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A CHARACTERIZATION OF HYPERBOLIC CYLINDERS
IN THE DE SITTER SPACE
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Abstract. We characterize a class of hyperbolic cylinders of the de Sitter spacetime
as the only complete non-compact spacelike hypersurfaces with constant lowest mean
curvature and having more than one topological end.

1. Introduction. Constant non-zero mean curvature and maximal spacelike
hypersurfaces in Lorentzian spaces are objects of a great amount of interest from both
physical and mathematical points of view since some works, in the last fifteen years,
have revealed that they are convenient initial data for the Cauchy problem of the
Einstein equation in general relativity. Also, hypersurfaces with non-zero constant mean
curvature become asymptotically null as they approach infinity and because of this they
are particularly suitable for studying propagation of gravitational waves (cf. [B], [CB],
[CFM], [G], [S]). The ambient spaces mostly considered have been Lorentzian space
forms such as Minkowski and de Sitter spaces or some spacetimes which are close, in
a geometrical sense, to them.

From a mathematical point of view, the attention was focused upon these
hypersurfaces because they exhibit Bernstein type properties. Firstly, Calabi [C] proved
that a maximal spacelike entire graph in the Minkowski space /?"+ x with n <4 is a linear
hyperplane. Later, Cheng and Yau [CY] showed that the same holds for arbitrary n.
The case of entire graphs with non-zero constant mean curvature in this same ambient
spacetime has a completely different flavour, as was pointed out by Treibergs [T].

Another physically relevant spacetime is the de Sitter space 5" + 1 where the role
of the linear hyperplanes of the Minkowski space is played by the umbilical hypersur-
faces, obtained by intersecting S\+1 with linear hyperplanes through the origin of the
Minkowski space R\+2 where the de Sitter space can be viewed as a hypersphere.
Goddard [G] conjectured that complete space-like hypersurfaces in the de Sitter space
with constant mean curvature must be umbilical. In [Mo], the author solved this
conjecture in the affirmative provided that the hypersurface is compact by using an easy
integral formula (the case n = 2 had been settled earlier in [Ak] by Akutagawa). This
result had been obtained in the maximal case in [CFM]. Also, in this way, an earlier
theorem due to Akutagawa [Ak] and also in part to Ramanathan [R] was generalized.
This result asserted that, if a complete spacelike hypersurface has mean curvature H
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satisfying H2<4(n—l)/n2 if n>2, or H2<\ if « = 2, then it is umbilical. The relation
between the afore-mentioned theorems in [Mo] and [Ak] can be established as follows:
if the mean curvature H of the hypersurface satisfies that inequality, it is immediate,
from the Gauss equation, that its Ricci tensor is bounded below by a positive number.
So, it is compact from the Bonnet-Myers theorem. Later, Oliker [Ol] has shown that
the Bernstein type property is stable relative to perturbation of the data.

This theorem by Akutagawa and the author is the best possible for complete
spacelike hypersurfaces in S\+1 having constant mean curvature H. Indeed, in [Ak],
non-umbilical examples with n = 2 and H2 > 1 were constructed and in [Mo] we remarked
that for n>2 and H2>4(n—l)/n2 there are, besides the corresponding umbilical
examples (isometric to spheres if H2 < 1, to Euclidean spaces if H2 = 1 and to hyperbolic
spaces if H2>\), also non-umbilical hypersurfaces. The example invoked there was
nothing but the so-called hyperbolic cylinder (cf. [A], [KKN]) which is isometric to
the Riemannian product H1 xS"'1 of a hyperbolic line and an ^-dimensional sphere
of radii sinh r and cosh r, respectively. The corresponding mean curvature H satisfies
H2 = (coihr + (n— l)tanhr)2/«2 which is always greater than or equal to 4(n — l)/n2 and
this precise value is attained by the hyperbolic cylinder with coth2r = «— 1.

So, it seems natural to look for complete spacelike hypersurfaces in the de Sitter
space 5" + 1, n>2, with constant mean curvature exactly equal to this boundary value
2-yJn—l/n. We conjectured that they are only the corresponding umbilical spheres and
the above hyperbolic cylinder. In this work we will solve affirmatively this problem with
a topological restriction on the hypersurface. Concretely, we will prove the following
theorem:

A complete spacelike hypersurface in the de Sitter spacetime S\+1 with constant
mean curvature H satisfying H2 = 4(n—l)/n2 which is not connected at infinity must be,
up to rigid motion, a certain hyperbolic cyclinder.

Here, connected at infinity is used in the sense of Freudenthal, that is, the hypersurface
is not compact and has exactly one topological end. An end is a connected component
in the complement of balls with radii increasing to infinity.

2. Preliminaries. Consider Lorentz-Minkowski space R\+2 as the real vector
space Rn + 2 endowed with the Lorentzian metric < , ) given by

for u, veRn + 2. Then, de Sitter space of dimension n+ 1 can be defined as the following
hyperquadric of R\+2

sn
1
+1 = {ueRn

1
+2\\u\2 = \}.

In this way, S\+1 inherits from < , > a metric which makes it a Lorentzian manifold
with constant sectional curvature one.
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The standard examples of spacelike hypersurfaces, umbilical ones and hyperbolic
cylinders, with constant mean curvature in the de Sitter spacetime can be found in
almost any of the references in the bibliography. The umbilical ones are given by

where aeR"*2, | α | 2 = p = l , 0 , —1 and τ2>p. The corresponding mean curvature H
satisfies H2 = τ2/(τ2-p). As one can see in [Mo], for instance, M is isometric to a
hyperbolic space, a Euclidean space or a sphere according as p = 1, p = 0 or p— — 1,
respectively. On the other hand, hyperbolic cylinders are the hypersurfaces given by

M={peSn

ί

+1 \pl + '' +P2

n + 1

where r is a real positive number and n>2. One can easily show, or see [Mo] for
example, that the mean curvature is

H=—[cothr + («-l)tanhr] .
n

From this we get H2>4(n—l)/n2 and the equality is attained only if coth2r = «— 1.
These hypersurfaces are of course not umbilical. They have two different constant
principal curvatures at each point, one with multiplicity one, and have parallel second
fundamental form. This property characterizes them among complete spacelike
hypersurfaces in the de Sitter space. Another characterization of these hyperbolic
cylinders, in the two-dimensional case, is as the only surfaces with constant mean
curvature in S\ which are uniformly non-umbilical (see [A] and [M]). Moreover, they
are isometric to the Riemannian product //^sinhr) x S^-^coshr) of a hyperbolic line
and an (n— l)-dimensional sphere.

Let M be an ^-dimensional manifold immersed into 51"4"1 as a spacelike hypersur-
face and represent by σ its second fundamental form

where X, Y are vector fields on M, and V and V are the metric connections of S\+1

and M, respectively. If TV is a local unit normal field for our immersion, we have

σ(u, v) = — (Au9 v}N

where u,ve TM and A is the Weingarten endomorphism corresponding to TV. So, the
mean curvature H of the immersion, corresponding to the choice of N, is H=(l/n)tv A.
If R and S denote the curvature and Ricci tensors of V, we have the classical Gauss
and Codazzi equations

R(u, v)w = <t;, w>w — <M, w}v — (Av, w}Au + <AM, W}AV

(1) S(u,v) = (n- 1)<M, v}-nH(Au, υ} + < A \ v}
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with u, v, w tangent to M. Hence, using Codazzi's equation and Ricci's identities, the
rough Laplacian of the endomorphism field A is given by

(AA)u = t (V2A)(eh eh n)= £ (V2A)(eh u, et)
i = l i = l

n

= Σ {W2A){μ9ei9ei) + R(ei9u)Aei--AR(ei,u)ei}

for ue TM. If the mean curvature H of the immersion is supposed to be constant, then

So, using the Gauss equation (1), we obtain

{AA)u = nAu-nHu + (trA2)Au-nHA2u

for each u tangent to M. Observing now that

— Δ t r A2 = \VA\2 + <Λ, AA} ,

we arrive at the following Simons type formula which, in several forms, has already
been used in [A], [Ak], [CY], [KKN], [N], [R], [T], and whose derivation we have
included for completeness,

— AtrA2 = \VA\2 + ntrA2-n2H2-nHtrA3 + (trA2)2 .

Instead of the Weingarten endomorphism A, we will use the traceless symmetric tensor
T=A — HI which vanishes identically if and only if the immersion is umbilical.
Substituting it in the above Simons formula, we have

(2) — Δ tr T2 = I VΓ|2 + (tr T2)2-nHtr T3 + n(\ -H2) tr T2 .

3. Results and proofs. We will obtain the announced characterization of hyper-
bolic cylinders in the de Sitter space among complete spacelike hypersurfaces whose
mean curvature is constantly the boundary value H=2yjn—l/n. The tools which we
will use are suitable manipulations of the Simons formula (2), the celebrated splitting
theorem of Cheeger and Gromoll and the following maximum principle at infinity for
complete manifolds due to Omori and Yau:

THEOREM 1. Let M be a complete Riemannian manifold whose Riccί curvature is
bounded from below and f: M-+R a smooth function bounded from below. Then, for each
ε > 0 there exists a point pεεM such that
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(i) IY/Ί(A)<ε,
(ii)

(iii)

In fact, we start by taking into account the fact that the tensor T is diagonalizable

and using Lagrange multipliers in order to find extrema of tr Γ 3, considered as a function

of its eigenvalues, subjected to the constraints t r Γ = 0 and t r Γ 2 fixed. So, we obtain

the following inequality

(3) I tr Γ31 < H~2 (tr T2ψ2

which already appeared in [O], for example. The equality holds here only when T has

two different eigenvalues, one of them with multiplicity one. We want to use this

inequality in the formula (2). For this purpose, suppose that we have chosen the unit

normal field N in such a way that the constant mean curvature H is non-negative. Also,

we define h to be the non-negative smooth function tr T2 denned on M. From (2), we get

hll2 + n{\-H2) .

VΦ-i)

As a conclusion, the function h satisfies the following second order inequality

(4) Ah>2\VT\2 + 2hPH(hί/2)>2hPH(h1/2),

where PH is the real polynomial given by

(5Ϊ Prr(x\ = x2

Now, we can state our first result, which, in a weaker verison, was also obtained

in [ K K N ] :

PROPOSITION 2. Let Mbea complete spacelike hyper surface immersed into de Sitter

space S\+1 with constant mean curvature H=2^n — l/n. Then, either M is umbilical {and

so compact) or n > 2 and the scalar curvature r of M satisfies

peM

This supremum is attained if and only if M is the corresponding hyperbolic cylinder, up

to rigid motion of S\+1.

PROOF. Consider the positive smooth function f on M defined by
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/ = -
/1+Λ

where h = tr T2, as before. It is immediate to check that

\Vh\2

4 (l+/j) 3

and that

Ah 3 |V/i|2

On the other hand, using the expression in (1) concerning the Ricci tensor of M and

that nH=2yJn—l, we have

(6) S(v, v) = ([A — yJn— ll)2v, vy = \(Λ — yjn — 11)v\ 2

for each υ tangent to M. Hence, the Ricci curvature of M is non-negative and, in

particular, bounded from below. Consequently, we may apply Theorem 1 to the func-

tion /. So, it is possible to find in M a sequence of points pk, keN, such that

k k2

Using the formulae for the gradient and the Laplacian of / in terms of the function h

which we have found above, we get \imk^o0 h(pk) = suppeMh(p) and

1 1 ΛA % ί V/2

~k

Ah 3

A h

Hence we get

Now, taking into account the inequality (4) which h satisfies since the mean curvature

H of M is constant, we obtain

hPH(h1'2) 1 3

(l+h)2 "" k VyiΐMP*) k<

where, in this case, by putting the concrete value of H in (5), the polynomial PH is exactly

(7)
„ , . , 2(n-2) (n-2) 2 / n - 2 λ 2

PH(x) = x2 κ-^-x + - '— = [x —
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From this inequality, we firstly have supp e M/i(p)<oo and secondly

either PH(^suph)<0 or h = 0.

The latter says that the immersion is umbilical. If the first alternative occurs, we have

from (7)

0>PH(

that is, sup h = (n — 2)2/n. Then n > 2 because, if n = 2, then h = 0 again. Now, by recalling

that \σ\2 = trA2=h + nH2, we have suptrA2 = n. Computing from (1) the scalar

curvature of M i n terms of t r ^ 2 we conclude that sup r = (n — 2)2, as we wanted. If this

value is attained at some point of M, then the function h would reach its supremum

on M. But, from (4) and (7), we know that this function h is subharmonic. Then h would

be constant because of the maximum principle. Again from (4) and the above inequali-

ties we conclude that VΓ=0, that is, the second fundamental form of the immersion

is parallel and, as the equality holds in (3), the hypersurface has two different con-

stant principal curvatures l/^Jn—l with multiplicity n— 1 and •yjn—l with multiplicity

1. So, the proof is finished.

Finally, we can state the main result of this paper, which gives us the uniqueness

property of hyperbolic cylinders in the de Sitter space which we had stated in the

introduction.

THEOREM 3. Let M be a complete spacelike hypersurface of the de Sitter space

S\+1, n > 2, with constant mean curvature H= 2yjn— 1/n. IfM is not connected at infinity,

that is, M has at least two ends, then M is, up to isometry, a hyperbolic cylinder.

PROOF. Our hypersurface cannot be umbilical because, in that case, it would be

compact since H=2yjn—l/n< 1 and it would have no topological ends. Hence, from

Proposition 2, we have suppeMr(p) = (n~2)2. But, using the Gauss equation (1), we

have r = (n — 2)2 — n + \σ\2, and so sup p e Λ f \σ\2(p) = n. It suffices to prove, according to

Proposition 2, that this supremum of | σ \2 is attained. In order to show this, recall that

our hypothesis about the value of the mean curvature H implies (see (6)) that the Ricci

curvature of M is non-negative. Then we are in a position to apply the Cheeger-Gromoll

splitting theorem [CG] because our manifold has at least two ends and, so, the existence

of a geodesic line in M is warranted. Then, the hypersurface M is isometric to a

Riemannian product NxR of an (n— l)-dimensional complete manifold N and a

Euclidean line. So, at each point of M, there exists a direction where the Ricci curvature

vanishes. From the relation (6) between the Ricci tensor and the Weingarten

endomorphism, this means that λί=-sJn—l is a constant principal curvature of the

hypersurface. Moreover, since the sum | σ | 2 of the squares of all principal curvatures

λ1 > - > λn at each point is always less than or equal to n, we have as a conclusion
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that all the remaining principal curvatures λ2>
 m>λn have absolute value less than

or equal to one. As we assume n > 2, we conclude that the principal curvature λγ — ̂ Jn— 1

has multiplicity exactly one at each point. Again by (6), we see that zero is a single

eigenvalue of the Ricci curvature of M. Hence, the Ricci tensor of TV is bounded below

by the positive number (λ2 — yjn—l)2 and, so, the Bonnet-Myers theorem says that N

must be compact.

On the other hand, if X is a principal vector field on M corresponding to λu which

can be taken to be parallel, and E1 = X, E2,..., En form a local orthonormal reference

on M (so, E2, ..., En are tangent to N), one can see that

because WxEι = 0 for each / = 1, 2 , . . . , « . Using the Codazzi equation (1), we obtain

X\σ\2= Σ <(V

because AX—yjn — I X and X i s a parallel vector field. Then, the function \σ\2 does not

depend on the Euclidean factor of the splitting of M. Hence, as N is compact, \σ\2

attains its maximum on Nx{t} for each teR and the same holds for | σ | 2 on M. In

this way, we have proved the theorem.
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