A TYPE OF UNIQUENESS OF SOLUTIONS FOR THE DIRICHLET PROBLEM ON A CYLINDER

Dedicated to Professor Satoru Igari on his sixtieth birthday

Ikuko Miyamoto

(Received January 10, 1995, revised August 30, 1995)

Abstract

The aim of this paper is to prove a type of uniqueness for the Dirichlet problem on a cylinder the special case of which is a strip in the plane. By defining generalized Poisson integrals with certain continuous functions on the boundary of a cylinder, we shall investigate the difference between them and harmonic functions having the same boundary value. Given any continuous function on the boundary of a cylinder, we shall also give a harmonic function with that function as the boundary value.

1. Introduction. Let \boldsymbol{R} be the set of all real numbers. The boundary and the closure of a set S in the n-dimensional Euclidean space $\boldsymbol{R}^{n}(n \geq 2)$ are denoted by ∂S and \bar{S}, respectively. Given a domain $G \subset \boldsymbol{R}^{n}$ and a continuous function g on ∂G, we say that h is a solution of the Dirichlet problem on G with g, if h is harmonic in G and

$$
\lim _{P \in G, P \rightarrow Q} h(P)=g(Q)
$$

for every $Q \in \partial G$. If G is a bounded domain and g is a bounded function on ∂G, then the existence of a solution of the Dirichlet problem and its uniqueness is completely known (see, e.g., [8, Theorem 5.21]). When G is the typical unbounded domain

$$
\boldsymbol{T}_{n}=\left\{(X, y) \in \boldsymbol{R}^{n} ; X \in \boldsymbol{R}^{n-1}, y>0\right\},
$$

the solution of the Dirichlet problem on \boldsymbol{T}_{n} with a continuous function on $\partial \boldsymbol{T}_{n}$ was given by using the (generalized) Poisson integral in Armitage [1], Finkelstein and Scheinberg [5] and Gardiner [6], etc. But the uniqueness of solutions was not much considered until Siegel [11] picked up this problem. Helms [9, p. 42 and p. 158] states that even if $g(X)$ is a bounded continuous function on $\partial \boldsymbol{T}_{n}$, the solution of the Dirichlet problem on T_{n} with g is not unique and to obtain the unique solution $H(P)\left(P=(X, y) \in T_{n}\right)$ we must specify the behavior of $H(P)$ as $y \rightarrow \infty$. After Siegel gave a type of uniqueness of solutions, Yoshida [16] proved the same result under less restricted conditions. All these results were extended in Yoshida and Miyamoto [17] to the case where G is a cone. Since \boldsymbol{T}_{n} is regarded as a special cone, we can say that a cone is one of typical unbounded domains.

There is another typical unbounded domain which is a cylinder

$$
\Gamma_{n}(D)=D \times \boldsymbol{R}
$$

with a bounded domain $D \subset \boldsymbol{R}^{n-1}$. The existence and the uniqueness of solutions of the Dirichlet problem on $\Gamma_{n}(D)$ with a continuous function on $\partial \Gamma_{n}(D)$ are worth inquiry. In this direction, Yoshida [15] proved the following Theorem A. To state it we need some preliminaries.

Consider the Dirichlet problem

$$
\begin{align*}
\left(\Delta_{n-1}+\lambda\right) f & =0 & & \text { in } D \tag{1.1}\\
f & =0 & & \text { on } \partial D
\end{align*}
$$

for a bounded domain $D \subset \boldsymbol{R}^{n-1}(n \geq 2)$, where $\Delta_{1}=d^{2} / d x^{2}$. Let $\lambda(D, 1)$ be the least positive eigenvalue of (1.1) and $f_{1}^{D}(X)$ the normalized eigenfunction corresponding to $\lambda(D, 1)$. In order to make the subsequent consideration simpler, we put a strong assumption on D throughout this paper: If $n \geq 3$, then D is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ in \boldsymbol{R}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (for example, see Gilberg and Trudinger [7, pp. 88-89] for the definition of $C^{2, \alpha}$-domains). Let $G_{\Gamma_{n}(D)}\left(P_{1}, P_{2}\right)$ be the Green function of $\Gamma_{n}(D)\left(P_{1}, P_{2} \in \Gamma_{n}(D)\right)$ and $\partial G_{\Gamma_{n}(D)}(P, Q) / \partial v$ the differentiation at $Q \in \partial \Gamma_{n}(D)$ along the inward normal into $\Gamma_{n}(D)\left(P \in \Gamma_{n}(D)\right)$.

Given a function $F(X, y)$ on $\Gamma_{n}(D)$, we denote by $N(F)(y)$ the function of y defined by the integral

$$
\int_{D} F(X, y) f_{1}^{D}(X) d X
$$

where $d X$ denotes the $(n-1)$-dimensional volume element. We write

$$
\mu_{0}(N(F))=\lim _{y \rightarrow \infty} \exp (-\sqrt{\lambda(D, 1)} y) N(F)(y)
$$

and

$$
\eta_{0}(N(F))=\lim _{y \rightarrow-\infty} \exp (\sqrt{\lambda(D, 1)} y) N(F)(y)
$$

if they exist.
Theorem A (Yoshida [15, Theorem 6]). Let $g(Q)$ be a continuous function on $\partial \Gamma_{n}(D)$ satisfying

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp (-\sqrt{\lambda(D, 1) \mid}|y|)\left(\int_{\partial D}|g(X, y)| d \sigma_{X}\right) d y<\infty, \tag{1.2}
\end{equation*}
$$

where $d \sigma_{X}$ is the surface area element of ∂D at X and if $n=2$ and $D=(\gamma, \delta)$, then

$$
\int_{\partial D}|g(X, y)| d \sigma_{X}=|g(\gamma, y)|+|g(\delta, y)| .
$$

Then the Poisson integral

$$
P I_{g}(P)=c_{n}^{-1} \int_{\partial \Gamma_{n}(D)} g(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q) d \sigma_{Q}
$$

is a solution of the Dirichlet problem on $\Gamma_{n}(D)$ with g, where

$$
c_{n}= \begin{cases}2 \pi & (n=2) \\ (n-2) s_{n} & (n \geq 3)\left(s_{n} \text { is the surface area of the unit sphere } \boldsymbol{S}^{n-1}\right)\end{cases}
$$

and $d \sigma_{Q}$ is the surface area element on $\partial \Gamma_{n}(D)$ at Q. Let $h(P)$ be any solution of the Dirichlet problem on $\Gamma_{n}(D)$ with g. Then all of the limits $\mu_{0}(N(h)), \eta_{0}(N(h))\left(-\infty<\mu_{0}(N(h))\right.$, $\left.\eta_{0}(N(h)) \leq \infty\right), \mu_{0}(N(|h|))$ and $\eta_{0}(N(|h|))\left(0 \leq \mu_{0}(N(|h|)), \eta_{0}(N(|h|)) \leq \infty\right)$ exist, and if

$$
\begin{equation*}
\mu_{0}(N(|h|))<\infty \quad \text { and } \quad \eta_{0}(N(|h|))<\infty \tag{1.3}
\end{equation*}
$$

then

$$
h(P)=P I_{g}(P)+\left(\mu_{0}(N(h)) \exp (\sqrt{\lambda(D, 1)} y)+\eta_{0}(N(h)) \exp (-\sqrt{\lambda(D, 1)} y)\right) f_{1}^{D}(X)
$$

for any $P=(X, y) \in \Gamma_{n}(D)$.
This Theorem A shows that under the conditions (1.2) and (1.3) the existence and a type of uniqueness of solutions for the Dirichlet problem on $\Gamma_{n}(D)$ can be proved, respectively.

If $n=2$, then $\Gamma_{n}(D)$ is a strip. The strip $\Gamma_{2}((0, \pi))$ with $D=(0, \pi)$ is simply denoted by Γ_{2}. With respect to the Dirichlet problem on Γ_{2}, Widder obtained:

Theorem B (Widder [13, Theorems 1 and 3]). If $g_{i}(t)(i=1,2)$ is a continuous function on \boldsymbol{R} satisfying

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|g_{i}(t)\right| \exp (-|t|) d t<\infty \tag{1.4}
\end{equation*}
$$

then

$$
\begin{gathered}
H\left(\Gamma_{2} ; g_{1}, g_{2}\right)(x, y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P(x, t-y) g_{1}(t) d t+\frac{1}{2 \pi} \int_{-\infty}^{\infty} P(\pi-x, t-y) g_{2}(t) d t \\
\left(P(x, y)=\frac{\sin x}{\cosh y-\cos x}\right)
\end{gathered}
$$

is a harmonic function in Γ_{2} and a continuous function on $\overline{\Gamma_{2}}$ shuch that

$$
H\left(\Gamma_{2} ; g_{1}, g_{2}\right)(0, y)=g_{1}(y) \quad \text { and } \quad H\left(\Gamma_{2} ; g_{1}, g_{2}\right)(\pi, y)=g_{2}(y) \quad(-\infty<y<\infty) .
$$

If $h(x, y)$ is a harmonic function in Γ_{2} and a continuous function on $\overline{\Gamma_{2}}$ such that

$$
h(0, y)=g_{1}(y), \quad h(\pi, y)=g_{2}(y) \quad(-\infty<y<\infty)
$$

and

$$
\int_{0}^{\pi}|h(x, y)| d x=o\left(e^{|y|}\right) \quad(|y| \rightarrow \infty)
$$

then

$$
h(x, y)=H\left(\Gamma_{2} ; g_{1}, g_{2}\right)(x, y) \quad \text { on } \quad \overline{\Gamma_{2}} .
$$

Though by a conformal mapping a strip is reduced to T_{2} which was treated in [17] as a special case, it may be of interest to treat this case independently as a special case of cylinders.

In this paper, the first parts of Theorems A and B will be extended by defining generalized Poisson integrals with continuous functions under less restricted conditions than (1.2) and (1.4) (Theorem 1 and Corollary 1). We shall also prove that for any continuous function g on $\partial \Gamma_{n}(D)$ there is a solution of the Dirichlet problem on $\Gamma_{n}(D)$ with g (Theorem 2 and Corollary 2). The results (Theorem 3 and Corollary 3) which generalize the second parts of Theorems A and B will be connected with a type of uniqueness of solutions for the Dirichlet problem on $\Gamma_{n}(D)$.
2. Statements of results. We denote the non-decreasing sequence of positive eigenvalues of (1.1) by $\{\lambda(D, k)\}_{k=1}^{\infty}$. In this expression we write $\lambda(D, k)$ the same number of times as the dimension of the corresponding eigenspace. When the normalized eigenfunction corresponding to $\lambda(D, k)$ is denoted by f_{k}^{D}, the set of sequential eigenfunctions corresponding to the same value of $\lambda(D, k)$ in the sequence $\left\{f_{k}^{D}\right\}_{k=1}^{\infty}$ makes an orthonormal basis for the eigenspace of the eigenvalue $\lambda(D, k)$. We can also say that for each $D \subset \boldsymbol{R}^{n-1}$ there is a sequence $\left\{k_{i}\right\}$ of positive integers such that $k_{1}=1$, $\lambda\left(D, k_{i}\right)<\lambda\left(D, k_{i+1}\right)$

$$
\lambda\left(D, k_{i}\right)=\lambda\left(D, k_{i}+1\right)=\lambda\left(D, k_{i}+2\right)=\cdots=\lambda\left(D, k_{i+1}-1\right)
$$

and $\left\{f_{k_{i}}^{D}, f_{k_{i}+1}^{D}, \ldots, f_{k_{i+1}-1}^{D}\right\}$ is an orthonormal basis for the eigenspace of the eigenvalue $\lambda\left(D, k_{i}\right)(i=1,2,3, \ldots)$. It is well known that $k_{2}=2$ and $f_{1}^{D}(X)>0$ for any $X \in D$ (see Courant and Hilbert [3, p. 451 and p. 458]). With respect to $\left\{k_{i}\right\}$, the following Example (2) shows that even in the case where D is an open disk in \boldsymbol{R}^{2}, not the simplest case $k_{i}=i(i=1,2,3, \ldots)$, but more complicated cases can appear. When D has sufficiently smooth boundary, we know that

$$
\lambda(D, k) \sim A(D, n) k^{2 /(n-1)} \quad(k \rightarrow \infty)
$$

and

$$
\sum_{\lambda(D, k) \leq x}\left\{f_{k}^{D}(X)\right\}^{2} \sim B(D, n) x^{(n-1) / 2} \quad(x \rightarrow \infty)
$$

uniformly with respect to $X \in D$, where $A(D, n)$ and $B(D, n)$ are both constants depending on D and n (see, e.g., Weyl [12] and Carleman [2]). Hence there exist two positive constants M_{1}, M_{2} such that

$$
\begin{equation*}
M_{1} k^{2 /(n-1)} \leq \lambda(D, k) \quad(k=1,2,3, \ldots) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{k}^{D}(X)\right| \leq M_{2} k^{1 / 2} \quad(X \in D, k=1,2,3, \ldots) \tag{2.2}
\end{equation*}
$$

We remark that both

$$
\exp (\sqrt{\lambda(D, k)} y) f_{k}^{D}(X) \quad \text { and } \quad \exp (-\sqrt{\lambda(D, k)} y) f_{k}^{D}(X) \quad(k=1,2,3, \ldots)
$$

are harmonic on $\Gamma_{n}(D)$ and vanish continuously on $\partial \Gamma_{n}(D)$.
For a domain D and the sequence $\left\{k_{i}\right\}$ mentioned above, by $I\left(D, k_{i}\right)$ we denote the set of all positive integers less than $k_{i}(i=1,2,3, \ldots)$. Even if $I\left(D, k_{1}\right)=\varnothing$, the summation over $I\left(D, k_{1}\right)$ of any function $S(k)$ of a variable k will be used to mean

$$
\sum_{k \in I\left(D, k_{1}\right)} S(k)=0
$$

Examples. (1) Let $D=(0, \pi)$. Then (1.1) is reduced to finding solutions $f(x)$ ($0 \leq x \leq \pi$) such that

$$
\frac{d^{2} f(x)}{d x^{2}}+\lambda f(x)=0 \quad(0<x<\pi)
$$

and

$$
f(0)=f(\pi)=0
$$

It is easy to see that $k_{i}=i, \lambda(D, k)=k^{2}$ and $f_{k}^{D}(x)=\sqrt{2 / \pi} \sin k x(k=1,2,3, \ldots)$.
(2) Let $D=\left\{(x, y) \in \boldsymbol{R}^{2} ; x^{2}+y^{2}<1\right\}$. Let $\left\{\alpha_{n, m}\right\}_{m=1}^{\infty}$ be an increasing sequence of positive real numbers $\alpha_{n, m}$ such that

$$
J_{n}\left(\alpha_{n, m}\right)=0 \quad(n=0,1,2, \ldots),
$$

where $J_{n}(z)$ is the Bessel function of order n. If the spherical coordinates $x=r \cos \theta$, $y=r \sin \theta(0 \leq r<1,0 \leq \theta<2 \pi)$ are introduced, then $J_{n}\left(\alpha_{n, m} r\right) \cos n \theta$ and $J_{n}\left(\alpha_{n, m} r\right) \sin n \theta$ $(n \neq 0, m=1,2,3, \ldots)$ are two eigenfunctions coresponding to the eigenvalue $\lambda=\alpha_{n, m}^{2}$ (see Courant and Hilbert [3]). Since we do not know how the zeros of the Bessel functions distribute, we cannot explicitly determine the sequence $\left\{k_{i}\right\}$ with respect to this D.

The Fourier coefficient

$$
\int_{D} F(X) f_{k}^{D}(X) d X
$$

of a function $F(X)$ on D with respect to the orthonormal sequence $\left\{f_{k}^{D}(X)\right\}$ is denoted by $c(F, k)$, if it exists. Now we shall define generalized Poisson kernels. Let l and m be two non-negative integers. For two points $P=(X, y) \in \Gamma_{n}(D), Q=\left(X^{*}, y^{*}\right) \in \partial \Gamma_{n}(D)$, we put
(2.3) $\quad \bar{V}\left(\Gamma_{n}(D), l\right)(P, Q)$

$$
=\sum_{k \in I\left(D, k_{l+1}\right)} \exp (\sqrt{\lambda(D, k)}) c\left(\left(H_{X^{*}}\right)_{1}, k\right) f_{k}^{D}(X) \exp (\sqrt{\lambda(D, k)} y) \exp \left(-\sqrt{\lambda(D, k)} y^{*}\right)
$$

and
(2.4) $\quad \underline{V}\left(\Gamma_{n}(D), m\right)(P, Q)$

$$
=\sum_{k \in I\left(D, k_{m+1}\right)} \exp (\sqrt{\lambda(D, k)}) c\left(\left(H_{X^{*}}\right)_{1}, k\right) f_{k}^{D}(X) \exp (-\sqrt{\lambda(D, k)} y) \exp \left(\sqrt{\lambda(D, k)} y^{*}\right)
$$

where

$$
\left(H_{X^{*}}\right)_{1}(X)=c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}\left((X, 1),\left(X^{*}, 0\right)\right) .
$$

We remark that $\bar{V}\left(\Gamma_{n}(D), l\right)(P, Q)$ and $\underline{V}\left(\Gamma_{n}(D), m\right)(P, Q)$ are two harmonic functions of $P \in \Gamma_{n}(D)$ for any fixed $Q \in \partial \Gamma_{n}(D)$. We introduce two functions of $P \in \Gamma_{n}(D)$ and $Q=$ $\left(X^{*}, y^{*}\right) \in \partial \Gamma_{n}(D)$

$$
\bar{W}\left(\Gamma_{n}(D), l\right)(P, Q)= \begin{cases}\bar{V}\left(\Gamma_{n}(D), l\right)(P, Q) & \left(y^{*} \geq 0\right) \\ 0 & \left(y^{*}<0\right)\end{cases}
$$

and

$$
\underline{W}\left(\Gamma_{n}(D), m\right)(P, Q)= \begin{cases}\underline{V}\left(\Gamma_{n}(D), m\right)(P, Q) & \left(y^{*} \leq 0\right) \\ 0 & \left(y^{*}>0\right)\end{cases}
$$

The Poisson kernel $K\left(\Gamma_{n}(D), l, m\right)(P, Q)$ with respect to $\Gamma_{n}(D)$ is defined by

$$
K\left(\Gamma_{n}(D), l, m\right)(P, Q)=c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\bar{W}\left(\Gamma_{n}(D), l\right)(P, Q)-\underline{W}\left(\Gamma_{n}(D), m\right)(P, Q)
$$

We note

$$
K\left(\Gamma_{n}(D), 0,0\right)(P, Q)=c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)
$$

Let p, q be two non-negative integers and $I(y)$ a function on \boldsymbol{R}. The finite or infinite limits

$$
\lim _{y \rightarrow \infty} \exp \left(-\sqrt{\lambda\left(D, k_{p+1}\right)} y\right) I(y) \text { and } \lim _{y \rightarrow-\infty} \exp \left(\sqrt{\lambda\left(D, k_{q+1}\right)} y\right) I(y)
$$

are denoted by $\mu_{p}(I)$ and $\eta_{q}(I)$, respectively, when they exist.
Theorem 1. Let l, m be two non-negative integers and $g(Q)=g\left(X^{*}, y^{*}\right)$ a continuous function on $\partial \Gamma_{n}(D)$ satisfying

$$
\begin{equation*}
\int^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}<\infty \tag{2.5}
\end{equation*}
$$

and

$$
\int_{-\infty} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}<\infty .
$$

Then

$$
H\left(\Gamma_{n}(D), l, m ; g\right)(P)=\int_{\partial \Gamma_{n}(D)} g(Q) K\left(\Gamma_{n}(D), l, m\right)(P, Q) d \sigma_{Q}
$$

is a solution of the Dirichlet problem on $\Gamma_{n}(D)$ with g satisfying

$$
\begin{equation*}
\mu_{l}\left(N\left(\left|H\left(\Gamma_{n}(D), l, m ; g\right)\right|\right)\right)=\eta_{m}\left(N\left(\left|H\left(\Gamma_{n}(D), l, m ; g\right)\right|\right)\right)=0 . \tag{2.6}
\end{equation*}
$$

If $n=2$ and $D=(0, \pi)$, then we immediately obtain the following Corollary 1 which generalizes Theorem B.

Corollary 1. Let l, m be two non-negative integers and let $g_{1}\left(y^{*}\right), g_{2}\left(y^{*}\right)$ be two continuous functions on \boldsymbol{R} satisfying

$$
\begin{equation*}
\int^{\infty}\left|g_{i}\left(y^{*}\right)\right| \exp \left(-(l+1) y^{*}\right) d y^{*}<\infty \tag{2.7}
\end{equation*}
$$

and

$$
\int_{-\infty}\left|g_{i}\left(y^{*}\right)\right| \exp \left((m+1) y^{*}\right) d y^{*}<\infty \quad(i=1,2)
$$

Then

$$
\begin{aligned}
& H\left(\Gamma_{2}, l, m ; g_{1}, g_{2}\right)(x, y) \\
& \quad=\int_{-\infty}^{\infty} g_{1}\left(y^{*}\right) K\left(\Gamma_{2}, l, m\right)\left((x, y),\left(0, y^{*}\right)\right) d y^{*}+\int_{-\infty}^{\infty} g_{2}\left(y^{*}\right) K\left(\Gamma_{2}, l, m\right)\left((x, y),\left(\pi, y^{*}\right)\right) d y^{*}
\end{aligned}
$$

is a harmonic function in Γ_{2} and a continuous function on $\overline{\Gamma_{2}}$ such that

$$
H\left(\Gamma_{2}, l, m ; g_{1}, g_{2}\right)\left(0, y^{*}\right)=g_{1}\left(y^{*}\right)
$$

and

$$
H\left(\Gamma_{2}, l, m ; g_{1}, g_{2}\right)\left(\pi, y^{*}\right)=g_{2}\left(y^{*}\right) \quad\left(-\infty<y^{*}<\infty\right) .
$$

To solve the Dirichlet problem on $\Gamma_{n}(D)$ with any function $g(Q)$ on $\partial \Gamma_{n}(D)$, we shall define another Poisson kernel. Let $\varphi(t)$ be any positive continuous function of $t \geq 0$ satisfying

$$
\varphi(0)=\exp (-\sqrt{\lambda(D, 1)}) .
$$

For a domain $D \subset \boldsymbol{R}^{n-1}$ and the sequence $\left\{\lambda\left(D, k_{i}\right)\right\}$, denote the set

$$
\left\{t \geq 0 ; \exp \left(-\sqrt{\lambda\left(D, k_{i}\right)}\right)=\varphi(t)\right\}
$$

by $S(D, \varphi, i)$. Then $0 \in S(D, \varphi, 1)$. When there is an integer N such that $S(D, \varphi, N) \neq \varnothing$ and $S(D, \varphi, N+1)=\varnothing$, denote the set $\{i ; 1 \leq i \leq N\}$ of integers by $J(D, \varphi)$. Otherwise, denote the set of all positive integers by $J(D, \varphi)$. Let $t(i)=t(D, \varphi, i)$ be the minimum of elements t in $S(D, \varphi, i)$ for each $i \in J(D, \varphi)$. In the former case, we put $t(N+1)=\infty$. Then $t(1)=0$. We define $\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)\left(P \in \Gamma_{n}(D), Q=\left(X^{*}, y^{*}\right) \in \partial \Gamma_{n}(D)\right)$ by

$$
\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)= \begin{cases}0 & \left(y^{*}<0\right) \\ \bar{V}\left(\Gamma_{n}(D), i\right)(P, Q) & \left(t(i) \leq y^{*}<t(i+1), i \in J(D, \varphi)\right)\end{cases}
$$

We also define $\underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)\left(P \in \Gamma_{n}(D), Q=\left(X^{*}, y^{*}\right) \in \partial \Gamma_{n}(D)\right)$ by

$$
\underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)= \begin{cases}0 & \left(y^{*}>0\right) \\ \underline{V}\left(\Gamma_{n}(D), i\right)(P, Q) & \left(-t(i+1)<y^{*} \leq-t(i), i \in J(D, \varphi)\right)\end{cases}
$$

The Poisson kernel $K\left(\Gamma_{n}(D), \varphi\right)(P, Q)\left(P \in \Gamma_{n}(D), Q \in \partial \Gamma_{n}(D)\right)$ is defined by

$$
K\left(\Gamma_{n}(D), \varphi\right)(P, Q)=c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)-\underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)
$$

Now we have:
Theorem 2. Let $g(Q)$ be any continuous function on $\partial \Gamma_{n}(D)$. Then there is a positive continuous function $\varphi(t)$ of $t \geq 0$ depending on g such that

$$
H\left(\Gamma_{n}(D), \varphi ; g\right)(P)=\int_{\partial \Gamma_{n}(D)} g(Q) K\left(\Gamma_{n}(D), \varphi\right)(P, Q) d \sigma_{Q}
$$

is a solution of the Dirichlet problem on $\Gamma_{n}(D)$ with g.
If we take $n=2$ and $D=(0, \pi)$ in Theorem 2, we obtain:
Corollary 2. Let $g_{1}\left(y^{*}\right)$ and $g_{2}\left(y^{*}\right)$ be two continuous functions on \boldsymbol{R}. Then there is a positive continuous function $\varphi(t)$ of $t \geq 0$ depending on g_{1} and g_{2} such that

$$
\begin{aligned}
& H\left(\Gamma_{2}, \varphi ; g_{1}, g_{2}\right)(x, y) \\
& \quad=\int_{-\infty}^{\infty} g_{1}\left(y^{*}\right) K\left(\Gamma_{2}, \varphi\right)\left((x, y),\left(0, y^{*}\right)\right) d y^{*}+\int_{-\infty}^{\infty} g_{2}\left(y^{*}\right) K\left(\Gamma_{2}, \varphi\right)\left((x, y),\left(\pi, y^{*}\right)\right) d y^{*}
\end{aligned}
$$

is a harmonic function in Γ_{2} and a continuous function on $\overline{\Gamma_{2}}$ satisfying

$$
H\left(\Gamma_{2}, \varphi ; g_{1}, g_{2}\right)\left(0, y^{*}\right)=g_{1}\left(y^{*}\right)
$$

and

$$
H\left(\Gamma_{2}, \varphi ; g_{1}, g_{2}\right)\left(\pi, y^{*}\right)=g_{2}\left(y^{*}\right) \quad\left(-\infty<y^{*}<\infty\right) .
$$

Theorem 3. Let l, m be two non-negative integers and let p, q be two positive integers satisfying $p \geq l, q \geq m$. Let $g\left(X^{*}, y^{*}\right)$ be a continuous function on $\partial \Gamma_{n}(D)$ satisfying (2.5). If $h(X, y)$ is a solution of the Dirichlet problem on $\Gamma_{n}(D)$ with g satisfying

$$
\begin{equation*}
\mu_{p}\left(N\left(h^{+}\right)\right)=0 \quad \text { and } \quad \eta_{q}\left(N\left(h^{+}\right)\right)=0, \tag{2.8}
\end{equation*}
$$

then

$$
\begin{aligned}
& h(X, y)=H\left(\Gamma_{n}(D), l, m ; g\right)(P) \\
& \quad+\sum_{k \in I\left(D, k_{p+1}\right)} A_{k}(h) \exp (\sqrt{\lambda(D, k)} y) f_{k}^{D}(X)+\sum_{k \in I\left(D, k_{q+1}\right)} B_{k}(h) \exp (-\sqrt{\lambda(D, k)} y) f_{k}^{D}(X)
\end{aligned}
$$

for every $P=(X, y) \in \Gamma_{n}(D)$, where $A_{k}(h)\left(k=1,2, \ldots, k_{p+1}-1\right)$ and $B_{k}(h)(k=1,2, \ldots$, $\left.k_{q+1}-1\right)$ are all constants.

If we take $n=2$ and $D=(0, \pi)$ in Theorem 3, then we have:
Corollary 3. Let l, m be two non-negative integers and let p, q be two positive integers satisfying $p \geq l, q \geq m$. Let $g_{1}\left(y^{*}\right), g_{2}\left(y^{*}\right)$ be two continuous function on \boldsymbol{R} satisfying (2.7). If $h(x, y)$ is a harmonic function in Γ_{2} and a continuous function on $\overline{\Gamma_{2}}$ such that

$$
h\left(0, y^{*}\right)=g_{1}\left(y^{*}\right) \quad \text { and } \quad h\left(\pi, y^{*}\right)=g_{2}\left(y^{*}\right) \quad\left(-\infty<y^{*}<\infty\right),
$$

and

$$
\lim _{y \rightarrow \infty} \exp (-(p+1) y) \int_{0}^{\pi} h^{+}(x, y) \sin x d x=\lim _{y \rightarrow-\infty} \exp ((q+1) y) \int_{0}^{\pi} h^{+}(x, y) \sin x d x=0
$$

then

$$
h(x, y)=H\left(\Gamma_{2}, l, m ; g_{1}, g_{2}\right)(x, y)+\sum_{k=1}^{p} A_{k}(h) \exp (k y) \sin k x+\sum_{k=1}^{q} B_{k}(h) \exp (-k y) \sin k x
$$

for every $(x, y) \in \Gamma_{2}$, where $A_{k}(h)(k=1,2, \ldots, p)$ and $B_{k}(h)(k=1,2, \ldots, q)$ are all constants.
3. Proof of Theorems 1, 2 and 3. Given a domain D on $\boldsymbol{R}^{\boldsymbol{n - 1}}$ and an interval $I \subset \boldsymbol{R}$, the sets $\left\{(X, y) \in \boldsymbol{R}^{n} ; X \in D, y \in I\right\}$ and $\left\{\left(X^{*}, y\right) \in \boldsymbol{R}^{n} ; X^{*} \in \partial D, y \in I\right\}$ are denoted
by $\Gamma_{n}(D ; I)$ and $S_{n}(D ; I)$, respectively. In the following, $S_{n}(D ;(-\infty, \infty))\left(=\partial \Gamma_{n}(D)\right)$ will be simply denoted by $S_{n}(D)$.

Lemma 1. Let $h(X, y)$ be a harmonic function in $\Gamma_{n}(D ;(0, \infty))$ vanishing continuously on $S_{n}(D ;(0, \infty))$. For any fixed $y, 0<y<\infty$, define the function $h_{y}(X)$ in D by $h_{y}(X)=$ $h(X, y)$. Then

$$
\begin{aligned}
c\left(h_{y}, k\right)= & \left\{\left(\exp \left(\sqrt{\lambda(D, k)}\left(y-y_{2}\right)\right)-\exp \left(\sqrt{\lambda(D, k)}\left(y_{2}-y\right)\right)\right) c\left(h_{y_{1}}, k\right)\right. \\
& \left.+\left(\exp \left(\sqrt{\lambda(D, k)}\left(y_{1}-y\right)\right)-\exp \left(\sqrt{\lambda(D, k)}\left(y-y_{1}\right)\right)\right) c\left(h_{y_{2}}, k\right)\right\} \\
& \times\left\{\exp \left(\sqrt{\lambda(D, k)}\left(y_{1}-y_{2}\right)\right)-\exp \left(\sqrt{\lambda(D, k)}\left(y_{2}-y_{1}\right)\right)\right\}^{-1}
\end{aligned}
$$

for any given $y_{1}, y_{2}\left(0<y_{1}<y_{2}<\infty\right)$ and

$$
\lim _{y \rightarrow \infty} c\left(h_{y}, k\right) \exp (-\sqrt{\lambda(D, k)} y)
$$

exists ($k=1,2,3, \ldots$).
Proof. First of all, we note that $h(X, y)$ is continuously differentiable twice on $\left\{(X, y) \in \boldsymbol{R}^{n} ; X \in \bar{D}, 0<y<\infty\right\}$ (see Gilbarg and Trudinger [7, p. 105]). Now, by differentiating twice under the integral sign, we have

$$
\frac{\partial^{2} c\left(h_{y}, k\right)}{\partial y^{2}}=\int_{D} \frac{\partial^{2} h_{y}(X)}{\partial y^{2}} f_{k}^{D}(X) d X=-\int_{D} \Delta_{n-1} h_{y}(X) f_{k}^{D}(X) d X
$$

Hence, if we observe from the formula of Green that

$$
\int_{D}\left(\Delta_{n-1} h_{y}(X)\right) f_{k}^{D}(X) d X=\int_{D} h_{y}(X)\left(\Delta_{n-1} f_{k}^{D}(X)\right) d X
$$

we see that

$$
\frac{\partial^{2} c\left(h_{y}, k\right)}{\partial y^{2}}=\lambda(D, k) c\left(h_{y}, k\right)
$$

for any $y, 0<y<\infty$. This gives

$$
c\left(h_{y}, k\right)=A_{k}(h) \exp (\sqrt{\lambda(D, k)} y)+B_{k}(h) \exp (-\sqrt{\lambda(D, k)} y) \quad(0<y<\infty)
$$

$A_{k}(h)$ and $B_{k}(h)$ being constants independent of y. Since $c\left(h_{y}, k\right)$ takes a value $c\left(h_{y_{i}}, k\right)$ at a point $y_{i}(i=1,2)$, the conclusion of Lemma 1 follows immediately.

Lemma 2. Let $H(X, y)$ be a harmonic function in $\Gamma_{n}(D ;(0, \infty))$ such that $H(X, y)$ vanishes continuously on $S_{n}(D ;(0, \infty))$ and converges uniformly to zero as $y \rightarrow \infty$. Then for any non-negative integer j we have

$$
\begin{aligned}
& \left|H(X, y)-\sum_{k \in I\left(D, k_{j+1}\right)} \exp (\sqrt{\lambda(D, k)}(1-y)) c\left(H_{1}, k\right) f_{k}^{D}(X)\right| \\
& \quad \leq L_{1}(H) \exp \left(\sqrt{\lambda\left(D, k_{j+1}\right)}(1-y)\right) \quad(1<y<\infty),
\end{aligned}
$$

where $H_{1}(X)=H(X, 1)$ and $L_{1}(H)$ is a constant dependent only on H.
Proof. Put $H_{y}(X)=H(X, y)$ for any fixed $y(0<y<\infty)$. We see from Lemma 1 that

$$
\begin{aligned}
c\left(H_{y}, k\right)= & \left\{\left(\exp \left(\sqrt{\lambda(D, k)}\left(y-y_{2}\right)\right)-\exp \left(\sqrt{\lambda(D, k)}\left(y_{2}-y\right)\right)\right) c\left(H_{y_{1}}, k\right)\right. \\
& \left.+\left(\exp \left(\sqrt{\lambda(D, k)}\left(y_{1}-y\right)\right)-\exp \left(\sqrt{\lambda(D, k)}\left(y-y_{1}\right)\right)\right) c\left(H_{y_{2}}, k\right)\right\} \\
& \left.\times\left\{\exp \left(\sqrt{\lambda(D, k)}\left(y_{1}-y_{2}\right)\right)-\exp \left(\sqrt{\lambda(D, k)}\left(y_{2}-y_{1}\right)\right)\right\}\right\}^{-1}
\end{aligned}
$$

for any y_{1} and $y_{2}\left(0<y_{1}<y_{2}<\infty\right)$. Since $c\left(H_{y_{2}}, k\right) \rightarrow 0\left(y_{2} \rightarrow \infty\right)$ from the assumption, we obtain

$$
\begin{equation*}
c\left(H_{y}, k\right)=\exp \left(\sqrt{\lambda(D, k)}\left(y_{1}-y\right)\right) c\left(H_{y}, k\right) \quad\left(0<y_{1}<\infty\right) . \tag{3.1}
\end{equation*}
$$

Here we have from (2.2) that

$$
\begin{equation*}
\left|c\left(H_{y_{1}}, k\right)\right| \leq \int_{D}\left|H_{y_{1}}(X) f_{k}^{D}(X)\right| d X \leq M_{2} k^{1 / 2}|D| \max _{X \in D}\left|H\left(X, y_{1}\right)\right|, \tag{3.2}
\end{equation*}
$$

where $|D|$ is the volume of D. It follows from (2.1), (2.2), (3.1) and (3.2) that

$$
\begin{align*}
& \sum_{k=1}^{\infty}\left|c\left(H_{y}, k\right) f_{k}^{D}(X)\right| \tag{3.3}\\
& \quad \leq M_{2}^{2}|D| \max _{X \in D}\left|H\left(X, y_{1}\right)\right| \sum_{k=1}^{\infty} k \exp \left(\sqrt{M_{1}} k^{1 /(n-1)}\left(y_{1}-y\right)\right) \quad\left(y_{1}<y\right)
\end{align*}
$$

Hence, if we take a number y_{1} satisfying $0<y_{1}<y$, then we know from (3.3) and the completeness of the orthonormal sequence $\left\{f_{k}^{D}(X)\right\}$ that

$$
\begin{equation*}
\sum_{k=1}^{\infty} c\left(H_{y}, k\right) f_{k}^{D}(X)=H(X, y) \tag{3.4}
\end{equation*}
$$

for any $X \in D$.
If we put

$$
L_{1}(H)=M_{2}^{2}|D| \max _{X \in D}\left|H\left(X, \frac{1}{2}\right)\right| \sum_{k=1}^{\infty} k \exp \left(-\frac{1}{2} \sqrt{M_{1}} k^{1 /(n-1)}\right)
$$

and take $y=1, y_{1}=1 / 2$ in (3.3), then we obtain from (3.3) that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|c\left(H_{1}, k\right)\right|\left|f_{k}^{D}(X)\right| \leq L_{1}(H) \tag{3.5}
\end{equation*}
$$

If $1<y<\infty$, then by taking $y_{1}=1$ in (3.1) we have from (3.4) and (3.5) that

$$
\begin{aligned}
& \left|H(X, y)-\sum_{k \in I\left(D, k_{j+1}\right)} \exp (\sqrt{\lambda(D, k)}(1-y)) c\left(H_{1}, k\right) f_{k}^{D}(X)\right| \\
& \quad=\left|H(X, y)-\sum_{k \in I\left(D, k_{j+1}\right)} c\left(H_{y}, k\right) f_{k}^{D}(X)\right| \\
& \quad=\left|\sum_{k=k_{j+1}}^{\infty} c\left(H_{y}, k\right) f_{k}^{D}(X)\right| \leq \sum_{k=k_{j+1}}^{\infty} \exp (\sqrt{\lambda(D, k)}(1-y))\left|c\left(H_{1}, k\right) f_{k}^{D}(X)\right| \\
& \quad \leq \exp \left(\sqrt{\lambda\left(D, k_{j+1}\right)}(1-y)\right) \sum_{k=1}^{\infty}\left|c\left(H_{1}, k\right) f_{k}^{D}(X)\right| \leq L_{1}(H) \exp \left(\sqrt{\lambda\left(D, k_{j+1}\right)}(1-y)\right),
\end{aligned}
$$

which gives the conclusion.
Lemma 3. For a non-negative integer l (resp. m) we have

$$
\begin{gathered}
\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\bar{V}\left(\Gamma_{n}(D), l\right)(P, Q)\right| \leq \bar{L}_{1} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)}\left(y^{*}-y\right)\right) \\
\left(\text { resp. }\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\underline{V}\left(\Gamma_{n}(D), m\right)(P, Q)\right| \leq \underline{L}_{1} \exp \left(-\sqrt{\lambda\left(D, k_{m+1}\right)}\left(y-y^{*}\right)\right)\right.
\end{gathered}
$$

for any $P=(X, y) \in \Gamma_{n}(D)$ and $Q=\left(X^{*}, y^{*}\right) \in S_{n}(D)$ satisfying $y^{*}-y>1$ (resp. $\left.y-y^{*}>1\right)$, where $\bar{L}_{1}\left(\right.$ resp. $\left.\underline{L}_{1}\right)$ is a constant independent of P and Q.

Proof. Since

$$
G_{\Gamma_{n}(D)}\left((X, y),\left(X^{\prime}, y^{\prime}\right)\right)=G_{\Gamma_{n}(D)}\left(\left(X, y-y^{\prime}\right),\left(X^{\prime}, 0\right)\right) \quad\left((X, y),\left(X^{\prime}, y^{\prime}\right) \in \Gamma_{n}(D)\right),
$$

it is easy to see that

$$
\begin{equation*}
\frac{\partial}{\partial v} G_{\Gamma_{n}(D)}\left((X, y),\left(X^{*}, y^{*}\right)\right)=\frac{\partial}{\partial v} G_{\Gamma_{n}(D)}\left(\left(X,\left|y-y^{*}\right|\right),\left(X^{*}, 0\right)\right) . \tag{3.6}
\end{equation*}
$$

We remark that

$$
H_{X^{*}}\left(X, y^{\prime}\right)=c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}\left(\left(X, y^{\prime}\right),\left(X^{*}, 0\right)\right)
$$

is a harmonic function of $\left(X, y^{\prime}\right) \in \Gamma_{n}(D)$ such that $H_{X^{*}}$ vanishes continuously on $S_{n}(D)-$ $\left\{\left(X^{*}, 0\right)\right\}$ and tends uniformly to zero as $y^{\prime} \rightarrow \infty$ (see [15, p. 394]). If we apply Lemma 2 to $H_{X^{*}}\left(X, y^{\prime}\right)$ and put $y^{\prime}=y^{*}-y\left(\right.$ resp. $\left.y^{\prime}=y-y^{*}\right)$,

$$
\bar{L}_{1}=\exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)}\right) \max _{X^{*} \in \partial D} L_{1}\left(H_{X^{*}}\right) \quad\left(\text { resp. } \underline{L}_{1}=\exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)}\right) \max _{X^{*} \in \partial D} L_{1}\left(H_{X^{*}}\right)\right),
$$

then we obtain the conclusion from (3.6) and (2.3) (resp. (2.4)).

Lemma 4. Let $\varphi(t)$ be a positive continuous function of $t \geq 0$ satisfying $\varphi(0)=$ $\exp (-\sqrt{\lambda(D, 1)})$ and put $L_{1}^{\prime}=\max _{X^{*} \in \partial D} L_{1}\left(H_{X^{*}}\right)$. Then

$$
\begin{gathered}
\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right|<L_{1}^{\prime} \varphi\left(y^{*}\right) \\
\left(\text { resp. }\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right|<L_{1}^{\prime} \varphi\left(-y^{*}\right)\right)
\end{gathered}
$$

for any $P=(X, y) \in \Gamma_{n}(D)$ and $Q=\left(X^{*}, y^{*}\right) \in S_{n}(D)$ satisfying

$$
\begin{equation*}
y^{*}>\max (0, y+2) \quad\left(\text { resp. } y^{*}<\min (0, y-2)\right) . \tag{3.7}
\end{equation*}
$$

Proof. Take any $P=(X, y) \in \Gamma_{n}(D)$ and $Q=\left(X^{*}, y^{*}\right) \in S_{n}(D)$ satisfying (3.7). Choose an integer $i=i(P, Q) \in J(D, \varphi)$ such that

$$
\begin{equation*}
t(i) \leq y^{*}<t(i+1) \quad\left(\text { resp. }-t(i+1)<y^{*} \leq-t(i)\right) \tag{3.8}
\end{equation*}
$$

Then

$$
\begin{gathered}
\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)=\bar{V}\left(\Gamma_{n}(D), i\right)(P, Q) \\
\left(\operatorname{resp} . \underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)=\underline{V}\left(\Gamma_{n}(D), i\right)(P, Q)\right)
\end{gathered}
$$

Hence we have from Lemma 3, (3.7) and (3.8) that

$$
\begin{gathered}
\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right| \\
\leq L_{1}^{\prime} \exp \left(-\sqrt{\lambda\left(D, k_{i+1}\right)}\left(y^{*}-y\right)\right)<L_{1}^{\prime} \varphi\left(y^{*}\right) \\
\left(\text { resp. }\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right|\right. \\
\left.\quad \leq L_{1}^{\prime} \exp \left(-\sqrt{\lambda\left(D, k_{i+1}\right)}\left(y-y^{*}\right)\right)<L_{1}^{\prime} \varphi\left(-y^{*}\right)\right)
\end{gathered}
$$

which is the conclusion.
Lemma 5. Let $g(Q)$ be locally integrable and upper semicontinuous on $S_{n}(D)$. Let $W(P, Q)$ be a function of $P \in \Gamma_{n}(D), Q \in S_{n}(D)$ such that for any fixed $P \in \Gamma_{n}(D)$ the function $W(P, Q)$ of $Q \in S_{n}(D)$ is a locally integrable function on $S_{n}(D)$. Put

$$
K(P, Q)=c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-W(P, Q) \quad\left(P \in \Gamma_{n}(D), Q \in S_{n}(D)\right) .
$$

Suppose that the following (I) and (II) are satisfied:
(I) For any $Q^{*} \in S_{n}(D)$ and any $\varepsilon>0$, there exist a neighbourhood $U\left(Q^{*}\right)$ of Q^{*} in R^{n}
and two numbers $Y_{1}^{*}, Y_{2}^{*}\left(-\infty<Y_{1}^{*}<Y_{2}^{*}<\infty\right)$ such that

$$
\int_{S_{n}\left(\boldsymbol{D} ;\left(Y_{2}^{*}, \infty\right)\right)}|g(Q) K(P, Q)| d \sigma_{Q}<\varepsilon
$$

and

$$
\int_{S_{n}\left(D ;\left(-\infty, Y_{1}^{*}\right)\right)}|g(Q) K(P, Q)| d \sigma_{Q}<\varepsilon
$$

for any $P=(X, y) \in \Gamma_{n}(D) \cap U\left(Q^{*}\right)$.
(II) For any $Q^{*} \in S_{n}(D)$ and any two numbers $Y_{1}, Y_{2}\left(-\infty<Y_{1}<Y_{2}<\infty\right)$,

$$
\limsup _{P \rightarrow Q^{*}, P \in \Gamma_{n}(D)} \int_{S_{n}\left(D ;\left(Y_{1}, Y_{2}\right)\right)}|g(Q) W(P, Q)| d \sigma_{Q}=0 .
$$

Then

$$
\lim _{P \rightarrow Q^{*}, P \in \Gamma_{n}(D)} \int_{S_{n}(D)} g(Q) K(P, Q) d \sigma_{Q} \leq g\left(Q^{*}\right)
$$

for any $Q^{*} \in S_{n}(D)$.
Proof. Let $Q^{*}=\left(X^{*}, y^{*}\right)$ be any fixed point of $S_{n}(D)$ and let ε be any positive number. Choose two numbers $Y_{1}^{*}, Y_{2}^{*}\left(-\infty<Y_{1}^{*}<y^{*}<Y_{2}^{*}<\infty\right)$ and a neighbourhood $U\left(Q^{*}\right)$ from (I) such that

$$
\begin{align*}
& \int_{S_{n}\left(D ;\left(Y_{2}^{*}, \infty\right)\right)}|g(Q) K(P, Q)| d \sigma_{Q}<\varepsilon / 4, \tag{3.9}\\
& \int_{S_{n}\left(D ;\left(-\infty, Y_{1}^{*}\right)\right)}|g(Q) K(P, Q)| d \sigma_{Q}<\varepsilon / 4
\end{align*}
$$

for any $P=(X, y) \in \Gamma_{n}(D) \cap U\left(Q^{*}\right)$. Let Φ be a continuous function on $S_{n}(D)$ such that $0 \leq \Phi \leq 1$ and

$$
\Phi=\left\{\begin{array}{lll}
1 & \text { on } & S_{n}\left(D ;\left[Y_{1}^{*}, Y_{2}^{*}\right]\right) \\
0 & \text { on } & S_{n}\left(D ;\left[Y_{2}^{*}+1, \infty\right)\right) \cup S_{n}\left(D ;\left(-\infty, Y_{1}^{*}-1\right]\right) .
\end{array}\right.
$$

Let $G_{\Gamma_{n}(D)}^{j}(P, Q)$ be the Green function of $\Gamma_{n}(D ;(-j, j))(j$ is a positive integer). Since the positive harmonic function $\Pi_{j}(P, Q)=G_{\Gamma_{n}(D)}(P, Q)-G_{\Gamma_{n}(D)}^{j}(P, Q)$ converges monotonically to 0 on $\Gamma_{n}(D ;(-j, j))$ as $j \rightarrow \infty$, we can find an integer $j^{*},-j^{*}<Y_{1}^{*}-1$ and $j^{*}>Y_{2}^{*}+1$ such that

$$
\begin{equation*}
c_{n}^{-1} \int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)}|\Phi(Q) g(Q)|\left|\frac{\partial}{\partial v} \Pi_{j^{*}}(P, Q)\right| d \sigma_{Q}<\varepsilon / 4 \tag{3.10}
\end{equation*}
$$

for any $P=(X, y) \in \Gamma_{n}(D) \cap U\left(Q^{*}\right)$. Thus we have from (3.9) and (3.10) that

$$
\begin{align*}
& \int_{S_{n}(D)} g(Q) K(P, Q) d \sigma_{Q} \leq c_{n}^{-1} \int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)} \Phi(Q) g(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}^{j^{*}}(P, Q) d \sigma_{Q} \tag{3.11}\\
& \quad+c_{n}^{-1} \int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)}\left|\Phi(Q) g(Q) \frac{\partial}{\partial v} \Pi_{j^{*}}(P, Q)\right| d \sigma_{Q} \\
& \quad+\int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)}|g(Q) W(P, Q)| d \sigma_{Q} \\
& \quad+2 \int_{\left.S_{n}\left(D ;\left(Y_{2}^{*}, \infty\right)\right)\right)}|g(Q) K(P, Q)| d \sigma_{Q}+2 \int_{S_{n}\left(D ;\left(-\infty, Y_{1}^{*}\right)\right)}|g(Q) K(P, Q)| d \sigma_{Q} \\
& \leq c_{n}^{-1} \int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)} \Phi(Q) g(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}^{j^{*}}(P, Q) d \sigma_{Q} \\
& \quad+\int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)}|g(Q) W(P, Q)| d \sigma_{Q}+\frac{5}{4} \varepsilon
\end{align*}
$$

for any $P=(X, y) \in \Gamma_{n}(D) \cap U\left(Q^{*}\right)$. Consider the Perron-Wiener-Brelot solution $H_{V}(P$; $\Gamma_{n}\left(D ;\left(-j^{*}, j^{*}\right)\right)$ of the Dirichlet problem on $\Gamma_{n}\left(D ;\left(-j^{*}, j^{*}\right)\right)$ with the upper semicontinuous function

$$
V(Q)= \begin{cases}\Phi(Q) g(Q) & \text { on } S_{n}\left(D ;\left[Y_{1}^{*}-1, Y_{2}^{*}+1\right]\right) \\ 0 & \text { on } \quad \partial \Gamma_{n}\left(D ;\left(-j^{*}, j^{*}\right)\right)-S_{n}\left(D ;\left[Y_{1}^{*}-1, Y_{2}^{*}+1\right]\right)\end{cases}
$$

on $\partial \Gamma_{n}\left(D ;\left(-j^{*}, j^{*}\right)\right)$. Then we know that

$$
c_{n}^{-1} \int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)} \Phi(Q) g(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}^{J^{*}}(P, Q) d \sigma_{Q}=H_{V}\left(P ; \Gamma_{n}\left(D ;\left(-j^{*}, j^{*}\right)\right)\right)
$$

(see Dahlberg [4, Theorem 3]) and that

$$
\lim _{P \in \Gamma_{n}(D), P \rightarrow Q^{*}} H_{V}\left(P ; \Gamma_{n}\left(D ;\left(-j^{*}, j^{*}\right)\right)\right) \leq \lim _{Q \in S_{n}(D), Q \rightarrow Q^{*}} V(Q)=g\left(Q^{*}\right)
$$

(see, e.g., Helms [9, Lemma 8.20]). Hence we obtain

$$
\lim _{P \in \Gamma_{n}(D), P \rightarrow Q^{*}} c_{\mathrm{n}}^{-1} \int_{S_{n}\left(D ;\left(Y_{1}^{*}-1, Y_{2}^{*}+1\right)\right)} \Phi(Q) g(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}^{j^{*}}(P, Q) d \sigma_{Q} \leq g\left(Q^{*}\right) .
$$

With (3.11) and (II) this gives the conclusion.
Lemma 6 (Miyamoto [10, Theorem 2]). Let p, q be two positive integers and $h(X, y)$ a harmonic function in $\Gamma_{n}(D)$ vanishing continuously on $S_{n}(D)$. If h satisfies

$$
\begin{equation*}
\mu_{p}\left(N\left(h^{+}\right)\right)=0 \quad \text { and } \quad \eta_{q}\left(N\left(h^{+}\right)\right)=0 \tag{3.12}
\end{equation*}
$$

then

$$
h(X, y)==_{k=1}^{k_{p}+\sum_{k}^{-1}} A_{k}(h) \exp (\sqrt{\lambda(D, k) y}) f_{k}^{D}(X)+\sum_{k=1}^{k_{q}+1-1} B_{k}(h) \exp (-\sqrt{\lambda(D, k)} y) f_{k}^{D}(X)
$$

for every $(X, y) \in \Gamma_{n}(D)$, where $A_{k}(h)\left(k=1,2, \ldots, k_{p+1}-1\right)$ and $B_{k}(h)\left(k=1,2, \ldots, k_{q+1}-1\right)$ are all constants.

Proof of Theorem 1. First of all, we shall show that $H\left(\Gamma_{n}(D), l, m ; g\right)(P)$ is a harmonic function on $\Gamma_{n}(D)$. For any fixed $P=(X, y) \in \Gamma_{n}(D)$, take two numbers Y_{1} and Y_{2} satisfying $Y_{2}>\max (0, y+1)$ and $Y_{1}<\min (0, y-1)$. Then

$$
\begin{align*}
& \text { 3) } \quad \int_{S_{n}\left(D ;\left(Y_{2},+\infty\right)\right)}\left|g(Q) \| K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q} \tag{3.13}\\
& \left.=\int_{S_{n}\left(D ;\left(Y_{2},+\infty\right)\right.}|g(Q)| c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\bar{V}\left(\Gamma_{n}(D), l\right)(P, Q) \right\rvert\, d \sigma_{Q} \\
& \leq \bar{L}_{1} \exp \left(\sqrt{\left.\lambda\left(D, k_{l+1}\right) y\right)} \int_{Y_{2}}^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}<\infty\right.
\end{align*}
$$

and

$$
\begin{align*}
& \int_{S_{n}\left(D ;\left(-\infty, Y_{1}\right)\right)}|g(Q)|\left|K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q} \tag{3.14}\\
= & \int_{S_{n}\left(D ;\left(-\infty, Y_{1}\right)\right)}|g(Q)|\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\underline{V}\left(\Gamma_{n}(D), m\right)(P, Q)\right| d \sigma_{Q} \\
\leq & \underline{L}_{1} \exp \left(-\sqrt{\left.\lambda\left(D, k_{m+1}\right) y\right)} \int_{-\infty}^{Y_{1}} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}<\infty\right.
\end{align*}
$$

from Lemma 3 and (2.5). Thus $H\left(\Gamma_{n}(D), l, m ; g\right)(P)$ is finite for any $P \in \Gamma_{n}(D)$. Since $K\left(\Gamma_{n}(D), l, m ; g\right)(P, Q)$ is a harmonic function of $P \in \Gamma_{n}(D)$ for any $Q \in S_{n}(D), H\left(\Gamma_{n}(D)\right.$, $l, m ; g)(P)$ is also a harmonic function of $P \in \Gamma_{n}(D)$.

To prove

$$
\lim _{P \in \Gamma_{n}(D), P \rightarrow Q^{*}} H\left(\Gamma_{n}(D), l, m ; g\right)(P)=g\left(Q^{*}\right)
$$

for any $Q^{*} \in S_{n}(D)$, apply Lemma 5 to $g(Q)$ and $-g(Q)$ by putting

$$
W(P, Q)=\bar{W}\left(\Gamma_{n}(D), l\right)(P, Q)+\underline{W}\left(\Gamma_{n}(D), m\right)(P, Q),
$$

which is locally integrable on $S_{n}(D)$ for any fixed $P \in \Gamma_{n}(D)$. Then we shall see that (I) and (II) hold. For any $Q^{*}=\left(X^{*}, y^{*}\right) \in S_{n}(D)$ and any $\varepsilon>0$, take a number $\delta(0<\delta<1)$. Then from (2.5), (3.13) and (3.14) we can choose two numbers Y_{1}^{*} and $Y_{2}^{*},-\infty<Y_{1}^{*}<$ $\min \left(0, y^{*}-2\right), \max \left(0, y^{*}+2\right)<Y_{2}^{*}<\infty$ such that for any $P=(X, y) \in \Gamma_{n}(D) \cap U_{\delta}\left(Q^{*}\right)$, $U_{\delta}\left(Q^{*}\right)=\left\{P \in R^{n} ;\left|P-Q^{*}\right|<\delta\right\}$,

$$
\int_{S_{n}\left(D ;\left(Y_{2}^{*}, \infty\right)\right)}\left|g(Q) K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q}<\varepsilon
$$

and

$$
\int_{S_{n}\left(D ;\left(-\infty, Y_{1}^{*}\right)\right)}\left|g(Q) K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q}<\varepsilon,
$$

which is (I) in Lemma 5. To see (II), we only need to observe that for any $Q^{*} \in S_{n}(D)$ and any two numbers $Y_{1}, Y_{2}\left(-\infty<Y_{1}<Y_{2}<\infty\right)$

$$
\lim _{P \in \Gamma_{n}(D), P \rightarrow Q^{*}}\left(\bar{W}\left(\Gamma_{n}(D), l\right)(P, Q)+\underline{W}\left(\Gamma_{n}(D), m\right)(P, Q)\right)=0
$$

at every $Q \in S_{n}\left(D ;\left(Y_{1}, Y_{2}\right)\right)$. This follows from (2.3) and (2.4), because

$$
\lim _{X \rightarrow X^{*}, X \in D} f_{k}^{D}(X)=0 \quad(k=1,2, \ldots)
$$

as $P=(X, y) \rightarrow Q^{*}=\left(X^{*}, y^{*}\right) \in S_{n}(D)$.
We shall proceed to prove (2.6). Consider the inequalities

$$
\begin{equation*}
N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right|\right)(y) \leq \bar{I}_{1}(y)+\bar{I}_{2}(y) \tag{3.15}
\end{equation*}
$$

and

$$
N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right|\right)(y) \leq \underline{I}_{1}(y)+\underline{I}_{2}(y),
$$

where

$$
\begin{aligned}
& \bar{I}_{1}(y)=\int_{D}\left(\int_{S_{n}(D ;(y+1, \infty))} g^{+}(Q)\left|K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X, \\
& \bar{I}_{2}(y)=\int_{D}\left(\int_{S_{n}(D ;(-\infty, y+1))} g^{+}(Q)\left|K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X, \\
& I_{1}(y)=\int_{D}\left(\int_{S_{n}(D ;(-\infty, y-1))} g^{+}(Q)\left|K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X,
\end{aligned}
$$

and

$$
\begin{array}{r}
\underline{I}_{2}(y)=\int_{D}\left(\int_{S_{n}(D ;[y-1, \infty))} g^{+}(Q)\left|K\left(\Gamma_{n}(D), l, m\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X \\
(P=(X, y))
\end{array}
$$

Let ε be any positive number. From (2.5) we can take a sufficiently large number \bar{y}_{0} and a sufficiently small number \underline{y}_{0} such that

$$
\begin{aligned}
& \int_{y+1}^{+\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}<\frac{\varepsilon}{2 L \bar{L}_{1}} \quad\left(y>\bar{y}_{0}\right) \\
& \int_{-\infty}^{y-1} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}<\frac{\varepsilon}{2 L \underline{L}_{1}} \quad\left(y<\underline{y}_{0}\right),
\end{aligned}
$$

where \bar{L}_{1} and \underline{L}_{1} are two constants in Lemma 3, and

$$
L=\int_{D} f_{1}^{D} d X
$$

Then from Lemma 3 we have

$$
\begin{gathered}
0 \leq \bar{I}_{1}(y) \leq L \bar{L}_{1} \exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)} y\right) \int_{y+1}^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right)\left(\int_{\partial D} g^{+}\left(X^{*}, y^{*}\right) d \sigma_{X^{*}}\right) d y^{*} \\
<\frac{\varepsilon}{2} \exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)} y\right) \quad\left(y>\bar{y}_{0}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
0 \leq \underline{I}_{1}(y) \leq L \bar{L}_{1} \exp \left(-\sqrt{\lambda\left(D, k_{m+1}\right)} y\right) \int_{-\infty}^{y-1} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right)\left(\int_{\partial D} g^{+}\left(X^{*}, y^{*}\right) d \sigma_{x^{*}}\right) d y^{*} \\
<\frac{\varepsilon}{2} \exp \left(-\sqrt{\lambda\left(D, k_{m+1}\right)} y\right) \quad\left(y<\underline{y}_{0}\right)
\end{gathered}
$$

which give

$$
\begin{equation*}
\mu_{l}\left(\bar{I}_{1}\right)=\eta_{m}\left(I_{1}\right)=0 . \tag{3.16}
\end{equation*}
$$

To estimate $\bar{I}_{2}(y)$ and $\underline{I}_{2}(y)$, we use the inequalities

$$
\begin{equation*}
\bar{I}_{2}(y) \leq \bar{I}_{2,1}(y)+\bar{I}_{2,2}(y)+\bar{I}_{2,3}(y) \quad(y>-1) \tag{3.17}
\end{equation*}
$$

and

$$
\underline{I}_{2}(y) \leq \underline{I}_{2,1}(y)+\underline{I}_{2,2}(y)+\underline{I}_{2,3}(y) \quad(y<1),
$$

where

$$
\begin{equation*}
\bar{I}_{2,1}(y)=c_{n}^{-1} \int_{D}\left(\int_{S_{n}(D ;(0, y+1])} g^{+}(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X \tag{3.18}
\end{equation*}
$$

$$
\bar{I}_{2,2}(y)=\int_{D}\left(\int_{S_{n}(D ;(0, y+1])} g^{+}(Q)\left|\bar{V}\left(\Gamma_{n}(D), l\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X \quad(y>-1)
$$

$$
\bar{I}_{2,3}(y)=\int_{D}\left(\int_{S_{n}(D ;(-\infty, 0])} g^{+}(Q)\left|c_{n}^{-1} \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q)-\underline{V}\left(\Gamma_{n}(D), m\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X
$$

and

$$
\begin{gathered}
\underline{I}_{2,1}(y)=c_{n}^{-1} \int_{D}\left(\int_{S_{n}(D ;[y-1,0))} g^{+}(Q) \frac{\partial}{\partial \nu} G_{\Gamma_{n}(D)}(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X \\
\underline{I}_{2,2}(y)=\int_{D}\left(\int_{S_{n}(D ;[y-1,0))} g^{+}(Q)\left|\underline{V}\left(\Gamma_{n}(D), m\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X \quad(y<1) \\
\underline{I}_{2,3}(y)=\int_{D}\left(\int_{S_{n}(D ;[0, \infty))} g^{+}(Q)\left|c_{n}^{-1} \frac{\partial}{\partial \nu} G_{\Gamma_{n}(D)}(P, Q)-\bar{V}\left(\Gamma_{n}(D), l\right)(P, Q)\right| d \sigma_{Q}\right) f_{1}^{D}(X) d X .
\end{gathered}
$$

First Lemma 3 gives

$$
\begin{equation*}
\bar{I}_{2,3}(y) \leq L \underline{L}_{1} \exp \left(-\sqrt{\lambda\left(D, k_{m+1}\right)} y\right) \int_{-\infty}^{0} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right)\left(\int_{\partial D} g^{+}\left(X^{*}, y^{*}\right) d \sigma_{X^{*}}\right) d y^{*} \tag{y>1}
\end{equation*}
$$

and

$$
\begin{array}{r}
\underline{I}_{2,3}(y) \leq L \bar{L}_{1} \exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)} y\right) \int_{0}^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right)\left(\int_{\partial D} g^{+}\left(X^{*}, y^{*}\right) d \sigma_{X^{*}}\right) d y^{*} \\
(y<-1)
\end{array}
$$

Hence it is evident from (2.5) that

$$
\begin{equation*}
\mu_{l}\left(\bar{I}_{2,3}\right)=\eta_{m}\left(I_{2,3}\right)=0 . \tag{3.19}
\end{equation*}
$$

Next we have from (2.2), (2.3) and (2.4) that if $l \geq 1$, then

$$
\left.\bar{I}_{2,2}(y) \leq B L M_{2}^{2}|D| \sum_{k \in I\left(D, k_{l+1}\right)} k \exp (\sqrt{\lambda(D, k)}) \exp (\sqrt{\lambda(D, k)})\right) \Psi_{k}(y) \quad(y>-1)
$$

and that if $m \geq 1$, then

$$
I_{2,2}(y) \leq B L M_{2}^{2}|D| \sum_{k \in I\left(D, k_{m+1}\right)} k \exp (\sqrt{\lambda(D, k)}) \exp (-\sqrt{\lambda(D, k)} y) \Phi_{k}(y) \quad(y<1)
$$

where

$$
\begin{equation*}
B=c_{n}^{-1} \max _{X \in D, X^{*} \in \partial D} \frac{\partial}{\partial \nu} G_{\Gamma_{n}(D)}\left((X, 1),\left(X^{*}, 0\right)\right), \tag{3.20}
\end{equation*}
$$

$$
\Psi_{k}(y)=\int_{0}^{y+1} \exp \left(-\sqrt{\lambda(D, k)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*} \quad\left(y>-1, k \in I\left(D, k_{l+1}\right)\right)
$$

and

$$
\Phi_{k}(y)=\int_{y-1}^{0} \exp \left(\sqrt{\lambda(D, k)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*} \quad\left(y<1, k \in I\left(D, k_{m+1}\right)\right) .
$$

We shall later show that

$$
\begin{array}{cl}
\Psi_{k}(y)=o\left(\exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)} y-\sqrt{\lambda(D, k)} y\right)\right) & (y \rightarrow \infty)\left(l \geq 1, k \in I\left(D, k_{l+1}\right)\right) \tag{3.21}\\
\Phi_{k}(y)=o\left(\exp \left(-\sqrt{\lambda\left(D, k_{m+1}\right)} y+\sqrt{\lambda(D, k)} y\right)\right) & (y \rightarrow-\infty)\left(m \geq 1, k \in I\left(D, k_{m+1}\right)\right) .
\end{array}
$$

Hence we can conclude that if $l \geq 1$ and $m \geq 1$, then

$$
\begin{equation*}
\mu_{l}\left(\bar{I}_{2,2}\right)=\eta_{m}\left(I_{2,2}\right)=0 \tag{3.22}
\end{equation*}
$$

which also holds in the case $l=m=0$, because $\bar{I}_{2,2}(y) \equiv \underline{I}_{2,2}(y) \equiv 0$ then. Lastly we can obtain

$$
\begin{equation*}
\mu_{l}\left(\bar{I}_{2,1}\right)=\eta_{m}\left(\underline{I}_{2,1}\right)=0 \tag{3.23}
\end{equation*}
$$

which will be proved at the end of this proof. We thus obtain from (3.17), (3.19), (3.22) and (3.23) that

$$
\begin{equation*}
\mu_{l}\left(\bar{I}_{2}\right)=\eta_{m}\left(\underline{I}_{2}\right)=0 . \tag{3.24}
\end{equation*}
$$

We can finally conclude from (3.15), (3.16) and (3.24) that

$$
\mu_{l}\left(N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right|\right)\right)=\eta_{m}\left(N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right|\right)\right)=0 .
$$

In completely the same way applied to g^{-}, we also have that

$$
\mu_{l}\left(N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{-}\right)\right|\right)\right)=\eta_{m}\left(N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{-}\right)\right|\right)\right)=0 .
$$

Since

$$
N\left(\left|H\left(\Gamma_{n}(D), l, m ; g\right)(P)\right|\right) \leq N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{+}\right)(P)\right|\right)+N\left(\left|H\left(\Gamma_{n}(D), l, m ; g^{-}\right)(P)\right|\right),
$$ these give the conclusion (2.6).

We shall prove (3.21). We note that $\Psi_{k}(y)$ (resp. $\Phi_{k}(y)$) is increasing (resp. decreasing),

$$
\begin{aligned}
& \int_{0}^{\infty} \Psi_{k}^{\prime}\left(y^{*}\right) \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}+\sqrt{\lambda(D, k)} y^{*}\right) d y^{*} \\
&= \exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)}-\sqrt{\lambda(D, k)}\right) \int_{1}^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right) \\
& \times\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*} \\
&\left(\text { resp. } \int_{-\infty}^{0} \Phi_{k}^{\prime}\left(y^{*}\right) \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}-\sqrt{\lambda(D, k)} y^{*}\right) d y^{*}\right. \\
&=-\exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)}-\sqrt{\lambda(D, k)}\right) \int_{-\infty}^{-1} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right) \\
&\left.\times\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Psi_{k}(y) \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y+\sqrt{\lambda(D, k)} y\right) \\
& \leq \exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)}-\sqrt{\lambda(D, k)}\right) \int_{0}^{y+1} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right) \\
& \times\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{x^{*}}\right) d y^{*} \leq \bar{L}_{2} \exp \left(\sqrt{\lambda\left(D, k_{l+1}\right)}-\sqrt{\lambda(D, k)}\right) \\
&\left(\operatorname{resp} . \Phi_{k}(y) \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y-\sqrt{\lambda(D, k)} y\right)\right. \\
& \leq \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)}-\sqrt{\lambda(D, k)}\right) \int_{y-1}^{0} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right) \\
& \times\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{x^{*}}\right) d y^{*} \leq \underline{L}_{2} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)}-\sqrt{\lambda(D, k))}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{L}_{2}=\int_{0}^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*} \\
\left(\text { resp. } \underline{L}_{2}=\int_{-\infty}^{0} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) d y^{*}\right) .
\end{gathered}
$$

From these and (2.5) (resp. (2.6)) we see

$$
\begin{gather*}
\int_{0}^{\infty} \Psi_{k}\left(y^{*}\right) \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}+\sqrt{\lambda(D, k)} y^{*}\right) d y^{*}<\infty \tag{3.25}\\
\left.\left(\text { resp. } \int_{-\infty}^{0} \Phi_{k}\left(y^{*}\right) \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right.}\right) y^{*}-\sqrt{\lambda(D, k)} y^{*}\right) d y^{*}<\infty\right)
\end{gather*}
$$

by integration by parts. Since

$$
\begin{aligned}
& \Psi_{k}(y) \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y+\sqrt{\lambda(D, k)} y\right) \\
& \quad=\left(\sqrt{\lambda\left(D, k_{l+1}\right)}-\sqrt{\lambda(D, k)}\right) \Psi_{k}(y) \int_{y}^{\infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}+\sqrt{\lambda(D, k)} y^{*}\right) d y^{*} \\
& \quad \leq\left(\sqrt{\lambda\left(D, k_{l+1}\right)}-\sqrt{\lambda(D, k)}\right) \int_{y}^{\infty} \Psi_{k}\left(y^{*}\right) \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y^{*}+\sqrt{\lambda(D, k)} y^{*}\right) d y^{*} \\
& \left(\operatorname{resp} . \Phi_{k}(y) \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y-\sqrt{\lambda(D, k)} y\right)\right. \\
& =\left(\sqrt{\lambda\left(D, k_{m+1}\right)}-\sqrt{\lambda(D, k)}\right) \Phi_{k}(y) \int_{-\infty}^{y} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}-\sqrt{\lambda(D, k)} y^{*}\right) d y^{*}
\end{aligned}
$$

$$
\left.\leq\left(\sqrt{\lambda\left(D, k_{m+1}\right)}-\sqrt{\lambda(D, k)}\right) \int_{-\infty}^{y} \Phi_{k}\left(y^{*}\right) \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y^{*}-\sqrt{\lambda(D, k)} y^{*}\right) d y^{*}\right),
$$

(3.25) gives (3.21).

Finally we shall show (3.23). In the following we use the notation in (3.18) and (3.20). First we note that

$$
\begin{equation*}
0 \leq \bar{I}_{2,1}(y) \leq N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)(y)-\bar{I}_{1}^{*}(y)+\bar{I}_{2,2}^{*}(y)+\bar{L}_{2,3}(y) \quad(y>-1)\right. \tag{3.26}
\end{equation*}
$$

and

$$
0 \leq \underline{I}_{2,1}(y) \leq N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)(y)-\underline{I}_{1}^{*}(y)+\underline{I}_{2,2}^{*}(y)+\underline{I}_{2,3}(y) \quad(y<1),
$$

where

$$
\begin{gathered}
\bar{I}_{1}^{*}(y)=\int_{D}\left(\int_{S_{n}(D ;(y+1, \infty))} g^{+}(Q) K\left(\Gamma_{n}(D), l, m\right)(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X, \\
\bar{I}_{2,2}^{*}(y)=\int_{D}\left(\int_{S_{n}(D ;(0, y+1))} g^{+}(Q) \bar{V}\left(\Gamma_{n}(D), l\right)(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X \quad(y>-1)
\end{gathered}
$$

and

$$
\begin{gathered}
I_{1}^{*}(y)=\int_{D}\left(\int_{S_{n}(D ;(-\infty, y-1)} g^{+}(Q) K\left(\Gamma_{n}(D), l, m\right)(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X \\
I_{2,2}^{*}(y)=\int_{D}\left(\int_{S_{n}(D ;[y-1,0)} g^{+}(Q) \underline{V}\left(\Gamma_{n}(D), m\right)(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X \quad(y<1) .
\end{gathered}
$$

Since

$$
\left|\bar{I}_{1}^{*}(y)\right| \leq \bar{I}_{1}(y) \text { and }\left|\underline{I}_{1}^{*}(y)\right| \leq \underline{I}_{1}(y),
$$

we easily see from (3.16) that

$$
\begin{equation*}
\mu_{l}\left(\left|\bar{I}_{1}^{*}\right|\right)=\eta_{m}\left(\left|I_{1}^{*}\right|\right)=0 . \tag{3.27}
\end{equation*}
$$

Next it follows from the orthonormality of $\left\{f_{k}^{D}(X)\right\}$ that if $l \geq 1$, then

$$
\bar{I}_{2,2}^{*}(y) \leq B L \exp (\sqrt{\lambda(D, 1)}) \exp (\sqrt{\lambda(D, 1)} y) \Psi_{1}(y) \quad(y>-1)
$$

and that if $m \geq 1$, then

$$
I_{2,2}^{*}(y) \leq B L \exp (\sqrt{\lambda(D, 1)}) \exp (-\sqrt{\lambda(D, 1)} y) \Phi_{1}(y) \quad(y<1) .
$$

Hence (3.21) with $k=1$ gives that

$$
\begin{equation*}
\left.\lim _{y \rightarrow \infty} \sup \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right.}\right) y\right) \bar{I}_{2,2}^{*}(y) \leq 0 \tag{3.28}
\end{equation*}
$$

and

$$
\lim _{y \rightarrow-\infty} \sup \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y\right) \underline{I}_{2,2}^{*}(y) \leq 0,
$$

which also hold in the case $l=m=0$, because $\bar{I}_{2,2}^{*}(y) \equiv \underline{I}_{2,2}^{*}(y) \equiv 0$ then. If we can show that

$$
\begin{equation*}
\limsup _{y \rightarrow \infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y\right) N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)(y) \leq 0 \tag{3.29}
\end{equation*}
$$

and

$$
\limsup _{y \rightarrow-\infty} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right) y}\right) N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)(y) \leq 0\right.
$$

then we finally conclude from (3.19), (3.26), (3.27) and (3.28) that

$$
\limsup _{y \rightarrow \infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y\right) \bar{I}_{2,1}(y)=0
$$

and

$$
\lim _{y \rightarrow-\infty} \sup \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y\right) \underline{I}_{2,1}(y)=0,
$$

which give (3.23).
To prove (3.29), recall that $-H\left(\Gamma_{n}(D), l, m ; g^{+}\right)(P)$ is also a harmonic function on $\Gamma_{n}(D)$ satisfying

$$
\lim _{P \in \Gamma_{n}(D), P \rightarrow Q^{*}}-H\left(\Gamma_{n}(D), l, m ; g^{+}\right)(P)=-g^{+}\left(Q^{*}\right) \leq 0
$$

for every $Q^{*} \in S_{n}(D)$. Hence from [14, Theorem 7.2] we know that

$$
-\infty<\eta_{0}\left(N\left(-H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)\right) \leq \infty, \quad-\infty<\mu_{0}\left(N\left(-H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)\right) \leq \infty .
$$

Thus we obtain that if $l \geq 1$, then

$$
\limsup _{y \rightarrow \infty} \exp \left(-\sqrt{\lambda\left(D, k_{l+1}\right)} y\right) N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)(y) \leq 0
$$

and if $m \geq 1$, then

$$
\limsup _{y \rightarrow-\infty} \exp \left(\sqrt{\lambda\left(D, k_{m+1}\right)} y\right) N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)(y) \leq 0
$$

If $l=0$, then we have

$$
\begin{aligned}
N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)(y) & \leq c_{n}^{-1} \int_{D}\left(\int_{S_{n}(D)} \bar{g}^{+}(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X+\bar{I}_{2,3}(y) \\
& =N\left(H\left(\Gamma_{n}(D), l, m ; \bar{g}^{+}\right)\right)(y)+\bar{I}_{2,3}(y),
\end{aligned}
$$

where

$$
\bar{g}^{+}(Q)=\bar{g}^{+}\left(X^{*}, y^{*}\right)= \begin{cases}g^{+}\left(X^{*}, y^{*}\right) & \left(y^{*} \geq 0\right) \\ 0 & \left(-\infty<y^{*}<0\right)\end{cases}
$$

If $m=0$, then we have

$$
\begin{aligned}
N\left(H\left(\Gamma_{n}(D), l, m ; g^{+}\right)\right)(y) & \leq c_{n}^{-1} \int_{D}\left(\int_{S_{n}(D)} \underline{g}^{+}(Q) \frac{\partial}{\partial v} G_{\Gamma_{n}(D)}(P, Q) d \sigma_{Q}\right) f_{1}^{D}(X) d X+\underline{I}_{2,3}(y) \\
& =N\left(H\left(\Gamma_{n}(D), l, m ; \underline{g}^{+}\right)\right)(y)+\underline{I}_{2,3}(y),
\end{aligned}
$$

where

$$
\underline{g}^{+}(Q)=\underline{g}^{+}\left(X^{*}, y^{*}\right)= \begin{cases}g^{+}\left(X^{*}, y^{*}\right) & \left(-\infty<y^{*} \leq 0\right) \\ 0 & \left(y^{*}>0\right)\end{cases}
$$

Since

$$
\mu_{0}\left(N\left(H\left(\Gamma_{n}(D), 0, m ; \bar{g}^{+}\right)\right)\right)=\eta_{0}\left(N\left(H\left(\Gamma_{n}(D), l, 0 ; \underline{g}^{+}\right)\right)\right)=0
$$

from the cylindrical version of [15, Lemma 3], (3.19) and this also give

$$
\begin{aligned}
& \limsup _{y \rightarrow \infty} \exp (-\sqrt{\lambda(D, 1)} y) N\left(H\left(\Gamma_{n}(D), 0, m ; g^{+}\right)(y) \leq 0\right. \\
& \limsup _{y \rightarrow-\infty} \exp (\sqrt{\lambda(D, 1)} y) N\left(H\left(\Gamma_{n}(D), l, 0 ; g^{+}\right)(y) \leq 0\right.
\end{aligned}
$$

Thus we can obtain (3.29) for any non-negative integers l and m.
Proof of Theorem 2. Take a positive continuous function $\varphi(t)(t \geq 0)$ such that

$$
\begin{gathered}
\varphi(0)=\exp (-\sqrt{\lambda(D, 1)}), \\
\varphi\left(\left|y^{*}\right|\right)\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) \leq L_{2}\left(1+\left|y^{*}\right|\right)^{-2} \quad\left(-\infty<y^{*}<\infty\right),
\end{gathered}
$$

where

$$
L_{2}=\exp (-\sqrt{\lambda(D, 1)}) \int_{\partial D}\left|g\left(X^{*}, 0\right)\right| d \sigma_{X^{*}}
$$

For any fixed $P=(X, y) \in \Gamma_{n}(D)$, choose two numbers Y_{1} and $Y_{2}, Y_{2}>\max (0, y+2)$, $Y_{1}<\min (0, y-2)$. Then we see from Lemma 4 that

$$
\begin{align*}
& \int_{S_{n}\left(D ;\left(Y_{2}, \infty\right)\right)}\left|g(Q) K\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right| d \sigma_{Q} \tag{3.30}\\
& \quad \leq L_{1}^{\prime} \int_{Y_{2}}^{\infty}\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) \varphi\left(y^{*}\right) d y^{*} \leq L_{1}^{\prime} L_{2} \int_{Y_{2}}^{\infty}\left(1+y^{*}\right)^{-2} d y^{*}<\infty
\end{align*}
$$

and

$$
\begin{aligned}
& \int_{S_{n}\left(D ;\left(-\infty, Y_{1}\right)\right)}\left|g(Q) K\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right| d \sigma_{Q} \\
& \leq L_{1}^{\prime} \int_{-\infty}^{Y_{1}}\left(\int_{\partial D}\left|g\left(X^{*}, y^{*}\right)\right| d \sigma_{X^{*}}\right) \varphi\left(-y^{*}\right) d y^{*} \leq L_{1}^{\prime} L_{2} \int_{-\infty}^{Y_{1}}\left(1-y^{*}\right)^{-2} d y^{*}<\infty .
\end{aligned}
$$

It is evident that

$$
\int_{S_{n}\left(D ;\left(Y_{1}, Y_{2}\right)\right)}\left|g(Q) K\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right| d \sigma_{Q}<\infty .
$$

These give that

$$
\int_{S_{n}(D)}\left|g(Q) K\left(\Gamma_{n}(D), \varphi\right)(P, Q)\right| d \sigma_{Q}<\infty .
$$

To see that $H\left(\Gamma_{n}(D), \varphi ; g\right)(P)$ is harmonic in $\Gamma_{n}(D)$, we remark that $H\left(\Gamma_{n}(D), \varphi ; g\right)(P)$ satisfies the local mean-value property by Fubini's theorem.

Finally we shall show

$$
\begin{equation*}
\lim _{P \in \Gamma_{n}(D), P \rightarrow Q^{*}} H\left(\Gamma_{n}(D), \varphi ; g\right)(P)=g\left(Q^{*}\right) \tag{3.31}
\end{equation*}
$$

for any $Q^{*} \in S_{n}(D)$. Put

$$
W(P, Q)=\bar{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)+\underline{W}\left(\Gamma_{n}(D), \varphi\right)(P, Q)
$$

in Lemma 5, which is a locally integrable function of $Q \in S_{n}(D)$ for any fixed $P \in \Gamma_{n}(D)$. Then we can see from (3.30) in the same way as in the proof of Theorem 1 that both (I) and (II) are satisfied. Thus Lemma 5 applied to $g(Q)$ and $-g(Q)$ gives (3.31).

Proof of Theorem 3. From Theorem 1 , we have the solution $H\left(\Gamma_{n}(D), l, m ; g\right)(P)$ of the Dirichlet problem on $\Gamma_{n}(D)$ with g satisfying (2.6). Consider the function $h-H\left(\Gamma_{n}(D), l, m ; g\right)$. Then it follows that this is harmonic in $\Gamma_{n}(D)$ and vanishes continuously on $S_{n}(D)$. Since

$$
0 \leq\left\{h-H\left(\Gamma_{n}(D), l, m ; g\right)\right\}^{+}(P) \leq h^{+}(P)+\left\{H\left(\Gamma_{n}(D), l, m ; g\right)\right\}^{-}(P)
$$

for any $P \in \Gamma_{n}(D)$ and

$$
\mu_{l}\left(N\left(\left\{H\left(\Gamma_{n}(D), l, m ; g\right)\right\}^{-}\right)\right)=\eta_{m}\left(N\left(\left\{H\left(\Gamma_{n}(D), l, m ; g\right)\right\}^{-}\right)\right)=0
$$

from (2.6), (2.8) gives that

$$
\mu_{p}\left(N\left(\left\{h-H\left(\Gamma_{n}(D), l, m ; g\right)\right\}^{+}\right)\right)=\eta_{q}\left(N\left(\left\{h-H\left(\Gamma_{n}(D), l, m ; g\right)\right\}^{+}\right)\right)=0 .
$$

From Lemma 6 we see that

```
    \(h(P)-H\left(\Gamma_{n}(D), l, m ; g\right)(P)\)
    \(=\sum_{k \in I\left(D, k_{p+1}\right)} A_{k}(h) \exp (\sqrt{\lambda(D, k)} y) f_{k}^{D}(X)+\sum_{k \in I\left(D, k_{q}+1\right)} B_{k}(h) \exp (-\sqrt{\lambda(D, k)} y) f_{k}^{D}(X)\)
\(\left(A_{k}(h)\left(k=1,2, \ldots, k_{p+1}-1\right)\right.\) and \(B_{k}(h)\left(k=1,2, \ldots, k_{q+1}-1\right)\) are all constants) for every
\(P=(X, y) \in \Gamma_{n}(D)\), which is the conclusion of Theorem 3.
```


References

[1] D. H. Armitage, Representations of harmonic functions in half-spaces, Proc. London Math. Soc. (3) 38 (1979), 53-71.
[2] T. Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes, C. R. Skand. Math. Kongress 1934, 34-44.
[3] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, Interscience Publishers, New York, 1953.
[4] B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275-288.
[5] M. Finkelstein and S. Scheinberg, Kernels for solving problems of Dirichlet type in a half-plane, Advances in Math. 18 (1975), 108-113.
[6] S. J. Gardiner, The Dirichlet and Neumann problems for harmonic functions in half-spaces, J. London Math. Soc. (2) 24 (1981), 502-512.
[7] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 1977.
[8] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. 1, Academic Press, London, 1976.
[9] L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, New York, 1969.
[10] I. Miyamoto, Harmonic functions in a cylinder which vanish on the boundary, Japanese J. Math. 22 (1996) (to appear).
[11] D. Siegel, The Dirichlet problem in a half-spaces and a new Phragmén-Lindelöf principle, Maximum Principles and Eigenvalue Problems in Partial Differential Equations (P. W. Schaefer, ed.) Pitman, New York, 1988.
[12] H. WeyL, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1911), 441-471.
[13] D. V. Widder, Functions harmonic in a strip, Proc. Amer. Math. Soc. (1961), 67-72.
[14] H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc. (3) 54 (1987), 267-299.
[15] H. Yoshida Harmonic majorization of a subharmonic function on a cone or on a cylinder, Pacific J. Math. 148 (1991), 369-395.
[16] H. Yoshida, A type of uniqueness for the Dirichlet problem on a half-spaces with continuous data, Pacific J. Math. (to appear).
[17] H. Yoshida and I. Miyamoto, Solutions of the Dirichlet problem on a cone with continuous data, J. Japan Math. Soc. 50 (1) (1998) (to appear).

Department of Mathematics and Informatics
Faculty of Science
Chiba University
Chiba 263
Japan

