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Abstract. General theorems are proved on the algebraic independence of Mahler

functions in several variables and their values at algebraic points.

1. Introduction and results. Using Nesterenko's results, we have a satisfactory

result (Nishioka [9]) on the algebraic independence of the values of Mahler functions

of one variable. However we have been unable to get such a result in the case of several

variables (see Tόpfer [11]). Here we study the algebraic independence of the following

Mahler functions and their values by Mahler's method.

Let Ω = (ωij) be an n x n matrix with nonnegative integer entries. If z = (z l 5 . . . , zπ)

is a point of C", we define a transformation Ω: Cn -> Cn by

Let K be an algebraic number field,/^z),... ,/m(z) power series of n variables z l 5 . . . , zn

with coefficients in K, convergent in an «-polydisc U around the origin. We assume that

fγ(z\ ... ,/m(z) satisfy a functional equation of the form

(I) ) [
\ \ \bjz)

where A is an m x m matrix with entries in A^and b^z) are rational functions of zl9 . . . , zn

with coefficients in K. Furthermore we suppose that the matrix Ω and an algebraic point

α = (α l 5 . . . , αn), where αf are nonzero algebraic numbers, have the following four

properties.

( I ) Ω is non-singular and none of its eigenvalues is a root of unity.

Let p be the maximum of the absolute values of the eigenvalues of Ω. Then p is

an eigenvalue of Ω (Gantmacher [1]) and p> 1.

( I I ) Every entry of the matrix Ωk is O(pk) as k tends to infinity.

If every eigenvalue of Ω of the absolute value p is a simple root of the minimal

polynomial of Ω, then the property (II) is fulfilled.

(III) If we put Ωka = ( α f , . . . , αj,k)), then
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for all sufficiently large k, where c is a positive constant.
(IV) Iff(z) is any nonzero power series of n variables with complex coefficients which
converges in some neighborhood of the origin, then there are infinitely many natural
numbers k such that f(Ωkoc) Φ 0.

Masser [7] gives a property which is equivalent to (IV).
The power series/^z),... ,/r(z) are said to be linearly independent over K modulo

K(zl9 . . . , zn) (Klzl9 . . . , zj) if cJi(z)+ +crfAz)φK(zl9 ..., zn) (K[zl9 . . . , z j) for
any c l 5 . . . , creK which are not all zero.

THEOREM 1. Suppose oceU. Iffγ{z\ ... ,/r(z) (r < m) are linearly independent over K
modulo the rational function field K(zu . . . , zn), then /i(oc),... ,/r(α) are algebraically
independent.

COROLLARY. IfoceU, then

trans.deg^/^α),. . . ,/M(α)) = trans.degj,(z)A(z)(/i(^ JJ?))

THEOREM 2. Suppose that all b^z) in the functional equation (1) are polynomials.
If fι(z), ...,/r(z) (r<m) are linearly independent over K modulo the polynomial ring
K\zγ, ..., z j , thenf^oί), ... ,/r(α) are algebraically independent for oceU.

Kubota [2] and Loxton-van der Poorten [3] study the case where the matrix A is
diagonal. We note that they need the further assumption that Ωkoc (k>0) are not poles
of biz).

In Section 2, we shall study the algebraic independence of the functions/^z),...,
fm(z), and in Section 3, the algebraic independence of the values/^α),... ,/m(α). Finally
in Section 4, we shall give some examples.

ACKNOWLEDGEMENT. The author would like to express her gratitude to the
referees for their suggestions.

2. Algebraic independence of Mahler functions. Let C be a field of characteristic
0, L the rational function field C{z1, ..., zn) and M the quotient field of the formal
power series ring C[[z1? . . . , z j ] . Let Ω be an n x n matrix with nonnegative integer
entries which is nonsingular and has no roots of unity as eigenvalues. We define an
endomorphism τ: M -> M by

f\z)=f(Ωz) (feM),

where Ωz is defined as in Section 1.
The following lemma, which is more general than Lemma 1 in Loxton-van der

Poorten [4], can be proved in the same way.
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LEMMA 1. If g e M satisfies

then geC.

PROOF. From the theory of nonnegative matrices (cf. Gantmacher [1]), the matrix

Ω has a positive eigenvalue p(> 1) such that no eigenvalue of Ω has modulus exceeding

p, and to this dominant eigenvalue there corresponds a nonnegative eigenvector u such

that Ωu = pu. By renumbering the variables, if necessary, we may take u = \uu . . . , um,

0, . . . , 0) with uu ..., wm>0. This forces Ω to have the partitioned form

JA B

0 D

where A is m x m and D is (n — m) x (n — m) and A and D are nonsingular and have no

roots of unity as eigenvalues.

We prove the lemma by induction on n. The lemma is immediate in the case n=\.

We put

{R = <μ,u>\μeNn} = {R0,Ru...}, 0 = Ro<R1<-' ,

where <μ, u> = μ1u1 + +μnun for μ = (μί9 . . . , μn), u = (uu . . . , un). I f / ( Z ) G C [ [ Z 1 ? . . . ,

z j ] , we can decompose it as follows:

> with fR{z)= Σ fμz
μ>

R (μ,u> = R

where R runs through the sequence {Rk}k>0 and each fR(z) is a polynomial in

z' = {zu . . . , zm) of which the coefficients are power series of z" = (z m + 1 , . . . , zn). Note

that, if we write zj=yjs
Uj for 1 <j<n, then

/*(*) =Λ(y)s* , fR(Ωz) =fR(Ωy)s<>R .

We suppose g(z)φθ and

g(z) = p(z)/q(z), p(z), g(z)e <;[[>!, . . . , z j ] .

Letting p{z) = ΣRpR{z\ q{z) = ΣRqR{z\ we have

Take the least Rt and Rj such that /?Λι(y)7^0 and ^ . ( ^ T ^ O , respectively. We ob-

serve that Rι = Rj. For if Rt>Rj, then the term with least degree in s on the left

hand side above is pRi{Ωy)qRj(y)spRi + Rj and that of the right hand side above is
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dqRj(y)qRj(Ωy)sRj+pRj, a contradiction. In the case Rt<Rj, we can also deduce a

contradiction. Hence Rt = Rj and comparing the coefficients of the terms of lowest

degree in s of both sides, we have

pRi (Qy) qRi iy)=cpRί (y)qRί (Ωy)+dqRi (y)qRi

We shall show below that this impliespRi(y)lqRiiy)εC. We omit the subscript Rt. We

can write p(y) and q(y) as polynomials in y' = (yu . . . , ym), say,

p(y)=Σpμ(y")/μ, <?ω=Σ Φ")y'μ,
μ μ

where the coefficients are power series in y" = (ym + ι, - , yn). Then

p{Ωky) = -'+ ΛBD""2

We define the rank of a term ay'μ, with α^Ό, to be μ. Ranks are ordered lexico-

graphically. For /c = 0, 1, 2,..., let μkA
k and vkA

k be the exponents of the terms of

lowest rank in the polynomials p(Ωky) and q(Ωky), respectively. The ranks μk and vk

are uniquely determined since A is nonsingular. Because vk has only finitely many

possibilities, there are a vector v and an infinite set A of nonnegative integers such

that vk = v for any keA. Since μk also has only finitely many possibilities, there are

nonnegative integers h,keA such that h<k and μh = μk( = μ). Since

q{Ωhy) qfy)

we have

p(Ωky) _ck_hp(Ωhy)

q(Ωky) q(Ω"y)

Therefore

p(Ωky)q(Ωhy) = ck-hp(Ωhy)q(Ωky) + dfq(Ωky)q(Ωhy) .

The terms of lowest rank of p(Ωky)q(Ωhy), p(Ωhy)q(Ωky) and q{Ωky)q{Ωhy) are μkA
k +

vhA
h, μhA

h + vkA
k and vkA

k + vhA
h, respectively. Hence two of these are equal and so

μ = v. Comparing the coefficients of the terms of lowest rank on the left and right

hand sides, we get
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By the induction hypothesis, pμ(Dhy") = aqμ(Dhy") for some aeCx, and therefore
pμ{y") = aqμ{y"). If we put r(y) = p(y) — aq(y), then r(y) has no term of rank μ = v and

r(Ωy)q(y) = p(Ωy)q(y) - aq(Ωy)q(y)

= cp(y)q(Ωy) + dq(y)q(Ωy) - aq(Ωy)q(y)

= cr(y)q(Ωy) + {ca + d- a)q(y)q{Ωy).

If r(y) Φ 0, we can apply the above construction to r(y) in place of p(y) and reach a
contradiction. Thus r(y) = 0 and pRi(y) = aqR.(y), where a = ca + d. Next we shall prove
that pRj(y) = aqR.(y) for anyy>/ by induction on j . We may assume cφO. We compare
the coefficients of spRi+Rj on both sides of (*). If pRi + Rj = ρRi. + Rf for some (ϊ,j')φ
(U)» (i'Jf>ϊ), we can easily see that ϊ,j'<j. By the induction hypothesis, we get

pRiXy)= Rjiy)=aqRjXy)

Hence

) = PRί(Ωy)qRj{y) = cpRj(y)qRi(Ωy) + dqRj(y)qRi(Ωy).

Dividing both sides by qRi(Ωy), we get

Rj{y) = cpRj(y) + dqRj(y).

Since a — d — ca and c#0, we have pRj(y) = aqRj(y). Hence the assertion is proved and
we get g(z) = p(z)/q(z) = a.

THEOREM 3. Suppose that f^eM (i = 1,..., kj = 1,..., n(i)) satisfy the functional
equation

I fn \ I
0 \

*<>

\ an(i) 1 an(i

/ / , l \

\ fi n(i)

bn \

where ai9 cffleC, atΦQ, c^i-xΦO and bueL. Iffj (i= 1,..., k,j= 1,..., n(ί)) are alge-
braically dependent over L, then there exist a nonempty subset {iu . . . , ir} of {1, . . . , k]
and nonzero elements cί9 ..., cr of C such that

ah=" =air > 9 = cJiχl+ +crfirίeL .

Here g satisfies gτ = aiίg + c1biίί + +crbirl.

PROOF. We prove the theorem by induction on £ * = 1n(i). We assume that
Σ*= i n(0 ̂  1 a n d t n a t yij (ί= 1, /c, 7 = 1,..., n(ί)) are algebraically dependent over L.
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By the induction hypothesis we may assume fu (ί= 1,..., k, j = 1,..., n(i)) except fknik)

are algebraically independent over L. Let Xij(i=l,...,k,j=l,..., n(i)) be indeterminates

and define an endomorphism T of the polynomial ring M[X] by

Ta = aτ

\TXin{i)/

(aeM),

There exists a nonconstant polynomial FeL[X] such that F(/) = 0. We may assume

F to be irreducible. Put

(bjEL).

Then

As a polynomial of Xkn{k), F divides TF. Since F is irreducible in L[X\ F divides TF

in L[X~]. Comparing the total degrees of F and TF, we have

TF= aF for some aeL .

The nonzero monomials of F can be ordered lexicographically with

We may assume that the coefficient of the largest term of F is 1. Comparing the

coefficients of the largest terms of TF and aF, we get aeC. Let P be a polynomial

with the least total degree among the nonconstant elements of L[X] such that

TF= aF+ c for some a,ceC.

Suppose that

(2) TP = aP + c, a,ceC.

We denote by Dtj the derivation d/dX^. Then we have

Since

total deg Di n(i)P < total deg P ,

Din{i)P must belong to L. By Lemma 1 we obtain
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Then Q = P — Σk

i=ίcinii)Xin{i) is a polynomial of Xtj ( ί = l , . . . , kj= 1 , . . . , n(ί)-1) with

coefficients in L. Since

k / n(r)

Σ ι X"1 ίr) Λ/" L
Crπ(r)l 2^ α«(r)s^-rs + ̂ r«(r)

r = l \s=l

= ίϊί) P — c a^

and

total deg Dt n(i) _ x P < total deg P ,

Din{i)-\P must belong to L. By Lemma 1,

Din{i)_1P = cin(i)_1eC.

Continuing this, we obtain

P = ΣctjXij + b (ctjeCbeL).

By the equality (2),

(3) ΓP = Σ<

Let {il9..., /r} be the set of / for which there exists nonzero c 0 for somey and define

Comparing the coefficient of XihJh on the left hand side with the right hand side in (3),

we have cihJhaih = acihJh and therefore ah= =air = a. Assume Jh>\ for some h.

Comparing the coefficient oϊ XihJh_1 in (3), we have

This contradicts the assumption a{j*)

Jh-ίφ0. Therefore Jh= 1 for every h and

Σ cihlXihl+b, cihίΦ0, beL.
h=l

By the equality (3),
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= Σ cihMihXihi + Ki) + b* = a( Σ cihlXihl+b)
\h=l J

and therefore

r

Σ cihlbihi+bT =

By this we obtain

Σ cihjihί+b) = Σ cihl(afihl+bihl) + b* = a
\ = l J Λ=l

By Lemma 1, Yd

r

h = 1 Cihifhi+b must belong to C. This completes the proof.

THEOREM 4. Let f^z),... ,fm(z)eM satisfy the functional equation (1), where A is

an mxm matrix with entries in C and bι(z)eL. Iffl9... ,/m are algebraically dependent

over L, then there exist c l 5 ...,cmeC9 not all zero, such that

PROOF. When det^ = 0, the assertion is trivial. Thus we assume det^ί/O. Let

B = P~1A~1P be the Jordan canonical form of the matrix A"1, where B and P are

mxm matrices with entries in the algebraic closure C of C. Then we have

1 : = P - 1 U " 1 : -A

By applying Theorem 3 to the matrix B, there exists a nonzero vector (cί9..., cm)eCm

such that

g(z)=(Cι,...,cm)P-ι\ : e C ( Z l , . . . , z n ) .

Putting (du ..., dj = (cu ..., cJP'1, we get

where du ...,dm are not all zero. We can put

Let /e C[[z x , . . . , zπ]] be a common denominator of fί,... ,fm. There exist elements

β u . . . , βs of C which are linearly independent over C such that d1,..., dm and the
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coefficients of p are linear combinations of βu . . . , βs over C Comparing the coefficients

of βi in the equality

MΛ+--+fqfmdm=fp,

we complete the proof.

LEMMA 2. If A, BeC[zu . . . , zπ] are coprime, then so are Aτ and Bτ.

PROOF. We may assume C to be algebraically closed. Assume that an irreducible

polynomial P divides both Aτ and Bτ. Let x = ( x l J . . . , x J be a generic point of the

algebraic variety defined by P over C. Since A\x) = Bτ(x) = 0, we know that Ωx is a zero

of both A and B. By the fact that

trans.degc C(Ωx) = trans.degc C(x) = n—l,

Ωx is a generic point of the algebraic variety defined by an irreducible polynomial Q

over C. Hence Q divides both A and B, a contradiction.

THEOREM 5. Let f l 9 . . . , / m e M satisfy the assumptions of Theorem 4 and

bi(z)eClz1, . . . ,zj/(9r every i. Iffu . . . ,/m are algebraically dependent over L, then there

exist cl9 ...,cmeC, not all zero, such that

m

Σ ^ / i e C [ z 1 ? . . . , z j .
i = l

PROOF. When d e t ^ = 0, the assertion is trivial. We thus assume d e t ^ / O . In the

same way as in the proof of Theorem 4, we get g e C(zl9..., zn), where g satisfies a

functional equation

aeC , beC\_zu . . . , z j .

Put g = A/B, where A,BeC[zu . . . , z J are coprime. Then by Lemma 2, ,4τ and J5τ are

coprime and

BAτ = aABτ + bBBτ.

Therefore Bτ divides B and B divides Bτ. Hence Bτ/BeC. By Lemma 1, B must belong

to C and so geC[zx,..., z j . We can complete the proof in the same way as in the

proof of Theorem 4.

3. Algebraic independence of the values of Mahler functions. The following

lemma was proved by Loxton and van der Poorten (cf. [9]). We restate it here for the

reader's convenience.

LEMMA 3. Suppose that Ω, oc satisfy the properties (I)-(IV) and

ψ(z;x)=t Σ θfx^^jiz),
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where θt are distinct nonzero complex numbers and gij(z)eC[[z1, . . . , zπ]] are regular at

the origin. Ifφ{Ωka, k) = 0for all sufficiently large k, then gij(z) = 0for every i,j.

PROOF. We prove this by induction on Σ ? = 1 dt. If Σ * = 1 4 = 1> the lemma is true

by the property (IV). Let YJ

q

i = ιdi>\ and g(z) = gqdq(z)φ0. We may assume θq=\.

Consider

) = qΣ Σ Σ
j=ί

where

) = g(Ωz)gqJ(z)-g(z)

and

htJ(z) = g(Ωz)gij(z)-θtg(z)
J~

gis(Ωz)

Now, ξ(Ωkoc; k) = 0 for all sufficiently large k, so by the induction hypothesis, hj(z) and

are all identically zero. Since

hdq _ x(z) = g(Ωz)gqdq _ x(z) - = 0 ,

we have

d _ 1

By Lemma 1, gqdq-1(z)/g(z)eC, and so
know that ζ? > 2 and

— 1 = 0 . By the assumption l5 we

λ, we have ) = 0. By the inductionThus gldi(z)/g(z)eC by Lemma 1. Since Θ

hypothesis, #l7(z) are all identically zero.

THEOREM 6. Suppose that fx{z\ ... ,/ m (z)GX[[z 1 ? . . . , z j ] satisfy the functional

equation (1), Ω, α satisfy the properties (I)-(IV) and for all k>0, Ωkoce U and b^z) are

defined at Ωkoc. Iffi(z),...,fm{z) are algebraically independent over K(zu . . . , z j , then

fi(ot), . . . ,/m(α) are algebraically independent.

We note that/^z), . . . ,/w(z) are algebraically independent over K(zί9..., zn) if and

only if they are algebraically independent over C(z1, . . . , z j .

PROOF. We may assume that α l 5 . . . , αM and the eigenvalues of A are all con-

tained in K. Since /i(z), ...,/m(z) are algebraically independent over X ( z l 5 . . . , zn), we

have d e t ^ ^ O . By the functional equation (1), we have
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f(z) = Akf(Ωkz) + Σ Ajb(Ωjz) = Akf(Ωkz) + bik)(z), bik\z)= Σ Λjb(Ωjz).
j=o j=o

Replacing Ω by any convenient power of Ω, we may assume that the multiplicative

subgroup generated by the eigenvalues of A is torsion free. Assume t h a t / ^ α ) , . . . ,/m(α)

are algebraically dependent. Then there is a relation of algebraic dependence

where τμ are integers not all zero. Let tμ(μ = (μu . . . , μm), | μ | < L ) be indeterminates

and put

Πz t) = Σ tJΛzr fMTm=Σ tj{zf.
μ = (μί,...,μrn) μ

\μ\=μι + ' + μrn<L

We define tik) by the equality

F(z ;t) = Σ tj{zf = Σ tμ(Akf(Ωkz) + b«Xz)T = Σ tΐ]f(Ωkzr .
μ μ μ

L e t x ί ί 9 . . . , x ί m , . . . , x m ί 9 . . , x m m , wί9 . . , w m , yί9...,ym b e i n d e t e r m i n a t e s a n d p u t

Σ..II : I- l+l

Then ijf»= Γμ(ί A" ^'(z)) and

Therefore

(4) 0 = F(oc τ) = F(Ωfeα Γ(τ ^lfc

We note that Tμ(τ\A°\ bi0)(z)) = τμ. Put

7(τ) = {e(ί)eX[ί]|e(Γ(τM*;y)) = 0 for any k>0} .

PROPOSITION 1. V(τ) is a prime ideal of' K[t],

PROOF. Q(T(τ; Ak; y)) is a linear recurrence with characteristic roots in a torsion

free group. Here a linear recurrence is a sequence of the form

Σ gi(k)θk, k>o,
ί = l

where g^x),..., gq(x) are polynomials in x and 0 l 5 . . . , 0 are the characteristic roots.
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Suppose that Q i , β 2

6 ^ M a n d 2 i δ 2 G ^ ( τ ) Then for every k, at least one of

Q^Tζτ; Λk;y)) and Q2(T(τ; Ak; y)) is zero. Thus one of these linear recurrences has

infinitely many zeros, and so it is a zero linear recurrence by Skolem-Lech-Mahler's

theorem.

PROPOSITION 2. If P(z; t) is a polynomial in the variables z = (zu ..., zn) and t =

(ίμ), then the following assertions are equivalent.

(i) P(Ωkoc T(τ Ak b(k\a))) = 0 for all large k.

(ii) IfP(z; t) = ΣλQλ(t)z\ then Qλ{t)e V(τ)for every λ.

PROOF. Assume (i) and put

Then Rλμ(k) are linear recurrences and since b(k)((x) = f(a) — Akf(Ωk(x),

P(Ωka; T(τ;A
μ

λ μ

By Lemma 3, Rλμ{k) are zero linear recurrences since z,fx(z\ ...,fm(z) are algebraically

independent over K. Hence

Qλ(T(τ;Ak;f(oc)-Akw)) = O

for every fc>0. Since w l 5 . . . , wm are variables,

Qλ(T(τ;Ak;y)) = 0

for every k > 0 and so Qλ(t) e V(τ). The converse is immediate.

DEFINITION. If P(z\ ή = ΣλPλ(t)zλ *s a formal power series in the variables zί9...,

zn with coefficients in K[t], then the index of P(z; ί) is defined to be the least integer

|Λ,| for which Pλ(t) φ V(τ). If there are no such integers, we define the index of P(z t) is oo.

By Proposition 1, we have

^z t)P2(z ή) = index P^z t) + index P2(z t).

PROPOSITION 3. index F(z ί) < oo.

PROOF. F ( Z ; τ)φθ, s ince/^z), . . .,/m(z) are algebraically independent. By the

property (IV), there exists k0 such that F(Ωkooc; τ ) # 0 . Suppose that

and indexF(z; ί)= oo. Then pΛ(ί)e V(τ) for every /I and therefore

F(Ωkooc ;τ) = Σ Pχ{T{τ A0 ^ ^ α ) ) ) ^ 0 ^ = 0 ,
x
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a contradiction.

Let p be a nonnegative integer, R(p) the K-vector space of polynomials in K[t]

of degree at most p in each tμ, and d(p) the dimension over K of the factor space

R(p) = R(p)/(R(p)n V(τ)). The coset containing a polynomial P(ή of R(p) in Λ(p) is

denoted by P(ί).

PROPOSITION 4.

PROOF. Every polynomial Q(t) e R(2p) can be written in the form

where ε ranges through the functions from {μ}\μ\<L to {0, 1} and Qε(t)eR{p). Let

Pβ) = Y\μtT
)P- If {5i(ί), . ,βd(P)(ί)} is a basis of ~R(p), then {ΛW&W},.. generates

R(2p).

PROPOSITION 5. Let p be a sufficiently large natural number. Then there are

polynomials P0(z; ί ) , . . . , Pv(z\ ί ) e X [ z ; ί ] with algebraic integer coefficients and degrees

at most p in each variable such that the following assumptions are satisfied.

(i) indexP0(z; ί)<°o.

(ii) index(^^ = 0 P Λ (z; t)F(z; t)h)>cί(p-\-ί)1+n~\ where c1 is a positive constant.

PROOF. If {Q[p)(t),..., Q(

dfp)(ή} is a basis of R(p) over K, a typical polynomial

Ph(z t) can be expressed in the form

Λ(z; 0=ΣPJfiz*, P*M=Σ βHuQnt) (QHUSK) .
λ i = l

Let

E{z ί) = Σ PH(Z t)F(z ί)h = Σ EM?X •
h = O λ

Then Eλ(t)eR(2p) and we obtain expressions for the Eλ(ή which can be written in

terms of Q[2p\t),..., Qtf&iή. The coefficients of Q\2p\t) (ί= 1,..., d(2p)) are a system

of d(2p) homogeneous linear forms of ghλi over K whose simultaneous vanishing is equiv-

alent to Eλ(t) = 0. If we wish E(z; t) to have index at least equal to / = [ 2 ~ ( L + 1 ) m ' ι ~ 1 ( p +

l ) 1 + π ~1] — 1, then we have to solve a system off n )d(2p)(<Jnd(2p)) homogeneous
\ n )

linear equations in (p+ l)n + 1d(p) variables ghλi. By Proposition 4, we have

(p+l)n + 1d(p)>J"2iL + 1)rnd(p)>Jnd(2p).

This implies that there is a function E(z t) with index I>J such that indexPh{z\t)φco

for some h. Let r be the smallest among such h and put
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h = r

Then

/ = index F(z t)rE0(z ;t) = r index F(z t) + index E0(z t).

By Proposition 3, we have

and so E0(z; t) satisfies (i) and (ii).

Let E(z;t) be the Yj

P

h = QPh(z;t)F(z;t)h in Proposition 5, and / = indexE(z t). In

what follows, cί9 c2, . . . are positive constants independent of fc, p while cx(p\ c2(p),. .

are positive constants depending on p and independent of k.

PROPOSITION 6. Ifk>c2(p)9 then

log I £(Ωfeα T(τ Ak b(fe)(α))) I < -c3(p+ I ) 1 + π"V f c .

PROOF. By the equality

we have | bf\a) \ < c\ and

\T(τ;A
k
;b

ik)
((x))\<c

k

5
.

E(z t) is a polynomial in the variables ί with degree at most 2p in each variable whose

coefficients are power series convergent in U. Letting

we have

and

Therefore

\E(Ωkoc; T(τ;Ak;ι

By the property (III), | (xik) \<εpk for some ε < 1. Therefore, if k>cί0(p), then
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\E(Ωkoc; T(τ;Ak;b{k\oc)))\<c8(p)cp

9

k £ Σ (cΊεf*)λ* + - + λ»

<nc8(p)cp

9

k(cΊε
pk)Iln/(l-cΊε

pk)n.

This implies the proposition.

If α is an algebraic number, we denote by | α | the maximum of the absolute

values of the conjugates of α and by den(α) the least positive integer such that den(α)α

is an algebraic integer, and we set | |α | |=max{ |α | , den(α)}. Let oceK* and D = den(α).

\Nκ/Q(Da)\>l, since Nκ/Q(Doί) is a nonzero integer. Hence we have the so-called

fundamental inequality

If aσ is a conjugate of α, then for the same reason,

Since Nκ/Q(Doc)oί ~ι is an algebraic integer,

Therefore we have ||oc"" ̂  || < | |α | | 2 [ K : Q 1 .

PROPOSITION 7. Ifk>c4(p), then

log||£(Ωfcα T(τ Ak ^(fc)(α)))|| <c 5 pp k .

PROOF. By the equality (4), we have

E(Ωka T(τ Λk bik\a))) = P0(Ωkoc T(τ Ak

Letting Ak = (cφ, we have Hα^H^cξ. By the property (II), we obtain

and so

7 = 0

Therefore

and

\\P0(Ωk(x; T(τ;A

This implies the proposition.

Now we can complete the proof of Theorem 6. By Proposition 2, there exists

k>max(c2(p\ c4(p)) such that
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Po(ΩkθL;T(τ;Ak;bik\θL)))Φ0.

By Propositions 6 and 7 and the fundamental inequality, we get

Hence

a contradiction, if p is large.

LEMMA 4. Le/ C 6e afield and F a subfield of C. If

f(zί9 . . . , zn)eC[lzu . . . , z j ] n F ( z x , . . . , zn),

then there exist polynomials Λ(zu ..., zπ), 5(z1? . . . , z B ) e F [ z 1 , . . . , z J swcΛ that

PROOF. There are relatively prime polynomials A(zί9...9zn) and £(z l 5 ...,zn) in

l 9 . . . , z j such that

l9..., z j .

We shall show that every prime factor P of B satisfies P(0,.. ., 0)^0. We may assume

i^to be algebraically closed. Then F{t} = \J™=1F((t1/n)) is algebraically closed, where t

is a variable. We have the expression

where Pt is the sum of the terms of total degree /. Changing the variables zf to z\ as

we obtain

P(zl9..., zn) = Pd(l, c 2 , . . . , cjzϊ* + (the sum of the terms of degree < d — 1 in z\).

We can choose c2,..., cπ so that Pd(l, c 2 , . . . , c π )^0. Therefore we may assume

P(z 1,.. .,zw) = αz d

1 +P d _ 1 (z 2 , . . . ,z M )z d Γ 1 + + P 0 ( z 2 , . . . , z π ) , aeF* .

We can choose 02> > 0« e P[[ ί ]] which are algebraically independent over F and satisfy

gf( (O) = O. Then P(AΓ, # 2 , . . . , g π ) e F [ [ ί ] ] [ I ] and the coefficient of the largest degree is a.

Suppose that P(0,. . . , 0) = 0. Then P o (0,. . . , 0) = 0 and therefore there exists a root

^ e ^ W of P(X9 0 2 , . . . , 0Π) = O such that 0^0) = 0. ( 0 l 9 . . . , gn) is a generic point of the

algebraic variety defined by P(XU . . ., Xn) = 0 over F. By the equality

f(zl9..., zJB(z l 5 . . . , zn) = A(zl9..., zn),

we have
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0 = f(gl9 , g J B ( g l 9 . . . , g n ) = Λ(gu ...9gn).

Hence P must divide A, a contradiction.

PROOF OF THEOREMS 1 AND 2. Let {/i(z),... ,/s(z)} (r <s) be a maximal set whose

elements are linearly independent over K modulo K(zί9..., zn). Then fs+1(z),... ,/m(z)

are linear combinations over K modulo K(zί9..., zn). Therefore fι(z)9... 9fs(z) satisfy a

functional equation of the form (1) and we may assume s — m without loss of generality.

By Theorem 4, /^z), . . . ,/m(z) are algebraically independent over K(zί9..., zn). Since

b(z) = f(z) - Af(Ωz) E (K [[z1 ?..., z J ]Γ ,

by Lemma 4 we have expressions

, pi(zlqi(z)eKlz1,...,zn], ^ 0 , . . . , 0 ) # 0 .

There exists a positive integer k0 such that if fc>/c0, then ΩkaeU and q^

(i= 1,..., m). By Theorem 6,fί(ΩkoaL)9 . . . ,fm(Ωko(x) are algebraically independent. Since

) = / ( z ) - ^ f c 0 / ( ί 2 ^ z ) E Cl[Zl -αl9..., z π - α J ] n ^(z x - α 1 ? . . . , zn-an),
j=o

we obtain

/(α) = Akof{Ωkoa) + B , 5 G Xm ,

by Lemma 4. The values/^α), . . . ,/m(α) are algebraically independent, since

We can prove Theorem 2 similarly by using Theorem 5.

4. Examples. Let d be an integer greater than 1 and put

f(χ,z)=Σ
k = O

Then/(x, z), df/dx(x9 z),.. ., dιf/dxι(x, z) satisfy

Let α l 9 . . . , α R be distinct nonzero algebraic numbers. By Theorem 3, dιfjdx\ah z)

( i = l , . . . , π , />0) are algebraically independent over C(z\ since αx, . . . , α π are distinct

and f{ah z) φ C(z). Ω = (d) and a nonzero algebraic number α with absolute value less
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than 1 satisfy the properties (I)-(IV). Therefore dιfldxι{aboί) ( i = l , . . . , « , />0) are

algebraically independent by Theorem 1. Hence we have the following theorem.

THEOREM 7. Let d be an integer greater than 1, α a nonzero algebraic number with

absolute value less than 1, and g(x) = Σ™=oθίdkχk. Then g(x) is an entire function and

g{l\a) (aeQx, />0) are algebraically independent.

Nishioka [8] proved that the function Σ™=0%
klxk has the same property as the

function g(z).

Next we consider the power series

oo [h\ώ]

— La La Z l Z 2 5
i = l A 2 = l

where ω is quadratic irrational and 0 < ω < l . Fω(z1,z2) converges in the domain

{ | z 1 | < l , | z 1 | | z 2 Γ < l } a n d

Fm(z,l)=Σ ίkω-]zk.
fc=l

F o r suitable algebraic numbers α l 5 α 2 , the transcendence of Fω(<xu α 2 ) is proved in

Mahler [5] . N o w we shall prove the following theorem:

THEOREM 8. Let α 1 ? α 2 be algebraic numbers with 0 < | α 1 | < l , 0 < | α 1 | | α 2 | ω < l .

Then

dlι

are algebraically independent.

COROLLARY. Let f(z) = Fω(z, 1), and let α be an algebraic number with 0 < | α | < 1.

Then fil)((x) (/>0) are algebraically independent.

PROOF. Let ω be expanded in continued fraction

1
ω =

1

Define ω0, ωu . . . by

1 1

a1+ω1 a2+ω2

Because of the equality (see Mahler [5]),
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V - 1 ^Pμ, + 1 + P μ ^ μ + 1 + <?μ.

* 2

where qv/pv is the v-th convergent of ω, we may assume without loss of generality that

0 < I OL1 I, I α2 I < 1 and ω is expanded in a purely periodic continued fraction. Let v be

an even period of the continued fraction of ω and

Ω =

Then we have

Fω(zu z2) = Fω(Ω(zu z2)) + b(zl9 z2), b(zl9 z2)eQ(zu z2).

Letting Dγ =zιd/dz1, D2 = z2d/dz2, we know that Dι

1

1Dι

2

2Fω(zi, z2) is a linear combination

of {Dh

1

ίDh

2

2Fω(Ω(zί9 z2))}hί+h2 = h + h modulo Q(zu z2). We need the following:

THEOREM (Mahler [5]). Suppose that the characteristic polynomial of Ω is ir-

reducible over Q and that Ω has an eigenvalue p which is greater than the absolute values

of all other eigenvalues. We denote by Aij9 the (ij)-cofactor of the matrix Ω — pI. If

then Ω and α = (α1 ? . . . , ocn) satisfy the properties (I)-(IV).

Nishioka [10] proves the algebraic independence of the functions Dι{D2

2Fω(zu z2)

(lχ>0, / 2 >0). By Theorem 1 we complete the proof.
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