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Abstract. We give an upper bound for the infimum of the essential spectrum of

the combinatorial Laplacian on an infinite graph in terms of the exponential growth of

the graph.

1. Introduction and the statement of results. Let M be a smooth, complete,

non-compact Riemannian manifold and Δ the Laplacian on L2(M). We denote by λ0

the infimum of the spectrum of Δ and by λc

o

ss the infimum of the essential spectrum

of Δ. We clearly have λo<λe

o

ss. λe

o

ss(M) = \imκλo(M-K) where K runs through all

compact subsets of M.

Brooks [Bl] gave an upper bound for λe

o

ss using the exponential growth μ(M) of

M. Pick a point xoeM and let B(r) be the ball of radius r at x0. Let V{r) denote the

volume of B{r). Put μ = limsupr{(logF(r))/r}. Then μ is independent of the choice of

x0. He showed λe

o

ss<μ2/4 if the volume of M is infinite.

The objective of this paper is not only to give a proper discrete analog of Brooks'

result, but also to have a better understanding of his somewhat mysterious proof.

Discrete analog of other results on Riemannian manifolds can be found, for example,

in [K], [Fo], [DK].

Let G(K, E) be a locally finite, infinite graph. The Laplacian of G is given by

= -\— Σ (/(*)-/GO) > ^ F ,

where x~y for x,yeV means that x and y are connected by an edge and m(x) is the

number of the edges at x. The domain of Δ is

= Σ m(x)f2(x)<cΛ.
)xeV

We make G into a metric space by the path metric assigning 1 to every edge of G.

Pick a point x0 e V and denote by B(r) the ball of radius r at x0. Put V(r) = ΣxeB{r)m(x).

The exponential growth of (J is defined by
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μ(β) = lim sup — log V(r) .
r-+ oo T

It is easy to see that μ is independent of the choice of x0, and 0<μ<oo. Let λess be

the inίimum of the essential spectrum of Δ, and I e s s the supremum. Then, for an infinite

graph,

0 < Λ e s s < l < I e s s < 2 ,

as we show in the next section.

Dodziuk and Karp [DK, Prop. 1.8 and Prop. 1.18] showed, among many in-

equalities,

exp(μ) exp(μ)

Ohno and Urakawa [OU] showed

Though Ohno and Urakawa's upper bound grows exponentially, it is better than

Dodziuk and Karp's for a smaller μ. See the Figure. An interesting corollary immediately

follows from their results: if μ = 0, which is called subexponential, then λess = 0. Note

that there is an infinite graph G with Λess = 0 and μ>0. The Cayley graph of a solvable

group with exponential growth gives such an example [DK, Prop. 1.6].

We will show the following:

THEOREM 1. If G is an infinite graph, then

p S S ^ 1 2exp(μ/2)^

l+exp(μ) '

where we define the right hand side to be 1 in the case μ = oo.

REMARK. (1) For μ > 0, we have

2exp(μ/2) 1

1 — : — < — μ exp(μ),

l+exp(μ) 8

and

2exp(μ/2) . f 2(1—exp(μ/2))2

 Λ 1l+exp(μ) I exp(μ) exp(μ).

The equality holds if and only if μ = 0 for both of the inequalities. See the Figure.
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FIGURE.

(2) Our upper bound is best possible in the sense that the equality holds for
regular trees. See the example below.

(3) From Theorem 1, A e s s = l implies μ = oo, but there exists an infinite graph
such that μ= oo and A e s s< 1.

EXAMPLE (cf. [B2], [Su], [OU]).

\og(d- 1), A e s s = 1 -2
Let Td be a ^/-regular tree. Then μ(Td) =

and aoΰ = (d-2)/d. Therefore thed^\\d, I e s s = 1
equality holds in Theorem 1 for regular trees. Note that in Brooks' result [Bl] for
Riemannian manifolds, we have λe

o

ss<μ2/4, with the equality holding for a simply
connected hyperbolic space Hn in any dimension n>2.

The upper bound in Theorem 1 is a proper analog of Brooks' result for Riemannian
manifolds, though they have different forms. One reason for this is that the Laplacian
for a Riemannian manifold is an unbounded operator, while the combinatorial one for
a graph is bounded. The value 1 for the combinatorial Laplacian corresponds to the
value + oo for the Riemannian Laplacian. Another supporting evidence for this
interpretation can be found in [F2].

If G has no closed loop with odd length, we call it bipartite (cf. [DK]). It is known
that a bipartite graph satisfies 2 = /less + 3e s s. Hence we have:

COROLLARY 1. If G is an infinite bipartite graph, then

where we define the left hand side to be 1 in the case μ = oo.

REMARK. By Corollary 1, for a bipartite graph, I e s s = 1 limplies μ= oo. Note that
there exists an infinite bipartite graph such that μ= oo and l e s s < 1. We may ask if there
exists an infinite bipartite graph such that λess= 1 < I e s s or λess< 1 = l e s s .
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Let S be a finite set of vartices. Put dS={(x,y)\xφS9y€S,x~y}9 L(dS) =
and A(S) = ΣχeSm(x). The isoperimetric constant α is given by oc(G) = infs{L(dS)/
A(S) I #S< oo}. For a finite subset K of F, define (x(G-K) = 'mfs{L(dS)/A(S) | #S< oo,
Kn S=0}. The isoperimetric constant at infinity α^ is defined by

where K runs through finite subsets. We have O^α^α^ < 1. It was shown in [F2] that
if G is an infinite graph, then

Combining this with Theorem 1, we have:

COROLLARY 2. If G is an infinite graph, then

< exp(/i)-l

exp(μ)+l

REMARK. (1) By Corollary 2, if αoo = l, then μ=oo. There exists a graph such
that μ — oo and α o o <l. It is known that α^ = 1 if and only if Ess Spec (Δ) = {1} (cf. [F2]).

(2) The equalities hold in Corollaries 1 and 2 for regular trees. See the example
before.

THEOREM 2. If G is an infinite graph, then

" Vl+exp(μ/2)y

COROLLARY 3. If G is an infinite graph, then

ι e s s ^ χ 2exp(μ/2) /1 - exp(μ/2) V

~ "" l+exp(μ) \ 1 +exp(μ/2)/

where CG= 1 +2exp(μ/2)/(l +exp(μ))-I e s s .

REMARK. If CG<0, Theorem 1 gives an upper bound for λess better than or equal
to Corollary 3. Note that by Corollary 1, CG<0 for bipartite graphs. On the other
hand, if CG>0, then Corollary 3 is better than Theorem 1. But the author does not
know an example of the graphs such that CG>0.

The author thanks H. Donnelly for suggestions.

2. Definitions. Let G = G(V,E) be a locally finite, infinite graph with the set of
vertices V and the set of directed edges E. The Laplacian Δ = ΔG is given by
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Σ(/(*)
m(x) x~y

A is a positive definite, self-adjoint operator on the space L2{V) of real-valued
ZΛfunctions on F, with its natural L2-structure:

xeV

xeV

Put

φ(Ly,xl), Σ Φ2(e)<co\,
eeE )

2 e eE

where [_x,y] is an edge from x to y.
The coboundary operator L2(V)^>L2(E) is d/([*,>0)=/(*)-/(>>) and the adjoint

operator δ of d is given by

m(x) x

We have Δ/=W/and (Af,g) = (df,dg) for/,geL2(V).
We denote by A the infimum of the spectrum of Δ. It is given by the formula

λ = mϊf{(Af, /)/(/,/)}, where/runs over non-zero functions with finite support on V.
We denote by λess the infimum of the essential spectrum of Δ. For a finite subgraph K
of G, the Laplacian ΔG_K on G — K with the Dirichlet condition is given by

C on K

foτfGL2(G-K) = {feL2(G)J\κ = 0}. Denote by λ(G-K) the infimum of the spectrum
of ΔG_£ and 1(G — K) the supremum. Then a standard argument in the spectral theory
shows that λ*ss(G) = \\mκλ(G-K\ λess(G) = \imκλ(G-K\ where K runs over all finite
subsets of V.

Let us show 0<Aess(G)< 1 <I e s s (G)<2. Since 0<Δ<2, we have 0<A e s s <I e s s <2.
It is enough to show λ(G — K)< 1 <λ(G-K) for any finite subgraph K. We write
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for/with (/,/)>0. For a finite subset F, let χF be its characteristic function. Take a

point XEG-K. Since R(χx)=l and λ(G-K)<R{χx)<λ{G-K\ we have 0</l e s s<

l < I e s s < 2 .

3. Proofs. We prove our result following Brooks' idea in [Bl] (see also [OU]).

For XGV, let p(x) denote the distance from the fixed point xoe V.

PROPOSITION 1. If μ < 2α, then (exp( - αp), exp( - αp)) < oo.

PROOF.

(exρ(-αp),exp(-αp))= £ m(x)exp(-2ocp(x))
xeV

= Σ {V(r)-V(r-l)}exp(-2otr)
r = 0

oo

= (l-exp(-2α)) X F(r)exp(-2αr)<oo .

The sum in the last expression is finite by the definition of μ. Since μ < 2α, we can take

a number β with μ<jβ<2α. Then F(r)<exp(/?r) for all sufficiently large r. q.e.d.

For ye TV, put

(x) if pi
(1) */(*)=,

(2α/-αp(x) if

and

(2)

PROPOSITION 2. Ifx~y, then, for all j,

l+exp(2α) ' J

PROOF. Since x~y, we have p(x) = p(y) or \p(x) — p(y)\ = \. If p(x) = p(y), then

) = 0, which implies the inequality we want to show. If | ρ{x) — p(y) | = 1, we

may assume ρ(x) = ρ(y)—\ without loss of generality. We divide our proof into two

cases:

Case 1: p(x)<j— 1. In this case we have/J (j) = exp(α)/J(x). A straight-forward

calculation shows

Case 2: ρ{x)>j. In this case we have/J (j) = exp(-α)/ j(x) and we similarly have
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the same conclusion as in Case 1. q.e.d.

PROPOSITION 3. For all j,

PROOF. From Proposition 2,

(dfpdfj) = — 2̂  (fj(χ)-fj(y))^ L (fr
2 x~y 2 l+exp(2α) x~y

(l-exp(α)) 2

 v 2 (l-exp(α)) 2

l+exp(2α) x7κ l+exp(2α) J '

q.e.d.

Let A: be a finite subset of F, and put

(3) gj=W-Xκ)'

PROPOSITION 4. 7^(exρ(-αp), exρ(-αp))<oo, then, for allj,

PROOF. We have

(0p9j)= Σ "*(*)#; (*)+ Σ ™(x)92j(x)
xeB(j) xφB(j)

<exp(2α/)V(j) + exp(4α/)(exp( — αp), exp( — αp)) < oo ,

since #,•(*) <exp(α/) for xeB(j) and ̂ (jc) = exp(2α/)exp( —αp(x)) for xφB(j). Take

and fix a number A: satisfying 7£ c ^(Λ:). Then for any j with j > k, we have 1 <#,- on

B(j)-B(k). Thus (gPgj)>V(j)-V(k). Since G is infinite, we get \imj(V(j)) = oo.

Therefore, lim^gy,^ ) = oo. q.e.d.

PROPOSITION 5. Suppose a number k satisfies K a B(k). Then for allj,

l+exp(2α)

PROOF. Since #, =/ 7 on G-5(A:) and 0<gj<fj<exp(α(A: + 1)) on 5(A: + 1),

(/;, fj) < (9p
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By Proposition 3, we have

(dgpdgj)<V(k+\) max {gj (x)} + (dfp dfj)
xeB(k+ 1)

q.e.d.

PROOF OF THEOREM 1. Since Λ e s s< 1, we may assume μ < oo. Suppose

( l - e x p Q i / 2 ) ) 2 ^

l+exp(μ)

Then there exists a finite subset K with

(l-exp(μ/2)) 2

l+exp(μ)
<λ{G-K).

We fix K and define g^ applying this K to (3). Since (1 — exp(μ/2))2/(l +exp(μ)) is a

monotone increasing function of μ, we can choose α in such a way that

From Proposition 1, we have (exp( —αp), exp( —αp))<oo, and then from Proposition

4, we have (#,-, gj)<oo and \\mj(gpgj) = co. From Proposition 5,

(dghdgΛ Cγ{k) (1—exp(α)) 2

— < h-
l+exp(2α)

Since (1 — exp(α))2/(l +exp(2α))<A(G — K) and limJ.(gfJ ,gfJ ) = oo, we have

for all sufficiently large j , which contradicts the definition of λ(G-K). Therefore we

have

l+exp(μ) l + e x p ( μ ) '

and obtain Theorem 1. q.e.d.

PROOF of COROLLARY 1. It is immediate since Theorem 1 and Aess + I e s s = 2.

q.e.d.
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PROOF OF COROLLARY 2. By \-J 1-α^ </less, we have I - , / 1-α^ < 1 -
2exp(μ/2)/(l + exp(μ)), which yields

^exp(μ)- l

°°~exp(μ)+l '
q.e.d.

Put

(4)

PROPOSITION

PROOF. We

6.

put

Pj(χ)= •fj(x)(-irM.

If G is an infinite graph, then for all j ,

(dfj,dfj) ί\

ifjjj) \1

C2(α) =

-exp(a)\2(dpj,dpj)

+ exp(α)/ (PpPj)

/l-exp(α)V

Vl+exp(α)/

Obviously (PpPj) = (fpfj)> Thus we show (dfpdfj) = C2((x)(dppdpj) by showing the
following: if x~y, then (fj(x)-fj(y))2 = C2((x)(pj(x)-pj(y))2. Since x~y, we have
\ρ(x)-ρ(y)\<\. If ρ(x) = ρ(y\ then Pj(χ)=Pj(y) and fj(χ)=fj(y)^ which implies the
equality we need to show. If | p{x) — p{y) \ = 1, we may assume p(x) = p(y)—\ without
loss of generality as in the proof of Proposition 2. We divide our proof into two cases:

Case 1: p(x)<j— 1. We have fj(y) = exp((x)fj(x), Pj(y)= — exp(a)/7j(x), and
fj(x)= +Pj(x)- Whichever the sign, direct computation shows the claim.

Case 2: p(x)>j. Similarly to Case 2 of Proposition 2, we have the claim, q.e.d.

PROOF OF THEOREM 2. Let ε>0. We can take a finite subgraph K such that

λess(G)-ε<λ(G-K), I ( G - ^ ) < l e s s ( G ) + ε .

Take α to satisfy μ<2α and define q } and qj by (1), . . ., (4),

9}=fM-7Lκ)> <lj=Pj(\-Xκ)

Since gjEL2(G-K), we have λ(G-K)<R(gj). From the construction of/) and gp we
have R(gj)<R(fj) + £ for large7. Thus λ(G-K)-ε<R(fj) for large;. Similarly, we
have R(pj)<l(G — K) + ε for large/ Therefore by Proposition 6,

Since ε can be chosen arbitrarily small, we have ^,ess(G)<C2(α)Iess(G). Hence we have
λess(G)<C2(μ/2)λess(G) since α can be chosen arbitrarily close to μ/2. q.e.d.
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PROOF OF COROLLARY 3. By Theorem 2,

Ί - e x p ( μ / 2 ) \ % e s s
l e s s <

l+exp(μ/2)/

l-exp(μ/2)V/ 2exp(μ/2)
I

l+exp(μ/2)/ V l+exp(/i)

2exp(μ/2) „ /l-exp(μ/2)\2

q.e.d.
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