Tohoku Math. J.
48 (1996), 259-266

THE COMMUTATOR OF THE BOCHNER-RIESZ OPERATOR
GUOEN HuU AND SHANZHEN LU

(Received January 9, 1995, revised May 10, 1995)

Abstract. L” mapping properties are considered for the commutator of the
Bochner-Riesz operator.

1. Introduction and the statement of results. As well known, commutators
generated by some classical operators and BMO functions are useful in the study of
partial differential equations (see [3], [10]). Thus it is of great interest to consider the
L? boundedness of these commutators. In 1978, Coifman and Meyer [4] observed that
for the classical Calderon-Zygmund singular integral operators, the L? boundedness
for the corresponding first order commutators can be obtained by appropriate weighted
norm inequalities with 4, weights for the singular integral operators, where 4, denotes
the weight function class of Muckenhoupt (see [7] for the definition and properties of
A,). Recently, Alvarez, Bagby, Kurtz and Pérez [1] developed the idea of Coifman and
Meyer and proved the following result.

THEOREM A. Let 1<p,gq<oo. Suppose that the linear operator T satisfies the
weighted norm estimate

FTS 1w <CUS Npw

Sfor all we A,, where the constant C depends only on n,p and the A, constant of w, but
not on the weight w. Then for any positive integer k and b,, b,,...,b,€ BMO, the com-
mutator defined by

k
Ty, b....00S (X)= T< 1_11 (b;(x)—=b;(-NS(- )) (%)
j=
is bounded on L?(R") with norm C(p,n, k)]—[’;=1 I b; llsmo-

The purpose of this paper is to study the L? boundedness for the commutator of
the Bochner-Riesz operator. The Bochner-Riesz operator is defined in terms of Fourier
transform by

(1 (TN Q) =1-1EP3f©),

where a € R, f denotes the Fourier transform of f. For k a positive integer and b,(x),
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by(x), ..., b, (x)e BMO(R"), define the commutator of T* by
2 T3 by S (X) = T“( l:[1 (b;(x)—=b;()f( )) (x) .

If >(n—1)/2, a result of Shi and Sun [11] states that 7 is bounded on LZ(R")
provided 1<p<oo and we 4,. In view of Theorem A we thus have:

THEOREM B. If a>(n—1)/2, then for any positive integer k and b,,b,, ..., b e
BMO, the commutator T3, ,, ., is bounded on LP(R") for all 1<p<oco with norm

C(n,p, k) Hf: 1 [ bj | Bmo-

In the case of 0 <a<(n—1)/2, Herz [8] proved that if 7* is bounded on L?(R"),
then 2n/(n+ 1+ a)<p<2n/(n—1—2a). Thus by the result of Coifman and Rochberg
[5], a standard duality argument shows that in this case 7* does not satisfy the
assumption of Theorem A for any 1 <p, g < oo (see also [9, Corollary 3]). In this paper,
we will prove that the commutator of 7% enjoys some L? mapping properties which are
parallel to that of the operator 7% Our main results can be stated as follows:

THEOREM 1. Let 0<a<1/2 and by, b,,...,b,eBMO(R?). If 4/3+2u)<p<
4/(1—20a), then T}, . .. is bounded on L?(R?) with norm C(p,k) Hf=1 Il ; Il mo-

THEOREM 2. Letn>3and (n—1)/2n+2)<a<m—1)/2,by,b,,...,b,e BMO(R").

If 2n/(n+1+20)<p<2n/(n—1-=20), then T§ ,, ;. is bounded on LP(R") with norm
C(n,p, ) TT5=1 15, lamo-

2. Proof of the theorems.
PrOOF OF THEOREM 1. To simplify the exposition, we only deal with the case
k=2. Write

T3, b,/ (x)= ﬂ (b;(x)—=b;(»)B*(x—y)f(¥)dy ,
R2Jj=1
where

Ji+a(Ix])
|x|1+u

B*(x)=C,

s

and J;(¢) denotes the Bessel function of order 8. Note that

Jﬂ(t)=Ct‘”zcos<t—%ﬁ—%>+r(1), >0,

r=001"%?), t-owo,

hence we have
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Taf@=c | eos(1x=n-" ) H0-s,0n, 0w
|x—yl=1

2
e J W= [ b0, ay
|x—y|=1 Jj= Ix—yl

Lc J Mn (b;(0) =b;(¥)S W)y
[x=yl<1 |x=yl I=

= PI(x)+ QS () + Rf(x).
Since
lJp(t)|$Cplt|ﬂa t—0,

it follows that

‘ f J““('x ToallX=VD oyl < ompn),
Ix=yl<1

x_ I1+a

where Mf denotes the Hardy-Littlewood maximal function of f. Thus by the weighted
estimate for M (see [7]) and Theorem A, we get

2
IR I,<C 1 165 lsmoll f1I,,  1<p<co.
i=1

Recall that | r(¢)|<C|t]|7%? if t>00 and a>0, so

f Xy /) ) Cﬂ WO e omp),
Jx—yl=1

|1+/x et < fxm y|<2k|X y|5/2+a

which implies that

2
1of1,<C Il Ibllemoll fll,,  1<p<co.
j=1

Obviously, the L? norm of P can be controlled by that of the operator P defined by

Bf(x)= e“’“y'Bl(bj(x)—bj(y))v_%?/z—ﬂdy-

|x=y|l=1

Furthermore, since a <1/2 and

J eilx—vl _Ldy <CMf(x),
lx—yl<1

Theorem A tells us that for all 1 <p< oo,
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Thus we may view the operator P as

©)) Pf(X)=J efx =l lj[1 (b;(x)—b;(»)

R2

S

|x_y|3/2+a

2
dy ” <CIT1I15;lsmoll f1I,-
p Jj=1

2
f =TT (b, ()b,
lx—-yl<1 =1

J

f)
Ty @

| x

By Stein’s interpolation theorem (see [12]) and Theorem B, to prove Theorem 1, it is
enough to show that for any 0 <a < 1/2, the operator P defined by (3) is bounded on
L*(R?). Denote I=[0,1], I?=1Ix I, and F(I*)=[—1.5, 2.51*\\[—0.5, 1.5]?. For fixed
A>0, define

S

|x_y|3/2+a

Plf(x)=J\ eil]x—yl
I2

and the corresponding commutator

f)

|x_yl3/2+a

Py b, f(X)= J dy.

2
M T (b;(x)—b;(»)
12 ji=1
Set S*f(x)=A"2"*P*f(x) and S} ,,f(x)=AY2"*P} , f(x). Note that if b(x)e BMO(R"),
then b(tx)e BMO(R") and || 5(¢*) lgmo =1l & llgmo for any £>0. By the same argument
as in [2], we see that the proof of Theorem 1 can be reduced to the following:

LEMMA. There exists a positive constant 6 >0, such that

2
” Sél,bzf ”L“(F(Iz))s Cl—& l—[ ” bj ”BMO ”f”L“(Il) .
i=1

Now we prove this Lemma. Let s be a small positive constant which will be chosen
later. Set 0<r<1/2 and ¢ >0 such that

1 1 r

4v0 4 2

Observe that if xe F(I?), then

1
lPlf(x)ISCj If(y)ldySCrJ Wlf()’)){n()’)Idy=CJr(pr)(X),

where y,. is the characteristic function of I?, and I, is the usual fractional integral
operator of order r. By the Hardy-Littlewood-Sobolev theorem, it follows that

@ IS s v ooy < CAYV2 74 P2 N pavomay S CAY2 7 fll Loz -

Similarly, if ¢ is small enough, we have
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) I S* lLaaay < CA2 72 fllLa-e) -

By the key estimate used in [2], we have

© IS% Ml srazy < CA N f sz »

where ¢>0. Interpolation between the inequalites (4) and (6) yields

(7 I Slf Il e +so(FU2) S Cper@zzatas I/ ||L4(12)

with 0 <s< 1. On the other hand, interpolation between the inequalities (5) and (6) gives
®) I S* | Lapaay < CATEF AT ]l Lacsoqrzy -

We can also get by the inequalities (7) and (8) that

6 | SY 1l Lo+ s2omqay < CATETAR2T0¥0S| £ 020

Let ¢(x)e CF(R?) such that ¢(x)=1 if |x|<50 and supp ¢ < {x:|x|<100}. De-
note
gj()’)=[bj(y)“mmn(bj)]d’(J’) 5
where myo;2(b;) denotes the mean value of b; on 1072, Obviously, if xe F(I?), then
St 5 ) =b1 ()b, (%) S*£(x) + by S*(B,. /) (%) + b, (x) S* (B, ) (x) + SH(b, b, /) (x)
=I1+1+I1II+1V.

For the first term, we have
I T Laeazy <l 6162 |l Lagy | S'V”LHw(F(IZ»

2
<C(a,s) l—[ I bj ”BMo/l—”(l/z_m+e)'9 ||f||u(12) 5
j=1

J

where 1/g=1/4—1/(4+s0), and the second inequality follows from the inequality (7)
and the fact that

1/2q

— o~ 1/2q
610, ”L'?(RZ)S<J\ |b1(y)—m10,2(b1)]2‘1dy) (J [ by(y)—myor2(by) Izqu’>
lyl<100 lyl<100

2
<C(s,0) [T 115; llsmo -
j=1

The estimate for the fourth term follows from the inequality (8) by

IV || Lapzy < CA™EF 2725951 b by fll a-soqr)

2
<CA = [T b llgmo | f lsa -

j=1

In the same way, using (9), we can obtain
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2
| T+ I | agpaay < €A 27095 TT by laggo | f llsars -

j=1

Choose s so small that d=¢—(1/2—a+¢)s>0. Combining the estimates above we get
2
IS5 5. f Nesaay<CA72 TT11B; lnmo IS zsqa) -
j=1

This concludes the proof of our Lemma.

ProoF oF THEOREM 2. By duality and interpolation, it is enough to consider the
situation where 2n/(n+1+20)<p<(2n+2)/(n+3). We only treat the case that k=2.
Let yry(x), ¥ (x)e CP(R") be radial functions such that

suppy < {x: 1/4<|x|<4},
and that for any | x|#0,

wo(x)+§1 bR x)=1.

Denote B*(x)=((1—] - |)%)" (x). Write ,(x) =4 (2~ 'x) for a positive integer / and define
T by

Tif(x)=(B%)*f(x).
It follows that

1= 5, B0/ = 3, Ti/).

>0

As in the proof of Theorem 1, it is not difficult to see that
2
I T%;b,,bzfllpSCI—[l 16 lemoll fll,,  1<p<oco.
j=

Our goal is to obtain a refined L? estimate for T7,, ,, for />1, i.e., we want to show
that there exists a positive constant ¢=¢(p), such that

2
(10) I T8, f 1, < C27 T 118 ol /11 -
j=1

If we can do so, then the summation of the inequality (10) over all />1 concludes the
proof of Theorem 2.

We turn our attention to the operator
Tif(x) =j B2 (x =y (x—y)f(y)dy
Rn

(I=1), and the corresponding commutator
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TS )= T1 ) =b;(»)B* Q@ (x =y (x =) f(»)dy ,

Rnj=1
with Ej(y)zbj(Z’y). To prove (10), it is enough to show that
2
(1 1T, S, <C27 " [T 1B lamo IS 1l -
j=1
Write R"=|JI;, where {I;} is a collection of cubes of side length 1 with disjoint interiors.
Set f;=fxs,- Since suppy < {x: 1/4<|x|<4}, the support of T‘,‘;bhbzfi is contained in a

fixed multiple of I;, so the supports of various terms T?;b,,bz f; have bounded overlaps.
Thus

| Popnf 12<C N T 12
For each fixed i, let ¢, C§ be a function such that 0 < ¢;< 1, that ¢, is identically one
on 100nI, and that supp ¢; = 200n1;. Denote I;=400nI; and

Bi(»)=15;(»)—mp(5)1:(») .
Obviously,
2
TP, 0, Ji(X)= I—[1 (b;() = ;M) B* 2 (x =y (x—y) fi(y)dy .
Rni=

Now we estimate || T‘f;b,,bz /i ll,- By the argument of [6], we know that if 2n/(n+
14+20)<p<(2n+2)/(n+3), then

| T5h |, < C2P=Ce e 202
which implies that
(12) ” T?/’l l|psc2—1n21(n/p—(n+1 +2a)/2) ” /1 ||I,SC2_I((3"+1 +2a)/2 —n/p) ” h ”p .

Noting that | B*(y)|<C for all |y|>1, we have, for any 0 <r<n,

13) | Tihe)|< J Ih(y)ldySC,J BLS T

1<|x—y|<2 R"lx_yln_r

dy=C,Lh(x) .
Let 2n/(n+1+20)<p<(2n+2)/(n+3) and s be small positive number. By the in-
equalities (12) and (13), as in the proof of Theorem 1, we can find that
I T5h ) prse<C27%H | A1, ,
I T5h1,<C27% M ly-so s
I T5h1lpsse < C27 2 hllp-sa »

where 0<6,<6,, and 6, >8,=03n+1+2a)/2—n/p>n as s—0. We can choose s, ¢
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small enough such that §, >n. The same argument as in the proof of Theorem 1 then
yields

2
I 755,50 fi 1, < C T 1165 lamo2 ™ T2 £ill, »
j=1

with e=¢g(p)>0. This leads to the estimate (11), and then completes the proof of
Theorem 2.
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