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Abstract. The aim of this paper is to prove a type of uniqueness for the Dirichlet
problem on a cylinder the special case of which is a strip in the plane. By defining
generalized Poisson integrals with certain continuous functions on the boundary of a
cylinder, we shall investigate the difference between them and harmonic functions having
the same boundary value. Given any continuous function on the boundary of a cylinder,
we shall also give a harmonic function with that function as the boundary value.

1. Introduction. Let R be the set of all real numbers. The boundary and the

closure of a set S in the ^-dimensional Euclidean space Rn (n > 2) are denoted by dS and

S, respectively. Given a domain GaRn and a continuous function g on dG, we say that

h is a solution of the Dirichlet problem on G with g, if h is harmonic in G and

lim h(P) = g(Q)
PeG,P^Q

for every Q e dG. If G is a bounded domain and g is a bounded function on dG, then

the existence of a solution of the Dirichlet problem and its uniqueness is completely

known (see, e.g., [8, Theorem 5.21]). When G is the typical unbounded domain

Tn = {(X,y)eRn;XeRn-\y>0}9

the solution of the Dirichlet problem on Tn with a continuous function on dTn was given

by using the (generalized) Poisson integral in Armitage [1], Finkelstein and Scheinberg

[5] and Gardiner [6], etc. But the uniqueness of solutions was not much considered

until Siegel [11] picked up this problem. Helms [9, p. 42 and p. 158] states that even

if g(X) is a bounded continuous function on dTn, the solution of the Dirichlet problem

on Tn with g is not unique and to obtain the unique solution H(P) (P = (X, y) e Tn) we

must specify the behavior of H(P) as y -> oo. After Siegel gave a type of uniqueness of

solutions, Yoshida [16] proved the same result under less restricted conditions. All

these results were extended in Yoshida and Miyamoto [17] to the case where G is a

cone. Since Tn is regarded as a special cone, we can say that a cone is one of typical

unbounded domains.

1991 Mathematics Subject Classification. Primary 31B20.



268 I. MIYAMOTO

There is another typical unbounded domain which is a cylinder

with a bounded domain D e i ? " ' 1 . The existence and the uniqueness of solutions of the

Dirichlet problem on Γn(D) with a continuous function on dΓn(D) are worth inquiry.

In this direction, Yoshida [15] proved the following Theorem A. To state it we need

some preliminaries.

Consider the Dirichlet problem

(1.1) ( Δ B _ 1 + λ ) / = O in D
f = 0 on dD

for a bounded domain DczRn~ι (n>2), where Ax = d2/dx2. Let >l(/), 1) be the least

positive eigenvalue of (1.1) and/^ΛΓ) the normalized eigenfunction corresponding to

λ(D, 1). In order to make the subsequent consideration simpler, we put a strong as-

sumption on D throughout this paper: If « > 3 , then D is a C2'α-domain ( 0 < α < l ) in

Z?""1 surrounded by a finite number of mutually disjoint closed hypersurfaces (for

example, see Gilberg and Trudinger [7, pp. 88-89] for the definition of C2'α-domains).

Let GΓn{D)(Pl9 P2) be the Green function of Γn(D) (Pί9 P2eΓn(D)) and dGΓn(D)(P9 Q)/dv

the differentiation at QedΓn(D) along the inward normal into Γn(D) (PeΓn(D)).

Given a function F(X, y) on Γn(D), we denote by N(F)(y) the function of y defined

by the integral

F(X9y)f?{X)iX9

where dX denotes the (n — l)-dimensional volume element. We write

μo(N(F))= lim exp(-Jλ(D, ί)y)N(F)(y)
y^> oo

and

if they exist.

THEOREM A (Yoshida [15, Theorem 6]). Let g(Q) be a continuous function on

dΓn(D) satisfying

(1.2) Γ exp(-v/A(D,l)|3>|)( I \g(X9 y)\dσλdy<co ,
J - oo V J dD /

where dσx is the surface area element of dD at X and ifn = 2 and D = (y, δ), then
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JdlJdD

Then the Poisson integral

(* a

, Q)dσc

is a solution of the Dirichlet problem on Γn(D) with g, where

f2π (« = 2)

\(n — 2)sn (n>3) (sn is the surface area of the unit sphere Sn x)

and dσQ is the surface area element on dΓn(D) at Q. Let h(P) be any solution of the Dirichlet

problem on Γn(D) with g. Then all of the limits μo(N(h)\ ηo(N(h)) ( - oo < μo(JV(/z)),

ηo(N(h))<π% μo(N(\ h |)) and ηo(N(\ h |)) (0<μo(N(\ h |)), ηo(N(\ h |))< oo) exist, and if

(1.3) μo(ΛΓ(|Λ|))<oo and η0{N{\h\))<oo ,

then

h(P) = PIg(P) + (μo(N(h))QχV(^/mY)y) + ηo(N(h))exp(- Jλφ, \)y))f?(X)

= (X,y)eΓn(D).

This Theorem A shows that under the conditions (1.2) and (1.3) the existence and

a type of uniqueness of solutions for the Dirichlet problem on Γn(D) can be proved,

respectively.

If 77 = 2, then Γn(D) is a strip. The strip Γ2((0, π)) with Z) = (0, π) is simply denoted

by Γ 2 . With respect to the Dirichlet problem on Γ 2, Widder obtained:

THEOREM B (Widder [13, Theorems 1 and 3]). If git) ( i = l , 2) is a continuous

function on R satisfying

(1.4)

then

Γ
J —

I f 0 0 I f 0 0

; gl9 g2)(x, y) = — P(x, t-y)g1{t)dt + — P(π-x, t-y)g2(t)dt
2π J . ^ 2π J . ^

sin x
p{χ,y)=—r

cosh;; —cosxy

is a harmonic function in Γ2 and a continuous function on Γ2 shuch that

and H(Γ2; gug2)(π,y) = g2{y) (-co<y<co).
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Ifh(x, y) is a harmonic function in Γ2 and a continuous function on Γ2 such that

MO, y)=gάy), h(π, y)=g2(y) (-00 < y < 00)

and

then

y) on T2 .

Though by a conformal mapping a strip is reduced to T2 which was treated in

[17] as a special case, it may be of interest to treat this case independently as a special

case of cylinders.

In this paper, the first parts of Theorems A and B will be extended by defining

generalized Poisson integrals with continuous functions under less restricted conditions

than (1.2) and (1.4) (Theorem 1 and Corollary 1). We shall also prove that for any

continuous function g on dΓn(D) there is a solution of the Dirichlet problem on Γn(D)

with g (Theorem 2 and Corollary 2). The results (Theorem 3 and Corollary 3) which

generalize the second parts of Theorems A and B will be connected with a type of

uniqueness of solutions for the Dirichlet problem on Γn(D).

2. Statements of results. We denote the non-decreasing sequence of positive

eigenvalues of (1.1) by {λ(D, k)}^=1. In this expression we write λ(D, k) the same number

of times as the dimension of the corresponding eigenspace. When the normalized

eigenfunction corresponding to λ(D, k) is denoted by /fc

D, the set of sequential eigen-

functions corresponding to the same value of λ(D, k) in the sequence {f^}^= 1 makes

an orthonormal basis for the eigenspace of the eigenvalue λ(D, k). We can also say that

for each DaR"'1 there is a sequence {£J of positive integers such that kί = l,

λ(D, kt) =

and {fk).9fkί+1,... ,fki + i -1} is an orthonormal basis for the eigenspace of the eigenvalue

λ(D,ki) ( i = l , 2 , 3 , . . ). It is well known that k2 = 2 and f?(X)>0 for any XeD (see

Courant and Hubert [3, p. 451 and p. 458]). With respect to {&J, the following Example

(2) shows that even in the case where D is an open disk in J?2, not the simplest case

kt = i ( i = l , 2, 3,...), but more complicated cases can appear. When D has sufficiently

smooth boundary, we know that

, k)~A(D9 π)/c2 / ( w-υ (fc-> 00)

and
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Σ {ΛD(*)}2~Bφ,»)x(π-1)/2 (x-oo)
λ(D,k)<x

uniformly with respect to XeD, where A(D, n) and B(D, ή) are both constants depending
on D and n (see, e.g., Weyl [12] and Carleman [2]). Hence there exist two positive
constants M1 ? M2 such that

(2.1) M ^ -

and

(2.2) \fk

D(X)\<M2k
112 (XeD,k= 1, 2, 3,...).

We remark that both

and e x p ί - ^ D , %)/»(*) (fc=l, 2, 3,...)

are harmonic on Γn(D) and vanish continuously on dΓn(D).
For a domain D and the sequence {&;} mentioned above, by /(D, fef) we denote the

set of all positive integers less than kt (i = 1, 2, 3,...). Even if /(D, fcj = 0 , the summation
over /(D, fcx) of any function S(/c) of a variable A: will be used to mean

Σ S(k) = O.
keI(D,ki)

EXAMPLES. (1) Let D = (0, π). Then (1.1) is reduced to finding solutions/(x)
(0<x<π) such that

^P?l = 0 (0<x<π)
dx2

and

) = /(π) = 0.

It is easy to see that kt = i, λ(D, k) = k2 and fk

D{x) = Jϊfπ sin kx (k = 1, 2, 3,...).
(2) Let D = {(x,y)eR2; x2 + y2<\). Let {απm}^=1 be an increasing sequence of

positive real numbers ocn m such that

where Jn(z) is the Bessel function of order n. If the spherical coordinates x = rcosθ,
>> = rsin0 (O<r<l,O<0<2π) are introduced, then Jn(ccnmr)cosnθ and Jn(ocnjnr)sinnθ
(nφO, m=l, 2, 3,...) are two eigenfunctions coresponding to the eigenvalue λ = oc2

m

(see Courant and Hubert [3]). Since we do not know how the zeros of the Bessel func-
tions distribute, we cannot explicitly determine the sequence {fcj with respect to this D.

The Fourier coefficient
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F(X)fk

D(X)dX

of a function F(X) on D with respect to the orthonormal sequence {f^(X)} is denoted

by c(F, /c), if it exists. Now we shall define generalized Poisson kernels. Let / and m be

two non-negative integers. For two points P = (X, y) e Γn(D\ Q = (X*, y*) e dΓn(D), we put

(2.3) V(Γn(D% /)(P, Q)

Σ
keI(D,hι + ί)

and

(2.4) V(Γn(D\m)(P,Q)

, k)y) exp( - Jλ{D, k)y*)

Σ
keI(Dtkm+1)

where

, 1), (X*, 0)).

We remark that F(ΓΠ(D), /)(P, Q) and F(ΓΠ(D), m)(P, Q) are two harmonic functions of

PeΓn(D) for any fixed QedΓn(D). We introduce two functions of PeΓn(D) and Q =

and

mΓJtD\m)ίP,Q) =

[0 (y*<0)

V(Γn(D), m\P, Q) O*<0)

( F * > 0 ) .

The Poisson kernel K(Γn(D), I, m)(P, Q) with respect to /"„(£>) is defined by

, β ) .K(ΓJtD\ I, m)(P, 0 = c ; 1 -^G r n ( D ) (P, Q)-W(Γnφ), /)(P, β)-F(ΓB(D),
OV

We note

HCίΓ^Z)), 0, 0)(P, Q) = c;1-^GΓn(D)(P, Q).
ov

Let/?, ^ be two non-negative integers and I(y) a function on R. The finite or infinite

limits
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lim exp(-y/M.D,kp+1)y)Hy) and lim expG/*Φ. kq+ι)y)I(y)
y-* oo y~> — oo

are denoted by μp(I) and f/β(/), respectively, when they exist.

THEOREM 1. Let /, m be two non-negative integers and g(Q) = g(X*, y*) a continuous

function on dΓn(D) satisfying

(2.5) ί °° exp(- Jl(D9kl + 1)y*)( j I g{X*9 y*) I dσΔdy* < oo

and

ί J ( f , y ) | d σ ^ W < oo .ί
J -

= Γ
J 5Γn

n(£>), /, m g)(P) = Γ 0(β)K(Γπ(D), /, m)(P, Q)dσ
J

w α solution of the Dirichlet problem on Γn(D) with g satisfying

(2.6) μι(N(\ H{ΓH(D), l9m;g) |)) = ηm(N(\ H(Γn(D% /, m g) |)) = 0 .

If π = 2 and D = (0, π), then we immediately obtain the following Corollary 1 which

generalizes Theorem B.

COROLLARY 1. Let /, m be two non-negative integers and let gι{y*)9 g2(y*) be two

continuous functions on R satisfying

(2.7) Γ 19i{y*)I exp(-(/+ l)y*)dy* < oo

and

I gjy*) I exp((m + l)y*)dy* < oo (i = 1, 2).

, y), (0, y*))dy* + ί g2{y*)K{Γ2, /, m)((x, y), (π, y*))dy*
— oo

is a harmonic function in Γ2 and a continuous function on Γ2 such that

H(Γ29l9m;gl9g2)(O9y*) =
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and

H(Γ2, /, m; gί9g2)(π9 y*) = g2(y*) (-cc<y*<cc).

To solve the Dirichlet problem on Γn(D) with any function g(Q) on dΓn(D), we shall

define another Poisson kernel. Let φ(ή be any positive continuous function of f > 0

satisfying

For a domain DaR"'1 and the sequence {λ(D, /ct )}, denote the set

{ί>0; exp(-ΛJλ(D9ki)) = φ(t)}

by S(D, φ, i). Then 0e5(D, φ, 1). When there is an integer Nsuch that S{D9 φ,N)Φ0 and

S(D, φ, N +1) = 0 , denote the set {i 1 < i < AT} of integers by J(D, φ). Otherwise, denote

the set of all positive integers by J(D, φ). Let t(ί) = ί(D, φ, i) be the minimum of elements

/ in S(D, φ, i) for each ieJ(D, φ). In the former case, we put t(N+ 1)= oo. Then ί(l) = 0.

We define ΪV(Γn(D), φ)(P, Q) (P e Γn{D\ Q = (X*, y•) G 3Γ B (D)) by

), ftP, Q) WO < y* < ί(i + 1), i e J φ , φ)).

We also define W{Γn{D\ φ)(P9 Q) (PeΓn(D\ Q = (X*9 y*)edΓn(D)) by

w(rn(DU)(P,Q)=\° ( 3 ; * > 0 )

The Poisson kernel K(Γn(D\ φ)(P, Q) (PeΓn(D\ QedΓn{D)) is defined by

K(Γn(D\ ΦXΛ G) = C I Γ 1 ^ Γ G Γ Ϊ I ( J > ) ( Λ β)-^(Γπ(D), φ χp, 0 - i f ( ^ Φ X ΦXΛ β) •

Now we have:

THEOREM 2. Lei g(Q) be any continuous function on dΓn(D). Then there is a positive

continuous function φ(t) of t>0 depending on g such that

H(ΓH(D)9 φ g)(P) = f g{Q)K{Γn{D\ φ)(P, Q)dσQ

J dΓn(D)

is a solution of the Dirichlet problem on Γn(D) with g.

If we take n = 2 and D = (0, π) in Theorem 2, we obtain:

COROLLARY 2. Let g^y*) and g2(y*) be two continuous functions on R. Then there

is a positive continuous function φ(t) oft>0 depending on gγ and g2 such that
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H(Γ2,φ;gί9g2)(x,y)

= I gx(y*)K{Γ29 φX(x, y), (0, / W + ί g2(y*)K(Γ2, φ)((x, y), (π, y*))dy*
J — co J — oo

w β harmonic function in Γ2 and a continuous function on Γ2 satisfying

H(Γ2,φ;g1,g2){O,y*) = g1(y*)

and

H{Γ2,φ;g1,g2){π,y*) = g2(y*) (-cc<y*<co).

THEOREM 3. Let I, m be two non-negative integers and let p, q be two positive

integers satisfying p>l, q>m. Let g(X*, y*) be a continuous function on dΓn(D) satisfying

(2.5). Ifh(X, y) is a solution of the Dirichlet problem on Γn(D) with g satisfying

(2.8) μp(N(h + )) = O and ηq(N(h+)) = O,

then

+ Σ Ak(h)exp(yfλ(D,k)y)fk

D(X)+ Σ Bk(h)exV(-Jλ(D,k)y)fk

D(X)
keI(D,kp+ί) keI(D,kq + ί)

for every P = {X,y)eΓn{D\ where Λk(h) ( f c = l , 2 fcp+1-l) and Bk(h) ( / c = l , 2 , . . . ,

kq + 1 — l) are all constants.

If we take n = 2 and Z) = (0, π) in Theorem 3, then we have:

COROLLARY 3. Let /, m be two non-negative integers and let p, q be two positive

integers satisfying p> l,q>m. Let g^y*), g2(y*) °e two continuous function on R satisfying

(2.7). If h(x, y) is a harmonic function in Γ2 and a continuous function on Γ2 such that

MO,;y*) = 0iCv*) and h{π, y*) = q 2(y*) (-co<y*<co),

and

lim exp( - (p + 1 )y) \ h+(x, y) sin xdx = lim exp((q + 1 )y) \ h+(x, y) sin xdx = 0 ,
y^oo J o y^-oo J o

then

p

Σ
p i

h(x, y) = H(Γ2,l,m; qu q2)(x, y)+ Σ Ak{h) exp(ky) sin kx + Σ Bk(h)exp(-ky)sinkx
k=ί k=l

for every (x, y) e Γ 2, where Ak(h) (k = 1, 2,..., p) and Bk(h) (k = 1, 2,..., q) are all constants.

3 . P r o o f o f T h e o r e m s 1 , 2 a n d 3 . G i v e n a d o m a i n D o n R n l a n d a n i n t e r v a l

/c/?, the sets {{X,y)eRn\ XeD.yel} and {(X*, y)eRn; X*edD,yeI} are denoted
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by Γn(D; I) and Sn(D; /), respectively. In the following, Sn(D; (-00, 00)) ( = δΓn(D)) will
be simply denoted by Sn(D).

LEMMA 1. Let h(X, y) be a harmonic function in Γn(D (0, 00)) vanishing continuous-
ly on Sn(D; (0, 00)). For any fixed y, 0<j>< 00, define the function hy(X) in D by hy(X) =
h(X, y). Then

c(hr k) = - y2)) -

ί - y)) -

x {expίv^DΓ^i -y 2 ))-

for any given yu y2 (0<y1<y2<oo) and

k)(y2 - y)))c(hyί, k)

-yi)))c(hy2, k)}

k)(y2 -yj)} ~'

\imc(hy,k)exp(-jλ(D,k)y)
y-"x>

exists (k =1,2, 3,...).

PROOF. First of all, we note that h(X, y) is continuously differentiable twice on
{{X,y)eRn; Xei5, 0<j<oo} (see Gilbarg and Trudinger [7, p. 105]). Now, by dif-
ferentiating twice under the integral sign, we have

, Γ = ^^-fk

D(X)dX=-\ An-1hy(X)fk

D(X)dX.
dy JD dy2 ]D

Hence, if we observe from the formula of Green that

I (An.1hy(X))fk

D(X)dX= I hy{X\An-Jk

D(X))dX ,
J D J D

we see that

d2c(hrk) _
= λ(D,k)c(hrk)

for any y, 0<y<oo. This gives

c{hr k) = Ak(h) exp(y/KD, k)y) + Bk(h) exp( - Jλ(D, k)y) (0< y< oo),

Ak(h) and Bk(h) being constants independent of j ; . Since c(hy, k) takes a value c(hy., k) at
a point yt (i= 1, 2), the conclusion of Lemma 1 follows immediately.

LEMMA 2. Let H(X, y) be a harmonic function in Γn(D; (0, oo)) such that H(X, y)
vanishes continuously on Sn(D; (0, oo)) and converges uniformly to zero as y-+oo. Then
for any non-negative integer j we have
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keI(D,hj +

I H(X, y)- Σ e*V>(yJλ(D, k)(l - y))c(Hu k)fk

D(X) \

v +iXl-jO) ( 1 < J < O O ) ,

where Hι(X) = H(X, 1) and L^H) is a constant dependent only on H.

PROOF. Put Hy{X) = H{X9 y) for any fixed y (0 <y < oo). We see from Lemma 1 that

c(Hy, k) = {(exp^v^D, k)(y — y2)) — exp(y/λ(D, k)(y2 — y)))c(Hyι, k)

+ (exp(y/λ(D, fcX^i — y)) — exp(yJλ(D, k)(y — yi)))c(Hy29 k)}

x {expiy/λiD, k)(y1 -y2))-exp(y/λ(D, fc^-^i))}"1

for any yγ and y2 (0 < y x <y2 < oo). Since c(Hy2, k) -> 0 (y2 -> co) from the assumption,

we obtain

(3.1) c(tfy,fc) =

Here we have from (2.2) that

(3.2) Ic(Hyί, k)\<\ IH y i (X)f k

D {X)\dX<M 2 k 1 / 2 \D\max|H(X,
JD X*D

where \D\ is the volume of D. It follows from (2.1), (2.2), (3.1) and (3.2) that

(3.3) Σ \c{Hrk)fk

D{X)\

Hence, if we take a number yx satisfying 0 < j 1 <y, then we know from (3.3) and the

completeness of the orthonormal sequence {fk(X)} that

(3.4)

for any XeD.

If we put

fc=l

XeD

and take y = 1, 3Ί = 1/2 in (3.3), then we obtain from (3.3) that

(3.5) Σlcίffi.WL/ίWI^W
fc=l

If 1 < y < oo, then by taking ^ = 1 in (3.1) we have from (3.4) and (3.5) that
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H(X, y)- -y))c(Hu k)fk

D(X)

H{X,y)-
keI(D,kj+ί)

c(Hy,k)fk

D(X)

c(Hy,k)fk

D(X)

u k)fk

D(X) \

<exV(Jλ(D,kj+1)(l-y)) £ |c(Hl9 k)fk

D(X)\<L,
k=l

, kj+ jXl -y)),

which gives the conclusion.

LEMMA 3. For a non-negative integer I (resp. m) we have

c^ — GΓn{D)(P, Q)- V(Γn(D\ /)(P, Q)
dv

resp.
- i d

?,Q)-V(Γn(D\m)(P,Q) L, exp(- Jλφ, km+1)(y-y*)

for any P = (X, y) e Γn(D) and Q = (X*, y*) e Sn(D) satisfying y* - y > 1 (resp. y - y* > 1),

where L x (resp. Lx) is a constant independent of P and Q.

PROOF. Since

< W ( * , y), (X\ y')) = GΓniD)((X, y-y'\ (X\ 0)) ((X, y), (X\y')eΓn(D)),

it is easy to see that

(3.6) -^GΓn{

dv

We remark that

, y)9 -LGΓndv

d

, \y-y* |), (X*, 0)).

r, /), (x*, o))

is a harmonic function of (X, y')eΓn(D) such that Hx* vanishes continuously on Sn(D) —

{(X*, 0)} and tends uniformly to zero as y' -• oo (see [15, p. 394]). If we apply Lemma

2 to HX*(X, y') and put yf = y*-y (resp. yt = y — y*)9

) max
X*edD

1X*) (resp. Li=(

then we obtain the conclusion from (3.6) and (2.3) (resp. (2.4)).

) max
X*edD



DIRICHLET PROBLEM ON A CYLINDER 279

LEMMA 4. Let φ(ή be a positive continuous function of t>0 satisfying φ(0) =
e x P ( - y/λ(D, 1)) and put L'ί=m2LXx*edDL1(Hx*). Then

dv
•GΓniD)(P9Q)-W{ΓJίD),φ)(P,Q) <L'iφ(y*)

resp. ^ — Gr^P, Q)-W{Γnφ\ φ\P, Q)
dv

for any P=(X, y)eΓn(D) and Q = (X*, y*)eSn(D) satisfying

(3.7) y* > max(O, y + 2) (resp. y* <min(O, y- 2)).

PROOF. Take any P = (X, y) e Γn(D) and Q = (X*, y*) e Sn(D) satisfying (3.7). Choose

an integer i = i(P, Q)eJ(D, φ) such that

(3.8) t(ϊ)<y*<t(i+l) (resp. -t(i+l)<y*<-t(ϊ)).

Then

W(Γn(D), ψ\P, Q)= V(Γn(D), i\P, Q).

(resp. W(Γn{D\ φ\P, Q)=V(Γn(D), i)(P, Q)).

Hence we have from Lemma 3, (3.7) and (3.8) that

1 — G Γ n ( D ) ( P , Q)-W(Γn(D), ψ\P, Q)
dv

), φ\P, Q)resp.

which is the conclusion.

LEMMA 5. Let g(Q) be locally ίntegrable and upper semicontinuous on Sn(D). Let

W(P, Q) be a function ofPe Γn(D\ Q e Sn(D) such that for any fixed P e Γn(D) the function

W(P, Q) ofQeSJJ)) is a locally integr able function on Sn(D). Put

, Q)-W(P, Q) (PeΓn(DlQeSn(D))

Suppose that the following (I) and (II) are satisfied:

( I ) For any Q*eSn(D) and any ε>0, there exist a neighbourhood U(Q*) of Q* in Rn
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and two numbers Yf9 Y2* (—co< Yi* < Y2* < oo) such that

\g(Q)K(P9Q)\dσQ<εI)Sn(D;(Y*2,oo))

and

ί \g(Q)K(P9Q)\dσQ<ε
Sn(D;(-oo,Y*))

for any P = (X,y)eΓJLD)nU(Q*).
(II) For any Q* e Sn(D) and any two numbers Yί9 Y2 (— oo < Yγ < Y2 < oo),

limsup ί \g(QW(P,Q)\dσQ = 0.
P^Q*>PeΓn(D)JSn(D;(yiY2))

lim sup ί g(Q)K(P, Q)dσQ < g(Q*)
+ Q*,PeΓn(D)JSn(D)

Then

P-

foranyQ*eSn{D).

PROOF. Let β* = (Jf*, y*) be any fixed point of Sn(D) and let ε be any positive

number. Choose two numbers Yf, Y2* (—oo< Yf <y* < Y2* < oo) and a neighbourhood

[/(β*) from (I) such that

(3.9) f \g(Q)K(P9Q)\dσQ<ε/49

JSn(D;(Y*2,σo))

\g(Q)K(P9Q)\dσQ<ε/4
Jsn(D;(-oo,Y*))

for any P = (X9 y) e Γn(D) n U(Q*). Let Φ be a continuous function on Sn(D) such that

O < Φ < 1 and

fl on Sn(D;[Yf,YH)
Φ = <

[0 on Sn(D; [y2* + l, oo)) u iSπ(D; (-00, Yi* —1]).

Let Gfn(D)(P, β) be the Green function of Γn(D; (-jj)) (j is a positive integer). Since

the positive harmonic function ΠJ{P9Q) = GΓniD)(P9Q) — Gj

Γn(D)(P9Q) converges mono-

tonically to 0 on Γn(D; (—jj)) as j->co9 we can find an integer7*, —j*<Yf — \ and
7*>y 2 * + i sucγί t j j a t

I

(3.10)
Jsn(D;(yl-i,y5 + i

a dσQ < ε/4

for any P = (X9 y)eΓn(D) n U(Q*). Thus we have from (3.9) and (3.10) that
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(3.11) ί g(Q)K(P9Q)dσQ<c^ ί
<JSn(D) Jsn(D;(Y\-l,Y*2

ί
JS

(rfMφ)(Pί Qjdoq

d

dv
dσ Q

+ I \θ(QW(P,Q)\dσQ

Jsn(D;(Y*-l,Y*2+l))

+ 2 I g(Q)K(P, β) \dσQ + 2 ί | #(β)lί(P, β) | do
Jsn(D;(Y*2,co)) Jsn(D;(-oo,Y\))

+LΓ'""
for any P = (X, y)eΓn(D)n U(Q*). Consider the Perron-Wiener-Brelot solution HV{P\

Γn(D; (-j*J*)) of the Dirichlet problem on Γn(D\ {—j*J*)) with the upper semicon-

tinuous function

v{Q)\Φ{Q)g{Q) on Sn(D;lY1*-l,Y2* + lJ)

\θ on aΓnφ;(-j*j*))-Sπ(D;[y*-l,y 2* + l])

on dΓn(D; (-]*,)*)). Then we know that

>;Γn(D ;(-j*, ;*)))

(see Dahlberg [4, Theorem 3]) and that

limsup Hy(P;Γn{D;(-j*,j*)))< ϋ™ sup V(Q)=g(Q*)
PeΓn(D),P^Q* QeSn(D),Q^Q*

(see, e.g., Helms [9, Lemma 8.20]). Hence we obtain

limsup c-1 ί Φ(Q)g(Q)-^-Gj;n(D)(P,Q)dσQ<g(Q*).

With (3.11) and (II) this gives the conclusion.

LEMMA 6 (Miyamoto [10, Theorem 2]). Let p, q be two positive integers and

h(X, y) a harmonic function in Γn(D) vanishing continuously on Sn(D). If h satisfies

(3.12) μp(N(h+)) = 0 and ηq(N(h+)) = 0,

then
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), k)y)fk

D(X)
k=ί fc=l

for every (X9y)eΓn(D)^hereAk(h)(k=l29...9kp+1-l) and Bk(h)(k=l29...,kq + 1-1)

are all constants.

PROOF OF THEOREM 1. First of all, we shall show that H(Γn(D\l,m; g)(P) is a

harmonic function on Γn{D). For any fixed P = (X, y)eΓn(D), take two numbers Y1 and

Y2 satisfying Γ 2>max(0, jH-1) and Yί<min(0,y— 1). Then

(3.13)

i
Jsn(D;(Y2, + oo))

\g(Q)\\K(Γn(D),l,m)(P,Q)\dσQ

~n

 y—GΓn(DiP, Q)- V(ΓJJ>\ /XP, Q)
ov

<Ltι ,kι+1)y) Γ exp(-
J y2

, kι+1)y*
dD

'<00

and

(3.14)

-J.
L \g{Q)\\K{Γn{D),UmtP,Q)\dσQ

\g(X*,y*)\dσx.\dy* <ao

from Lemma 3 and (2.5). Thus H(Γn(D),l,m;g)(P) is finite for any PεΓn(D). Since

K(Γn(D\ /, m; #)(P, β) is a harmonic function of PeΓn(D) for any QeSn{D), H(Γn(D),

/, m; #)CP) is also a harmonic function of PeΓn(D).

To prove

lim

for any Q*eSn(D), apply Lemma 5 to g(Q) and - # ( β ) by putting

W(P, Q)=W{Γn{D\ /XP, 0 + M W , m)(P, β),

which is locally integrable on Sn(D) for any fixed PeΓn(D). Then we shall see that (I)

and (II) hold. For any β* = (Λr*, y*)eSn(D) and any ε>0, take a number δ (0<δ<\).

Then from (2.5), (3.13) and (3.14) we can choose two numbers Yi* and 72*, - oo < Yx* <

min(0,y*-2), max(0, y* + 2) < Y2* < oo such that for any P = (X, y) e ΓΠ(D) n



DIRICHLET PROBLEM ON A CYLINDER 283

sn(D;(Y*2,ao))

and

ί \g(Q)K(Γn(D)J,rn)(P,Q)\dσQ<ε
Jsn(D;(Y*2,ao))

ί \g(Q)K(Γn(Dlhm)(P,Q)\dσQ<ε,

which is (I) in Lemma 5. To see (II), we only need to observe that for any Q*eSn(D)
and any two numbers Yί9 Y2 (—oo<Y1<Y2<oo)

lim (fV(Γn(D% l)(P, Q)+W(Γn(D\ m)(P, Q)) = 0
PeΓn(D),P->Q*

at every QeSn(D; (Yί9 Y2)). This follows from (2.3) and (2.4), because

lim fk

D(X) = 0 (/c=l,2,...)
XX*

We shall proceed to prove (2.6). Consider the inequalities

(3.15) N(\H(Γn(D), I, m; g+My)<Ti(y) + T2(y)

and

N(\H(Γn(D), l,m; g+)|)(y)< 1^) + I2(y),

Ii(y) = ί ( ί 9+(Q) I Wn(D), I, m\P, Q) \ dσλf?(X)dX ,

Uy) = ί ( f 9+(Q) I K(Γn(D), I, m\P, Q) | dσλf?(X)dX ,

L(y)= ί ( f 9+(Q)I K(Γn(D), I, m\P, Q)I dσQ)f1

D(X)dX ,
JD \Jsn(D Λ-ao,y-l)) /

and

= ί ( ί 9+(Q) I W M , I, m\P, Q) \ dσQ)f1

D(X)dX
J D\J Sn(D;[y - 1 , oo)) /

Let ε be any positive number. From (2.5) we can take a sufficiently large number y0

and a sufficiently small number y0 such that
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Jy+1 dD

where Lx and Lx are two constants in Lemma 3, and

L=[f?iX.
JD

Then from Lemma 3 we have

Λ+1)}') f°°
Jy+l

ε
< — (

2

'Λ+i)/*)

(y>Po)

and

dD

< — exp( - yfλip, km + Jy)

which give

(3.16) ^(/i) = ̂ (/i) =

To estimate T2(y) and I2(y), we use the inequalities

(3.Π)

and

where

- 1 )

(3.18) T2Λ(y)=c^Πί g

+

JD\JSn(D;(O,y+l])

T2,2(y)=ϊ({ g+(Q)\
J D \ JSn(D;(O,y+l])

.,«=/ (j .*«
J D \ Jsn(D;(-oo,0])

Q)Idσ

(y>y0)

-j-Gr^P, Q)-V(Γn(D), mtP, Q)
ov

-1)

dσQ )f?{X)dX
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and

Ii,i(y) = cn1 I ( 9+(Q)—GΓn(D)(P> Q)dσQjf^(X)dX
JD \Jsn(D;[y-1,0)) Vy /

ίiΛy) = ί f ί 9+(Q) I V{Γn(D), mtP, Q) \ dσQ)f1

D(X)dX (y < 1)
J D \ JSn(D;[y-1,0)) /

h,3(y)= f f ί β+(Q)
J D \Js n (D; [O,oo))

First Lemma 3 gives

Γ dD

and

/ 2 , 3 ω < ^ i Λ7IJy) Γ
Jθ

exp( - 9+(X*, y*)dσΛdy*
J

Hence it is evident from (2.5) that

(3.19)

Next we have from (2.2), (2.3) and (2.4) that if /> 1, then

h,i(y)<B1M\\Ό\ X kexp(yJλ(D, k))Qxp(y/λ{D/k)y)Ψk(y)

and that if m> 1, then

h,2{y)^BLM2

2\D\

where

(3.20)

k<=HD,km+i)
, k))exp(- J)φ,k)y)Φk(y)

i^c-1 max — GΓn{D)((X,l)ΛX*,0)),
XeD,X*edD CV

Jo
)([ \g(X*,y*)\dσx.)dy*

\JdD

and

y-1

\g(X*,y*)\dσx*)dy* (y<\,keI(D,km+1))
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We shall later show that

(3.21) Ψk(y) = o(exp(^/λ(D, kι+ι)y-y/λ[D, k)y)) (}>->oo) (/> 1, keI(D, fc, + 1))

ϊϊϊ)y)) (y^-cc)(m>lkeI(D,km + i)).

Hence we can conclude that if /> 1 and m> 1, then

(3.22)

which also holds in the case l = m = 0, because T2t2(y)=I2t2(y) = 0 then. Lastly we can

obtain

(3.23) H(T2,i) = iM2.i) = 0.

which will be proved at the end of this proof. We thus obtain from (3.17), (3.19), (3.22)

and (3.23) that

(3.24)

We can finally conclude from (3.15), (3.16) and (3.24) that

μι(N(\H(Γn(D\ /, m; g+)\)) = ηm(N(\H(Γn(Dl /, m; </+)|)) = 0 .

In completely the same way applied to g~, we also have that

μι(N(\H(Γn(DX /, m; g-)\)) = ηm(N(\H(Γn(D), /, m; g~)\)) = 0 .

Since

N(\H(Γn(D\ /, m; g)(P)\)<N(\H(Γn(D\ l,m; g+)(P)\) + N(\H(Γn(D\ /, m;

these give the conclusion (2.6).

We shall prove (3.21). We note that Ψk(y) (resp. Φk(y)) is increasing (resp. decreasing),

(y*)exp(- Jλ(D,kι+1)y* + Jλ(D, k)y*)dy*
Jo

J l

resp. ί° Φ'k(y*)exp(Vl(D, fcm+ ̂ y - Jλ(D, k)y*)dy
J - oo

, fc)) ί '
J — oo

x(ί \g(X*,y*)\dσΛdy*\
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and

Ψk(y) exp( - y/λ(D,kι+1)y + y/λ(D,k)y)

fy+i
,kι+1)-^/λ(D,k)) <

Jo
exp( -

x (\ I g(X*, y*

resp. Φk

<L 2(

Λ)y)

y*)Irfσx. W * < L 2 e

where

= ί°
Jo

L2 = ί e x p ( -
Jo

resp. L 2 =

From these and (2.5) (resp. (2.6)) we see

(3.25) f°° W)exp(-

| g(X*, y*) | dσ x,

\g(X*,y*)\dσxλdy*

, k)y*)dy*<oo

resp. j Φk(y

by integration by parts. Since

>Λm+ι)y*-yfλ(D,k)y*)dy*<cc

Ψk(y) exp( - Jλ{D,kι+ι)y +

Jy

287

exp(- VA(D, k{+i)y*

MDj)) Γ Ψ
Jy

(y*)exp(- Jλψ, k,+1)y*

, k)y*)dy*

, k)y*)dy*

resp. Φk(y) , km+1)y- Jλ(D, k)y)

, k))Φk(y) Γ
J —

, km
, k)y*)dy*
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, k)) P Φk
J — oo

- JMβJή) Φk(y*) exp(^λ(D, km + Jy* - ^Jλ(D, k)y*)dy* ,

(3.25) gives (3.21).
Finally we shall show (3.23). In the following we use the notation in (3.18) and

(3.20). First we note that

(3.26) 0<T2Λ{y)<N(H(Γn(D),l,m; 0+)Xy)-/?

and

0<I2Λ{y)<N(H(Γn(D),l,m; g+)Xy)-I?

where

T?(y)= ί ( ί g+(Q)K(Γn(D), I, m\P, Q)dσQ)f1

D(X)dX ,
JD \ JSn(D;(y+l,oo)) /

T}M= ί ( ί g+(Q)V(Γn(D\ l\P, Q)dσQ)f1

D(X)dX (y>

/f(y)= ί ( ί g+(Q)K(Γn(D\ I, m)(P, Q)dσQ)f1

D(X)dX ,
JD\Jsn(D;(-oo,y-ί)) /

ίί,2(y)= ί ( ί g+(Q)V(Γn(D), m)(P, Q)dσQ)fι

D(X)dX (y<
JD \ JSn(D;[y-1,0)) /

and

Since

| / i*ωi<7iω and

we easily see from (3.16) that

(3.27) μι(\n\) = ηm(

Next it follows from the orthonormality of {ff(X)} that if /> 1, then

7*200<BLexpί^Z), 1))exp(^(D, ̂ W^y) (y>-l)

and that if m> 1, then

Hence (3.21) with k= 1 gives that

(3.28) limsupexp(-

and
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lim sup e
y-* — oo

which also hold in the case / = m = 0, because T2*a{y) = I%2(y) = {) then. If we can show

that

(3.29) lim sup e x p ί - ^ D , kι+1)y)N(H(Γn(D\ /, m; g+))(y)<0
y->co

and

lim sup cxp(yβΪDjζ^)y)N(H(Γn(Dl l9m; g+

y-* — oo

then we finally conclude from (3.19), (3.26), (3.27) and (3.28) that

lim sup exp( - Jλ{D, kι + ί)y)I2Λ(y) = 0
y-> co

and

lim sup
y-* — oo

which give (3.23).

To prove (3.29), recall that —H(Γn(D), /, m; g+)(P) is also a harmonic function on

Γn(D) satisfying

lim -H(Γn(D\ /, m; g+)(P)= -g+(Q*)<0
Q

for every Q*eSn(D). Hence from [14, Theorem 7.2] we know that

-π<ηo(N(-H(Γn(D\hrn;g+)))<π9 - π<μo(N(-H(Γn(D\ /, m;

Thus we obtain that if /> 1, then

lim sup e x p ( - ^ ( D , kι + 1)y)N(H(Γn(D), l,m; g +

y-> oo

and if m > l , then

lim sup cxpiy/λiD, km+ί)y)N(H(Γn(D\ /, m g+))(y)<0 .
y-> — oo

If / = 0, then we have

N(H(ΓJtD)9l,m;Q
(

D\Jsn(D)

= N(H(Γn(D\ /, m g +
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where

(-oo<y*<0).

If m = 0, then we have

N(H(Γn(D), l,m; g+Wy)^1 ί ( ί g+{Q)-^GΓnφ)(P, Q)dσΔf^X)dX + I2ti{y)

= N(H(Γn(D)J,m;g+)

where

10 ( y * > 0 ) .

Since

μo(N(H(Γn(D), 0, m; ^+))) = »;0(N(iί(Γn(Z)), /, 0; £

+ ))) = 0

from the cylindrical version of [15, Lemma 3], (3.19) and this also give

lim sup exp(-yi(D, l)y)N(H(Γn(D), 0, m; ̂ +))(y)<0

lim sup cxp(^/MDj)y)N(H(Γn(D), 1,0; g+))(y)<0 .

y->-cc

Thus we can obtain (3.29) for any non-negative integers / and m.

PROOF OF THEOREM 2. Take a positive continuous function φ(t) (ί>0) such that

^ ^ (-oo<y*<oo),

where

L2 = exp( - y/KD, 1)) ί 10(X*, 0) | dσ x , .
JdD

For any fixed P = (AΓ, y)εΓn(D), choose two numbers Yt and F 2 , y 2 >max(0,

F x <min(0, y — 2). Then we see from Lemma 4 that

(3.30) I I g(Q)K(Γn(D), φ)(P, Q) \ dσQ

Jsn(D,(Y2,oo))

<L'Λ ( I I g(X*, y*) \dσΔφ(y*)dy* <L\L2 Γ ( l +);*)"%*< oo
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and

ί \g(Q)K(Γn(Dl<p)(P,Q)\dσQ

JSn(D;(- oo,Yi))

<L\ Γ ( f \g(X*,y*)\dσΛφ(-y*)dy*<L\L2 Γ (1-j
J -oo\jdD / J - oo

-y*) 2dy*<oo .
-oo \JdD

It is evident that

1
These give that

ί \g(Q)K(Γn(D\φ)(P,Q)\dσQ<π .

To see that H(Γn(D% φ g)(P) is harmonic in Γn(D\ we remark that H(Γn(D), φ g)(P)

satisfies the local mean-value property by Fubini's theorem.

Finally we shall show

(3.31) ^ Urn Q^H(Γn(D), φ; g)(P) = g(Q*)

for any Q*eSn(D). Put

W(P, Q)=W{Γn(D\ φ)(P, Q)+W{Γn{D\ φ)(P, Q)

in Lemma 5, which is a locally integrable function of QeSn(D) for any fixed PeΓn(D).

Then we can see from (3.30) in the same way as in the proof of Theorem 1 that both

(I) and (II) are satisfied. Thus Lemma 5 applied to g(Q) and —g(Q) gives (3.31).

PROOF OF THEOREM 3. From Theorem 1, we have the solution H{Γn(D\ l,m; g)(P)

of the Dirichlet problem on Γn(D) with g satisfying (2.6). Consider the function

h — H(Γn(D% /, m g). Then it follows that this is harmonic in Γn(D) and vanishes

continuously on Sn(D). Since

0<{h-H(Γn(D%hrn; g)

for any PeΓn{D) and

μι(N({H(Γn(D\ /, m; g)}-)) = ηm(N({H(Γn(Dl /, m; flf)}

from (2.6), (2.8) gives that

μp(N({h-H(Γn(D\ /, m; g)}+)) = ηq(N({h-H(Γn(D\ l,m;

From Lemma 6 we see that
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h(P)-H(Γn(D\lm;g)(P)

= Σ Ak(h)exp(Jλ(D,k)y)fk

D(X)+ Σ Bk{h)exV{-Jλ{D,k)y)f?{X)
keI(D,kp+i) keI(D,kq+ί)

(Ak(h) (k = 1, 2,..., kp+! - 1) and Bk(h) {k = 1, 2,..., kq+ x - 1) are all constants) for every

P = (X, y)eΓn(D\ which is the conclusion of Theorem 3.
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