0<a<1\right\}$.
(ii) If either Ω_{m} or Ω_{M} possesses more than two points, then $U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right) \cap$ $X_{+}^{*}=\left\{\delta_{\omega} \mid X: \omega \in \Omega_{h}\right\}$.

Proof. Set $\tilde{h}=(M-m)^{-1}(h-m \mathbf{1})$. Then $\operatorname{span}\left\{\mathbf{1}, h, h^{2}\right\}=\operatorname{span}\left\{\mathbf{1}, \tilde{h}, \tilde{h}^{2}\right\}$ and hence $U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right)=U_{\left\{1, \tilde{n}, \tilde{h}^{2}\right\}}\left(X_{1}^{*}\right)$. Therefore we may assume without loss of generality that $m=0$ and $M=1$. Let $0 \leq a \leq 1$ and $\omega \in \Omega_{h}$. Then $\delta_{\omega} \mid X$ is in X_{+}^{*}. To show that $\delta_{\omega} \mid X \in U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right)$, let $v \in X_{1}^{*}$ be such that $v\left(h^{k}\right)=\delta_{\omega}\left(h^{k}\right)$ for $k=0,1,2$. Then $1=v(\mathbf{1}) \leq\|v\| \leq 1$. Choose a Radon measure \tilde{v} on Ω such that $\tilde{v} \mid X=v$ and $\|\tilde{v}\|=\|v\|$. Then $\|\tilde{v}\|=\tilde{v}(\mathbf{1})=1$, so \tilde{v} is positive and also we have

$$
\tilde{v}\left((h-h(\omega) \mathbf{1})^{2}\right)=v\left(h^{2}\right)-2 h(\omega) v(h)+h(\omega)^{2} v(\mathbf{1})=h(\omega)^{2}-2 h(\omega)^{2}+h(\omega)^{2}=0 .
$$

Hence, the support of \tilde{v} consists of the single point ω, since $(h(\xi)-h(\omega))^{2}>0$ for all $\xi \in \Omega \backslash\{\omega\}$. This immediately implies that $\tilde{v}=\delta_{\omega}$, so $v=\delta_{\omega} \mid X$ and hence $\delta_{\omega} \mid X \in U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right)$. Suppose next that $\Omega_{m}=\left\{\omega_{0}\right\}$ and $\Omega_{M}=\left\{\omega_{1}\right\}$, hence $(1-a) \delta_{\omega_{0}} \mid X$ $+a \delta_{\omega_{1}} \mid X$ is in X_{+}^{*}. To show that $(1-a) \delta_{\omega_{0}}\left|X+a \delta_{\omega_{1}}\right| X \in U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right)$, let $v \in X_{1}^{*}$ be such that $v\left(h^{k}\right)=\left((1-a) \delta_{\omega_{0}}+a \delta_{\omega_{1}}\right)\left(h^{k}\right)$ for $k=0,1,2$. Then $1=v(\mathbf{1}) \leq\|v\| \leq 1$. Choose a Radon measure \tilde{v} on Ω such that $\tilde{v} \mid X=v$ and $\|\tilde{v}\|=\|v\|$. Then \tilde{v} is positive and $\tilde{v}\left(h-h^{2}\right)=v\left(h-h^{2}\right)=a-a=0$. Hence, the support of \tilde{v} is contained in $\left\{\omega_{0}, \omega_{1}\right\}$, since $h(\xi)-h(\xi)^{2}>0$ for all $\xi \in \Omega \backslash\left\{\omega_{0}, \omega_{1}\right\}$. This immediately implies that $\nu=(1-a) \delta_{\omega_{0}} \mid X$ $+a \delta_{\omega_{1}} \mid X$, and hence $(1-a) \delta_{\omega_{0}}\left|X+a \delta_{\omega_{1}}\right| X \in U_{\left\{1, h, k^{2}\right\}}\left(X_{1}^{*}\right)$.

Conversely, let $\mu \in U_{\left\{1, n, h^{2}\right\}}\left(X_{1}^{*}\right) \cap X_{+}^{*}$. By [7, Lemma 2. 1], $\|\mu\|=1$, and so $\mu(\mathbf{1})=1$. Choose a positive Radon mesure $\tilde{\mu}$ on Ω such that $\tilde{\mu} \mid X=\mu$ and $\|\tilde{\mu}\|=\|\mu\|$. Put $\alpha=\mu(h)$ and $\beta=\mu\left(h^{2}\right)$. Then we have $0 \leq \alpha, \beta \leq 1, \beta \leq \alpha$ and $\alpha^{2} \leq \beta$ by Schwarz's inequality. If $0<\beta=\alpha<1$, then $\mu=(1-\alpha) \delta_{\tilde{\omega}_{0}}\left|X+\alpha \delta_{\tilde{\omega}_{1}}\right| X$ for every $\tilde{\omega}_{0} \in \Omega_{m}$ and $\tilde{\omega}_{1} \in \Omega_{M}$ because $\mu \in U_{\left\{1, h, h^{2}\right\}}\left(X_{1}^{*}\right) \cap X_{+}^{*}$. Therefore since X separates the points of Ω, we have $\mu=(1-\alpha) \delta_{\omega_{0}}\left|X+\alpha \delta_{\omega_{1}}\right| X$ only when $\Omega_{m}=\left\{\omega_{0}\right\}$ and $\Omega_{M}=\left\{\omega_{1}\right\}$. If also $\alpha^{2}=\beta$, then $\tilde{\mu}\left((h-\alpha 1)^{2}\right)=\beta-2 \alpha^{2}+\alpha^{2}=0$. But since $\tilde{\mu} \neq 0$, there must be $\omega \in \Omega$ such that $h(\omega)=\alpha$. Then $\mu\left(h^{k}\right)=\delta_{\omega}\left(h^{k}\right)$ for $k=0,1,2$ and hence $\mu=\delta_{\omega} \mid X$ because $\mu \in U_{\left\{1,1, h^{2}\right\}}\left(X_{1}^{*}\right)$. In this case, the point ω must be in Ω_{h}. Actually, if ξ is a point of Ω such that $h(\xi)=h(\omega)$, then $\mu=\delta_{\xi} \mid X$ by the above argument and hence $\xi=\omega$ because X separates the points of Ω. We finally show that the case $0<\alpha^{2}<\beta<\alpha<1$ does not occur. Suppose the contrary.

Let $\omega_{0} \in \Omega_{m}$ and $\omega_{1} \in \Omega_{M}$ be fixed arbitrarily. For each $0<\lambda<1$, we can take a point $\omega_{\lambda} \in \Omega$ such that $h\left(\omega_{\lambda}\right)=\lambda$ because $h(\Omega)=[0,1]$. Set

$$
\mu_{\lambda}=a(\lambda) \delta_{\omega_{0}}\left|X+b(\lambda) \delta_{\omega_{\lambda}}\right| X+c(\lambda) \delta_{\omega_{1}} \mid X,
$$

where $a(\lambda)=\{\lambda-(1+\lambda) \alpha+\beta\} / \lambda, b(\lambda)=(\alpha-\beta) / \lambda(1-\lambda)$ and $c(\lambda)=(\beta-\lambda \alpha) /(1-\lambda)$. Then we have $\mu_{\lambda}(\mathbf{1})=1=\mu(\mathbf{1}), \mu_{\lambda}(h)=\alpha=\mu(h)$ and $\mu_{\lambda}\left(h^{2}\right)=\beta=\mu\left(h^{2}\right)$. Note that $0<(\alpha-\beta) /(1-$ $\alpha)<\beta / \alpha<1$ and so take real numbers s and t such that $(\alpha-\beta) /(1-\alpha)<s<t<\beta / \alpha$. Then we see that $a(s)>0, a(t)>0, b(s)>0, b(t)>0, c(s)>0$ and $c(t)>0$, so that $\left\|\mu_{s}\right\|=\left\|\mu_{t}\right\|=1$, and hence $\mu_{s}=\mu=\mu_{t}$ because $\mu \in U_{\left\{1, h, h^{2}\right\}}\left(X_{1}^{*}\right)$. Therefore we have

$$
\begin{aligned}
0 & =\left(\mu_{s}-\mu_{t}\right)\left(h-h^{3}\right)=b(s)\left\{h\left(\omega_{s}\right)-h\left(\omega_{s}\right)^{3}\right\}-b(t)\left\{h\left(\omega_{t}\right)-h\left(\omega_{t}\right)^{3}\right\} \\
& =b(s)\left(s-s^{3}\right)-b(t)\left(t-t^{3}\right)=(\alpha-\beta)(s-t) \neq 0
\end{aligned}
$$

a contradiction.
q.e.d.

The proof of the following fundamental result is straightforward, and left to the reader.

Lemma 4. Let Ψ be a topological space, G an open subset of Ψ. Let f and g be two maps from Ψ to another topological space such that $f(x)=g(x)$ for each $x \in \partial G$. If f is continuous on $\Psi \backslash G$ and g is continuous on Ψ, then k defined on Ψ by

$$
k(x)=\left\{\begin{array}{lll}
f(x), & \text { if } & x \in \Psi \backslash G \\
g(x), & \text { if } & x \in G
\end{array}\right.
$$

is continuous on Ψ.

3. The proofs of the main theorems.

Proof of Theorem 1. (i) Let T be a bounded linear operator from X into $C(\Phi)$. Without loss of generality, we may assume that the norm of T is one. By Lemma $1, T$ is a BKW-operator from X into $C(\Phi)$ for the test functions $\{\mathbf{1}, h\}$ if and only if $T^{*}\left(\delta_{\varphi}\right) \in U_{\{1, h\}}\left(X_{1}^{*}\right)$ for all $\varphi \in \Phi$. Also by Lemma 2-(i), $T^{*}\left(\delta_{\varphi}\right) \in U_{\{1, h\}}\left(X_{1}^{*}\right)$ for all $\varphi \in \Phi$ if and only if for each $\varphi \in \Phi$, there exists a pair of complex numbers $(u(\varphi), v(\varphi))$ such that $T^{*}\left(\delta_{\varphi}\right)=u(\varphi) \delta_{\omega_{0}}\left|X+v(\varphi) \delta_{\omega_{1}}\right| X,|u(\varphi)|+|v(\varphi)|=1$ and $|u(\varphi)+v(\varphi)| \neq 1$ when $u(\varphi) \neq 0$ and $v(\varphi) \neq 0$. Note that $T^{*}\left(\delta_{\varphi}\right)=u(\varphi) \delta_{\omega_{0}}\left|X+v(\varphi) \delta_{\omega_{1}}\right| X$ means that $(T f)(\varphi)=f\left(\omega_{0}\right) u(\varphi)+$ $f\left(\omega_{1}\right) v(\varphi)$ for all $f \in X$. We thus obtain that $T(f)=f\left(\omega_{0}\right) u+f\left(\omega_{1}\right) v$ for all $f \in X$. Moreover, this equality easily implies that $u=T(\mathbf{1}-\tilde{h})$ and $v=T(\widetilde{h})$, where $\tilde{h}=(M-m)^{-1}(h-m \mathbf{1})$, and so u and v are in $C(\Phi)$. In particular, if T is unital, then we have

$$
1=(T \mathbf{1})(\varphi)=u(\varphi)+v(\varphi)
$$

for all $\varphi \in \Phi$ and hence $\Phi=\Phi_{u} \cup \Phi_{v}$ and $\Phi_{u} \cap \Phi_{v}=\varnothing$, where $\Phi_{u}=\{\varphi \in \Phi: u(\varphi) \neq 0\}$ and $\Phi_{v}=\{\varphi \in \Phi: v(\varphi) \neq 0\}$. Hence u and v equal the characteristic functions on Φ_{u} and Φ_{v}, respectively. Of course, $u+v=\mathbf{1}$, so that by putting $\chi=u$, we obtain that the desired
equality and (i).
The same argument implies (ii) and (iv). Since T is a BKW-operator for $\{\mathbf{1}, h\}$ if and only if it is a BKW-operator for $\{\mathbf{1},-h\}$, (iii) immediately follows from (ii).
q.e.d.

Proof of Theorem 2. We may assume without loss of generality that $m=0$ and $M=1$.
(i) Suppose that Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}. Let T be a norm one unital BKW-operator from X into $C(\Phi)$ for the test functions $\left\{1, h, h^{2}\right\}$. If $\varphi \in \Phi$, then $T^{*}\left(\delta_{\varphi}\right) \in U_{\left\{1, h, h^{2}\right\}}\left(X_{1}^{*}\right)$ by Lemma 1 , and so $\left\|T^{*}\left(\delta_{\varphi}\right)\right\|=1$ by [7, Lemma 2.1]. Note also that $\left(T^{*} \delta_{\varphi}\right)(1)=\mathbf{1}(\varphi)=1$. Therefore $T^{*}\left(\delta_{\varphi}\right) \in X_{+}^{*}$ for all $\varphi \in \Phi$. Hence by Lemma 3-(i), we have $\Phi=F_{T} \cup G_{T}$, where F_{T} is the set of all $\varphi \in \Phi$ such that $T^{*}\left(\delta_{\varphi}\right) \in\left\{\delta_{\omega} \mid X: \omega \in \Omega_{h}\right\}$ and G_{T} is the set of all $\varphi \in \Phi$ such that $T^{*}\left(\delta_{\varphi}\right) \in\left\{(1-a) \delta_{\omega_{0}} \mid X\right.$ $\left.+a \delta_{\omega_{1}} \mid X: 0<a<1\right\}$. Note that $F_{T} \cap G_{T}=\varnothing$ and hence F_{T} equals the set of all $\varphi \in \Phi$ such that $T^{*}\left(\delta_{\varphi}\right) \in\left\{\delta_{\varphi} \mid X: \omega \in \Omega\right\}$. Therefore since the map: $\varphi \rightarrow T^{*}\left(\delta_{\varphi}\right)$ is weak*continuous on Φ and the set $\left\{\delta_{\omega} \mid X: \omega \in \Omega\right\}$ is weak*-closed in X^{*}, F_{T} must be closed and so G_{T} is open. Now let $\varphi \in \Phi$. If $\varphi \in F_{T}$, then we can find a unique point $\omega \in \Omega_{h}$ such that $T^{*}\left(\delta_{\varphi}\right)=\delta_{\omega} \mid X$. Set $\omega=\xi(\varphi)$. Then we have

$$
(T f)(\varphi)=f(\xi(\varphi))
$$

for each $f \in X$. If $\varphi \in G_{T}$, then there is a unique number $0<a<1$ such that $T^{*}\left(\delta_{\varphi}\right)=(1-a) \delta_{\omega_{0}}\left|X+a \delta_{\omega_{1}}\right| X$. Moreover, there is a point $\omega \in \Omega$ such that $a=h(\omega)$ because $h(\Omega)=[0,1]$. Set $\omega=\xi(\varphi)$. Then we have

$$
(T f)(\varphi)=f\left(\omega_{0}\right)\{1-h(\xi(\varphi))\}+f\left(\omega_{1}\right) h(\xi(\varphi))
$$

for each $f \in X$. Of course, ξ is a map from Φ into Ω such that $\xi\left(\Phi \backslash G_{T}\right) \subset \Omega_{h}$ and $0<h(\xi(\varphi))<1$ for each $\varphi \in G_{T}$. Also since $h(\xi(\varphi))=(T h)(\varphi)$ for each $\varphi \in \Phi$, we see that $h \circ \xi$ is continuous on Φ. To see that $\xi \mid F_{T}$ is continuous on F_{T}, let $\varphi \in F_{T}$ and let $\left\{\varphi_{\lambda}\right\}$ be a net of F_{T} which converges to φ. Consider any subnet $\left\{\xi\left(\varphi_{\lambda^{\prime}}\right)\right\}$ of the net $\left\{\xi\left(\varphi_{\lambda}\right)\right\}$. Then there exists a convergent subnet $\left\{\xi\left(\varphi_{\lambda^{\prime \prime}}\right)\right\}$ of $\left\{\xi\left(\varphi_{\lambda^{\prime}}\right)\right\}$. Let ω be the limit point of $\left\{\xi\left(\varphi_{\lambda^{\prime \prime}}\right)\right\}$. Then we have

$$
h(\omega)=\lim _{\lambda^{\prime \prime}} h\left(\xi\left(\varphi_{\lambda^{\prime \prime}}\right)\right)=\lim _{\lambda^{\prime \prime}}(T h)\left(\varphi_{\lambda^{\prime \prime}}\right)=(T h)(\varphi)=h(\xi(\varphi)),
$$

and so $\omega=\xi(\varphi)$ because $\xi(\varphi) \in \Omega_{h}$. This observation implies that $\lim _{\lambda} \xi\left(\varphi_{\lambda}\right)=\xi(\varphi)$ and hence $\xi \mid F_{T}$ is continuous on F_{T}. We next see that $\xi(\varphi)=\omega_{0}$ or ω_{1} for each $\varphi \in \partial G_{T}$. To do so, let $\varphi \in \partial G_{T}$. Then $\xi(\varphi) \in \Omega_{h}$ and $T^{*}\left(\delta_{\varphi}\right)=\delta_{\xi(\varphi)} \mid X$. Also since φ is in the closure of G_{T}, we can take a net $\left\{\varphi_{\lambda}\right\}$ of G_{T} which converges to φ. Then for each λ, we have $T^{*}\left(\delta_{\varphi_{\lambda}}\right)=\left\{1-h\left(\xi\left(\varphi_{\lambda}\right)\right)\right\} \delta_{\omega_{0}}\left|X+h\left(\xi\left(\varphi_{\lambda}\right)\right) \delta_{\omega_{1}}\right| X$ and hence

$$
\begin{aligned}
f(\xi(\varphi)) & =(T f)(\varphi)=\lim _{\lambda}(T f)\left(\varphi_{\lambda}\right) \\
& =\lim _{\lambda} f\left(\omega_{0}\right)\left\{1-h\left(\xi\left(\varphi_{\lambda}\right)\right)\right\}+\lim _{\lambda} f\left(\omega_{1}\right) h\left(\xi\left(\varphi_{\lambda}\right)\right) \\
& =f\left(\omega_{0}\right)\{1-h(\xi(\varphi))\}+f\left(\omega_{1}\right) h(\xi(\varphi))
\end{aligned}
$$

for all $f \in X$. In particular, by putting $f=h^{2}$, we have $h(\xi(\varphi))^{2}=h(\xi(\varphi))$ and so $h(\xi(\varphi))=0$ or 1 , hence $\xi(\varphi)=\omega_{0}$ or ω_{1} since Ω_{m} consists of a single point ω_{0} and Ω_{M} consists of a single point ω_{1}.

Conversely, let ξ be a map from Φ into Ω and G is an open subset of Φ such that $0<h(\xi(\varphi))<1$ for all $\varphi \in G$, that $\xi(\varphi)=\omega_{0}$ or ω_{1} for all $\varphi \in \partial G$, that $\xi(\Phi \backslash G) \subset \Omega_{h}$, that $h \circ \xi$ is continuous on Ω and that $\xi \mid(\Phi \backslash G)$ is continuous on $\Phi \backslash G$. For each $f \in X$, put

$$
\left(T_{\xi} f\right)(\varphi)= \begin{cases}f(\xi(\varphi)), & \text { if } \varphi \in \Phi \backslash G \\ f\left(\omega_{0}\right)\{1-h(\xi(\varphi))\}+f\left(\omega_{1}\right) h(\xi(\varphi)), & \text { if } \varphi \in G\end{cases}
$$

Since $\xi(\varphi)=\omega_{0}$ or ω_{1} for all $\varphi \in \partial G$, it follows that

$$
f(\xi(\varphi))=f\left(\omega_{0}\right)\{1-h(\xi(\varphi))\}+f\left(\omega_{1}\right) h(\xi(\varphi))
$$

for all $\varphi \in \partial G$. Then for each $f \in X, T_{\xi}(f)$ is a complex-valued continuous function on Φ by Lemma 4. Moreover, we can easily see that T_{ξ} is a norm one unital linear operator from X into $C(\Phi)$. Note also that

$$
T_{\xi}^{*}\left(\delta_{\varphi}\right) \in\left\{\delta_{\omega} \mid X: \omega \in \Omega_{h}\right\} \cup\left\{(1-a) \delta_{\omega_{0}}\left|X+a \delta_{\omega_{1}}\right| X: 0<a<1\right\}
$$

for all $\varphi \in \Phi$. Then T_{ξ} is a BKW-operator for the test functions $\left\{\mathbf{1}, h, h^{2}\right\}$ by Lemmas 1 and 3-(i).
(ii) Suppose that either Ω_{m} or Ω_{M} possesses more than two points. Let T be a norm one unital BKW-operator from X into $C(\Phi)$ for the test functions $\left\{\mathbf{1}, h, h^{2}\right\}$. If $\varphi \in \Phi$, then $T^{*}\left(\delta_{\varphi}\right) \in U_{\left\{1, h, h^{2}\right\}}\left(X_{1}^{*}\right) \cap X_{+}^{*}$ as observed in the proof of (i). Hence we can find a unique point $\omega \in \Omega_{h}$ such that $T^{*}\left(\delta_{\varphi}\right)=\delta_{\omega} \mid X$ by Lemmas 3-(ii). Set $\omega=\xi(\varphi)$. Then we have

$$
(T f)(\varphi)=f(\xi(\varphi))
$$

for each $f \in X$. Of course, ξ is a map from Φ into Ω_{h} and we see that ξ is continuous on Φ by the same method used in the proof of (i).

Conversely, let ξ be a continuous map from Φ into Ω_{h}. Set $\left(T_{\xi} f\right)(\varphi)=f(\xi(\varphi))$ for each $f \in X$ and $\varphi \in \Phi$. Then we can easily see that T_{ξ} is a norm one unital linear operator from X into $C(\Phi)$ such that $T_{\xi}^{*}\left(\delta_{\varphi}\right) \in\left\{\delta_{\omega} \mid X: \omega \in \Omega_{h}\right\}$ for all $\varphi \in \Phi$. Then T_{ξ} is a $K B W$-operator for the test functions $\left\{\mathbf{1}, h, h^{2}\right\}$ by Lemmas 1 and 3-(ii). q.e.d.

References

[1] H. Bohman, On approximation of continuous and analytic functions, Ark. Mat. 2 (1952), 43-56.
[2] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Pub., Delhi, India, 1960.
[3] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, 1965.
[4] C. A. Micchelli, Convergence of positive linear operators on $C(X)$, J. Approx. Theory 13 (1975), 305-315.
[5] G. G. Lorentz, Korovkin sets (Sets of convergence), Regional Conf. at the Univ. of California, Riverside, June 15-19, 1972.
[6] S.-E. Takahasi, Bohman-Korovkin-Wulbert operators on normed spaces, J. Approx. Theory 72 (1993), 174-184.
[7] S.-E. Takahasi, (T, E)-Korovkin closures in normed spaces and BKW-operators, J. Approx. Theory 82 (1995), 340-351.
[8] D. E. Wulbert, Convergence of operators and Korovkin's theorem, J. Approx. Theory 1 (1968), 381-390.

Department of Basic Technology
Applied Mathematics and Physics
Yamagata University
Yonezawa 992
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 41A35; Secondary 47A58, 47B38.
 Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

