BOHMAN-KOROVKIN-WULBERT OPERATORS FROM A FUNCTION SPACE INTO A COMMUTATIVE C*-ALGEBRA FOR SPECIAL TEST FUNCTIONS

Dedicated to Professor Satoru Igari on his sixtieth birthday

SIN-EI TAKAHASI

(Received October 25, 1994, revised March 22, 1995)

Abstract. We completely determine a class of Bohman-Korovkin-Wulbert operators from a function space on a compact Hausdorff space into the Banach space of continuous complex-valued functions on another space with respect to the special test functions.

1. Introduction and results. Let X and Y be normed spaces and B(X, Y) the set of all bounded linear operators from X into Y. For a subset S of X and a subset B of B(X, Y), an operator T in B(X, Y) is said to be a Bohman-Korovkin-Wulbert operator (BKW-operator, for shortly) for S and B if every net $\{T_{\lambda}\}$ in B such that $\lim_{\lambda} ||T_{\lambda}|| = ||T||$ and $\lim_{\lambda} ||T_{\lambda}(s) - T(s)|| = 0$ for all $s \in S$ converges strongly to T (cf. [6]). We will omit Y (resp. B) when X = Y (resp. B = B(X, Y)). Bohman [1] showed that the identity operator $id_{C([0,1])}$ on C([0, 1]) is a BKW-operator for $\{1, x, x^2\}$ and special interpolation operators on C([0, 1]). Korovkin [2] showed that $id_{C([0,1])}$ is also a BKW-operator for $\{1, x, x^2\}$ and positive operators on C([0, 1]). Moreover, Wulbert [8] showed that $id_{C(([0,1]))}$ is a BKW-operator for $\{1, x, x^2\}$. "BKW" is an abbreviation for Bohman, Korovkin and Wulbert. Micchelli [4] posed (as suggested in Lorentz [5]) a problem of describing all positive BKW-operators on $C(\Omega)$ for suitable test functions on Ω and positive operators on $C(\Omega)$. However, we are interested in describing all BKW-operators from a function space into another space for suitable test functions.

In [7], we completely described all BKW-operators (resp. all norm one unital BKW-operators) from a function space on the unit interval [0, 1] into the Banach space of continuous complex-valued functions on a compact Hausdorff space for the special test functions $\{1, x\}$ (resp. $\{1, x, x^2\}$). Here we consider BKW-operators for general function spaces and obtain generalizations of the results in [7].

Throughout this paper, let Ω and Φ be compact Hausdorff spaces and let *h* be a nonconstant real-valued function in $C(\Omega)$ and X a function space on Ω such that span $\{1, h\} \subseteq X$, where "span" denotes the linear span. Set

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A35; Secondary 47A58, 47B38.

Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

 $m = \min_{\omega \in \Omega} h(\omega) ,$ $M = \max_{\omega \in \Omega} h(\omega) ,$ $\Omega_m = \{ \omega \in \Omega : h(\omega) = m \} ,$ $\Omega_M = \{ \omega \in \Omega : h(\omega) = M \} \text{ and }$ $\Omega_h = \{ \omega \in \Omega : \# \{ h^{-1}(h(\omega)) \} = 1 \} .$

In this notation, we completely describe all BKW-operators from X into $C(\Phi)$ for the test functions $\{1, h\}$ as follows:

THEOREM 1. (i) If Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 , then every BKW-operator T from X into $C(\Phi)$ for the test functions $\{1, h\}$ is of the form $T(f) = f(\omega_0)u + f(\omega_1)v$ for every $f \in X$, where u and v are functions in $C(\Phi)$ satisfying the following two conditions:

(1) $|u(\varphi)| + |v(\varphi)| = ||T||$ for all $\varphi \in \Phi$.

(2) If $u(\varphi) \neq 0$ and $v(\varphi) \neq 0$, then $|u(\varphi) + v(\varphi)| \neq ||T||$.

In this case, the functions u and v are given by $u = T(1 - \tilde{h})$ and $v = (T\tilde{h})$, where $\tilde{h} = (M - m)^{-1}(h - m\mathbf{1})$. In particular, every norm one unital BKW-operator T from X into $C(\Phi)$ for $\{\mathbf{1}, h\}$ is of the form $T(f) = f(\omega_0)\chi + f(\omega_1)(1 - \chi)$ for every $f \in X$, where χ is the characteristic function on a closed and open subset of Φ .

(ii) If Ω_m consists of a single point ω_0 and Ω_M possesses more than two points, then every BKW-operator T from X into $C(\Phi)$ for the test functions $\{1, h\}$ is of the form $T(f) = f(\omega_0)u$ for every $f \in X$, where u is a functions in $C(\Phi)$ such that $|u(\varphi)| = ||T||$ for all $\varphi \in \Phi$. In particular, every norm one unital BKW-operator T from X into $C(\Phi)$ for $\{1, h\}$ is of the form $T(f) = f(\omega_0)\mathbf{1}$ for every $f \in X$.

(iii) If Ω_M consists of a single point ω_1 and Ω_m possesses more than two points, then every BKW-operator T from X into $C(\Phi)$ for the test functions $\{1, h\}$ is of the form $T(f) = f(\omega_1)v$ for every $f \in X$, where v is a function in $C(\Phi)$ such that $|v(\phi)| = ||T||$ for all $\phi \in \Phi$. In particular, every norm one unital BKW-operator T from X into $C(\Phi)$ for $\{1, h\}$ is of the form $T(f) = f(\omega_1)\mathbf{1}$ for every $f \in X$.

(iv) If both Ω_m and Ω_M possess more than two points, then the only zero operator from X into $C(\Phi)$ is a BKW-operator for the test functions $\{1, h\}$.

Furthermore, we completely describe all norm one unital BKW-operators from X into $C(\Phi)$ for the test functions $\{1, h, h^2\}$ as follows:

THEOREM 2. Suppose that $\{1, h, h^2, h^3\} \subset X$, $X_+^* = \{\mu \in X^* : \|\mu\| = \mu(1)\}$, where X^* denotes the space dual to X and that $h(\Omega) = [m, M]$.

(i) If Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 , then every norm one unital BKW-operator T from X into $C(\Phi)$ for the test functions $\{1, h, h^2\}$

is of the form

$$(Tf)(\varphi) = \begin{cases} f(\xi(\varphi)) , & \text{if } \varphi \in \Phi \smallsetminus G \\ \frac{f(\omega_0)\{M - h(\xi(\varphi))\} + f(\omega_1)\{h(\xi(\varphi)) - m\}}{M - m} , & \text{if } \varphi \in G \end{cases}$$

for every $f \in X$, where ξ is a map from Φ into Ω and G is an open subset of Φ such that $m < h(\xi(\varphi)) < M$ for all $\varphi \in G$, that $\xi(\varphi) = \omega_0$ or ω_1 for all $\varphi \in \partial G$, that $\xi(\Phi \setminus G) \subset \Omega_h$, that $h \circ \xi$ is continuous on Φ and that $\xi \mid (\Phi \setminus G)$ is continuous on $\Phi \setminus G$. Here ∂G denotes the topological boundary of G in Ω .

(ii) If either Ω_m or Ω_M possesses more than two points, then every norm one unital BKW-operator T from X into $C(\Phi)$ for the test functions $\{1, h, h^2\}$ is of the form

$$(Tf)(\varphi) = f(\xi(\varphi))$$

for every $\varphi \in \Phi$ and $f \in X$, where ξ is a continuous map from Φ into Ω_h .

The following are examples of h in Theorems 1 and 2 when $\Omega = [0, 1]$:

(i)
$$p > 0, h(w) = w^p (0 \le w \le 1).$$

(ii)
$$0 < \alpha < 1$$
, $h(w) = \begin{cases} \frac{1}{\alpha} w, & \text{if } 0 \le w \le \alpha \\ 0, & \text{if } \alpha < w \le 1. \end{cases}$
(iii) $0 < \alpha < 1$, $h(w) = \begin{cases} 1 - \frac{1}{\alpha} w, & \text{if } 0 \le w \le \alpha \\ 0, & \text{if } \alpha < w \le 1. \end{cases}$
 $\begin{pmatrix} 0, & \text{if } 0 \le w \le \alpha \\ \frac{w - \alpha}{2} & \text{if } \alpha < w \le \alpha' \end{cases}$

(iv)
$$0 < \alpha < \alpha' < \beta' < \beta < 1$$
, $h(w) = \begin{cases} \frac{\alpha' - \alpha}{\alpha' - \alpha}, & \text{if } \alpha < w \le \alpha \\ 1, & \text{if } \alpha' < w \le \beta' \\ \frac{w - \beta}{\beta' - \beta}, & \text{if } \beta' < w \le \beta \\ 0, & \text{if } \beta < w \le 1. \end{cases}$

2. Lemmas. For $S \subset X$ and $F \subset X^*$, we set

$$U_{S}(F) = \{ \mu \in F : \mu = \nu \text{ if } \nu \in F \text{ and } \mu \mid S = \nu \mid S \}.$$

The set $U_S(F)$ is called the uniqueness set of F for S, and plays an essential role in the Korovkin type approximation theory. Let $X_{\rho}^* = \{\mu \in X^* : \|\mu\| \le \rho\}$ for $\rho > 0$. The following lemma, which is basic in our argument, is an immediate consequence of

[7, Theorem 1.4]:

LEMMA 1. Let $S \subset X$ and $T \in B(X, C(\Phi))$. Then T is a BKW-operator for S if and only if $T^*(\delta_{\varphi}) \in U_S(X^*_{||T||})$ for each $\varphi \in \Phi$, where T^* is the adjoint operator of T and δ_{φ} is the evaluation at $\varphi \in \Phi$.

Let C be the set of all complex numbers. Then we have the following:

LEMMA 2. (i) If Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 , then

 $U_{\{1,h\}}(X_1^*) = \{a\delta_{\omega_0} \mid X + b\delta_{\omega_1} \mid X : a, b \in C, |a| + |b| = 1 \text{ and } |a+b| \neq 1 \text{ (if } a \neq 0, b \neq 0)\}.$

(ii) If Ω_m consists of a single point ω_0 and Ω_M possesses more than two points, then $U_{\{1,h\}}(X_1^*) = \{a\delta_{\omega_0} | X : |a| = 1\}.$

(iii) If Ω_M consists of a single point ω_1 and Ω_m possesses more than two points, then $U_{\{1,h\}}(X_1^*) = \{a\delta_{\omega_1} \mid X : |a| = 1\}.$

(iv) If both Ω_m and Ω_M possess more than two points, the $U_{\{1,h\}}(X_1^*)$ is empty.

PROOF. Set $\tilde{h} = (M-m)^{-1}(h-m\mathbf{1})$. Then $\operatorname{span}\{\mathbf{1}, h\} = \operatorname{span}\{\mathbf{1}, \tilde{h}\}$ and hence $U_{\{\mathbf{1},h\}}(X_1^*) = U_{\{\mathbf{1},\tilde{h}\}}(X_1^*)$. Therefore, we may assume without loss of generality that m=0 and M=1. Let $\mu \in U_{\{\mathbf{1},h\}}(X_1^*)$. Put $a = \mu(\mathbf{1}-h)$ and $b = \mu(h)$. Then $|a| \le 1$ and $|b| \le 1$. For any $\alpha, \beta \in C$, we have

$$|\alpha a + \beta b| = |\mu(\alpha(1-h) + \beta h)| \le ||\mu|| ||\alpha(1-h) + \beta h||_{\infty} \le \max_{0 \le t \le 1} |\alpha(1-t) + \beta t|.$$

In particular, for $\alpha = \bar{a}/|a|$ and $\beta = \bar{b}/|b|$, we have $|a|+|b| \le \max_{0 \le t \le 1} \{|\alpha|(1-t)+|\beta|t\} = 1$. Now choose $\xi_0 \in \Omega_m$ and $\xi_1 \in \Omega_M$ arbitrarily and set $v = a\delta_{\xi_0} |X+b\delta_{\xi_1}|X$, hence $||v|| \le |a|+|b| \le 1$. Also $v(1) = a+b=\mu(1)$ and $v(h) = b=\mu(h)$. Then we have $\mu = a\delta_{\xi_0} |X+b\delta_{\xi_1}|X$, because $\mu \in U_{\{1,h\}}(X_1^*)$. Moreover by [7, Lemma 2.1] we have $||\mu|| = 1$, so that $1 \le |a|+|b|$ and hence |a|+|b|=1.

If Ω_m consists of a single point ω_0 and Ω_M possesses two points ω_1 and ω_2 , then by the above argument, we have $\mu = a \delta_{\omega_0} | X + b \delta_{\omega_1} | X$ and $\mu = a \delta_{\omega_0} | X + b \delta_{\omega_2} | X$. Hence $b \{x(\omega_1) - x(\omega_2)\} = 0$ for all $x \in X$. This implies b = 0, since X separates the points of Ω . Accordingly $\mu = a \delta_{\omega_0} | X$ and |a| = 1. Also, if both Ω_m and Ω_M possess more than two points, then a = b = 0, a contradiction. Hence $U_{\{1,h\}}(X_1^*)$ must be empty and so (iv) has been shown.

Suppose that Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 . In this case, if $a \neq 0$ and $b \neq 0$, then $|a+b| \neq 1$. Indeed, if |a+b|=1, then we can find t>0 such that b=ta. Also choose a function $g \in X \setminus \text{span}\{1, h\}$ and put

$$f = g - g(\omega_0) \mathbf{1} + \{g(\omega_0) - g(\omega_1)\}h$$
.

Then $f \in X$ and $f \neq 0$, hence there exists $\omega_2 \in \Omega$ such that $f(\omega_2) \neq 0$. Note that $\omega_2 \neq \omega_0, \omega_1, \text{ so } 0 < h(\omega_2) < 1$ by hypothesis. Set $s = h(\omega_2)$. Then (s - t + st)/s < 1, hence we can

take a positive number ρ such that max $\{0, (s-t+st)/s\} < \rho < 1$. Set

$$\alpha = \rho a$$
, $\beta = \frac{(1-\rho)a}{1-s}$, $\gamma = \frac{(1-s)b-s(1-\rho)a}{1-s}$

and

$$\mu_1 = \alpha \delta_{\omega_0} \left| X + \beta \delta_{\omega_2} \right| X + \gamma \delta_{\omega_1} \left| X \right|$$

Then we can easily see that $\mu_1(1) = \mu(1)$ and $\mu_1(h) = \mu(h)$. Also we have

$$\begin{aligned} |\alpha| + |\beta| + |\gamma| &= \rho |a| + \frac{(1-\rho)|a|}{1-s} + \frac{|(1-s)t - s(1-\rho)||a|}{1-s} \\ &= |a| \left\{ \rho + \frac{1-\rho}{1-s} + \frac{(1-s)t - s(1-\rho)}{1-s} \right\} \quad \left(\text{since } \frac{s-t+st}{s} < \rho \right) \\ &= |\alpha|(1+t) = |a| + |b| = 1 \;, \end{aligned}$$

hence $\|\mu_1\| \le 1$. However $\mu_1(f) = \beta f(\omega_2) \ne 0$ and $\mu(f) = af(\omega_0) + bf(\omega_1) = 0$, so $\mu_1 \ne \mu$, a contradiction to $\mu \in U_{\{1,h\}}(X_1^*)$.

Conversely, it is easy to see that $\{a\delta_{\omega_0} \mid X : |a| = 1\} \subset U_{\{1,h\}}(X_1^*)$ when $\Omega_m = \{\omega_0\}$, so (ii) has been shown in view of the above argument. Since $U_{\{1,-h\}} = U_{\{1,h\}}$, (iii) follows immediately from (ii). To show (i), assume that $\Omega_m = \{\omega_0\}$ and $\Omega_M = \{\omega_1\}$, and let $a, b \in \mathbb{C}$ be such that |a| + |b| = 1 and $|a+b| \neq 1$ if $a \neq 0$, $b \neq 0$. Then we need to show that $a\delta_{\omega_0} \mid X + b\delta_{\omega_1} \mid X \in U_{\{1,h\}}(X_1^*)$. To do so, let $\mu \in X_1^*$ be such that $\mu(1) = a + b$ and $\mu(h) = b$. By the Hahn-Banach extension theorem, we can find a Radon measure $\tilde{\mu}$ on Ω such that $\tilde{\mu} \mid X = \mu$ and $\parallel \tilde{\mu} \parallel = \parallel \mu \parallel$. Let $\tilde{\mu} = u \mid \tilde{\mu} \mid$ be the polar decomposition of $\tilde{\mu}$, i.e.,

$$\int_{\Omega} f(\omega) d\tilde{\mu}(\omega) = \int_{\Omega} f(\omega) u(\omega) d| \tilde{\mu}|(\omega)$$

for all $f \in L^1(\Omega, |\tilde{\mu}|)$, where $|\tilde{\mu}|$ is the total variation of $\tilde{\mu}$ and u is a measurable function on Ω with $|u(\omega)| = 1$ for all $\omega \in \Omega$ (see [3, Corollary 19.38]). Then we have the following inequality:

$$1 = |a| + |b| = |\mu(1 - h)| + |\mu(h)|$$

= $\left| \int_{\Omega} (1 - h(\omega))u(\omega)d|\tilde{\mu}|(\omega) \right| + \left| \int_{\Omega} h(\omega)u(\omega)d|\tilde{\mu}|(\omega) \right|$
 $\leq \int_{\Omega} (1 - h(\omega))d|\tilde{\mu}|(\omega) + \int_{\Omega} h(\omega)d|\tilde{\mu}|(\omega) = \int_{\Omega} d|\tilde{\mu}| = ||\tilde{\mu}|| = ||\mu|| \le 1$

If $a \neq 0$ and $b \neq 0$, then by [7, Lemma 2.2] we have $\{1 - h(\omega)\}u(\omega) = e^{i\alpha}\{1 - h(\omega)\}(|\tilde{\mu}| - a.e.)$ and $h(\omega)u(\omega) = e^{i\beta}h(\omega)$ ($|\tilde{\mu}| - a.e.$), where $\alpha = \operatorname{Arg}(a)$ and $\beta = \operatorname{Arg}(b)$. Hence we have $1 = |(1 - h(\omega))e^{i\alpha} + h(\omega)e^{i\beta}|(|\tilde{\mu}| - a.e.)$. Since $|a + b| \neq 1$ and hence $\alpha \neq \beta \pmod{2\pi}$, it follows

that $|\tilde{\mu}|(\Omega \setminus \{\omega_0, \omega_1\}) = 0$, i.e., $\operatorname{supp}(|\tilde{\mu}|) \subset \{\omega_0, \omega_1\}$ by the above equation. If a = 0, then the above inequality implies that $\int_{\Omega} \{1 - h(\omega)\} d| \tilde{\mu}|(\omega) = 0$ and hence $\operatorname{supp}(|\tilde{\mu}|) = \{\omega_1\}$. If b = 0, then the same inequality implies that $\int_{\Omega} h(\omega) d| \tilde{\mu}|(\omega) = 0$ and hence $\operatorname{supp}(|\tilde{\mu}|) = \{\omega_0\}$. Then $|\tilde{\mu}|$ can be expressed as $|\tilde{\mu}| = c\delta_{\omega_0} + d\delta_{\omega_1}$ for some complex numbers c and d. Therefore $\tilde{\mu} = cu(\omega_0)\delta_{\omega_0} + du(\omega_1)\delta_{\omega_1}$. Hence we can easily see that $\mu = a\delta_{\omega_0}|X + b\delta_{\omega_1}|X$. We thus obtain $a\delta_{\omega_0}|X + b\delta_{\omega_1}|X \in U_{\{1,k\}}(X_1^*)$. q.e.d.

LEMMA 3. Assume that $\{1, h, h^2, h^3\} \subset X$, $X_+^* = \{\mu \in X^* : \|\mu\| = \mu(1)\}$ and $h(\Omega) = [m, M]$.

(i) If Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 , then $U_{\{1,h,h^2\}}(X_1^*) \cap X_+^* = \{\delta_\omega \mid X : \omega \in \Omega_h\} \cup \{(1-a)\delta_{\omega_0} \mid X + a\delta_{\omega_1} \mid X : 0 < a < 1\}.$

(ii) If either Ω_m or Ω_M possesses more than two points, then $U_{\{1,h,h^2\}}(X_1^*) \cap X_+^* = \{\delta_\omega \mid X : \omega \in \Omega_h\}.$

PROOF. Set $\tilde{h} = (M - m)^{-1}(h - m\mathbf{1})$. Then span $\{\mathbf{1}, h, h^2\} = \text{span}\{\mathbf{1}, \tilde{h}, \tilde{h}^2\}$ and hence $U_{\{\mathbf{1},h,h^2\}}(X_1^*) = U_{\{\mathbf{1},\tilde{h},\tilde{h}^2\}}(X_1^*)$. Therefore we may assume without loss of generality that m = 0 and M = 1. Let $0 \le a \le 1$ and $\omega \in \Omega_h$. Then $\delta_{\omega} | X$ is in X_{+}^* . To show that $\delta_{\omega} | X \in U_{\{\mathbf{1},h,h^2\}}(X_1^*)$, let $v \in X_1^*$ be such that $v(h^k) = \delta_{\omega}(h^k)$ for k = 0, 1, 2. Then $1 = v(\mathbf{1}) \le ||v|| \le 1$. Choose a Radon measure \tilde{v} on Ω such that $\tilde{v} | X = v$ and $||\tilde{v}|| = ||v||$. Then $||\tilde{v}|| = \tilde{v}(\mathbf{1}) = 1$, so \tilde{v} is positive and also we have

$$\tilde{v}((h-h(\omega)\mathbf{1})^2) = v(h^2) - 2h(\omega)v(h) + h(\omega)^2v(\mathbf{1}) = h(\omega)^2 - 2h(\omega)^2 + h(\omega)^2 = 0$$

Hence, the support of \tilde{v} consists of the single point ω , since $(h(\xi) - h(\omega))^2 > 0$ for all $\xi \in \Omega \setminus \{\omega\}$. This immediately implies that $\tilde{v} = \delta_{\omega}$, so $v = \delta_{\omega} | X$ and hence $\delta_{\omega} | X \in U_{\{1,h,h^2\}}(X_1^*)$. Suppose next that $\Omega_m = \{\omega_0\}$ and $\Omega_M = \{\omega_1\}$, hence $(1-a)\delta_{\omega_0} | X + a\delta_{\omega_1} | X$ is in X_+^* . To show that $(1-a)\delta_{\omega_0} | X + a\delta_{\omega_1} | X \in U_{\{1,h,h^2\}}(X_1^*)$, let $v \in X_1^*$ be such that $v(h^k) = ((1-a)\delta_{\omega_0} + a\delta_{\omega_1})(h^k)$ for k = 0, 1, 2. Then $1 = v(1) \le ||v|| \le 1$. Choose a Radon measure \tilde{v} on Ω such that $\tilde{v} | X = v$ and $||\tilde{v}|| = ||v||$. Then \tilde{v} is positive and $\tilde{v}(h-h^2) = v(h-h^2) = a-a=0$. Hence, the support of \tilde{v} is contained in $\{\omega_0, \omega_1\}$, since $h(\xi) - h(\xi)^2 > 0$ for all $\xi \in \Omega \setminus \{\omega_0, \omega_1\}$. This immediately implies that $v = (1-a)\delta_{\omega_0} | X + a\delta_{\omega_1} | X \in U_{\{1,h,h^2\}}(X_1^*)$.

Conversely, let $\mu \in U_{\{1,h,h^2\}}(X_1^*) \cap X_+^*$. By [7, Lemma 2. 1], $\|\mu\| = 1$, and so $\mu(1) = 1$. Choose a positive Radon mesure $\tilde{\mu}$ on Ω such that $\tilde{\mu} | X = \mu$ and $\|\tilde{\mu}\| = \|\mu\|$. Put $\alpha = \mu(h)$ and $\beta = \mu(h^2)$. Then we have $0 \le \alpha, \beta \le 1, \beta \le \alpha$ and $\alpha^2 \le \beta$ by Schwarz's inequality. If $0 < \beta = \alpha < 1$, then $\mu = (1 - \alpha)\delta_{\tilde{\omega}_0} | X + \alpha\delta_{\tilde{\omega}_1} | X$ for every $\tilde{\omega}_0 \in \Omega_m$ and $\tilde{\omega}_1 \in \Omega_M$ because $\mu \in U_{\{1,h,h^2\}}(X_1^*) \cap X_+^*$. Therefore since X separates the points of Ω , we have $\mu = (1 - \alpha)\delta_{\omega_0} | X + \alpha\delta_{\omega_1} | X$ only when $\Omega_m = \{\omega_0\}$ and $\Omega_M = \{\omega_1\}$. If also $\alpha^2 = \beta$, then $\tilde{\mu}((h - \alpha 1)^2) = \beta - 2\alpha^2 + \alpha^2 = 0$. But since $\tilde{\mu} \ne 0$, there must be $\omega \in \Omega$ such that $h(\omega) = \alpha$. Then $\mu(h^k) = \delta_{\omega}(h^k)$ for k = 0, 1, 2 and hence $\mu = \delta_{\omega} | X$ because $\mu \in U_{\{1,h,h^2\}}(X_1^*)$. In this case, the point ω must be in Ω_h . Actually, if ξ is a point of Ω such that $h(\xi) = h(\omega)$, then $\mu = \delta_{\xi} | X$ by the above argument and hence $\xi = \omega$ because X separates the points of Ω . We finally show that the case $0 < \alpha^2 < \beta < \alpha < 1$ does not occur. Suppose the contrary.

144

Let $\omega_0 \in \Omega_m$ and $\omega_1 \in \Omega_M$ be fixed arbitrarily. For each $0 < \lambda < 1$, we can take a point $\omega_\lambda \in \Omega$ such that $h(\omega_\lambda) = \lambda$ because $h(\Omega) = [0, 1]$. Set

$$\mu_{\lambda} = a(\lambda)\delta_{\omega_0} | X + b(\lambda)\delta_{\omega_{\lambda}} | X + c(\lambda)\delta_{\omega_1} | X,$$

where $a(\lambda) = \{\lambda - (1 + \lambda)\alpha + \beta\}/\lambda$, $b(\lambda) = (\alpha - \beta)/\lambda(1 - \lambda)$ and $c(\lambda) = (\beta - \lambda\alpha)/(1 - \lambda)$. Then we have $\mu_{\lambda}(1) = 1 = \mu(1)$, $\mu_{\lambda}(h) = \alpha = \mu(h)$ and $\mu_{\lambda}(h^2) = \beta = \mu(h^2)$. Note that $0 < (\alpha - \beta)/(1 - \alpha) < \beta/\alpha < 1$ and so take real numbers *s* and *t* such that $(\alpha - \beta)/(1 - \alpha) < s < t < \beta/\alpha$. Then we see that a(s) > 0, a(t) > 0, b(s) > 0, b(t) > 0, c(s) > 0 and c(t) > 0, so that $\|\mu_s\| = \|\mu_t\| = 1$, and hence $\mu_s = \mu = \mu_t$ because $\mu \in U_{\{1,h,h^2\}}(X_1^*)$. Therefore we have

$$0 = (\mu_s - \mu_t)(h - h^3) = b(s)\{h(\omega_s) - h(\omega_s)^3\} - b(t)\{h(\omega_t) - h(\omega_t)^3\}$$

= $b(s)(s - s^3) - b(t)(t - t^3) = (\alpha - \beta)(s - t) \neq 0$,

a contradiction.

The proof of the following fundamental result is straightforward, and left to the reader.

LEMMA 4. Let Ψ be a topological space, G an open subset of Ψ . Let f and g be two maps from Ψ to another topological space such that f(x)=g(x) for each $x \in \partial G$. If fis continuous on $\Psi \setminus G$ and g is continuous on Ψ , then k defined on Ψ by

$$k(x) = \begin{cases} f(x), & \text{if } x \in \Psi \setminus G \\ g(x), & \text{if } x \in G \end{cases}$$

is continuous on Ψ .

3. The proofs of the main theorems.

PROOF OF THEOREM 1. (i) Let T be a bounded linear operator from X into $C(\Phi)$. Without loss of generality, we may assume that the norm of T is one. By Lemma 1, T is a BKW-operator from X into $C(\Phi)$ for the test functions $\{1, h\}$ if and only if $T^*(\delta_{\varphi}) \in U_{\{1,h\}}(X_1^*)$ for all $\varphi \in \Phi$. Also by Lemma 2-(i), $T^*(\delta_{\varphi}) \in U_{\{1,h\}}(X_1^*)$ for all $\varphi \in \Phi$ if and only if for each $\varphi \in \Phi$, there exists a pair of complex numbers $(u(\varphi), v(\varphi))$ such that $T^*(\delta_{\varphi}) = u(\varphi)\delta_{\omega_0} | X + v(\varphi)\delta_{\omega_1} | X, |u(\varphi)| + |v(\varphi)| = 1$ and $|u(\varphi) + v(\varphi)| \neq 1$ when $u(\varphi) \neq 0$ and $v(\varphi) \neq 0$. Note that $T^*(\delta_{\varphi}) = u(\varphi)\delta_{\omega_0} | X + v(\varphi)\delta_{\omega_1} | X$ means that $(Tf)(\varphi) = f(\omega_0)u(\varphi) + f(\omega_1)v(\varphi)$ for all $f \in X$. We thus obtain that $T(f) = f(\omega_0)u + f(\omega_1)v$ for all $f \in X$. Moreover, this equality easily implies that $u = T(1 - \tilde{h})$ and $v = T(\tilde{h})$, where $\tilde{h} = (M - m)^{-1}(h - m\mathbf{1})$, and so u and v are in $C(\Phi)$. In particular, if T is unital, then we have

$$1 = (T\mathbf{1})(\varphi) = u(\varphi) + v(\varphi)$$

for all $\varphi \in \Phi$ and hence $\Phi = \Phi_u \cup \Phi_v$ and $\Phi_u \cap \Phi_v = \emptyset$, where $\Phi_u = \{\varphi \in \Phi : u(\varphi) \neq 0\}$ and $\Phi_v = \{\varphi \in \Phi : v(\varphi) \neq 0\}$. Hence u and v equal the characteristic functions on Φ_u and Φ_v , respectively. Of course, u + v = 1, so that by putting $\chi = u$, we obtain that the desired

q.e.d.

equality and (i).

The same argument implies (ii) and (iv). Since T is a BKW-operator for $\{1, h\}$ if and only if it is a BKW-operator for $\{1, -h\}$, (iii) immediately follows from (ii).

q.e.d.

PROOF OF THEOREM 2. We may assume without loss of generality that m=0 and M=1.

(i) Suppose that Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 . Let T be a norm one unital BKW-operator from X into $C(\Phi)$ for the test functions $\{1, h, h^2\}$. If $\varphi \in \Phi$, then $T^*(\delta_{\varphi}) \in U_{(1,h,h^2)}(X_1^*)$ by Lemma 1, and so $||T^*(\delta_{\varphi})|| = 1$ by [7, Lemma 2.1]. Note also that $(T^*\delta_{\varphi})(1) = 1(\varphi) = 1$. Therefore $T^*(\delta_{\varphi}) \in X_+^*$ for all $\varphi \in \Phi$. Hence by Lemma 3-(i), we have $\Phi = F_T \cup G_T$, where F_T is the set of all $\varphi \in \Phi$ such that $T^*(\delta_{\varphi}) \in \{\delta_{\omega} \mid X : \omega \in \Omega_h\}$ and G_T is the set of all $\varphi \in \Phi$ such that $T^*(\delta_{\varphi}) \in \{(1-a)\delta_{\omega_0} \mid X + a\delta_{\omega_1} \mid X : 0 < a < 1\}$. Note that $F_T \cap G_T = \emptyset$ and hence F_T equals the set of all $\varphi \in \Phi$ such that $T^*(\delta_{\varphi}) \in \{\delta_{\varphi} \mid X : \omega \in \Omega\}$. Therefore since the map: $\varphi \to T^*(\delta_{\varphi})$ is weak*-continuous on Φ and the set $\{\delta_{\omega} \mid X : \omega \in \Omega\}$ is weak*-closed in X^* , F_T must be closed and so G_T is open. Now let $\varphi \in \Phi$. If $\varphi \in F_T$, then we can find a unique point $\omega \in \Omega_h$ such that $T^*(\delta_{\varphi}) = \delta_{\omega} \mid X$. Set $\omega = \xi(\varphi)$. Then we have

$$(Tf)(\varphi) = f(\xi(\varphi))$$

for each $f \in X$. If $\varphi \in G_T$, then there is a unique number 0 < a < 1 such that $T^*(\delta_{\varphi}) = (1-a)\delta_{\omega_0} | X + a\delta_{\omega_1} | X$. Moreover, there is a point $\omega \in \Omega$ such that $a = h(\omega)$ because $h(\Omega) = [0, 1]$. Set $\omega = \xi(\varphi)$. Then we have

$$(Tf)(\varphi) = f(\omega_0)\{1 - h(\xi(\varphi))\} + f(\omega_1)h(\xi(\varphi))$$

for each $f \in X$. Of course, ξ is a map from Φ into Ω such that $\xi(\Phi \setminus G_T) \subset \Omega_h$ and $0 < h(\xi(\varphi)) < 1$ for each $\varphi \in G_T$. Also since $h(\xi(\varphi)) = (Th)(\varphi)$ for each $\varphi \in \Phi$, we see that $h \circ \xi$ is continuous on Φ . To see that $\xi \mid F_T$ is continuous on F_T , let $\varphi \in F_T$ and let $\{\varphi_\lambda\}$ be a net of F_T which converges to φ . Consider any subnet $\{\xi(\varphi_{\lambda'})\}$ of the net $\{\xi(\varphi_{\lambda})\}$. Then there exists a convergent subnet $\{\xi(\varphi_{\lambda''})\}$ of $\{\xi(\varphi_{\lambda''})\}$. Let ω be the limit point of $\{\xi(\varphi_{\lambda''})\}$. Then we have

$$h(\omega) = \lim_{\lambda''} h(\xi(\varphi_{\lambda''})) = \lim_{\lambda''} (Th)(\varphi_{\lambda''}) = (Th)(\varphi) = h(\xi(\varphi)) ,$$

and so $\omega = \xi(\varphi)$ because $\xi(\varphi) \in \Omega_h$. This observation implies that $\lim_{\lambda} \xi(\varphi_{\lambda}) = \xi(\varphi)$ and hence $\xi | F_T$ is continuous on F_T . We next see that $\xi(\varphi) = \omega_0$ or ω_1 for each $\varphi \in \partial G_T$. To do so, let $\varphi \in \partial G_T$. Then $\xi(\varphi) \in \Omega_h$ and $T^*(\delta_{\varphi}) = \delta_{\xi(\varphi)} | X$. Also since φ is in the closure of G_T , we can take a net $\{\varphi_{\lambda}\}$ of G_T which converges to φ . Then for each λ , we have $T^*(\delta_{\varphi_{\lambda}}) = \{1 - h(\xi(\varphi_{\lambda}))\}\delta_{\omega_0} | X + h(\xi(\varphi_{\lambda}))\delta_{\omega_1} | X$ and hence

146

$$f(\xi(\varphi)) = (Tf)(\varphi) = \lim_{\lambda} (Tf)(\varphi_{\lambda})$$
$$= \lim_{\lambda} f(\omega_0) \{1 - h(\xi(\varphi_{\lambda}))\} + \lim_{\lambda} f(\omega_1) h(\xi(\varphi_{\lambda}))$$
$$= f(\omega_0) \{1 - h(\xi(\varphi))\} + f(\omega_1) h(\xi(\varphi))$$

for all $f \in X$. In particular, by putting $f = h^2$, we have $h(\xi(\varphi))^2 = h(\xi(\varphi))$ and so $h(\xi(\varphi)) = 0$ or 1, hence $\xi(\varphi) = \omega_0$ or ω_1 since Ω_m consists of a single point ω_0 and Ω_M consists of a single point ω_1 .

Conversely, let ξ be a map from Φ into Ω and G is an open subset of Φ such that $0 < h(\xi(\varphi)) < 1$ for all $\varphi \in G$, that $\xi(\varphi) = \omega_0$ or ω_1 for all $\varphi \in \partial G$, that $\xi(\Phi \setminus G) \subset \Omega_h$, that $h \circ \xi$ is continuous on Ω and that $\xi \mid (\Phi \setminus G)$ is continuous on $\Phi \setminus G$. For each $f \in X$, put

$$(T_{\xi}f)(\varphi) = \begin{cases} f(\xi(\varphi)) , & \text{if } \varphi \in \Phi \smallsetminus G \\ f(\omega_0)\{1 - h(\xi(\varphi))\} + f(\omega_1)h(\xi(\varphi)) , & \text{if } \varphi \in G . \end{cases}$$

Since $\xi(\varphi) = \omega_0$ or ω_1 for all $\varphi \in \partial G$, it follows that

$$f(\xi(\varphi)) = f(\omega_0)\{1 - h(\xi(\varphi))\} + f(\omega_1)h(\xi(\varphi))$$

for all $\varphi \in \partial G$. Then for each $f \in X$, $T_{\xi}(f)$ is a complex-valued continuous function on Φ by Lemma 4. Moreover, we can easily see that T_{ξ} is a norm one unital linear operator from X into $C(\Phi)$. Note also that

$$T^*_{\xi}(\delta_{\varphi}) \in \{\delta_{\omega} \mid X : \omega \in \Omega_h\} \cup \{(1-a)\delta_{\omega_0} \mid X + a\delta_{\omega_1} \mid X : 0 < a < 1\}$$

for all $\varphi \in \Phi$. Then T_{ξ} is a BKW-operator for the test functions $\{1, h, h^2\}$ by Lemmas 1 and 3-(i).

(ii) Suppose that either Ω_m or Ω_M possesses more than two points. Let T be a norm one unital BKW-operator from X into $C(\Phi)$ for the test functions $\{1, h, h^2\}$. If $\varphi \in \Phi$, then $T^*(\delta_{\varphi}) \in U_{\{1,h,h^2\}}(X_1^*) \cap X_+^*$ as observed in the proof of (i). Hence we can find a unique point $\omega \in \Omega_h$ such that $T^*(\delta_{\varphi}) = \delta_{\omega} | X$ by Lemmas 3-(ii). Set $\omega = \xi(\varphi)$. Then we have

$$(Tf)(\varphi) = f(\xi(\varphi))$$

for each $f \in X$. Of course, ξ is a map from Φ into Ω_h and we see that ξ is continuous on Φ by the same method used in the proof of (i).

Conversely, let ξ be a continuous map from Φ into Ω_h . Set $(T_{\xi}f)(\varphi) = f(\xi(\varphi))$ for each $f \in X$ and $\varphi \in \Phi$. Then we can easily see that T_{ξ} is a norm one unital linear operator from X into $C(\Phi)$ such that $T_{\xi}^*(\delta_{\varphi}) \in \{\delta_{\omega} \mid X : \omega \in \Omega_h\}$ for all $\varphi \in \Phi$. Then T_{ξ} is a KBW-operator for the test functions $\{1, h, h^2\}$ by Lemmas 1 and 3-(ii). q.e.d.

References

- [1] H. BOHMAN, On approximation of continuous and analytic functions, Ark. Mat. 2 (1952), 43-56.
- [2] P. P. KOROVKIN, Linear Operators and Approximation Theory, Hindustan Pub., Delhi, India, 1960.
- [3] E. HEWITT AND K. STROMBERG, Real and Abstract Analysis, Springer-Verlag, Berlin, 1965.
- [4] C. A. MICCHELLI, Convergence of positive linear operators on C(X), J. Approx. Theory 13 (1975), 305-315.
- [5] G. G. LORENTZ, KOrovkin sets (Sets of convergence), Regional Conf. at the Univ. of California, Riverside, June 15–19, 1972.
- [6] S.-E. TAKAHASI, Bohman-Korovkin-Wulbert operators on normed spaces, J. Approx. Theory 72 (1993), 174–184.
- [7] S.-E. TAKAHASI, (T, E)-Korovkin closures in normed spaces and BKW-operators, J. Approx. Theory 82 (1995), 340–351.
- [8] D. E. WULBERT, Convergence of operators and Korovkin's theorem, J. Approx. Theory 1 (1968), 381-390.

Department of Basic Technology Applied Mathematics and Physics Yamagata University Yonezawa 992 Japan