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Abstract. We completely determine a class of Bohman-Korovkin-Wulbert
operators from a function space on a compact Hausdorff space into the Banach space
of continuous complex-valued functions on another space with respect to the special
test functions.

1. Introduction and results. Let X and Y be normed spaces and B(X, Y) the set
of all bounded linear operators from X into Y. For a subset S of X and a subset B of
B(X, Y), an operator T in B(X, Y) is said to be a Bohman-Korovkin-Wulbert operator
(BKW-operator, for shortly) for S and Bif every net {T,} in B such that lim || T,|| = | T'||
and lim || T,(s)— T(s)[| =0 for all se S converges strongly to 7T (cf. [6]). We will omit ¥
(resp. B) when X'=Y (resp. B=B(X, Y)). Bohman [1] showed that the identity operator
id¢ 0.1 on C([0, 1]) is a BK W-operator for {1, x, x*} and special interpolation operators
on ([0, 1]). Korovkin [2] showed that ido,;j is also a BKW-operator for {1, x, x?}
and positive operators on C([0, 1]). Moreover, Wulbert [8] showed that id¢o, 5 is @
BKW-operator for {1, x, x*}. “BKW” is an abbreviation for Bohman, Korovkin and
Wulbert. Micchelli [4] posed (as suggested in Lorentz [5]) a problem of describing all
positive BK W-operators on C(2) for suitable test functions on Q and positive operators
on C(R2). However, we are interested in describing all BK W-operators from a function
space into another space for suitable test functions.

In [7], we completely described all BK W-operators (resp. all norm one unital
BKW-operators) from a function space on the unit interval [0, 1] into the Banach space
of continuous complex-valued functions on a compact Hausdorff space for the special
test functions {1, x} (resp. {1, x, x*}). Here we consider BKW-operators for general
function spaces and obtain generalizations of the results in [7].

Throughout this paper, let 2 and @ be compact Hausdorff spaces and let 4 be a
nonconstant real-valued function in C(Q) and X a function space on Q such that
span{l, h} ¢ X, where “span” denotes the linear span. Set
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m=min h(w) ,
weN

M =max h(w),

weN
Q,={weQ:hw)=m},
Qu={weQ:hw)=M} and
Q={weQ:${h ' (hw)}=1}.

In this notation, we completely describe all BK W-operators from X into C(®) for
the test functions {1, 4} as follows:

THEOREM 1. (i) If Q,, consists of a single point w, and Q,, consists of a single
point w,, then every BKW-operator T from X into C(®) for the test functions {1, h} is
of the form T(f)= f(wo)u+ f(w,)v for every feX, where u and v are functions in C(®P)
satisfying the following two conditions:

(1) @) +|v(@)| =TI for all o€ ®.

(2) If u(p)#0 and v(p) #0, then |u(p)+v(p)| # | T]. ~ B
In this case, the functions u and v are given by u=T(1—h) and v=(Th), where
h=(M—m)~(h—ml). In particular, every norm one unital BK W-operator T from X into
C(®) for {1, h} is of the form T(f)= f(wo)x+ f(w,)(1 —x) for every feX, where x is the
characteristic function on a closed and open subset of P.

(i) If Q,, consists of a single point w, and Q, possesses more than two points,
then every BK W-operator T from X into C(®) for the test functions {1, h} is of the form
T(f)= f(wo)u for every feX, where u is a functions in C(®) such that |u(e)|=||T| for
all e ®. In particular, every norm one unital BKW-operator T from X into C(®) for
{1, h} is of the form T(f)=f(wo)1 for every feX.

(iii) If Q,, consists of a single point w, and Q,, possesses more than two points,
then every BK W-operator T from X into C(®) for the test functions {1, h} is of the form
T(f)= f(w,)v for every f€X, where v is a function in C(®) such that |v(p)|=|T| for all
@€ ®. In particular, every norm one unital BK W-operator T from X into C(®) for {1, h}
is of the form T(f)= f(w,)1 for every feX.

(iv) If both Q,, and Q, possess more than two points, then the only zero operator
Sfrom X into C(®) is a BKW-operator for the test functions {1, h}.

Furthermore, we completely describe all norm one unital BK W-operators from X
into C(®) for the test functions {1, A, h*} as follows:

THEOREM 2. Suppose that {1, h, h*, B*} < X, X¥ ={ue X*: |ull = u(1)}, where X*
denotes the space dual to X and that h(Q)=[m, M].

(i) If Q,, consists of a single point w, and Q,, consists of a single point w,, then
every norm one unital BKW-operator T from X into C(®) for the test functions {1, h, h*}
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is of the form

f(&e),
(T/o)=

141

if ¢e®\G

S(@{M —h(&())} + f(@,){h(E(p) —m}

M—m

if ¢eG

’

for every feX, where & is a map from ® into Q and G is an open subset of @ such that
m<h(&())< M for all p €G, that &(p)=wq or w, for all p € G, that &P\ G)<=Q,, that

ho & is continuous on ® and that & |(®
topological boundary of G in Q.

\\G) is continuous on ®\ G. Here 0G denotes the

(i) If either Q,, or Q) possesses more than two points, then every norm one unital
BKW-operator T from X into C(®) for the test functions {1, h, h*} is of the form

(TN o)=1(&(9)

for every o€ ® and feX, where £ is a

The following are examples of 4
(i) p>0, (w)=w? (0<w<]1).

(i) O<a<l, h(iw)=1{ «

( 1
1——w,

(iii)) O<a<l1, h(w)= o

(iv) O<a<a'<f'<B<l, h(w)=

2. Lemmas. For ScX and Fc

continuous map from P into Q,.

in Theorems 1 and 2 when Q=[0, 1]:

1
—w, if 0<w<a

10, if a<w<.

if 0<w<a

0, if a<w<1.

(0, if 0<w<a

w—a ,
, if a<w<a

o —a
1, if «'<w<p’
w—p
BB

L0, if B<w<l.

,if pr<w<p

X*, we set

UfF)={peF:p=vif ve Fand p|S=v|S}.

The set Ug(F) is called the uniqueness set of F for S, and plays an essential role in the
Korovkin type approximation theory. Let X*={ueX*:|u|<p} for p>0. The
following lemma, which is basic in our argument, is an immediate consequence of
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[7, Theorem 1.4]:

LemMA 1. Let Sc X and Te B(X, C(®)). Then T is a BKW-operator for S if and
only if T*(4,)e Us(X¥ 1) for each ¢ € ®, where T* is the adjoint operator of T and J,, is
the evaluation at @ € P.

Let C be the set of all complex numbers. Then we have the following:

LemMMA 2. (i) IfQ, consists of a single point w, and Q,, consists of a single point
w,, then

U (X5 ={ab,,| X+b6,,|X:a,beC,|al+|b|=1 and la+b|#1 (if a0, b#0)} .

(ii) If Q,, consists of a single point w, and Q,; possesses more than two points,
then Uy y(XT)={ad,,| X:1a|=1}.

(iii) If Qy consists of a single point w, and Q,, possesses more than two points,
then Uy y(X¥)={ad,, | X:|a|=1}.

(iv) If both Q,, and Q) possess more than two points, the Uy, ,(X¥) is empty.

PrROOF. Set h=(M—m) '(h—ml). Then span{l, h}=span{l, i} and hence
U (XT)= Uy iy (X7). Therefore, we may assume without loss of generality that m=0
and M=1. Let pue Uy 4,(X¥). Put a=pu(1—h) and b= p(h). Then |a|<1 and |b|<1. For
any a, fe C, we have

laa+Bb|=| wa(X—h)+ ) [ < || u| Ila(l—h)+ﬁhllwﬁoff?}1 loa(1—2)+Br] .

In particular, for a=a/|a| and B=5/|b|, we have |a|+|b|<maxq, ., {la|(1—1t)+
| Blt}=1. Now choose &, € Q,, and &, € ), arbitrarily and set v=ad, | X+ bd;, | X, hence
vl <lal+|b|<1. Also v(1)=a+b=u(1) and v(h)= b= pu(h). Then we have u=ad,,| X +
bo,, | X, because pe Uy 4(XT). Moreover by [7, Lemma 2.1] we have ||u| =1, so that
1<|a|+]|b| and hence |a|+|b|=1.

If Q,, consists of a single point w, and Q,, possesses two points w, and w,, then
by the above argument, we have u=as,, | X+b6,,, | X and p=aé,, | X +bd,,| X. Hence
b{x(w,)—x(w,)} =0 for all xe X. This implies =0, since X separates the points of Q.
Accordingly ,u=a6w0|X and |a|=1. Also, if both Q,, and Q,, possess more than two
points, then a=5b=0, a contradiction. Hence U, ;,(X¥) must be empty and so (iv) has
been shown.

Suppose that Q,, consists of a single point w, and Q,, consists of a single point
;. In this case, if a#0 and b0, then |a+b|#1. Indeed, if |a+b|=1, then we can
find >0 such that b=ta. Also choose a function ge X \ span{l1, 4} and put

S=g—g(wo)1 + {g(wo)—g(a)l)}h .

Then feX and f#0, hence there exists w, €@ such that f(w,)#0. Note that w, #
wg, Wy, S0 0< h(w,) <1 by hypothesis. Set s=h(w,). Then (s—¢+st)/s< 1, hence we can
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take a positive number p such that max{0, (s—t+st)/s} <p<1. Set

1— 1—s)b—s(1—
o, po Ll (ool

and
1 =000 | X+ Bdu, | X +76,, | X .
Then we can easily see that p,(1)=u(1) and p,(h)=u(h). Also we have
(1-p)al + |(1—s)t—s(1—p)llal
1—s 1—s

1— 1—s)t—s(1— —t+st
=|a|{p+ p+( 9t =s( p)} <since i$—<p>

1—s 1—s S

la|+[Bl+]yI=plal+

=lal(l+t)=|al+|b|=1,

hence |u, || <1. However pu,(f)=pf(w,)#0 and u(f)=af(we)+bf(w,)=0, so pu, #p,
a contradiction to pe Uy (X7).

Conversely, it is easy to see that {ad,,, | X:|a|=1} < U, ,(X¥T) when Q,,={w,}, so
(ii) has been shown in view of the above argument. Since Uy, _; = Uy, y, (iii) follows
immediately from (ii). To show (i), assume that Q,, = {w,} and Q),={w,},and leta,be C
be such that |a|+|b|=1 and |a+b|#1 if a#0, b#0. Then we need to show that
ad | X+bé,,, | Xe Uy »(XT). To do so, let pe X§ be such that u(l)=a+b and u(h)=>.
By the Hahn-Banach extension theorem, we can find a Radon measure g on Q such
that ﬂ|X=u and ||| = ||ull. Let fi=u| | be the polar decomposition of f, i.e.,

J S (w)dﬂ(w)=J S(@)u(w)d| i|(w)
Q2 Q

for all feL)(Q, |/|), where | fi| is the total variation of i and u is a measurable function
on Q with | u(w)|=1 for all we Q (see [3, Corollary 19.38]). Then we have the following
inequality:

I=la|+[b|=|u(X—h)|+|uh)|

J h(w)u(w)d| i |(w) \
Q2

J (1= h(w)u(w)d| i|(w) l +
Q2

Sf (l—h(w))dlﬂl(w)+f h(w)dlﬂl(w)=f di|=lal=lpl<T.
2 Q Q

If a#0 and b #0, then by [7, Lemma 2.2] we have {1 —A(w)}u(w)=e"{1 —h(w)} (| i|-a.e.)
and h(w)u(w)=e*h(w) (|ji]-a.e.), where a=Arga) and B=Argb). Hence we have
1=|(1—h(w))e™+h(w)e® | (| i|-a.e.). Since |a+ b | # 1 and hence a # f (mod 2r), it follows
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that | Z|(Q\ {wo, w,})=0, i.e., supp(|i|)={wy, w,} by the above equation. If a=0,
then the above inequality implies that [, {1—h(w)}d| fi|(w)=0 and hence supp(| i|)=
{w.}. If b=0, then the same inequality implies that [,h(w)d|Z|(w)=0 and hence
supp(| fi])={wo}. Then || can be expressed as |i|=cé,, +dd,, for some complex
numbers ¢ and d. Therefore fi=cu(w,)d,,,+du(w,)d,,,. Hence we can easily see that
1=ad .| X+ b4, | X. We thus obtain ad,, | X+bd,, | X € Uy 4(X3). q.ed.

LEMMA 3. Assume that {1,h,h*, h*}c X, X% ={peX*:||u|=u1)} and h(Q)=
[m, M1].

(i) If Q,, consists of a single point w, and Q, consists of a single point w,, then
U XN X% ={5,| X:0eQ}u{(l—a),,| X+ad, | X:0<a<1}.

(i) If either Q, or 2, possesses more than two points, then Uy ,n(XT)N
Xt ={5,| X:weQ,}.

PROOF. Set i=(M —m)~*(h—ml). Then span{1, h, h*} =span{1, k, h?} and hence
Ui nn2(XT)= Uy iiy(XT). Therefore we may assume without loss of generality that
m=0 and M=1. Let 0<a<l and we®, Then §,|X is in X%. To show that
0, | Xe Uy i X¥), let veX¥ be such that w#Y)=6,h") for k=0,1,2. Then
I=v(1)<|v|<1. Choose a Radon measure v on Q such that \7|X=v and ||| =v|l.
Then ||| =7(1)=1, so ¥ is positive and also we have

H(h— h(@)1)?) = v(h2) — 2h(@)v(h) + h(@)*V(1) = h(w)? — 2h(@)? + h(w)? =0 .

Hence, the support of ¥ consists of the single point w, since (A(¢)— h(w))*>>0 for all -
e\ {w}. This immediately implies that ¥=4,, so v=4,|X and hence
3| X€ Uy py2f(X¥). Suppose next that Q,={w,} and Q,={w,}, hence (1—a)d,, |X
+ad,, | X is in X*%. To show that (1—a)d,,|X+ad,, | Xe€ Uy (XY, let ve Xt be
such that v(#*)=((1—a)d,,+ad,,)H") for k=0, 1,2. Then 1=v1)<|v| <1. Choose a
Radon measure v on Q such that ¥ | X=v and ||¥||=|v|. Then ¥ is positive and
W(h—h?*)=v(h—h?)=a—a=0. Hence, the support of ¥ is contained in {w,, ®,}, since
h(&)—h(E)*>0 for all Ee Q\ {wg, ®,}. This immediately implies that v=(1—a)d,, |X
+ad,, | X, and hence (1 —a)d,,| X+ ad,, | X € Uy (X

Conversely, let pe Uy 4(XT)n X%, By [7, Lemma 2. 1], ||u[l =1, and so p(1)=1.
Choose a positive Radon mesure ji on Q such that ji | X=p and || = ||ul. Put o= u(h)
and B=u(h?). Then we have 0<a, f<1, f<a and a?<p by Schwarz’s inequality. If
0<p=a<l, then p=(1—0)dz | X+ads |X for every @,eQ, and &, €Q, because
RE Uy pay(XF)n X%, Therefore since X separates the points of @, we have
p=(1-a)8,, | X+ad,, | X only when Q,={w,} and Q) ={w,}. If also «®>=p, then
((h—a1)®>)=p—20%+a%=0. But since i#0, there must be weQ such that h(w)=a.
Then u(h*)=3,(h*) for k=0, 1,2 and hence u=4,|X because pe Uy ;43(X¥). In this
case, the point w must be in Q,. Actually, if ¢ is a point of Q such that A(¢)=A(w), then
y=6¢| X by the above argument and hence £ =w because X separates the points of Q.
We finally show that the case 0<a?< B <a<1 does not occur. Suppose the contrary.
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Let wye ,, and w, €Q,, be fixed arbitrarily. For each 0<A<1, we can take a point
w; € Q such that h(w,)=A4 because A(2)=[0, 1]. Set

i =a(A)d 0| X +b(A)S,, | X+ c(A)d,, | X,

where a(A)={A—(1+ Ao+ B}/, b(A)=(a— P)/A(1 — 4) and c(4)=(B — Aa)/(1 —A). Then we
have u,(1)=1=pu(1), uy(h)=a=pu(h) and p,(h*)=pB=u(h*. Note that 0<(ax—pB)/(1—
a)< B/a<1 and so take real numbers s and ¢ such that (¢ — f)/(1 —a) <s<¢<f/a. Then
we see that a(s)>0, a(t)>0, b(s)>0, b(t)>0, c(s)>0 and c(t)>0, so that ||ull=ull=1,
and hence pu;=p=pu, because ue Uy j 52(XT). Therefore we have

0= (pt;— p)(h— h%) = b(s){ () — h(w)*} — b(t){ h(w,) — h(e,)*}
=b(s)s—s5%) = b(t)t—13)=(a—P)s— 1) #0,
a contradiction. q.e.d.

The proof of the following fundamental result is straightforward, and left to the
reader.

LEMMA 4. Let ¥ be a topological space, G an open subset of ¥. Let f and g be
two maps from ¥ to another topological space such that f(x)=g(x) for each x€dG. If |
is continuous on Y\ G and g is continuous on ¥, then k defined on ¥ by

k(x)z{f(x), if xe?\G
g(x) , if xeG

is continuous on V.

3. The proofs of the main theoreﬁ -

PROOF OF THEOREM 1. (i) Let T be a bounded linear operator from X into C(®).
Without loss of generality, we may assume that the norm of T is one. By Lemma 1, T
is a BKW-operator from X into C(®) for the test functions {1, 4} if and only if
T*(d,)€ Uy n(XT) for all p e @. Also by Lemma 2-(i), T*(d,) € Uy (X ¥) for all p e @ if
and only if for each ¢ € @, there exists a pair of complex numbers (#(¢), v(¢)) such that
T*(0,)= ()0 0o | X +1(9)0s, | X, | (@) | +| (@)l = 1 and | u(p)+ v(@) | # | when u(¢) #0 and
u(p)#0. Note that T*(,)=u(@)d,, | X +v(@)d,, | X means that (Tf)p)= f(we)u(ep)+
f(w,)v(¢p) for all fe X. We thus obtain that 7(f)= f1 (wo)u+ f(w,)vforall feX. Moreover,
this equality easily implies that u=T(1—%) and v=T(%), where fi=(M —m)~ }(h—m1),
and so u and v are in C(®). In particular, if T is unital, then we have

1=(T1)(¢)=u(p)+v(p)

for all pe® and hence ¢=®,uP, and &,nP,=F, where ,={pe®:u(p)#0} and
&, ={pe®:v(p)#0}. Hence u and v equal the characteristic functions on ®, and @,,
respectively. Of course, u+v=1, so that by putting y=u, we obtain that the desired



146 S.-E. TAKAHASI

equality and (i).
The same argument implies (ii) and (iv). Since T is a BK W-operator for {1, A} if
and only if it is a BKW-operator for {1, —A}, (iii) immediately follows from (ii).
q.e.d.

PrOOF OF THEOREM 2. We may assume without loss of generality that m=0 and
M=1.

(i) Suppose that Q,, consists of a single point w, and Q,, consists of a single
point w,. Let T be a norm one unital BKW-operator from X into C(®) for the test
functions {1, h, h*}. If p € ®, then T*(5,) € U,y 4 42(X¥) by Lemma 1, and so || T*(,)] =1
by [7, Lemma 2.1]. Note also that (7*5,)(1)=1(¢)= 1. Therefore 7*(6,)e X% for all
@€ ®. Hence by Lemma 3-(i), we have @ = Fu G, where F; is the set of all ¢ € @ such
that T*(3,) € {5,,| X: we 2,} and G is the set of all ¢ € ® such that T*(3,) € {(1 —a)d,, |X
+aé,, | X:0<a<1}. Note that F-nGr=( and hence F; equals the set of all pe®
such that T*(,)e {5¢|X :weQ}. Therefore since the map: p—»T*({,) is weak*-
continuous on @ and the set {5, | X : we Q} is weak*-closed in X*, F; must be closed
and so G is open. Now let pe ®. If pe F;, then we can find a unique point we Q,
such that T%(8,)=4,,| X. Set w=¢&(¢p). Then we have

(T1))=f(&(e)

for each feX. If @eGy, then there is a unique number 0<a<1 such that
T*(éq,):(l—a)éwo]X +aé,, | X. Moreover, there is a point weQ such that a=h(w)
because A(2)=[0, 1]. Set w=¢(p). Then we have

(Th)N@)= f(@o){1 = (@)} + f(w:)h(E()

for each feX. Of course, ¢ is a map from @ into Q such that {(®\ G;)<=R, and
0<h(&(¢p)) <1 for each p e Gy. Also since h(&(p))=(Th)(¢p) for each ¢ € @, we see that
ho¢ is continuous on ®. To see that & | Fy is continuous on Fr, let ¢ € Fy and let {¢,}
be a net of F; which converges to ¢. Consider any subnet {&(¢;)} of the net {&(@;)}.
Then there exists a convergent subnet {&(¢@;.)} of {{(¢,)}. Let @ be the limit point of
{&(p,+)}. Then we have

h(w)= lirp h(&(@5)= lilr}l (ThX@ ) =(Th)@)=h((¢)) ,

and so w=¢&(p) because &(p)e Q,. This observation implies that lim; &(¢;)=&¢(¢) and
hence é|FT is continuous on F;. We next see that {(p)=w, or w, for each ¢ €dGy.
To do so, let € dG . Then &(p)e R, and T*(5,) =0, | X. Also since ¢ is in the closure
of Gr, we can take a net {¢,} of G; which converges to ¢. Then for each 4, we have
T*(3,,)={1—h(E(@)}du, | X +(E(@,)d,,| X and hence
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SE(@)=(Tf)o)= 1iin (T
= liinf (@o){1—h(& (@)} + lim f (e )A(E(9,))

= fl@o){1—h(& (@)} + flw)h((e))

for all fe X. In particular, by putting f = h2, we have h(¢(@))? =h(E(@)) and so A(E(@)) =0
or 1, hence ¢(p)=w, or w, since 2, consists of a single point w, and Q,, consists of
a single point w;.

Conversely, let £ be a map from @ into 2 and G is an open subset of @ such that
0<h(&(p))<1 for all ¢ € G, that £(p)=w, or w, for all p €dG, that &P\ G)<=Q,, that
ho& is continuous on Q and that ¢ f (2\G) is continuous on #\ G. For each fe X, put

SE(o), if ped\G

flo){1=h&(e)} + flo)h(p)), if ¢€G.
Since &(p)=w, or w, for all p€dgG, it follows that

(@)= flw{1—hCE (@)} + flw)h((e)

for all ¢ € 0G. Then for each fe X, T,(f) is a complex-valued continuous function on
@ by Lemma 4. Moreover, we can easily see that T, is a norm one unital linear operator
from X into C(®). Note also that

(T No)= {

T¥6,)€{d,| X:weQ}u{(l1—a),, | X+ad,,|X:0<a<l1}

for all e ®. Then T, is a BKW-operator for the test functions {1, 4, h*} by Lemmas
I and 3-(i).

(i) Suppose that either Q,, or Q,, possesses more than two points. Let 7 be a
norm one unital BKW-operator from X into C(®) for the test functions {1, 4, h*}. If
@e®, then T*(0,) € Uy ju2(XT)n X% as observed in the proof of (i). Hence we can find
a unique point w € Q, such that 7*(d,)=4,, | X by Lemmas 3-(ii). Set w=¢&(¢p). Then we
have

(T @)= S ()

for each feX. Of course, £ is a map from @ into Q, and we see that & is continuous
on @ by the same method used in the proof of (i).

Conversely, let ¢ be a continuous map from @ into Q,. Set (T.f)¢)= f(¢(@)) for
each feX and pe®. Then we can easily see that T, is a norm one unital linear
operator from X into C(®) such that T§(5¢)6{5w|X :weQ,} for all ped. Then T,
is a KBW-operator for the test functions {1, h, #*} by Lemmas 1 and 3-(ii). q.e.d.
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