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Abstract. We introduce certain special functions (“‘Shintani functions’) on GL(n)
over a non-Archimedean local field. We prove the uniqueness, existence and partial
explicit formula of Shintani functions. We give several applications of these local results
to the theory of automorphic L-functions for GL(n).

CONTENTS

INtroduction. .. ...ttt 165
Part I. Localtheory ......... .o 169
1. Local Shintani functions ............... ..., 169

2. Coset deCOmMPOSItION . ...\ttt 170

3. Uniqueness of Shintani functions .................................... 173

4. Existence of Shintani functions ............... ... ... i, 175

5. Shintani functions at the infinite primes .............................. 178

6. Integral formula (I) ......... ... i, 180

7. Integral formula (II) ........ ... oo 184
Part II. Global theory ........ .. ... 188
8. Global Shintani functions attached to automorphic forms .............. 188

9. Rankin-Selberg convolution (I) ..................................... 191

10.  Orbit decomposition ............ouuiiiiiiiiiii .. 195
I1. Rankin-Selberg convolution (II) ............ . ... o . i i i L. 197
ReferenCes ... oottt 201

Introduction. In the study of automorphic L-functions, various special functions
on reductive groups have been playing fundamental roles. Among others, the spherical
function and the Whittaker function have been studied by many mathematicians. The
aim of this paper is to introduce and study a new kind of special functions for GL(n)
that we call Shintani functions. We investigate their local properties, which is similar
to those of the spherical and Whittaker functions, and give several applications to the
theory of automorphic L-functions for GL(n).

Shintani functions were first introduced by Shintani for the symplectic groups
[Shin 2] in order to study the automorphic L-functions of Siegel (or Jacobi) modular
forms. Several properties conjectured by him were studied in [M-S 1] and [Mu]. The
notion of Shintani functions was later generalized to the case of orthogonal and unitary
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166 A. MURASE AND T. SUGANO

groups and used to obtain a new integral expression of automorphic L-functions for
classical groups (cf. [M-S 2]).

To explain our results more precisely, let G,= GL(n—1) and G = GL(n) be the general
linear groups over an algebraic number field E and embed G, into G via

g 0
w01

Let f and F be automorphic forms on G, and G, respectively. If f is square integrable
over G, g\G, 4 (cf. §8.6) and F is cuspidal, then the integral

0.1) Wf,p(g)=f Jx)F(xg)dx  (geG,)
Go,e\Go,4

is absolutely convergent. We call W, p the global Shintani function attached to (f, F).
Let #5,,,=#(G,(E,), G,(0,)) and 5 ,=#(G(E,), G(o,)) be the Hecke algebras of G,
and G at a finite prime v of E, where E, denotes the completion of E at v and o, its
integer ring. Assume that f and F are common eigenfunctions under the action of the
Hecke algebras #;_, and #; , for every v. Let &, (resp. Z,) be the Satake parameter
at v of f (resp. of F) and denote by & (resp. by E;) the corresponding C-algebra
homomorphism of J#;_, (resp. of #5,) to C (cf. §1). By definition, for ¢, e H#5_, and
D€ H#;, we have fxp, =L (p,)f and Fx®,=Z7(®,)F. Then the restriction Wof W ¢
to G,=Gy, is a common eigenfunction under the action of J#;_, on the left and that
of 5, on the right:

0.2) P W@, =0 (0,)E0 (PIW

where we put

(@, x Wxd,)g)= dx f dy o (x)W(x"'gn)®,(y) (9eG,).
Gy

Go,v

The space Sh(¢,, E,) of C-valued functions W on G,(0,)\G(E,)/G(o,) satisfying (0.2) is
called the space of local Shintani functions attached to (£,, Z,). One of our main results
asserts that the dimension of Sh(¢,, £,) is equal to one. This implies that the global
Shintani function defined by the integral (0.1) splits into the product of local Shintani
functions. Moreover we present several integral formulas for local Shintani functions,
which yield new integral expressions of automorphic L-functions for GL(n).

We now explain a relation between a recent work of Prasad [Pr] and ours. Let
(m,, V,) and (m, V) be admissible representations of G,=GL(n—1, E) and G=GL(n, E),
respectively, where E is a non-Archimedean local field and V, (resp. ¥) is the rep-
resentation space of =, (resp. of ). Assume that there exists a non-zero G,-equivariant
linear mapping T of V'to V', where V" is the representation space of the contragredient
n, of m,. For example, the assumption holds if both of n, and = are irreducible and
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generic (cf. [Pr, Theorem 3]). Suppose that 7, and = are of class 1. Let v, (resp. v) be
a G (og)-fixed (resp. G(og)-fixed) vector in ¥, (resp. in V) and < , > the canonical pairing
of V; x V,. Let & (resp. £) be the Satake parameter corresponding to 7, (resp. x). Then
the function W(g)=<{T(n(g)v), v,> on G is a non-zero local Shintani function for (¢, Z)
in our sense. This implies that

0.3) dim¢ Sh(¢, 5)> 1

holds at least for a pair (£, Z) for which both of =, and 7 are irreducible and generic.
We note that our proof of the fact (0.3) in §4 is different from the above argument and
applies for all the pairs (£, Z), though our consideration is restricted to the case of class
1 representations.

The paper is organized as follows. In Part I, we study the local Shintani functions
for GL(n). From §1 to §4, we consider the non-Archimedean case. In §1, after fixing
notation, we introduce the notion of local Shintani functions for GL(n) and state the
main result of Part I. the uniqueness and existence of local Shintani functions. The
object of §2 is to study the structure of the coset space G,(0,)\G(E,)/G(o,), which is
crucial to the proof of the uniqueness. In §3, following the method of Shintani [Shin
1] and Kato [Ka], we study the system of difference equations satisfied by the values
of Shintani functions. This enables us to reduce the proof of the uniqueness theorem
(Theorem 3.1) to a certain integral formula proved in §6. In §4, we prove the existence
theorem (Theorem 4.10) by giving an integral expression of Shintani functions. The
local Shintani functions in the Archimedean case are defined and studied in §5. In this
case, the uniqueness and existence theorems (in an appropriate form) have not yet been
established. The aim of the next two sections is to show two integral formulas for local
Shintani functions. The first one proved in §6 together with the results of §3 establishes
the uniqueness theorem. Both formulas are later used to study certain global integrals
of Rankin-Selberg type (cf. §9 and §11).

The theme of Part II is a global application of the local results of Part I. In §8,
after recalling the notion of automorphic forms on GL(n), we define the global Shintani
function W, p attached to (f, F), where f is an automorphic form on G,=GL(n—1)
with { el |2dx < oo and Fis a cusp form on G = GL(n). We also define a twisted
global Shintani function, which is needed in the next section. The first global application
of Shintani functions is given in §9. To be more precise, we let P and Q be the standard
maximal parabolic subgroups of G of types (n—1, 1) and (1, n—1), respectively. Since
Levi subgroups of P and Q are isomorphic to GL(1) x G,, we can define the (normalized)
Eisenstein series E*(g; s; f; P) (resp. E*(g; s; 1; Q)) attached to f (resp. 1) with respect
to P (resp. Q) on G,. The main result (Theorem 9.4) of §9 asserts that the integral

0.49) J F(9)E*(g; sy; f; PYE*(g; 55 1; Q)dg
ZAGE\G4
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is expressed essentially in terms of the standard L-function L(F;s) of F(g)=F(g~') and
the tensor L-function L(f ® F; s) up to certain local factors at the infinite primes. This
fact may be considered as an analog of Shimura’s result on the Hecke L-functions for
GL(2) (cf. [Shim, p. 799]). The proof is based on the first integral formula given in §6
and the fact that the integral (0.4) is equal to a certain integral of the (twisted) global
Shintani function W, (*;s) over N,, where N is the unipotent radical of P. In the
remaining part of the paper (§§10-11), we give another global application, which may
be viewed as an analog of the results of our previous paper [M-S2]. Let G, =GL(n+1)
and embed G into G, via
[ 1 0

Let P, be the standard parabolic subgroup of G, corresponding to the partition
n+1=14+(n—1)+1. In §10, we study the orbit structure of P,\G,/G, which is needed
in the proof of the basic identity in the next section. In §11, after recalling the definition
of the normalized Eisenstein series £*(g,; s, s; f) (9, € Gy 4 S, s’ € C) attached to f with
respect to P,, we prove the following results (Theorem 11.4):

(i) Let {v;} be a sequence in C>(R’) with 0 <v,(x)<v,(x)< - - - <1 converging to
the constant function 1. Assume that Re(s), Re(s’) are sufficiently large. Then, as j— o0,
the integral

ZF s, 8% v,-)=f F(g)6*(g; s, s'; f)vj(ldetg| g
GE\Ga
absolutely converges to a value independent of the choice of {v;}.

(i) The limit is expressed in terms of the standard L-functions L(F; s), L(F; s) and
the initial value W, ((1).
The key of the proof is the second local integral formula proved in §7 and the basic
identity (Proposition 11.6) asserting that 2} (s, s’; v;) is expressed as an integral of the
(modified) global Shintani function over G, ,\G,.

Recently S. Kato and the first named author have proved an explicit formula for
Shintani functions on GL(n) in the non-Archimedean case. Details will appear in a
forthcoming paper.

ACKNOWLEDGMENT. The authors are very grateful to Shin-ichi Kato, Takayuki
Oda, Fumihiro Sato and Tadashi Yamazaki for helpful discussions.

NotaTiON. We denote by diag(z,, ..., ?,) the diagonal matrix with entries ¢;
(1<i<n):
diag(z,, ..., t,)=
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For a matrix A, we denote by ‘4 the transpose of A4.

Part 1. Local theory.

1. Local Shintani functions.

1.1. Let E be a non-Archimedean local field with the integer ring o =0g. We fix
a prime element n of E and put gz =#(o/no). We normalize the Haar measure dx on E
by [,dx=1. For ae E*, put |a|p=d(ax)/dx. Then |n|z=qz . Define ordg: EX >Z by
|a|p=qg ™=@ (ae E*). Throughout this paper, we normalize the Haar measure dg on
GL(r,E) by | 6Le.yd9=1. Fix an integer n>2 and put G=GL(n, E) and K=GL(n, o).
Let B denote the subgroup of G consisting of upper triangular matrices. Let d be the
module of B defined by

n t *
opb)= []|;1n+1~% for b= eB.
=t 0 t

Let T={diag(ty, ..., )|, ..., 1,€ E*} be a maximal split torus of G. The group of
unramified characters of T is denoted by X, (7). For Ee€ X, (T), let E; be the i-th
component of =:

n

E(diag(ty, .., t))= [ Zi(ty) -

i=1

1.2.  We recall several basic facts about the Hecke algebra #; = #(G, K) (cf. [Ta];
see also [Sa]). By definition, #; is the C-algebra of compactly supported bi-K-invariant
functions on G. Let Z€ X, (T) and extend it to a character of B in a natural way. Let
¢= be the function on G given by
(1.1 d=(bk)=(E5L*)(b) (beB,keK).

Define a C-algebra homomorphism E* of #; to C by

n

(1.2) A(¢)=J Dg)p=(g)dg  (Pe ).

G
‘Then Hom(#5, C)={E" |E € Xund T)/ Wi}, where the Weyl group W= Ny(T)/T=S,
(the symmetric group of degree n) acts on X,,(7) in a natural manner. Furthermore,
if Fis a bi-K-invariant function on G and satisfies

(1.3) F*¢(g)i=j Fgy)®(y)dy=5"(9)- Flg)  (9€G)
G

for every @ e #;, then we have F(g)=F(1) - ¥s(g). Here ¥ is the zonal spherical function
on G attached to Z given by



170 A. MURASE AND T. SUGANO

14 ¥ag)= j dulkgdk .
K
It is well-known that
(1.5) Y9~ H)=¥z-1(9)
(1.6) j Y:(gkg)dk=Y9)¥=(9") 9.9'€CG.
K

1.3. LetG,=GL(n—1, E)and K,=GL(n— 1, o). We often regard G, as a subgroup
of G via the embedding
= [go O:I
9o 0o 1|

Let T, be the group of diagonal matrices in G, For ¢eX,,(7T,), we define ("€
Homg(s#5;,, C) in a manner similar to that in §1.2. For (&, £)€ X, (T,) X Xyn(T), let

(1.7)  Sh(, E)={W: K\G/K—C|oxWxd=(N@)EN@W (e #y,, e Ho))

where
(p* Wxd)g)= f dx J dy p(x)W (x™gy)®(y) .

We call Sh(&, ) the space of Shintani functions attached to (¢, E). Note that

(1.8) W<|:“6"1 ?]g-t1">=w_l(t’)§2(t)W(g) (t', te E*, geG),
where we put

1.9) w=¢&-¢&_,, Q=E ---E,.

In particular, we have

(1.10) W([l"o‘1 (t)]g>=gw(z)W(g) (teE*,geG).

We are now ready to state one of the main results of the paper.

1.4. THEOREM. For every (&, E)€ X o (T,) X Xyn(T), we have dim Sh(é, E)=1.

2. Coset decomposition.

2.1. Let Z,={tl,_,|te E*} and Z={t1,|te E*} be the centers of G, and G, re-
spectively. In this section, we study the orbit structure of Z,K,\G/ZK, which is crucial
to the proof of the uniqueness of Shintani functions.
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22, For (A p)=(Ags.-esdpyoys iy -evs y_1)EZ" 1 x Z"" 1 we put

n 1 T
2.1 - - - : .
2.1 g(4, p) e 1 -t €G
1 1
Let
2.2) A={(d WeZ " X 2" Aoy =0, py > -+ - > pty_, >0,

Rl PRV NPTy TR

Note that 4, >--->1,_, if (4, yeA. We endow A with the lexicographic order. The
aim of this section is to show the following result.

2.3. PROPOSITION. We have

G= |l Z,K,-g(4 w)-ZK (disjoint union).
(A,u)eA

ProOF. The assertion is easily verified in the case =2, hence we assume n>3.
To simplify the notation, we write g, ~g, if g,€Z,K, - g, - ZK. Let g be an arbitrary
element of G. By the Iwasawa decomposition for G and the Cartan decomposition for
G,, thereexists (4, p)e Z" ' x Z" ' with ;> -+ >4,_,=0,u;>0(=1,...,n—1)such
that g~g(4, u’). We claim that g(4, u')~g(4, p) for some (4, u)e A. First assume that
n=3. Let p'=(u', pu4). If p, <p’, we have

[ 1 atm22 1 -10
gA,u)~ 0 1 0 [g(lp)] O 1 0
[0 0 1 00 1
[ 7% 0 0 10 n *i4n#
=[ 0 =20 (|01 = ~ g(A1s Ags S, 1) -
0 0 1 00 1

Hence we may assume p’>p5>0. If A, —p<id,—pH, we put p,=p} and p,=
uy—A+A,>p5. Then (4, u)e A and

[ 100 1 00
g u)~ 110 |ghu)| —n*"*10
| 001 0 01

0 0 10 M
=l 0 #n*0 01 4n " |~g4p,
0 01 00 1
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which proves the claim in this case. We can prove the claim for n>4 by repeating the
above argument.

To prove the disjointness, let (4, p), (4, u’)e A and suppose that g(4, u)~g(A, p')
and (4, y)<(, u'). It is obvious that A=A". Let A=(ay, ..., 0, ..., 0%, ..., ), Where
oy >--->0n,=0 and each «; appears n; times (n, + - - - +n,=n—1). Then we have u=
By s Byso s By B)and u'=(BY, ..., B4, ..., B - .., B)), where each of B; and B!
appears #»; times (1 <i<r) and
(23) Blzzﬁrz()’ (xl—ﬂlzﬂ.zar_ﬂr

By=-2p,20, oa,—B1=-->0,—p,.

We put

ny
By the assumption, there exist k,, k, € K, and Xeo" ! such that

ko X1 [k, 0 )
g(l,u)[o 1~—[0 1]g(/l,u)-

Then we have

2.4) k,=k,II,
M n—u',
(2.5) m, : +X |=k,II,
n_“n'l n_ll;,—l
and hence
M 77:—“'1
(2.6) : =k, : (modo"™1).
n—ﬂn—l n—“;‘VX

Let k,=(x;;)1 <i,j<r (ki€ M, ,,(0)) be the block decomposition of k, according to the
partition n—1=n,+ - - - +n,. By (2.4),

2.7) ki€GL,(0) and kjen %YM, (o) if i>j.
By the assumption (4, u)<(4, '), there exist integers ¢ and d (1 <c<d<r) such that
(2.8) Bi=B: (1<i<c—1), Bi>B. and B.=--=B;>Pis1.

For j (1<j<r), put g;='(1, 1, ..., 1)eo™. The congruence (2.6) implies
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(2.9) Y kgrejrmnFi=g mPe (modo™).
j=1

Put n;=x,;"¢;-nfa~%i (1<j<r). By (2.3) and (2.7), we have n;e 0. Since f;>f,>0,
we have )7 n;=¢,- nfa~P1=0 (mod(no)") by (2.9). Observe that n;e (o) if c<j<d
or if j>d. Since n,=kK,, " ¢;¢(no)", there exists an integer i (1<i<c—1) such that
n;¢(no)™. It follows that o;—oay+p;—p;=0. Since o;—oy+pB;—p;=>0, we have
(Bs— B:)—(B3—B;)=0, which contradicts (2.8). q.ed.

3. Uniqueness of Shintani functions.
3.1. Throughout this section, we keep the notation of §§1-2. Let £e X,,(7,) and
Ze X, (7). In this section we prove:

THEOREM. Let WeSh(¢&, B). If W(1)=0, then W is identically equal to zero. In
particular, we have dim¢Sh(¢, Z)<1.

3.2. For WeSh(¢é, E) and (4, p)e A, we write W(A, p) for W(g(4, u)) to simplify
notation. Let A(A, u) be the set of (4, u)eA with (4, u')<(4, ). We denote by
C[¢&, &7, B, E7 ] the C-algebra of polynomial functions in &(n), & (n), E,(n), E; ()
(1<ig<n—1,1<j<n). In view of Proposition 2.3, the proof of Theorem 3.1 is reduced
to the following:

3.3. ProrosiTiON. Let WeSh(¢, E). For any (A, u)€ A, we have
(3.1 W@, w= AZ (& EYWW, 1),
(A%, ")

where (A, p') runs over the set A(A, p) and c,. (¢, E) is an element of C[&, & CORCRE
depending only on (A, 1').

3.4. COROLLARY. Let WeSh(¢, E) with W(1)=1. Then the value W(A, u) belongs
to C[¢,E7Y, E, B~ 1] for any (A, y)e A.

3.5. To prove Proposition 3.3, we need preparations. Let

1 * 1 0 n* 0
N,= . leq, b, N= . leG, |, m,= €G,
0 1 * 1 0 w1

for a=(ay,...,%,1)€Z" ', Let I={0,1} and put I(d)={e=(e;,...,&-1)el" '|e;+
- +eg,_=d} ford(0<d<n—1). ForeeI"™*, put N,(e)={v=(v;;)e N,(0)|for i, j (1<
i<j<n—1), v;eo/no if ¢>¢; and v;=0 otherwise} and Nj,(s)={v’=(v§j)eN;(o)|
for i, j (1<j<i<n—1), vjjeo/no if ¢;<¢; and vj;=0 otherwise}. Put L=0""" (the set
of column vectors of size n— 1). The following fact is easily verified.

3.6. LemMma. (i) For d with0<d<n—1, we have
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o.[ﬂla 0 ]'Ka=]_[ LI K,-I1,v' (disjoint union) .

K
0 ln—-l—d eel(d) v'eN,(e)

(it) For d with 0<d<n, we have

S NI X Ch1
0 1,4 eel(d) veNo(e) yeLi,L .0 1 0 1 0 1

Y O:I [H‘ 0 :IK (disjoint union) .
n

eel!?l— 1) veNo(e) [0 1 0

3.7. Ford(1<d<n—1), we denote by ¢, (resp. @,) the characteristic function of

K‘,I:ﬂld 0 ]Ko (resp.K[nld 0 :|K>
0 1n-—l—d 0 ln—d

For d with 1 <d<n—2, we set

U

AT d)={(4, u)EA|11= cr=A> A s Aa—Ha=Aar1—Has1}
A (@d)={(4, ﬂ)€A|l1= = ha> A Aa—Ma>Aae 1 —Hasa)
and
A(n_l)={(l’ #)€A|AI= =y =0, =" =Aun—1} .

Then A=, _,.,-,(A7(d)uA~(d)uA(r—1) (disjoint union). Put x,=(z"*,...,
n ke E" ! for p=(uy, ..., tp-)€Z" L
3.8. THE PROOF OF PROPOSITION 3.3. Let WeSh(¢é, E). First let (4, pye A*(d).

Note that p;>pz,q. Put A'=@A;—1,...,4;—1, 4444, ..., 4,—y) and p'=(u,—1,...,
a—1, tys1s ooy fu—)- Then (X', u')€ A(A, p). By Lemma 3.6 and (1.10), we have

EN@y) - W, p)=(WPy)g(A', 1))

o, o7[1,_, x,][v O:H:l,,_l y]|:1'1la O:I)
= W u
eeg(d) ve;ou:) yel%I,L <|: 0 1 ] [ 0 1 0 1 0 1 0 1
m, 07][1,_, x,:H:v 0][175 0])
+ /4 #
eel(g*l) veg‘,(e) <|: 0 1:“: 0 1 01 0 /1

R (K IR |

eel(d) veNy(e) yeL/II L
H ’ 0 1 - 'H_l - ’
SPND) gwm-w([ ][ me A1 x])
gel(d—1) veNo(e) 1 1 0 1

(note that IT,.vIT;." € K, for ve N,(o)). Observe that I, '(v"'x,. + y)e I1,.1 L for ve N (o)
and ye L. We put =19, 0"~ 1" e "~ 1 where 19=(l,..., 1) (1 repeated d times)



SHINTANI FUNCTIONS AND AUTOMORPHIC L-FUNCTIONS 175

and 0"~ !'"9=(0,...,0) (0 repeated n—1—d times). Then we have A +¢?=1 and
Ha'x, =x,. It follows that

ENDy) s WA, u)y=a(l, wW(4, #)+(}.Z )a(/l, w, AN, W YW@A, 1y,
e

where (17, ") runs over the set A(4, p), and a(4, p) (resp. a(4, u, A”, u")) is an element
of C* (resp. C[¢&, E71, E, E71]) depending only on (4, u) (resp. (4, u, A”, u”)). Since
EN@,)e C[E, E~1], we have proved (3.1) for (4, u)e A*(d).

Next let (4, peA™(d) and put =4, —1,...,4,—1, 4441,..., 4,—1) and u'=p.
Then (4, u')e A(A, p). By Lemma 3.6, we have

o~ mWEN(@p-1-a)" WA, )= J X)W (x - g(A', w)dx

Go

ny olfm o][1,., x :I)
— Wi £ n "
ze;(d) v’e%;(s) <|: 0 1 ] l: 0 1 :| [ 0 1
— z Z W<|:Hl'+e 0}[1"_1 H;lvln;./'xu]>
eel(d) v'eN,(e) 0 1 0 1

(note that IT3'v'II, €K, for v'e Ni(o)). Since A;—A,—u;> —p; for j<i, we see that
(7' Oyx, ) =), . w4~ 474 - vi;+ n~* en~*p. By an argument similar to that above,
we have

@~ (MEN(@n-1-a)* WA, 1) =b(, W, W)+ AZ b(A, p, A", p" YW, "),
(A7)

where (47, u"’) runs over the set of A(4, u), and b(4, p) (resp. b(A, u, A”, u”’)) is an element
of C* (resp. C[&, E71, B, E~1]) depending only on (4, y) (resp. (4, u, A7, u”")). Since
EMN@n—1-0€CLE, E71], we have proved (3.1) for (4, u)e A~ (d).

We postpone the proof of (3.1) for (4, u)e A(n—1) until §6 (see the remark after
Theorem 6.4). q.ed.

4. Existence of Shintani functions.

4.1. In this section, we prove the existence of Shintani functions by using an
integral expression. We keep the notation of the preceding sections. Let w, be the
permutation matrix corresponding to 7€ S, (the symmetric group of degree n). We write
w, for

where 7, is the longest element of S,. Let B (resp. B,) be the subgroup of G (resp. G,)
consisting of upper triangular matrices. Let N (resp. N,) be the unipotent radical of B
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(resp. B,), and put N'={'n|ne N}, N,={'n,|n,e N,}. Denote by T (resp. T,) the group
of diagonal matrices in G (resp. G,). The following result is a direct consequence of
the Bruhat decomposition for G.

4.2. LEMMA. We have

é=U U B,,-[l"‘l n:|wr°B.

te S, ne{0,1}n—1 0 1
REMARK. The decomposition is not a disjoint union in general.

43. Forg=(g;)eGandforiy,...,i,j,....J, (1<i;< - <i<n, 1<jyj<--- <
Je<n), put 4; .. i..;i(@)=det(g; ;)1 <x1<, We define
4.1) a(g)=41...;,1-i(Wg) (I<i<n)

ﬁj(g)=AZ‘-'j+1,1-~~j(wlg) (I1<j<n-1)
and make a convention that ay(g)= 1 and B,(g)= — 1. Note that a,(g)=(—1)"?det g #0,
where [#/2] is an integer satisfying 0 <n/2—[n/2]<1. Put

1 01
gt—o 11W1-
0---01

4.4. LemMma. (i) geB,g,Bif and only if a,(9)#0, B:(9)#0 (1<i<n—1).
(ii) Let g€ B,g,B and write

th * 0

4.2) g= 9

0 ., 0

t
0 --- 0 1 0 "

Then the t;, t;c E* are uniquely determined by g and given as follows:

—i+1 Pu-19) . ;i a;(9)
-1 i+1 Fn=ndJ 1<i<n-—1 , = —1y =
) a,—(9) (I=isn=l) == ﬁj—l(g)

Proor. First note that B,g,B< Bw,B. It is well-known that g belongs to Bw,B if
and only if a,(g)- - -a,_1(9)#0. Let g be an element of Bw,B and write

v 0] 1,-;, x
= " b,
I [0 1][ 0 1]‘”’

where ve N,, x="x,...,x,_,)€E" ! and be B. 1t is easily verified that ge B,g,B if
and only if x, - - - x,_, #0. Since

ti=( 1<j<n).
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[1 0][ 1 0 }
w,g= b
0 v]Lx 1,_,

with some v'e N, and x'=Yx,_4, ..., X;), we obtain
(4.3) (@)=y1 v, B@=(=D""x,ipi i,

where y, is the i-th diagonal component of b (1 <i<n). This implies that x, - - - x,_; #0
if and only if 8,(g)" - - B, — 1(9) #0, which proves the first assertion (i). To prove the second
one, let

t 0
b " : 31 *
= ) . B.g,B.
g 0 £, 0 9 . t € Dog;
0 0 1 "
Then we have
1 0 7 4 *
_ v 0 .'. E W t:l—lt2
o 1|lo 12, ™
0--0 1 0 t't,

with ve N,. By (4.3), we get a;(g) =1, * 1—1;:2 the1 -t and Bi(g)=(—1)""'t,_2:(g), which
proves the assertion (ii). q.e.d.

4.5. Let g, and d5 be the modules of B, and B, respectively (see, §1.1). For
(e XunlT,) and Z€ X, (T), let Y,z be a function on G satisfying the following three
conditions:

4.4) The support of Y,z is B,g,B .
(4.5) Y s(b,gb)=(¢ 1352 )bNE; *)D)Y, 2lg) (b€ B,, beB,geC).
(4.6) Y{,s(gz)= 1.

4.6. LEMMA. For ge B,g,B, we have
n—1
Y, =(9)=(E, 1) detg) * [] (- iEil Iz " Noul@NEa i ERN 5 V) Bilg)) -
i=1

Proor. This follows from Lemma 4.4 (ii).
4.7. COROLLARY. Assume that (£, E) satisfies
4.7) [(En—iEi)m) |E<‘h:1/2 and (& LELN) M) e<qe ' (I<i<n-—1).

Then Y, ¢ is continuous on G.
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4.8. For (&, B)e Xyul(T,) X Xynd(T), we set
(4.8) W)= f dk, f dk Y o(kogk)
Ko K

If (¢, E)e Xyu(T,) X Xun(T) satisfies (4.7), the integral (4.8) is absolutely convergent by
Corollary 4.7.

4.9. LemMA. If (§, E)e X, (T,) X X, (T) satisfies (4.7), we have W zeSh(, E).

Proor. For simplicity, we write ¥ and W for Y, and W,s. Let o€ #5 . Then
we have

(@ W)(g)=j dx J dk, J dk o(x)Y(k,x " gk)= J dx f dk p(x)Y(x ™ tgk) .
G, VK, K Go JK

Decompose x€G, into k, 'b, (k,€K,, b,€ B,). Then dx =04y (b,)d,b,dk,, where dib, is a
left invariant measure on B,. Then

(p* W)(g)=f db, J dkof dk @(b,) Y (b, 'k,gk)dp,(b,)
B, K, JK

= f (p(b.,)(éél‘;{f)(bo)dzboj dkoJ dkY(k,gk)=<C" () W(g) .
B, Ko K

The equality W ®=ZE"(®)W for @€ #;; is proved in a similar way. q.ed.

4.10. We can now prove the existence of Shintani functions, which completes the
proof of Theorem 1.4. The proof was suggested to us by Fumihiro Sato.

THEOREM. For every (&, E)e Xy, (T,) X Xyn(T), there exists a WeSh(¢, E) with
w(1)=1.

Proor. Let X, be the set of (¢, E)e X,,(T,) X Xyn(T) satisfying (4.7) and &;(n),
E(mn)>0 (1<i<n—1,1<j<n). Then X, is a (2n— 1)-dimensional real submanifold of
the complex manifold X, (T,) x X,,(7T). Let (£, E)e X,. Since Y, : is positive on an
open dense subset B,g,B of G, we have W, -(1)>0. By Lemma 4.9, W;:(9)= W, =(9)/
W, (1) Sh(¢, E). It follows from Corollary 3.4 that W s(g) is a polynomial function
in (), ..., EEL(n), EE (), ..., EXY(n) for each geG. This implies that, for each
g€ G, the function (¢, E)— W;(g) on X, can be continued to a holomorphic function
on X, (7T,)x X,,(T). By analytic continuation, we see that W;z(1)=1 and W ;e
Sh(¢, &) for (&, E)€ Xyn(T,) X Xun(T), which completes the proof of the theorem.

q.ed.

5. Shintani functions at the infinite primes.
5.1.  In this section, we let E=R or C. We normalize the Haar measure dx on E



SHINTANI FUNCTIONS AND AUTOMORPHIC L-FUNCTIONS 179

as follows:
_{the usual Lebesgue measure  if E=R
| 2d(Re x)d(Im x) if E=C.
For ae E™, put |a|g=d(ax)/dx. Let G=GL(n, E) and
(_[OmR) if E=R
| Um) if E=C.

The Haar measure dk on K is always normalized so that the total measure of K is equal
to 1. We normalize the Haar measure dg on G by

Iy n
jf(g)dg:j dnj d“tl~~~dxtnj dkf|n k| J]161g"+2!
G N (Ex)n K t, i=1
for feC>?(G), where dn= ]_[i<j dn;;is the Haar measure on N={n=(n;;)e G |ny=1,n;=0
if i>j}. Let Lie(G) be the Lie algebra of G and % the universal enveloping algebra of
Lie(G) ® g C. We denote by Z; the center of %;. For XeLie(G) and fe C*(G), put

d d
(5.1 Ryflg)=—-/1g-expltX))| fo(g)=E;f(eXp(—tX)'g)

t=0 t=0

These actions of Lie(G) on C®(G) extend to those of % in a natural way.

5.2. Let T be the group of diagonal matrices in G and % the universal enveloping
algebra of Lie(T)¢=Lie(T)®@gC. Then

(5.2) Z o= (Up)"e

via the Harish-Chandra isomorphism, where W;=Ng(T)/T (for example, see [G-V,
§2.6]). Denote by X,,(T) the group of continuous homomorphisms of T to C* trivial
on T'={diag(,, ..., &,)|&€E", | &|g=1(1<i<n)}. The differential d= e (Lie(T)¢)* of
E € Xyn(T) determines an element £~ of Hom (%, C) via the isomorphism (5.2). It is
known that Hom(Z, C)={E" | E € X,,n(T)/ W}

5.3. For Ze X (T), we set

(53) Ws(g)=j ¢z(kg)dk
K
where ¢z(g) is defined as in (1.1). We now recall several well-known facts about the
spherical function ¥Y(g):
54 Y Al)=1.
(5.5) Y (kgk')=VP:(g) k,k'eK, geG.
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(5.6) f ¥s(gkg')dk="¥=(g)¥g") -
K
(5.7 P9~ ")=P=-1(9) -
(5.8) RV =E"(Z)- ¥, ZeZ;.
54. LemMma. Let E€ X,,(T) and Fe C*(K\G/K). If
5.9 R, F=E"(Z)-F

holds for any Z e %, then we have F(g)=F(1)¥(g).
Proor. This follows from [G-V, Theorem 3.2.3] and [H, Proposition 5.32].

5.5. Let G,=GL(n—1, E) and define T,, K, similarly as T and K. Let ¢e
XondT,), E€ Xy (T) and put w=¢,---¢,_,, Q=E, -5, e Xy (E*). We now define
the space Sh(¢, E) of Shintani functions on G attached to & and E to be the space of
We C*(K,\G/K) satisfying

(5.10) LR,W=ENDENZ) W zeZy,, ZeZy.
f1,_, 0
(5.11) w([ 81 1]-g%h>=w‘%ﬂQUyIV@) t,{'eE*

5.6. REMARK. It is an open problem to compute dimSh(é, Z) in the Archime-
dean case.

6. Integral formula (I).

6.1. Let E be a local field (either Archimedean or non-Archimedean). In this
section, we show an integral formula for Shintani functions on G=GL(n, E), which is
crucial to the proof of the uniqueness theorem in the non-Archimedean case (Theorem
3.1). We use the same notation as in §1 (resp. §5) in the non-Archimedean (resp.
Archimedean) case.

6.2. Let {g(s) be the local zeta function of E:

(1—gg5 ! if E is non-Archimedean
©.1) (o) = n-wr(%) it E—R
Qn)t=rs)  if E=C.

Let E=(&,, ..., )€ Xu.(T). Denote by Lg(Z; s) the standard L-factor attached to =
given as follows:
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—E(m)gg®) "t if E is non-Archimedean

I1a
6.2) L& 9)=1"
H Cols + ) if E is Archimedean ,

where Z;(t)=|t|4(u;€ C) in the Archimedean case. For y € X, (E™), we put

(6.3) AQE=((E1s -5 XEn) € Xund T) .

6.3. For seC, we define a function vy, on E"~! as follows:

If E is non-Archimedean,

1 if XeL
(6.42) Vg (X )={ s .

qx if Xen 'Ly, ((>0),
where L=0%""' and L,;,,=L—nL. If E is Archimedean, then

14'XX)"5/2 if E=R
(6.4b) v S(X)={‘ rAn
(1+'Xx)"* if E=C.

Note that, in the non-Archimedean case, v(X)=g¢; " if and only if

., X
n ~ O(n—l)’ Jn— 1D
[ 0 1} g( )

(cf. §2). The main result of this section is as follows:

6.4. THEOREM (the first integral formula). Let ée X,,(T,), E€ X .(T) and as-
sume that Re(s) is sufficiently large. For We Sh(¢, E), we have

1., X L (Q 5L
f W([ n01 1]>VE,s+(n—1)/2(X)dX= n—E: w®E"s) ] w().
Bt CE<s+ 5 )LE<Qa)®~f;s+?>

REMARK. Consider the non-Archimedean case and put v,=vol({Xe E"~! | v(X)=
gz "*}). Then we have

Here Q=E, -5, and w=¢,---&,_ .

U_{l if /=0
Dl v(1—gi™if 1>0

and the integral of the theorem is equal to ) ;2 o, W(0® ™1, [~ D)gls+®@=1)/2) Thijg
implies that W(0®~ 1, [®~1) is uniquely determined by &, Z and W(1), and that
wOr-b [e=ye CLE €7 B, E71] if W(1)=1, which completes the proof of Pro-
position 3.3 (and hence Theorem 3.1).
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6.5. Throughout the remainder of this section, we assume that Re(s) is sufficiently
large. For r,r'>1, let o,,. be a function on M, ,(E) given as follows: If E is non-

Archimedean, o,,. is the characteristic function of M, ,(og). If E is Archimedean,
exp(— 7 tr( X X)) if E=R
o, r'(X) = = .
’ exp(—2ntr(XX)) if E=C.

If r=r', we write g, for o,,. We often omit the subscripts (r, r’) and r if there is no fear
of confusion. The following result is elementary.

6.6. LemMma. (1) If

r r

x="| 20 Je,.e,

rpc

we have o.r+r’(X)=Gr(a)ar,r’(b)ar',r(c)ar’(d)'
(i) | My (E) o, (X)dX=1.
(iil) [p-|21po,(0)d"t=Chls) (dt=dt/|1]p).
(iv) Let E€X,,(T) and define ¢z: G—C by (1.1). Then

J $=(g)o,(g) | detg [+~ 2dg=Ly(E;s).
G

6.7. LEMMA. For XeE"™ ', we have

(6.5) J 0n—1,1(1X)0 ()| 1 ['d™1={i(s)vg X)) -

PrOOF. The proof in the Archimedean case is straightforward and we omit it.
Suppose that E is non-Archimedean. The assertion is obvious if Xe L=p0%"'. Let
Xen 'L, (I>0). Since both sides of (6.5) is left GL,_,(og)-invariant as a function of
XeE" !, we may assume that X='(n"", 0, ..., 0). Then (6.5) follows from an elementary
formula ;. o(tn~Ya(t)| t1°d*t=Lg(s) - gz = (I>0). q.e.d.

6.8. LEMMA. Let WeSh(¢&, E) and let @ (resp. @) be a bi-K- (resp. bi-K,-) invariant
Sunction on G (resp. G,). Then, for any ge G, we have

(6.6) J Wigy)®(y)dy = W(g)J ¢=(y)2(y)dy ,
G G

6.7) J W([;‘ ?]g)¢(x)dx=W(g)f be- oD,
Go Go

if the integrals are convergent.

PrOOF. The left-hand side of (6.6) is equal to jG D(y)F,(y)dy, where Fy(y)=
jx W(gky)dk (y€G). Observe that F(y) satisfies (1.3) (resp. (5.9)) in the non-Archi-
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medean case (resp. in the Archimedean case) and F(1)= W(g). Then, by the uniqueness
of spherical functions (see §1.2 and Lemma 5.4), we have F(y)= W(g)¥s(y), which im-
plies (6.6). The assertion (6.7) is proved similarly. q.e.d.

6.9. THE PROOF OF THEOREM 6.4. Let WeSh(¢, E). To prove the theorem, we
calculate the integral

Ty(s)= f W(g)alg™")Quw(detg ™) detg [z ©* "~ dg
G
in two ways. We first apply (6.6) to I(s) and get

In(s)= W(I)J ba-10-105(9)olg )] det g|z "2
G

=w(l) J Powss-1(g)o(g)ldetg 3"~ V2dg .
G

By Lemma 6.6 (iv), we have
(6.8) Iy(s)=W()LQuw® E™;s).

Next decompose g € G into

l,., X
g= 9 0 not k (9,€G,, XeE" ', teE*, keK).
0 1 0 ¢

Then dg=dg,dXd*tdk and we have

IW(S):J dg,,J ) dXJ X d*t W<[%° (1)][ 1"0_1 f])a(g,,_l)a(t—l)a(t_lX)

X (Q0) (e detg) 11507V | detg, |76+ 01D

It follows from (6.7), Lemma 6.6 and (1.10) that

Iy(s)= f ¢Qm®{(go)6(go)| detg, |3 ™~ 1)/2dgo
Go

1,., X
S o[ 7] Jme oo
En-1 E*

=LE<Qw®é;s+l) J < J a(x)a(tx)lt&“"—wdxt)w([‘"-1 X])dX.
2) )i\, 0 1

By Lemma 6.7, we have

-1 1 l,., X
(6.9) ]W(S)=CE<S+n2 )LE<QCO®§;S+-2~>J i W([ "01 1])V£,s+<n—1)/2(X)dX-
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The theorem now follows from (6.8) and (6.9). q.ed.

7. Integral formula.
7.1. We keep the notation of §6. Let G, =GL(n+1, E) and embed G=GL(n, E)

into G, via
1 0
1:g> [0 g] .
Note that
1 0
U9o)=| 9o
0 1

for g,eG,=GL(n—1, E). Let P,=N;M, be the standard parabolic subgroup of G,
corresponding to the partition n+1=1+(m—1)+1, where

| B t 0
N,y=1{| 01,y * |eG,}, M= g, t,t'eE”, g,€G,
0 0 1 0o ¢

Then we have the Iwasawa decomposition G, = P,K,, where

GL(n+1, o) if E is non-Archimedean
K,=10®n+1,R) if E=R
Un+1) if E=C.

Put

Y, = Ly €q, .
1 1

For ge G, we decompose 7, - 1(g) into
(g) 0

n1(9) B(9) ki(9) ,
0 '(9)

where n,(g)e N,, a(g), 2'(g)e E™, B(g)e G, and k,(g)e K,. For WeSh(¢, E) and s, s'e C,
we define the integral

(7.1) Zyls, )= W(Blg)~'g)lalg) [5" " V2 a'(g) |g ¢+~ Pdg .
Go\G

Note that the integrand does not depend on the choice of a(g), «'(g) and f(g), and is
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left G,-invariant.

7.2. THEOREM (the second integral formula). Let WeSh(é, E) and assume that
Re(s) and Re(s’) are sufficiently large. Then we have

1 Li(E; s)Lg(E7 1 5")
’ 1 l
CE(S+S) LE 6—1;S+_ LE<£,SI+—>
2 2
7.3. To prove the theorem, we define a function Ng , on G as follows (se C). Let

g=k| . |k (KeKt,... t,eEY)
0 ¢

Zwls,s")= w().

n

be a Cartan decomposition of geG. We may assume that ¢,,...,7,>0 in the
Archimedean case. If £ is non-Archimedean, we put

(7.2a) N (9)= [T lulzs.

ordg(t;) <0

If E is Archimedean, we put

(1+:3)~? if E=R
(7.2b) Ng (9)=

- I

(1+12) if E=C.

n
-

We define a function Ng, ,: G,—C in a similar manner. It is easy to see that

(7.3) Ng,(kgk’)=Ng (9)
(7.4 Ng (‘g™ ")=Idetgli N 9)
(7.5) N (9)Ng,(9)=Ng,s+5(9)

(9eG, k, k'€K, s, s'e C). The following integral expression of N, is well-known.

7.4. LEMMA. Assume that Re(s) is sufficiently large. For g€ G, we have
f a(yg)a(y)| dety |zdy=L{F(s)Ng 9) ,
G

where {9(s) =722 Lals—i).

7.5. LeMMA. LetEeX,,(T)ands,,s,eC. Assume that Re(s-l) and Re(s, —s,) are
sufficiently large. Then we have
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_ n—1 o n—1
L5<a;sl— 5 )LE(: Los,—s1— 5 )

PrOOF. We write A(Z; sy, §,) for the left-hand side of (7.6). Let ‘I’E(g)=§K =(kg)dk
be the zonal spherical function attached to = (cf. §1.2 and §5.3). By Lemma 7.4, we have

(7.6) j ¢s(g)detg [§Ne,s,(9)dg =
G

{EAs2)A(E; sy, 5,)= J dg J dy ¢=(g)| det g [Fa(yg)a(y)|det y |
G G

=j dgj dy Y=(y~'g)o(g)a(y)| detg [ |det y |7~ .
G G
By (1.6) (or (5.6) in the Archimedean case), {(s,)A(Z; s,, 5,) equals
j ¥z(g)a(g)| det g [y'dg f P=(y~Ha(y)l dety [~ dy .
G G

The proposition now follows from Lemma 6.6 (iv) (note that ¥z(y~!)=¥--.(y)).
q.ed.

7.6. PROPOSITION. For ge G, we have

Ng 9)=Ng, {(B@g) -2 (g9)|*
Ng {9~ )=Ne,LBg)™") g |5 -
Proor. The latter formula is an immediate consequence of the former, since

|detg|z=|al(g)x'(g)det B(g) |z. To prove the first formula, we may suppose that Re(s) is
sufficiently large. For g, € G, put

0 X
Bs(gl)=f dxf d*tf an([ ¥ ]91>a(x)|detx|2|t|2'"+‘.
Go E* En-1 0 0 t

ok *
g:1=| 0B * |k, (a,0'€E™,BeG, kieK,)
00 o

Let

be an Iwasawa decomposition of g,. Applying Lemma 7.4 to G,, we have

X

Bay=| ax| a<| axo(|® P *** DNowidetxls et
s 0 0 /
Go Ex En-1 o't

=j 0'(x[3)¢7(x)|dctxlfgde~ a(a’t)ltlfg‘"“d"tf a(a’' X)dX
Go x En-1

E

=({E" NG, (B & |5 *Cels —n+1)=LP()Ne, (B)l &' [g* -
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In view of Lemma 7.4, it now remains to show
(7.7) B(Y, - 1(g)= J a(yg)a(y)| det y [xdy .
G

Since both sides of (7.7) is right K-invariant as functions in g € G, we may suppose that
g is of the form

[g" b] 9,€G,,acE*,be E" ).
0 a

Then the left-hand side of (7.7) equals
X b+aX
f dxj d*tj an<[ X9, xo+a ])a(x)|detx|;|z|;-"“.
Go Ex En-1 t 0 at
On the other hand, decomposing ye G into
X
k[; t] (keK,xeG,, teE),

we see that the right-hand side of (7.7) equals

x X x X
dx | d*t dx detx 5] ls-n+1
[ R R (Pl 02
X XGo Xb+aX ) <[_x X B
- dx d’t ax det x I3 1 n+1.
JGo IE .Ln-l G([O at ] ’ 0 t |detx [&] 7]x

This proves the proposition. q.e.d.

7.7. We now finish the proof of Theorem 7.2. Let WeSh(£, £) and assume that
Re(s) and Re(s’) are sufficiently large. We calculate the integral

(7.8) Jwls, s")= J W(@INg,s +mn-120) NG s+ n-1)2(9~ Y)dg
G
in two ways. By (7.4) and Lemma 6.8, Jy/(s, s') equals

f Wi(g)ldetg|s" " "> Ng 515 +n-1(9)dg
G

= W(l)f b=(g)|detg |z "™ Ng s +n-1(9)dg .
G

From Lemma 7.5, we get

_ L& s)LYE™Y; ) Wy .

(7.9) Twls, $)= {W(s+s" +n—1)
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On the other hand, by Proposition 7.6 and (7.4), Ju(s, s’) equals

J dgf dg,W(g,9)Ng, s+s +n-19o * B@))
Go\G Go

x | a(g) - det(g, - Blg) 5"~ 1*|a'(g) g '+ /D)

(note that a(g,g) = (g), «'(g,9) ='(g) and B(g.9) =g, * B(g) for g,€ G, and g€ G). Changing
the variable g, into g, - f(g)~* and applying Lemma 6.8 and Lemma 7.5, we get

1 1
LE<5" 1 s+?>LE<é; s’ +—2—)

7.10 Jw(s, s')=Zy(s, s') x
(7.10) W)= 2ol $) % g

The theorem is a consequence of (7.9) and (7.10). g.e.d.

Part II. Global theory.

8. Global Shintani functions attached to automorphic forms.

8.1. Throughout Part II, we fix a finite extension E of Q. Let 2 be the set of
primes of E and Z; (resp. #,,) the set of finite (resp. infinite) primes of E. For ve 2, E,
stands for the completion of E at v and write | |, for the normalized valuation | | E,
(see §1.1 and §5.1). For ve Z,, let o, be the ring of integers of E, and fix a prime element
n, of o,. We put ¢g,=#(o0,/%,0,). The adele ring A=Ay (resp. the idele group 4™ =A4y)
of E is the restricted direct product of E, (resp. E,) with respect to [],. #, 0 (resp.
I_IM, 0,). We write |a|, for the idele norm of ae 4*: |a|,=][],.,|al,- Denote by dy
the discriminant of E. We set

8.1) E)=1dgl? [ (e o), EP9)= nl:I Cels—1)
veP i=0

(for the definition of (g (s), see §6.2). The (completed) Dedekind zeta function {g(s) is
holomorphic except at simple poles s=0 and s=1, and satisfies the functional equation
Cls)=¢p(1—3).

8.2. We consider G=GL(n) as a linear algebraic group defined over E and denote
by G,=G(A) the adelization of G over E. Throughout Part II, we define the Haar
measure dg on G, to be the product measure ]_Ive »4d9,, where each Haar measure dg,
on Gg, is normalized as in §1.1 and §5.1. For veZ, let K, be a maximal compact
subgroup of G,= G(E,) given by

GL(n,0,) if ved
K,=1{ O(n, R) if E,=R
U(n) if E,=C.

Denote by C*(Gz\G,/K,) the space of smooth functions on Gz\G,/K,, where K,=
[1,.s K- Let T be the group of diagonal matrices in G and Wg=N¢(T)/T the Weyl
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group of (G, T).

8.3. Let veZ,. Denote by &, the center of the universal enveloping algebra of
Lie(G,)®gC. Then Z; acts on C*(G;\G,/K,) via right translations. Recall that
Hom(Z%5,, C)={Z" |E € Xynd T,)/ W} (cf. §5.2). Next let ve#,. The Hecke algebra
H(G,, K,) acts on C*(G\G,/K,) via

(F*®)g)= J Figy®(y)dy  (FeC®(Gg\G4/Ky), PeH(G\, K,)),
Gy

Recall that Hom(#(G,, K,), C)={E" | E € X,nT,)/ W} (cf. §1.2).

8.4. Let Q be a Hecke character of E unramified everywhere By definition, Q is
a continuous homomorphism of E*\A4* to C* trivial on [],_ , 00 X [L,cs,_ E.. where
El={teEl||t|,=1} for veZ,. Denote by C”(GE\GA/KA, Q) the space of Fe
C*(Gy\G,/K,) satisfying F(tg)=Qt)F(g) (g€G 1€A). Let E=(Z,)€]],.p Xund 0.
Under the assumption &, , -2, ,=Q, for every ve 2, we let A (G;\G,/K ; Q; E) be
the space of Fe C®(Gg\G /K ; Q) satisfying the following conditions:

(8.2) For every ve #;, we have Fx®=Z}(®)F (PeH(G,, K))).
8.3) For every ve 2, we have R,F=E(Z)F (ZEQ’GU) .
8.4) F is slowly increasing on Gz\G, (cf. [G-], §10]) .

We call H(G:\G4; Q; &) the space of automorphic forms on G with eigenvalues E. By
definition, Fe o(G;\G,/K,; @Q; E) is cuspidal if jNE\NA Fng)dn=0 (ge G,) for the uni-
potent radical N of any proper parabolic subgroup of G. Let ., (Gp\G /K ; 2; E)=
{Fe A(G\G4/K; 2; E)| F is cuspidal}. If Fe o, (Gp\G,4/K ; @; E), F is rapidly de-
creasing on Gg\G, (cf. [G-J, §10]).

8.5. Let Fe A(GEg\G4/K,; Q; E). We define the (completed) standard L-function

$(F; s) by

(8.5) E(F;s)=1dg™? [] Lg(Es9),

ve?

where Lg (Z,; 5) is defined by (6.2). Put
(8.6) Flg)=F(g™").

Then we see that Fe o/(G,\G,/K; Q™Y E7Y) with 271 =(E;Y),.5 and that ¢(F;s)=
nueg Lg (2, % s). It is known (cf. [G-J, §13]) that &(F;s) is continued to a mero-
morphic function of s on C and satisfies the functional equation

(8.7 E(F;8)=E(F; 1-5).

Moreover, &(F; s) is entire if Fis a cusp form. For a Hecke character y of E, define the
twisted L-function of F by é(x® F; $)=|dg|**[],.5 L, (X, ® E.; 8) (cf. §6.2).
8.6. Recall that G,=GL(n—1) is embedded into G via
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g, O
w0

Let (2, w) be a pair of Hecke characters of E both unramified everywhere. We put
J lf(X)lzdx<00},
Go,£\G) 4
where G} ,={x€G, ,||detx|,=1}.

LeMMA. Let feCp(G, g\G, 4/K, 4 @) and Fe C*(GEg\G,4/K; Q). Assume that F
is rapidly decreasing on Gg\G 4. Then the integral

Czoz(Go,E\Ga,A/Ko,A; 0)) = {fe COD(Go,E\Go,A/Ko,A; Cl))

(8.3 W;.r9)= JS(X)F(xg)dx

Go,E\Go,4

converges absolutely and uniformly for g in a compact subset of G ,.

ProOF. Let C be a compact subset of G ,. The estimate due to Jacquet and Shalika
[J-S2, p. 799] asserts that for every N>0 there exists a positive constant c=¢(C, N)
depending only on C and N such that

| F(xg)|<c-Inf(|detx|V, |detx|§) (xeG,, geC).

Then the integral (8.8) is majorized by
1/2 )
c’{f lf(X)lzdx} xJ tho - Inf{¢~ @~ DN (o= DNY g
Go,E\G},,,{

0

where ¢’ is a positive constant depending only on C and N, and p, € R is defined by
|w(a)|=|al4 (ae A™). If we take N sufficiently large, the last integral is convergent and
we are done. q.e.d.

8.7. Suppose that E=(Z,)e[],.p XunlT,) and E=(E)e]],.p XundT,,) satisfy
B, Bpa=8,and &, ¢, =0, for every ve 2 with certain Hecke characters Q
and w, where T (resp. T,) is the group of diagonal matrices in G (resp. G,). We set

A 1AGo g \Go, 4/ Ko 43 05 &)= A (G 5\Go 4/ Ko 45 @3 §) N C LG, p\Go o/ Ko 45 @) -
Let Fe o (Ge\G4/Ky; 2; E) and fed[2G, £\G, 4/ K, 4 w; £). We call the function

cusp
W, ¢(g) on G, defined by (8.8) the global Shintani function attached to (f, F). Since the
restriction of W ¢ to Gg, is in Sh(¢,, Z,), the uniqueness of local Shintani functions at

the non-Archimedean primes (Theorem 3.1) implies

(89) Wf,F(g)= Woo(gco) H Wv(gv) ’

vePy

where g=g,[[,c»,9,€ G4 With g€ G, =[], 5. Go» W is the restriction of W, s to
G, and, for veZ;, W, is the element of Sh(¢,, Z,) with W (1)=1.
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8.8. Let fedl(G,r\Go /K, s 0; &) and Fe oA, (Gp\G,/Ky; 2; E) (we do not
suppose that fes/;,). In the next section, we need the following twisted form of the
global Shintani function:

(8.10) W, Hg; )= Jx)F(xg)ldetx[ydx  (geG,,5€C).
Go,E\Go,4
Due to the results of Piatetski-Shapiro [PS, §2], we have the following:

(i) The integral (8.10) is absolutely convergent in the half plane Re(s)>c¢
for some c. (Note that the integral is absolutely convergent for any seC if fe
A1AGy5\Go u/K, 4 @; &) (cf. Lemma 8.6).)

(ii) The function W, ((g;s) is continued to an entire function of s on C and
satisfies the functional equation W, ((g; s)= W, (g™t —s).

(iii) We have

x 0
Wy g(x) Ww([ i :|g>| det x [5dx ,

w,, (g;S)=f
fF N 0

0,A\Go, 4

where W, ; and Wy, are the usual Whittaker functions attached to f and F:

n—2
wis= [ 1of( T mesJin,
No,e\No,4 i=1
W ulo)= j nng).p(fi Mo 1>dn
NE\N 4 i=1

( is a nontrivial additive character of E\A). Note that this implies W (g; s)=0 unless
f is generic.
Moreover, we have the following Euler product for W ((1;s) (cf. [J-S 2]; see also
[Bul):
1
(8.11) Wirl;9)=Z,(f ®F; S)L(f®F;S+?),

where

0
Z(f®F;s)= j W, 5(x) Ww<[x ])| detx |%,dx
No,oo\Go,oo O 1

and L(f ® F; s) is the tensor L-function of the pair (f, F):

-1
L(f ®F;s)= l'[{ [T TII (l—éi,v(nv)aj,v(nv)q;‘)} :

vePy L 1<i<n—11<j<n

9. Rankin-Selberg convolution (I).
9.1. In this section, we give an application of the first integral formula stated in
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§6 to an integral expression of the automorphic L-functions for GL(n). For se C and
X=nueﬁXv€An_1(XveEz_1)’ we pUt

(9’1) vs(X)= l_[ vE.,/s(Xv) )

ve?
where vg ,: E}~'—C is given by (6.4).

9.2. PROPOSITION. Let Fe ol ((Ge\G4/Ky; 5 E) and fe (G, (\G, 4/K, 4 ©;
£). If Re(s,) and Re(s,) are sufficiently large, then

J W”»<[ n-1 T:l;s1>vsz(X)dX

~ -1
é(Qw@F; (n—l)s1+s2—nT>
=|dgl"™?

n X Wf,F(l; 59) .
fs(sz)é(ﬂw®f; ns, +s2—7+ 1)

(For the definition of W, ((g; s), see §8.8.)

ProOF. Observe that the restriction of W, p(*;s) to G, belongs to Sh(;, &),
where &5=(&, ;| |£)1<i<n—1- Then the proposition is an immediate consequence of
Theorem 6.4. q.e.d.

9.3. In the remainder of this section, we let Fe .o ,,(GE\G4/K,; 2; E) and
fe G,  \G, 4/K, 4 @; £). To define a Rankin-Selberg convolution, we introduce
certain Eisenstein series on G=GL(n). Let P and Q be the standard maximal parabolic
subgroups of G of types (n—1, 1) and (1, n—1), respectively. Namely, P=NpMp and
Q=NyM, where

{7
vertlo i Jp el o)

Note that P and Q are not conjugate in G if n>3. Let 6, and J,, be the modules of P,
and Q,. We use the same letters J, and J, to denote their natural extensions to G,.
Namely,

9,€G,=GL(n—1), teGL(l)} ,

49,€G,, teGL(l)} .

g, * detgo
9.2 o k)=
©2 "([0 t] ) !

t x ol
9.3 o k)=
( ) Q(I:O go] ) detgo A
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(9o€Gya. 1€A™, keK,). For ge G, and se C, we get

-4 dg; s; £, Q7 P)=(0Q) " '(t) f(9,)35(g)""* /2
go * X
g= 0 k,neNy g,€G, 4, t€A™, keK,
t

9.5 d(g; 5 1; Q) =0dglgy" 172 .

Define the Eisenstein series as follows (cf. [J-S1]):

(9-6) Egs; Q7 P)= ) ¢Ug;s Q7Y P)
y€PE\GE

©.7) Egs 0= Y ¢0gs10).
y€QE\GE

The series are absolutely convergent if Re(s) is sufficiently large. Put
9.8) EXg;s; f,Q7 P)=((Qo® f;s+1)E(g;s; [, Q71 P).

Then E*(g; s; f, 2~ 1; P) is continued to an entire function of s and satisfies the functional
equation E*(g;s; f, Q' P)=E*('g~%; —s; f, @ P). Next set

9.9 E*g;s1; Q)= éE<S+%>E(g; 5;1;0).

Then E*(g; s; 1; Q) is continued to a meromorphic function of s on C, holomorphic
except at simple poles s=n/2 and —n/2 with residues | dg| and —|dg|, respectively, and
satisfies the functional equation E*(g;s;1; Q)=E*(g~'; —s;1; Q). The normalized
Eisenstein series (9.8) and (9.9) are slowly increasing functions of g on G;\G, with
central characters Q7! and 1 (the trivial character), respectively. We now define a
convolution attached to (f, F) of Rankin-Selberg type by

(9.10) Z% 1(51,5,)= R9E*(g; s; f, 271, P)E*(g; 555 1; Q)dyg .
Z4GE\G4

The integral (9.10) is absolutely convergent if Re(s;) and Re(s,) are sufficiently large.
By the properties of the Eisenstein series stated above, Z¥ ¢(s,, s,) is continued to an
entire function of (s,, s,) on C? (note that the Eisenstein series is orthogonal to any
cusp forms). The main result of this section is stated as follows:

9.4. THEOREM. We have

~ n—1 1 1 —
Z}‘,F(sl,s2)=|dEI”_1£<Qw®F; nTsl +‘; Sz"'?) Wf,F(h%) .

9.5. To prove the theorem, we need some preparation. For i,j (1 <i,j<n, i#j),
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put U;={1,+a- E;;|ac E}, where E;=(640;); <x,1<n€ M,(E). For j (1<j<n), let w;e
G be the permutation matrix corresponding to the transposition (1j) and put
Uj=[—[15i<j U;;. Note that U; is a subgroup of Gz and U,= Np g (cf. §9.3). The Bruhat
decomposition for G implies
©9.11) E@gs10)= ) Y ¢wugs10).
j=1ueUj
9.6. The following result is elementary and we omit its proof.

LEMMA. For Xe A" ! and se C, we have

1,
¢<Wn|: "0 ! T]? S5 1; Q>=vs+n/2(X) .

9.7. THE PROOF OF THEOREM 9.4. Set

Z, {s1,85)= F(9)E(g; sy; f, 27, P)E(g; 555 1; Q)dg .

Z4GE\G4
Note that ZF i(s;, 5;) = x5, +1n/2)E(Qw @ f; 5, + 1)Z; ¢(s;, 5,). Unwinding the Eisenstein
series E(g; s; f, @~ 1; P), we have

Z; ps1,85)= F(p)p(p; sy; £, 27 PYE(p; 55 15 Q)dyp

Z4PE\P4

.., X1{g, O
= dgof dXF([ "l ][ ’ ])f(g.,)ldetgols””'”2
JGo,xs\Go,A En-l\4n-1 0 1 0 1 A
l,., X|lg, O
<E(| " S HOSS H ) 8
([ 0 1][0 1}52 Q)

_ 1,., X|lg, O
dp=|detg,| ‘dgdX|p=| "' o
\p=|detg,|”"dg (p [ 0 1][0 1j|>

is a left invariant measure on Z,\P,. By (9.11), Z, (s,, 5,) equals

n 1, , X 0
Z J dgoJ‘ dXF([ o :|[go ]) d t Sl/"_llz
J=1 J6o,£\Go, 4 En-iyan-1 0 1]L0 1 S1g))l detgo ¥
ln—l X go 0
X j 4 ;51,0
uévfud’(w’“[ 0 1][0 1] 2 Q>

We claim that the term for j with 1<j<n—1 vanishes. Observe that every wiu (ue U;)
normalizes Np , and that ¢(g; s; 1; Q) is a left N, ,-invariant function of g. Then we have

where
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l,., X1[g, © L.y X|lg, O)
f\F<[ 0 1][0 IJ)ueZu,-d’(w”“[ 0 1][0 1]’s2’l’Q>dX
— gO 0 . . 1. In—l X go O _
1%4%{01}”¢QMQMHFQ(> J[OIDM;O

by the cuspidality of F, which proves our claim. Thus Z, (s, s,) equals

Loy X[9 0
d dXF n—1 0 . det os;/n—l/z
L.,,E\G.,,, 9°J;"_, (l: 0 1}[0 1:l)f(g)l g, I
ln—l X do 0 )
P N
><¢><w,.|: 0 1][0 1] s 1,0

l,., X 0
¢(Wn|: nO ! 1 :“:goo 1]352: 1, Q>=’detgoI;(SZ/n+1/2)vsz+n/2(go_ IX)

Since

by Lemma 9.6, Z, ((s,, 5,) equals

gﬂ 0 1"_ X s1—82)/n
f {J F<|: 0 1][ 0 ! 1 ])f(go)ldetgo I(Al 2 dgo}vsz+n/2(X)dX
An-1 Go,e\Go,4
.1 X | s;,—5
=I Wf.F([ ! :I; : 2>vsz+n/2(X)dX'
An-1 0 1 n

The theorem now follows from Proposition 9.2. q.ed

9.8. ReMark. In view of Theorem 9.4 and §8.8 (iii), we have proved that the
product E(g; s,; f; Q7 %; P)E(g; s,; 1; Q) has no cuspidal component unless f is generic.

10. Orbit decomposition.
10.1. Let G{=GL(n+1). We often regard G=GL(n) (and G,=GL(n—1)) as a
subgroup of G, via the embedding

t(g)=[(‘) 2] €G).

Let P, be the standard parabolic subgroup of G; corresponding to the partition
n+1=1+(mn—1)+1 as in §7.1. Recall that P, =N, M,, where

1 % = t
N,={| 01,_, * |eG,} and M,= o t,1'eGL(1), g,€G,
0 0 1 t

For i (1<i<n+1), let ¢;='0,...,0,1,0,...,0)e E"*! be the vector with the i-th
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component 1 and the others 0. Then P, ={g,€G,|g,-e;=2e;,'g - e,.;=A"¢,,,
(4, A" #0)}.

10.2. Let Z={(x,y)e E"** x E"**|<x, y>:="xy=1}. The group G, ; acts on &
transitively by g, * (x, ¥)=(g,x, 'g; *y). Then Gy is the isotropy subgroup of (e, e;)eZ
in Gy .

10.3. Define the elements 1; (0<i<5) of G, g as follows:

1 0 0 1 0 0 0 0 -1
(10.1) ,=1 01,.,0 |, Yi=[ el,., 0 |, Hr=1l,,, Bz=( 01, 0 |
1 0 1 0 0 1 1 =% 0
0 0 -1 1 —re 0
,=| 01,_.;, 0 |, Ys=]| e (l,-;—e-%)0 |,
1 0 0 0 0 1

where e='(1,0,...,0)e E"" ! (e=1if n=2). We put 2,=Y;"'P,Y;nG. Then, viewed as
subgroups of G, the 2,’s are given as follows:

Jl g O
(10.2) .@,,_{[0 1]

[ g, *

Q =

2 {_0 t]
[g, O

2,= 9.€G,, 120% . a.=1] 0 ¢ + ||lg’eGLn—2),1, ¢ #01!.
L* ! 00 ¢

10.4. ProposiTioN. (i) G, =[], Pz Yi(Gy) (disjoint union).
(i) If i>0, there exists a normal subgroup U; of 2; such that U, is the unipotent
radical of a proper parabolic subgroup of G and that YUY, 1< N,.

|

gOEGo}, Ql= 0 g, * QIEGL(H—Z),I#O )
00 ¢

([ 100 ]

gaeGoa#O}’ 23=1| * 9" 0 ||g'eGL(n—2),t#0¢,

(L * * ¢t

— —_

T % %

Proor. Let (x, y)e Z and write

X1 1 Y1 1
x=| x, |n-1, y=\| y, [n-1.
X3 1 Y3 1

Put
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%={(Xa y)e.?[l"lx3;é0,y1 ?60} > L%A1={(x, Y)Eg[x2¢0, x3=0,y, ?50}
%‘2={(x’ Y)€3r|xz=09 X3=0,y1 7é0} s %‘3={(X, y)e'%‘lxs;éo,yl:()’ y27é0}
%4={(X, y)e%|x3;é0,y1=0,y2=0} > 53"5={(x, Y)Gg"%:)’l:o} .

We have %"=Uf=0% (disjoint union) and % =P, gY;*(ey, ;) (0<i<5), which proves
(i). Put

1,_ 1,
U1=U2=U5={[ "01 ’I‘]eG} and U3=U4={[ " ?]eG}.

Then it is easily checked that each U, satisfies the condition of (ii). q.e.d.

11. Rankin-Selberg convolution (II).

11.1.  We keep the notation of §8 and §10. Let Fe o/, (Gg\G /Ky ©; E) and
fedAG, \G, 4/K, 4 »; ). Put KM:]—LEg, K, ,, where K, , is defined in the same
way as that for K, in §8.2. For s, s"e C, we define a function ¢(x; s, s’; f) on G, 4 by

t

(1L.1) o\ m| 6 fkssSsS =@l R,
tl

wheren €N, 4, t,1'€e 4™, g,€G, 4and k; e K, ,. If Re(s) and Re(s’) are sufficiently large,
the Eisenstein series

(11.2) 89185 )= PZ\G (1191 5,55 f)
Vi€ E 1,E

is absolutely convergent. Put
(11.3) EXg1; 585 =Eels+5 + DS '+ DEF s+ 1695 5,8 /) »

where  f(x)=f(x ") € A Gy 5\Go 4/ K, ps 0™ 1 E7Y) and E(fis) is the completed
standard L-function of f (see §8.5). Then *(g,; s, s; f) is continued to a meromorphic
function of (s, s’) on C? and satisfies the functional equation

E*gy; —s', =8 [)=E%gy; 8,8, f) .

Moreover, £*(g,; s, s'; f) is a slowly increasing function of g, on G; ;\G, 4.
11.2. Let C2(R%) be the space of compactly supported smooth functions on Ry
(the set of positive real numbers). For ve CP(R ), we set

(11.4) LT s, 85 0)= J F(g)6*((g); s, 5" fHu(ldetg|)dg -
GE\G4

Since F(g) is rapidly decreasing and &*(i(g); s, s’; f) is slowly increasing on Gg\G, the
integral (11.4) is absolutely convergent and defines a meromorphic function of (s, s') on
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C?. Note that the integral
J F(g)6*(u(g); s, 5" f)dg
GE\G4

is not necessarily absolutely convergent.
11.3. Take a sequence {v;} in C(R}) satisfying

(11.5) 0<vi(x)<v(x)<--- <1
(11.6) lim v;(x)=1

for every x>0. The aim of this section is to show the following:

11.4. THEOREM. Assume that Re(s), Re(s’) are sufficiently large. Then we have
: ’ -1 1 .o 1
lim &} (s, s'50)=|dg|" e\ Fy;s+— &\ F;8"+— ) - Wy (1)
jmeo 2 2

(Note that the limit is independent of the choice of {v;}.)
11.5. For geG,, we take a(g), a'(g)e 4™ and B(g)eC, 4 so that

o(g)
(11.7) Y- ug)=n, Bl9) ky
®'(g)
(nyeN, 4 k€K, ). We put
(11.8) Zy pls, s 0)= Fg)é(ug); s, s’ Sl detg|)dg .
GE\G4
Note that
(11.9) ZFes, s 0)=Cps+s"+1)E(f 5"+ DE(fis+1)- Z; s, s 0).

11.6. ProPoSITION (Basic identity). For ve CX(R %), we have

2;.4(5,550) =f Wy.(Bl9) ') alg) b2 2'(0) 1 " 2dg

Go,4\G4

where we put

(11.10) Wi.r9)= J(X)Fxg)(|detx - detg|dx  (geGy).

Go,E\Go,4

Proor. Unwinding the Eisenstein series in (11.8) and using Proposition 10.4 (i),
we obtain
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5
Zy s, s’ 0)= Fl@) Y. Y ¢(%ygs, s fu(ldetgl|dg

GE\G4 i=0 ye2;,e\GE

i=0

5
=2 dgj F(q9)(Y:qg; s, §’; f)o(| det(qg) | )diq
2i,4\G4 2i,E\2i,4

where dq is a left invariant measure of 2, ,. Since F is cuspidal, the integral over
2, £\2; 4 vanishes for i>1 in view of Proposition 10.4 (ii). It follows that Z; g(s, s’; v)
is equal to

j { j F(xg)p(Y,xg; s, s"; f)o(|det x - detg IA)dX} dg .
Go,4\G4 Go,e\Go,4

Since

(Y, xg; s, 85 f)=d(xY,g; 5, 5% )= f(xP@)] lg) [ | o' (g) | g+

for xeG,4) and geG(A), the integral over G,;\G,, is equal to |a(g)[5""?-
la'(g) 17 © ™2 WY {(B(g)~'g). This completes the proof of the proposition. g.ed.

11.7. For g=[],.59.€G, and se C, we put

(1111) ]VG,q,s(g)= n NG,,,s(gv)

veP
(for the definition of Ng_,, see (7.2)). For ve C®(RX) and s, s"e C, we set

(11.12) Jf,F(Sa s’s0)= J W},F(g)NGA,S' +n/2(g)NG,4,s+n/2(tg_ l)dg .

G4

11.8. LEMMA. ForveCP(RX)ands, s € C with Re(s), Re(s’) sufficiently large, we
have

:IdE|—(n—1)+n(n—1)/4 é(j: s+ DE(f,s'+1)

J; pls, 85 0)
I &g~ s +s"+n)

Z; s, s 0).

PrOOF. Observe that @* Wi =) (@) Wy for pedt;  (ve;) and that
LW5p=8,(2) Wy for zeZs, , (veZ,). 1t follows that for any bi-K, ,-invariant
function ¢ we have

0
f Wf([; 1]g)¢(x)dx= v H{g) f de- (D))
Go,4 Go, 4

if the integral is absolutely convergent. Here we put ¢.-:(x)=[],., P¢1(x,) for
x=]],.5X,€G,.4 On the other hand, by Proposition 7.6 we have
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x 0 x~1 01 _
NGA,S'+)I/2<|:O l:lg)NGA,s+n/2<|: 0 lj|tg 1>

=Ng, 154120 " B@ING, 15 +m2 (0 BG) ™) x ag) 15772 |'(g) |47
The lemma is then proved by an argument similar to that of §7.7. q.e.d.

11.9 Let {v;} be a sequence in CP(R7) satisfying (11.5) and (11.6). In view of
Lemma 11.8 and (11.9), it remains to show the following result to complete the proof
of Theorem 11.4:

LEMMA. Assume that Re(s) and Re(s') are sufficiently large. Then

l é J S+_ F~ ’ 1
. Jf,F(S, N ; D]) = { d '"(ﬂ_ 1)/4 2 2

joo EP(s+s'+n)

X W, g(1).

PrOOF. By the definition of WY ; and the left K -invariance of Ng, ;. +a(9), the
integral J ((s, s"; v;) is equal to

f dg f dx f(X)NG s +5 +a(g)| detg 57" 20;(] det x - det g, j F(xkg)dk .
G4 Go,E\Go,4 K4
By an argument similar to that in the proof of Lemma 6.8, we have
J F(xkg)dk =F (X)j ¢z(kg)dk
K4 K4

where ¢(9)=[1,.5 ¢=.9,) for g=[1],.59,€ G4 It follows that J, x(s, s; v;) equals

J J(X)F (X){ j D=(9)NG s+5 +n(g) | detg 3 "?v;(| detx - detg IA)dg}dx :

Go,E\Go,4 Ga

By (11.5), we have

J ®=(9)Ng 1s+5 +4(g)| det g 57" ?v;(| det x - det g )dg .
G4

< j ¢Re(5)(g)NGA,Re(s +s +n)(g)| detg |§e(s) * n/zdg .
Ga

Observe that the last integral is absolutely convergent if Re(s) and Re(s’) are sufficient-
ly large and that the value is independent of j and xe€G, ,. Since the integral
fGo,E\Go_A f(x)F(x)dx is absolutely convergent (cf. Lemma 8.6), we may applying Fubini’s
theorem and Lebesgue’s convergence theorem to obtain



!im J; s, 8%505)=
Jj— o
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JX)F (X){ J PLGING 1.5+ +n(g)l det g [
Ga

Go,e\Go,4

x lim v;(|det x - detg IA)dg}dx

j= o

=I / (X)F(x)d"f G=(O)NG u vy +,(0)| det g i dg .
Go,e\Go,4 Ga

Since the integral over G, is equal to

é(F; s+?l>§<F; s'+—;—>

d n(n—1)/4
ke EO(s+5"+n)
by Lemma 7.5, we have completed the proof of the lemma. q.e.d.
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