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Abstract. We introduce certain special functions ("Shintani functions") on GL(n)
over a non-Archimedean local field. We prove the uniqueness, existence and partial
explicit formula of Shintani functions. We give several applications of these local results
to the theory of automorphic L-functions for GL(ή).
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Introduction. In the study of automorphic L-functions, various special functions
on reductive groups have been playing fundamental roles. Among others, the spherical
function and the Whittaker function have been studied by many mathematicians. The
aim of this paper is to introduce and study a new kind of special functions for GL(n)
that we call Shintani functions. We investigate their local properties, which is similar
to those of the spherical and Whittaker functions, and give several applications to the
theory of automorphic L-functions for GL(n).

Shintani functions were first introduced by Shintani for the symplectic groups
[Shin 2] in order to study the automorphic L-functions of Siegel (or Jacobi) modular
forms. Several properties conjectured by him were studied in [M-S 1] and [Mu]. The
notion of Shintani functions was later generalized to the case of orthogonal and unitary
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166 A. MURASE AND T. SUGANO

groups and used to obtain a new integral expression of automorphic L-functions for

classical groups (cf. [M-S 2]).

To explain our results more precisely, let Go = GL(n -1) and G = GL(n) be the general

linear groups over an algebraic number field E and embed Go into G via

l_o lj

Let / and F be automorphic forms on Go and G, respectively. If / is square integrable

over GoE\Glu (cf. §8.6) and F i s cuspidal, then the integral

(0.1) Wf.Ag)=\ f(x)F(xg)dx {geGΛ)
J G O , E \ G O , A

is absolutely convergent. We call WftF the global Shintani function attached to (/, F).

Let JrGo,υ = JP(GJiEυ)9 Go(ov)) and J^GtV = Jίf(G(Ev), G(ov)) be the Hecke algebras of Go

and G at a finite prime v of E, where Eυ denotes the completion of E at υ and o^ its

integer ring. Assume that / and F are common eigenfunctions under the action of the

Hecke algebras JfGojV and 3^Gυ for every v. Let ξv (resp. Ξv) be the Satake parameter

at v of / (resp. of F) and denote by ξ£ (resp. by Ξυ

Λ) the corresponding C-algebra

homomorphism of J^GojV (resp. of J^GfV) to C (cf. §1). By definition, for φveJ^GoV and

Φv e jfGtΌ we have / * φv = ζv

Λ (φv)f and F* Φv = Ξ£ (ΦV)F. Then the restriction W of WffF

to Gy = GEv is a common eigenfunction under the action of J^GθiV on the left and that

of 3tfGv on the right:

(0.2) φv *W*ΦV = ξ; (φv)Ξ; (Φv) W,

where we put

U(0)= f dx ί(φv* W*ΦM=\ dx\ dyφυ(x)W{χ-ιgy)Φυ{y) (geGυ).
•/ Go,v •* Gv

The space Sh(^, Ξv) of C-valued functions W on G0{ov)\G(Ev)/G(ov) satisfying (0.2) is

called the space of local Shintani functions attached to (ξv, Ξv). One of our main results

asserts that the dimension of Sh(^, Ξυ) is equal to one. This implies that the global

Shintani function defined by the integral (0.1) splits into the product of local Shintani

functions. Moreover we present several integral formulas for local Shintani functions,

which yield new integral expressions of automorphic L-functions for GL(ή).

We now explain a relation between a recent work of Prasad [Pr] and ours. Let

(π0, Vo) and (π, V) be admissible representations of G0 = GL(n — l, E) and G = GL(n9 £),

respectively, where E is a non-Archimedean local field and Vo (resp. V) is the rep-

resentation space of π0 (resp. of π). Assume that there exists a non-zero Go-equivariant

linear mapping Γof F t o F~, where V~ is the representation space of the contragredient

π~ of πo. For example, the assumption holds if both of π 0 and π are irreducible and
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generic (cf. [Pr, Theorem 3]). Suppose that π0 and π are of class 1. Let v0 (resp. v) be

a G0(o£)-fixed (resp. G(o£)-nxed) vector in Vo (resp. in V) and < , > the canonical pairing

of V~ x Vo. Let ξ (resp. Ξ) be the Satake parameter corresponding to π0 (resp. π). Then

the function W(g) = < T(π(g)v), v0} on G is a non-zero local Shintani function for (ξ, Ξ)

in our sense. This implies that

(0.3) dim cSh(£,Ξ)>l

holds at least for a pair (ξ, Ξ) for which both of π0 and π are irreducible and generic.

We note that our proof of the fact (0.3) in §4 is different from the above argument and

applies for all the pairs (ξ, Ξ), though our consideration is restricted to the case of class

1 representations.

The paper is organized as follows. In Part I, we study the local Shintani functions

for GL(ή). From §1 to §4, we consider the non-Archimedean case. In §1, after fixing

notation, we introduce the notion of local Shintani functions for GL(ή) and state the

main result of Part I: the uniqueness and existence of local Shintani functions. The

object of §2 is to study the structure of the coset space Go(ov)\G{Ev)/G(ov), which is

crucial to the proof of the uniqueness. In §3, following the method of Shintani [Shin

1] and Kato [Ka], we study the system of difference equations satisfied by the values

of Shintani functions. This enables us to reduce the proof of the uniqueness theorem

(Theorem 3.1) to a certain integral formula proved in §6. In §4, we prove the existence

theorem (Theorem 4.10) by giving an integral expression of Shintani functions. The

local Shintani functions in the Archimedean case are defined and studied in §5. In this

case, the uniqueness and existence theorems (in an appropriate form) have not yet been

established. The aim of the next two sections is to show two integral formulas for local

Shintani functions. The first one proved in §6 together with the results of §3 establishes

the uniqueness theorem. Both formulas are later used to study certain global integrals

of Rankin-Selberg type (cf. §9 and §11).

The theme of Part II is a global application of the local results of Part I. In §8,

after recalling the notion of automorphic forms on GL(n), we define the global Shintani

function WS¥ attached to (/, F), where / is an automorphic form on G0 = GL{n—\)

with JG o E^Gι I f(x) \2dx<oo and Fis a cusp form on G = GL(n). We also define a twisted

global Shintani function, which is needed in the next section. The first global application

of Shintani functions is given in §9. To be more precise, we let P and Q be the standard

maximal parabolic subgroups of G of types (n— 1, 1) and (1, n— 1), respectively. Since

Levi subgroups of P and Q are isomorphic to GL(\) x Go, we can define the (normalized)

Eisenstein series E*(g; s; / ; P) (resp. E*{g; s; 1; Q)) attached to / (resp. 1) with respect

to P (resp. Q) on GA. The main result (Theorem 9.4) of §9 asserts that the integral

(0.4) ί F(g)E*(g; Sl; / ; P)E*(g; s2; 1; Q)dg
JZAGE\GA
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is expressed essentially in terms of the standard L-function L(F; s) of F(g) = F(tg~1) and

the tensor L-function L(f®F\ s) up to certain local factors at the infinite primes. This

fact may be considered as an analog of Shimura's result on the Hecke L-functions for

GL(2) (cf. [Shim, p. 799]). The proof is based on the first integral formula given in §6

and the fact that the integral (0.4) is equal to a certain integral of the (twisted) global

Shintani function WfF(*;s) over NΛ, where N is the unipotent radical of P. In the

remaining part of the paper (§§10-11), we give another global application, which may

be viewed as an analog of the results of our previous paper [M-S 2]. Let Gt = GL(n + 1)

and embed G into G1 via

T1 Ί
Lo g]

Let Pγ be the standard parabolic subgroup of Gί corresponding to the partition

n+ 1 = 1 +(w — 1)+1. In §10, we study the orbit structure of P1\G1/G, which is needed

in the proof of the basic identity in the next section. In § 11, after recalling the definition

of the normalized Eisenstein series $*(g{, s, 5'; /) {gx e G l i 4 , s, s' e C) attached to / with

respect to Pί9 we prove the following results (Theorem 11.4):

(i) Let {ϋj} be a sequence in Q°(J?+) with 0<Ό1(X)<Ό2(X)< < 1 converging to

the constant function 1. Assume that Rφ), Re(s') are sufficiently large. Then, as j-+oo,

the integral

J< g; s, s'; f)Όj(\detg\A)dg
GE\GA

absolutely converges to a value independent of the choice of {ΌJ}.

(ii) The limit is expressed in terms of the standard L-functions L(F; s), L(F; s) and

the initial value Wf F(\).

The key of the proof is the second local integral formula proved in §7 and the basic

identity (Proposition 11.6) asserting that «^/>F(s, s'; ΌJ) is expressed as an integral of the

(modified) global Shintani function over GoA\GA.

Recently S. Kato and the first named author have proved an explicit formula for

Shintani functions on GL(n) in the non-Archimedean case. Details will appear in a

forthcoming paper.

ACKNOWLEDGMENT. The authors are very grateful to Shin-ichi Kato, Takayuki

Oda, Fumihiro Sato and Tadashi Yamazaki for helpful discussions.

NOTATION. We denote by diag(/1? . . . ,/„) the diagonal matrix with entries tt

0

diag(tu..., tn) =
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For a matrix A, we denote by XA the transpose of A.

Part I. Local theory.

1. Local Shintani functions.

1.1. Let E be a non-Archimedean local field with the integer ring o = oE. We fix

a prime element π of E and put qE = #(o/πo). We normalize the Haar measure dx on E

by $odx= 1. For aeEx, put | α | £ = ί/(α;c)/dx. Then | π | £ = #£ \ Define ord £ : £ x - > Z b y

|tf | £ = # £ O r d E ( α ) (aeEx). Throughout this paper, we normalize the Haar measure dg on

GL{r, E) by fGL(Γf0)dfif = 1. Fix an integer « > 2 and put G = GL(n, E) and K=GL(n, o).

Let 2? denote the subgroup of G consisting of upper triangular matrices. Let δB be the

module of B defined by

= nu«ir 1- 2 ' for b=
0

eB.

Let T= {diag(ί1 ?..., O | ί i , . . . , tn eE*} be a maximal split torus of G. The group of

unramified characters of T is denoted by Xunr(T). For Ξ e λ ^ ^ Γ ) , let Ξt be the z-th

component of Ξ:

Ξ(diag(?1,...,O)=ΠΞί(ίi)
i = l

1.2. We recall several basic facts about the Hecke algebra #eG = Jf(G, K) (cf. [Ta];

see also [Sa]). By definition, JfG is the C-algebra of compactly supported bi-^-invariant

functions on G. Let ΞeXunτ(T) and extend it to a character of B in a natural way. Let

φΞ be the function on G given by

(1.1) φΞ(bk) = (Ξδy2)(b) (beB,keK).

Define a C-algebra homomorphism Ξ Λ of JfG to C by

-ί.(1.2) Ξ Λ ( Φ ) = Φ(g)φΞ(g)dg
JG

Then Hom cpfG, C) = {Ξ* \ΞeXum(T)/WG}, where the Weyl group WG = NG(T)/T^&n

(the symmetric group of degree ή) acts on Xunr(T) in a natural manner. Furthermore,

if F is a bi-Λ>invariant function on G and satisfies

(1.3) E*Φ(g) := f
JG

for every Φ e f̂G, then we have F(g) = F(\) 'F.gto). Here ^ 5 is the zonal spherical function

on G attached to Ξ given by
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(1.4)

It is well-known that

(1.5)

•ί.

1(1.6) ΨΞ(gkg')dk=ΨΞ(g)ΨΞ(g') 9,9'eG.
K

1.3. Let Go = GL(n - 1 , E) and Ko = GL{n - 1 , o). We often regard Go as a subgroup

of G via the embedding

Lo i j
Let To be the group of diagonal matrices in Go. For ξeXunτ(T0), we define ξA e

Hom cpfG o, C) in a manner similar to that in §1.2. For (ξ, Ξ)eXunτ(T0) x Xum(T), let

(1.7) Sh(ξ,Ξ) = {W: K0\GIK^C\φ*W*Φ = ξ*(φ)Ξ*(Φ)W (φ e JPGO, Φ e tfG

where

(φ*W*Φ)(g)= I dx I dyφ(x)W(χ-1gy)Φ(y).
JGO JG

We call Sh(ξ, Ξ) the space of Shintani functions attached to (ξ, Ξ). Note that

(1.8)

where we put

(1.9) ω = ξί "ξn.l9 Ω = Ξ1 Ξn.

In particular, we have

We are now ready to state one of the main results of the paper.

1.4. THEOREM. For every (ξ, Ξ) e Xunr(T0) x Xunr(T), we have dimcSh(£, Ξ) = 1.

2. Coset decomposition.

2.1. Let Zo = {iln_! I tGEx} and Z={t\n\ tεEx} be the centers of Go and G, re-

spectively. In this section, we study the orbit structure of Z0K0\G/ZK, which is crucial

to the proof of the uniqueness of Shintani functions.
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2.2. For μ, μ) = (λl9..., λn-l9 μl9..., ^ . J e Z " " 1 x Z " " 1 , we put

(2.1) g(λ,μ)= , . . _.'. . e G .
1 π - " - 1

1

Let

(2.2)

Note that λί>'">λn^1 if (λ, μ)eΛ. We endow A with the lexicographic order. The

aim of this section is to show the following result.

2.3. PROPOSITION. We have

G = W Z0K0 g(λ,μ) ZK (disjoint union).
(λ,μ)eΛ

PROOF. The assertion is easily verified in the case « = 2, hence we assume w>3.

To simplify the notation, we write g1 ~g2 if g^eZoKo g2 ZK. Let g be an arbitrary

element of G. By the Iwasawa decomposition for G and the Cartan decomposition for

G0,thereexists(λ,μ')eZn~ίxZn~1withλί> >^π_1=0,μ;>0(/=l,..., n- l)such

that g~g{λ, μ'). We claim that g{λ, μ')~g(λ, μ) for some (λ, μ)eΛ. First assume that

Λ = 3. Let μ ' ^ μ ; , μ'2). If μ\<μ'2, we have

1 πλ

0

0

π Λ l

0

0

1 - A

1

0

0

π λ 2

0

2 0

0

1 _

0 "

0

1

g(λ

" 1

0

0

>μΊ

0 π

1

0

1

0

_ 0

~μi +
π "

1

- 1

1

0

π~
M2

0

0

1 _

Hence we may assume μ Ί > μ 2 > 0 . If λi — μ'1<λ2 —

μ\—λγ+λ2>μ'2. Then (2,μ)e/l and

' g(λu λ2, μ'2, μ'2).

, we put μ1=/x'1 and μ 2

 =

1 0 0

1 1 0

0 0 1

λ,μ') — π

1
λl-i

0

0 0

1 0

0 1

π 0 0

0 πλ2 0

0 0 1

1 0 π

0 1 π

0 0 1

^, μ),
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which proves the claim in this case. We can prove the claim for n>4 by repeating the

above argument.

To prove the disjointness, let (λ9 μ), (λ\ μ')eΛ and suppose that g(λ, μ)~g(λf, μf)

and (λ, μ)<{λ\ μ'). It is obvious that λ = λ'. Let A = ( α 1 ? . . . , α 1 ? . . . , α r , . . . , αr), where

OL1 > - > α r = 0 and each αt appears nt times {n^^- - - +nr = n—\). Then we have μ =

(βl9..., βl9..., ft,..., ft) and μ' = {β'l9..., ftlf..., ft,..., /?;), where each of ft and ft

appears nt times (1 </<r) and

(2.3) βi>" *>ft>0, oc1-β1> • • - >α r -f t

We put

r λ n - ,

By the assumption, there exist £0, k'oeKo and Xeo" x such that

Then we have

(2.4)

(2.5)

and hence

(2.6)

Πλko=k'oΠλ

I

\

π~μi 1 \
+ X \ = k'0Πλ

) 7C " i - 1

- 1

(modo""1).

Let £0 = (κo
b e t h e b l o c k decomposition of k0 according to the

partition n—l=n1+ +nr.By (2.4),

(2.7) κueGLnί(o) and ^ . e π - ^ M ^ / o ) if i>j.

By the assumption (Λ, μ)<(λ9 μ'), there exist integers c and J (1 <c<d<r) such that

(2.8) ft = ft(l£i£c-l), ft>ft and ft= =β'd>β'd+1 .

Forj (1 <j<r\ put ε7

 = ί(l, 1, . . . , l )eo Π j . The congruence (2.6) implies
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(2.9) (modoΠ d).
J = l

Put ηj = κdj-εj πβ*-βJ (\<j<r). By (2.3) and (2.7), we have ^ e o " d . Since β'd>βd>0,

we have Σl

r

j=1ηj = εd' πβ'^~βd = 0 (mod(πo)Πd) by (2.9). Observe that ηj€(π6yid if c<j<d

or if j>d. Since ηd = κdd εdφ(πo)Πd, there exists an integer / (\<i<c — 1) such that

ηiφ{πo)nd. It follows that ai-ocd + βd-β'i = O. Since α f - α d + β d - f t > 0 , we have

(βd-βi)~(βd-β'i)>0, which contradicts (2.8). q.e.d.

3. Uniqueness of Shintani functions.

3.1. Throughout this section, we keep the notation of §§1-2. Let ξeXunτ(T0) and

ΞeXnm(T). In this section we prove:

THEOREM. Let WeSh(ξ,Ξ). If

particular, we have dimcSh(^, Ξ)< 1.

= 0, then W is identically equal to zero. In

3.2. For WεSh(ξ, Ξ) and (λ, μ)eΛ, we write W{λ, μ) for W(g(λ, μ)) to simplify

notation. Let Λ(λ, μ) be the set of (λ',μ')eΛ with (λ\ μ')<(λ, μ). We denote by

C[ξ, ξ" 1 , Ξ, Ξ" 1 ] the C-algebra of polynomial functions in < (̂π), ζ^iπ), Ξj(π)9 Ξj\π)

(\<i<n— 1, \<j<ή). In view of Proposition 2.3, the proof of Theorem 3.1 is reduced

to the following:

3.3. PROPOSITION. Let WeSh(ξ, Ξ). For any (λ, μ)eΛ, we have

(3.1) W(λ9μ)= Σ cλ^(ξ9

where (λ\ μ') runs over the set Λ(λ, μ) and cλ.φ\ξ, Ξ) is an element of C[ξ, ξ~1, Ξ, Ξ~1]

depending only on (λ\ μf).

3.4. COROLLARY. Let We Sh(ξ, Ξ) with W{\) = 1. Then the value W(λ, μ) belongs

to C[£, ξ~\ Ξ, Ξ'^for any (λ, μ)eΛ.

3.5. To prove Proposition 3.3, we need preparations. Let

N =

for 0L = {

1

0

1 0

eGn

1. Let /={0, 1} and put |

ΐoτ d(0<d<n-\). For εeIn-\ put N0(ε) = {v = (vij)eN0(o)\foτ ij

i<j<n—\), VijEo/πo if εt>εj and vu = 0 otherwise} and N'0(ε) = {vf = (v'ij)eNf

0(o)\

for /, 7 ( 1 < 7 < / < W - 1 ) , v'ijEo/πo if ε ^ β , and v;7 = 0 otherwise}. Put L = o M " 1 (the set

of column vectors of size n— 1). The following fact is easily verified.

3.6. LEMMA, (i) For d with 0<d<n—\, we have
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Ko\π\d

 1 ° \κo= W LJ K'Πy (disjoint union).
L 0 \n.1-d_\ εeI(d)v'eN'o(ε)

(ii) For d with 0<d<n, we have

L θ 1B_J . . J A ) . . ] M . ) , . w L θ I J L 0 1 J L 0 l j

u U U Γ" f l Γ ^ °~U (disjoint unkm).
εe/(d-l) veJVo(ε) |_U U L " π J

3.7. For d(1 <d<n— 1), we denote by <pd (resp. Φd) the characteristic function of

0
> 0 fresp.

o I ^ . J V L o i._J
For d with 1 <d<n — 2, we set

^ =λd>λd+u λd-μd = λd+ί-μd+1} ,

and

Then /l = (J1<^n_2(yl+(ί/)uyl"(J))uyl(«-l) (disjoint union). Put xμ =
 ί (π" A i l , . . . ,

3.8. THE PROOF OF PROPOSITION 3.3. Let WeSh{ξ, Ξ). First let (λ, μ)eΛ+(d).

Note that μd>μd + ί. Put λf = (λ1-1,..., λd- l,λd+u . . . , λn-J and μf = (μί-1,...,

μd— 1, μd + 1 , . . . , μπ-i). Then (λ\ μ')eΛ(λ, μ). By Lemma 3.6 and (1.10), we have

Ξ*(Φd) W{λ\ μ>) = (W*Φd)(g(λ\ μ'))

- Σ Σ Σ WT^' Ί Γ 1 - 1 *ΊΓV ΊΓ1--1 Ί Γ Π ε °
εel(d) veNo(ε) yeL/ΠεL \\_ 0 I J L ^ I J L " I J L ^ 1 J L 0 1

+ Σ Σ w(\Πί- Ί Γ 1 - 1 V 1Γ V Ί ί ° °])
= Σ Σ Σ

εe/(d) veiVo(ε) yeL/ΠεL

+ Σ Σ
εeJ(d-l) veJVo(ε)

(note that ΠλvΠ^1 e Ko for v e N0(o)). Observe that Π~ \v~ 1xμ. +y)e Π~\εL for v e No{6)
and yeL. We put εd = (\id\ O ^ - ^ ^ G / " " 1 , where l(d) = ( l , . . . , 1) (1 repeated d times)
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and 0 ( π " 1 " d ) = (0, . . . ,0) (0 repeated n-\-d times). Then we have λ' + εd = λ and

Π~d

ίxμ> = xμ. It follows that

ΞΛ(Φd) W(λ\ μ') = a(λ, μ)W(λ, μ)+ £ a(λ9 μ, λ", μ")W(λ", μ"),
(λ",μ")

where (λ", μ") runs over the set Λ(λ, μ), and a(λ, μ) (resp. a(λ, μ, λ", μ")) is an element

of C x (resp. C[ζ, ξ'1, Ξ, H" 1 ]) depending only on (/I, μ) (resp. (A, μ, λ", μ")). Since

Ξ Λ (Φ d )eC[Ξ, S " 1 ] , we have proved (3.1) for {λ, μ)sΛ+(d).

Next let (λ,μ)eΛ~(d) and put λf = (λ1-\9..., λd-1, λd+1, . . . ,/ !„_!) and μ' = μ.

Then (λ\ μ')eΛ(λ, μ). By Lemma 3.6, we have

(πKΛ(φll-i-ί,) ^(A/,μ')= ί φ^)^(x ^',μ))Λc

= Σ Σ ^ f Γ ^ Ί Γ ^ ' ΊΓ 1 - 1 ^
«/!ί)v ew VL o I J L o l J L o l

= y y w(\Πλ+* M Γ 1 - - 1 " ί v j i ^ .
βe/(d) v'eN w VL 0 l J L 0 1(note that Π^v'Πχ.eKo for v ' e ^ ( o ) ) . Since Λj — ̂  — μ7 > -μ^ for y<i, we see that

(i^ί 1v'i7^xμ) i = J ] J . < . π λ j " A < " μ j v'o + π ~ μ i e π ~ μ i o . By an argument similar to that above,

we have

φ^,^) W(λ\ μ') = *μ, μ)W(λ, μ)+ Σ W, ^ λ", μ")W(λ", μ"),

where (λ'\ μ") runs over the set of Λ(λ, μ), and b(λ, μ) (resp. b(λ, μ, λ", μ")) is an element

of C x (resp. C[ξ, ξ " 1 , Ξ, Ξ" 1 ]) depending only on (λ, μ) (resp. (Λ,, μ, Λ/', μ")). Since

^ ( φ ^ j . J e C K , ί 1 ] , we have proved (3.1) for (A, μ)eΛ~(d).

We postpone the proof of (3.1) for (λ, μ)eΛ(n— 1) until §6 (see the remark after

Theorem 6.4). q.e.d.

4. Existence of Shintani functions.

4.1. In this section, we prove the existence of Shintani functions by using an

integral expression. We keep the notation of the preceding sections. Let wτ be the

permutation matrix corresponding to τ e S π (the symmetric group of degree ή). We write

w, for

" 0 1

1 0

where τt is the longest element of ®n. Let B (resp. Bo) be the subgroup of G (resp. Go)

consisting of upper triangular matrices. Let N (resp. No) be the unipotent radical of B
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(resp. Bo\ and put N' = {*n \ n e N}, N'o = {\ \ n0 e No). Denote by T (resp. To) the group

of diagonal matrices in G (resp. Go). The following result is a direct consequence of

the Bruhat decomposition for G.

4.2. LEMMA. We have

REMARK. The decomposition is not a disjoint union in general.

4.3. For g = (gij)eG and for iί9..., ir9j\,.. .,yΓ ( l<z' i< <ir<n, l<j\< <

jr<n), put idfl...ir,J 1...>/v( )̂ = <ίet(^tkji)i<fc,i<r We define

(4.1) *i{g) = A1...iΛ...i(wιg)

and make a convention that αo(#) = 1 and βo{g) = — 1. Note that απ(#) = ( - l) [ / ι / 2 ] det g φ 0,

where [«/2] is an integer satisfying 0 < n/2 — [«/2] < 1. Put

9ι =

1 0 1

0 1 1

0 •• 0 1

4.4. LEMMA, (i) geB^B if and only if

(ii) Let g e BogxB and write

, βi(g)ΦO (\<i<n-l).

(4.2) 9 = 0

0

* 0

t'.-i 0
0 1

9ι

Then the t'h tjsEx are uniquely determined by g and given as follows:

PROOF. First note that B,jgιBcBwιB. It is well-known that g belongs to BwtB if

and only if α^g)- α n _ ^ ^ O . Let g be an element of BwtB and write

Γv OΊΓl,,-! xl

Ho iJL o . r
where veN0, x = ί (x 1 , . . . , xn_1)sEn x and beB. It is easily verified that geBogxB if

and only if x1 χn_x / 0 . Since
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Γ1 °lϊ1 ° Ί
|_o v'JL x' 1,-J

with some v'eN'o and x' = '(xn_1,..., x t), we obtain

(4-3) oci(g)=y1---yi, ^ ) = (- l ) ί +

yt

wherey t is the ί-th diagonal component of b (1 < ί < w). This implies that x^ •xn-1φθ

if and only if β 1 (g) • • • βn _ x (g) φ 0, which proves the first assertion (i). To prove the second

one, let

0

0

Qi

Then we have

Γ

* 0

t'n-l 0

0 1

0 /',
o l *;_!
o •• o l

w,
t'n-lh

o
with VEN0. By (4.3), we get oti(g) = t1 Y[[ = 2 t'n+1.ktk and βi(g) = (-\)i+1t'n_μi(g), which

proves the assertion (ii). q.e.d.

4.5. Let δBo and δB be the modules of Bo and B, respectively (see, §1.1). For

ξeXum(T0) and ΞGXum(T\ let YξtS be a function on G satisfying the following three

conditions:

(4.4) The support of YξfΞ is BogxB .

(4.5) Yξ,Ξ(
boQb) = (ξ-1δB~

/

o

2)(b0)(ΞδB-
 1/2)(b)Yξ9Ξ(g) (boeBo, beB,geG).

(4.6) YU9ι)=X-

4.6. LEMMA. For geBogtB, we have

ξ,M=(Ξn\ I Γ 1)/2)(detfif)

PROOF. This follows from Lemma 4.4 (ii).

4.7. COROLLARY. Assume that (ξ, Ξ) satisfies

(4.7) \(ξn-iΞi)(π)\E<qEί/2 and KCΛS

Then YξtΞ is continuous on G.

ϊll2Wι(g)) •

1/2
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4.8. For (ξ, Ξ) e XUJTO) x Zu n r(Γ), we set

(4.8) WξJg)= ί dk0 ί dkYξfΞ{kogk).
Jκo JK

If (ξ, Ξ)eXunr(T0)xXum(T) satisfies (4.7), the integral (4.8) is absolutely convergent by

Corollary 4.7.

4.9. LEMMA. //(ξ, Ξ) e JTunr(Γ0) x Xunr(Γ) satisfies (4.7), we have WξtΞ e Sh(ξ, S).

PROOF. For simplicity, we write Y and W for YξyΞ and WξtΞ. Let φ e J fGo. Then

we have

(φ*W)(g) = I <& I rffeβ ί dkφ(x)Y(koχ-1gk)= ί Jx ί dkφ(x)Y(χ-1gk).
JGO JKO JK JGO JK

Decompose xeG0 into k^b,, {koeKo, boeBo). Then dx = δBo(b0)dιb0dk0, where dxb0 is a

left invariant measure on Bo. Then

(Φ* W){g)= dxbo I dfeβ ί dkφ(bo)Y(b;1kogk)δB (b0)
JBO JKO JK

= ί ΦoW\lotbo)dιb0 ί dfcβ ί
JBO J KO J

ζ*(φ) W(g).
K

The equality W/*Φ = ΞΛ(Φ)PΓfor Φe^fG is proved in a similar way. q.e.d.

4.10. We can now prove the existence of Shintani functions, which completes the

proof of Theorem 1.4. The proof was suggested to us by Fumihiro Sato.

THEOREM. For every (ξ, Ξ)eXunr{T0)xXunr(T), there exists a WeSh(ξ,Ξ) with

W(\)=l.

PROOF. Let Xo be the set of (ξ, Ξ)€Xum(To) x Zu n r(Γ) satisfying (4.7) and ^(π),

Ξj(π)>0 (\<i<n—\, \<j<ή). Then Xo is a (In— l)-dimensional real submanifold of

the complex manifold Xunr(T0) x Xunr(T). Let (ξ,Ξ)eX0. Since YξtS is positive on an

open dense subset BogxB of G, we have WξΞ(l)>0. By Lemma 4.9, WξΞ{g)= WξyΞ(g)/

WξΞ(\)eSh(ξ, Ξ). It follows from Corollary 3.4 that WlΞ(g) is a polynomial function

in 5 f 1 ( π ) , . . . , ξn-ί(π\ Ξ^\π),..., Ξ±\π) for each geG. This implies that, for each

geG, the function (ξ, Ξ)\-^ WξΞ(g) on Xo can be continued to a holomorphic function

on Xunr(T0)xXunτ(T). By analytic continuation, we see that WξΞ(l)= 1 and W£Ξe

ξ, Ξ) for (ξ, S ) e ^ u n r ( r 0 ) x Xunr(T\ which completes the proof of the theorem.

q.e.d.

5. Shintani functions at the infinite primes.

5.1. In this section, we let E=R or C We normalize the Haar measure dx on E
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as follows:

dx =
f the usual Lebesgue measure if E=R

if E=C.l2d(Rex)d(Imx)

For aeEx, put \a\E = d{ax)/dx. Let G = GL(n9 E) and

Ό(n,R) if E=R

U(n) if £ = C .

The Haar measure dk on K is always normalized so that the total measure of K is equal

to 1. We normalize the Haar measure dg on G by

K=

[ f(g)dg=[ dn\ d*tl -d*tn\ dkλn
JG JN J(E*r JK \

for feC?(G\ where dn = \\i<j dn^ is the Haar measure on N= {n = (ni}) e G | nu = 1, nu = 0

if ί>j). Let Lie((j) be the Lie algebra of G and % the universal enveloping algebra of

Lie(G)®KC. We denote by %G the center of ̂ G . For XeLie(G) and / G C ° ° ( G ) , put

(5.1) = --f(g-exp(tX))
at

= — f(cxp(-tX) g)
dt f = 0

These actions of Lie(G) on C^iG) extend to those of ̂ ίG in a natural way.

5.2. Let Γbe the group of diagonal matrices in G and °llT the universal enveloping

algebra of Lie(Γ)c = Lie(T)®RC. Then

via the Harish-Chandra isomorphism, where WG = NG(T)/T (for example, see [G-V,

§2.6]). Denote by Xunτ(T) the group of continuous homomorphisms of Γto C x trivial

on T1 = {dmg{ε1,...,εn)\εieEx, \εt\E= 1 (1 <i<ή)}. The differential dΞe(Lie(T)c)* of

ΞeJ u n r (Γ) determines an element ΞΛ of Homc(^fG, C) via the isomorphism (5.2). It is

known that Homc(«rG, C)={ΞA \ΞeXunr(T)/WG}.

5.3. FOTΞEXUJT), we set

(5.3)

where 0s(#) is defined as in (1.1). We now recall several well-known facts about the

spherical function

(5.4)

\~j.j) τ g\KgK ) — i Ξ\9) /C, /C t Λ , g 6 KJ .
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I(5.6) ΨΞ{gkg')dk = ΨΞ{g)ΨΞ{g').
K

(5-7)

(5.8)

5.4. LEMMA. Let Ξ e Xunr(T) and Fe C™{K\GIK). If

(5.9) RZF=ΞA(Z) F

holds for any Z e f G , then we have F(g) = F(l)ΨΞ{g).

PROOF. This follows from [G-V, Theorem 3.2.3] and [H, Proposition 5.32].

5.5. Let G0 = GL(n-l,E) and define To, Ko similarly as T and K. Let ξe

Xunr(T0),ΞeXunτ(T) and put ω = ξ1 -ξn.1, Ω = ΞX -ΞneXunr(Ex). We now define

the space Sh(ξ, Ξ) of Shintani functions on G attached to ξ and Ξ to be the space of

WeC^{K0\GIK) satisfying

(5.10)

(5.11)

5.6. REMARK. It is an open problem to compute dimcSh(ξ, Ξ) in the Archime-

dean case.

6. Integral formula (I).

6.1. Let E be a local field (either Archimedean or non-Archimedean). In this

section, we show an integral formula for Shintani functions on G = GL(n, £), which is

crucial to the proof of the uniqueness theorem in the non-Archimedean case (Theorem

3.1). We use the same notation as in §1 (resp. §5) in the non-Archimedean (resp.

Archimedean) case.

6.2. Let ζE(s) be the local zeta function of E:

(6.1)

(1— aES) ι if E is non-Archimedean

π-sl2Γ(Λ i f E = R

(2π) 1"T(ί) if £ " = C .

Let Ξ = (Ξ1,..., Ξn)eXunτ(T). Denote by LE{Ξ; s) the standard L-factor attached to Ξ

given as follows:
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n

Yl (1 — Ξι(π)qE

 s ) ~ 1 if E is non-Archimedean

(6.2) LE(Ξ;s) = \ ^
Y\ ζE(s + μ{) if E is Archimedean ,

where Ξi(t) = \t\E

i(μieC) in the Archimedean case. For χeXunτ(Ex), we put

(6.3) χ®Ξ = (χΞu . . . , χΞn)eXunr(T).

6.3. For seC, we define a function vEs on iΐ71"1 as follows:

If E is non-Archimedean,

(6.4a) v£,s(Λ) { _ ί s _
U if A-eπ 'Z, p r i m (/>0),

where L = θ £ - 1 and Lprim = L — πL. If E is Archimedean, then

^ if E=R(6.4b) vEs(X) = .
[{\+'XX)'s if £ = C .

Note that, in the non-Archimedean case, vs(X) = q^'s if and only if

0 1 J
(cf. §2). The main result of this section is as follows:

6.4. THEOREM (the first integral formula). Let ξ e Xunr(T0), Ξ G Xunτ(T) and as-

sume that Re(s) is sufficiently large. For We Sh(ξ, Ξ), we have

n-Λ

Here Ω = ΞX -Ξn andω = ξ1 •{„_!.

REMARK. Consider the non-Archimedean case and put vt = vo\{{XeEn~1\ vs(X) =

qE

ls}). Then we have

if /=0

if

and the integral of the theorem is equal to Σz" o ^ ^ 0 ^ " 1 ^ l^-1^1^^'1^. This

implies that Wφ^'^, l(n~1]) is uniquely determined by ξ, Ξ and W{\\ and that

W{^n-ι\l{n-l))eClξ,ξ-\Ξ,Ξ-ι~\ if W(l)=l, which completes the proof of Pro-

position 3.3 (and hence Theorem 3.1).
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6.5. Throughout the remainder of this section, we assume that Rφ) is sufficiently

large. For r, r ' > l , let σrr, be a function on Mrr{E) given as follows: If E is non-

Archimedean, σry is the characteristic function of Mrr{oE). If E is Archimedean,

fexp(-πtrCAT)) if E=R

°ry jexp(-2πtr('AΎ)) if E=C.

If r = r', we write σr for σrr. We often omit the subscripts (r, r') and r if there is no fear

of confusion. The following result is elementary.

6.6. LEMMA, (i) If
r r'

X=\a b~\eMr+r,(E),
r±c d]

we have σr^r{X) = σr{a)σry{b)σr.r{c)σr{d).

(iii) ί£/MWt)<Γί=CE(s) (d*t=dt/\t\E).
(iv) Let ΞeXunr{T) and define φΞ: G^Cby (1.1). Then

ί detg \Ϋin-1)l2dg = L£(Ξ; s).

6.7. LEMMA. For XeE"~ι, we have

(6.5) ί σn_XΛ{tX)σι{t)\t\sdxt = ζ^s)vEtS{X).
JE*

PROOF. The proof in the Archimedean case is straightforward and we omit it.

Suppose that isis non-Archimedean. The assertion is obvious if XeL = on

E~1. Let

Xεπ~ιLvxim (/>0). Since both sides of (6.5) is left C?Lll_1(o£)-invariant as a function of

Xe En~x, we may assume that X= \π~ι, 0, . . . , 0). Then (6.5) follows from an elementary

formula J£X σ(tπ-ι)σ(t)\t\sd*t = ζE(s) qE

ls (/>0). q.e.d.

6.8. LEMMA. Let We Sh(£, Ξ) and let Φ (resp. φ) be a bi-K- (resp. bi-K0-) invariant

function on G (resp. Go). Then, for any geG, we have

(6.6) W(gy)Φ(y)dy=W{g)\ φΞ{y)Φ(y)dy,
IG JG
ί W(gy)Φ(y)dy=W{g)[ φ^

JG JG

ί(6.7) ί w(\X

o °ι\g\φ}dx=W(g){ φξ-ί(x)φ(x)dx,

if the integrals are convergent.

PROOF. The left-hand side of (6.6) is equal to \GΦ(y)Fg(y)dy, where Fg(y) =

$κW(gky)dk (yeG). Observe that Fg(y) satisfies (1.3) (resp. (5.9)) in the non-Archi-
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medean case (resp. in the Archimedean case) and Fg(\)= W{g). Then, by the uniqueness

of spherical functions (see §1.2 and Lemma 5.4), we have Fg(y)= W(g)ΨΞ{y\ which im-

plies (6.6). The assertion (6.7) is proved similarly. q.e.d.

6.9. THE PROOF OF THEOREM 6.4. Let We Sh(£, Ξ). To prove the theorem, we

calculate the integral

)= ί
JG

in two ways. We first apply (6.6) to Iw(s) and get

ί ΦΩ-lω-
JG

\ φΩω®Ξ-
JG

\
G

By Lemma 6.6 (iv), we have

(6.8) 7 ^ ) = W(\)LE(Ωω® S " 1 ; 5).

Next decompose g e G into

] (90eG0,XeE»-\teE\keK).

Then dg = dgodXd*tdk and we have

It follows from (6.7), Lemma 6.6 and (1.10) that

= ί Φn

xί dx[

By Lemma 6.7, we have

(6.9) ^ y ( j
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The theorem now follows from (6.8) and (6.9). q.e.d.

7. Integral formula.

7.1. We keep the notation of §6. Let Gx = GL(n +l,E) and embed G = GL{n, E)

into Gx via

Γ l

Note that

1

9
_ 0

0

0

1 _

for goeGo = GL(n—l, E). Let P1 = N1M1 be the standard parabolic subgroup of G1

corresponding to the partition «+ 1 = 1 +(« — 1)+ 1, where

1 * *

0 lπ_! *

0 0 1

t 0

0
t,t'eE*9g0<

Then we have the Iwasawa decomposition Gί = P1Kί, where

GL(n + 1, o) if E is non-Archimedean

O(n+\,R) if E=R

U{n+l) if E=C.

Put

1 0

1 1

For g e G, we decompose Yo ι(g) into

oc(g) 0

0 α'(0)

where n^sN^ oc(g), oi'(g)eEx, β(g)eGo and k1

we define the integral
. For , Ξ) and ί, s'eC,

(7.1) |s + (n-l)/2j I - (s- + (π -

G O \G

Note that the integrand does not depend on the choice of α(#), ccf(g) and β(g), and is
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left G0-invariant.

7.2. THEOREM (the second integral formula). Let We Sh(ξ, Ξ) and assume that

and Re(s') are sufficiently large. Then we have

1
Zw(s,s') =

7.3. To prove the theorem, we define a function NGfS on G as follows (seC). Let

h o
g=k

o
k' (k,k'eK,tu...,tneE*)

be a Cartan decomposition of geG. We may assume that / 1 , . . . , / n > 0 in the

Archimedean case. If E is non-Archimedean, we put

(7.2a)

If E is Archimedean, we put

GJa)= Π

(7.2b) NG,s(g)=

Πd+'fr

if E=R

if E=C.

We define a function NGotS: GO->C in a similar manner. It is easy to see that

(7.3)

(7.4) W

(7.5)

{geG, k, k'eK, s, s'eQ. The following integral expression of NβtS is well-known.

7.4. LEMMA. Assume that Re(j) is sufficiently large. For geG, we have

ί
where ζf{s) =

7.5. LEMMA. Let ΞeZuni(Γ) andst,s2eC. Assume that R φ t ) andRe(s2 —ix) are

sufficiently large. Then we have
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(7.6) f Φd
JG

& 1;s2-s1

n-\

ίε \S2)

PROOF. We write A(Ξ\ sl9 s2) for the left-hand side of (7.6). Let ΨΞ{g) = j χ φΞ{kg)dk

be the zonal spherical function attached to Ξ (cf. §1.2 and §5.3). By Lemma 7.4, we have

\siζ%Xs2)A(Ξ;sus2)= f dg [ dyφM\detg\E>σ(yg)σ(y)\dcty\E

JG JG

= \ dg\ dyΨΣ{y-ιg)σ(g)σ(y)\dttgmdtty\si-Sί.
JG JG

By (1.6) (or (5.6) in the Archimedean case), ζ{ξ\s2)Λ(Ξ\ su s2) equals

Γ Γ
Ψs\g)σ{g)\dεig\s

Edg \ ΨΞ(y )σ(y)\dεty\SE Sldy .
JG JG

The proposition now follows from Lemma 6.6 (iv) (note that ΨΞ{y~^^ΨΞ-Ay)).

q.e.d.

7.6. PROPOSITION. For geG, we have

PROOF. The latter formula is an immediate consequence of the former, since

\άetg\E = \<x(g)oc'(g)detβ(g)\E. To prove the first formula, we may suppose that Re(j) is

sufficiently large. For g1eG1, put

BJίg1)=[ dxί d*t\ dXσ(\° * X\X{x)\detx\ E\t\
JGO JE* JE»-1 VLU 0 t J /

s-n+1
E

Let

01 =

α * *

0 β *
O O α '

be an Iwasawa decomposition of gx. Applying Lemma 7.4 to Go, we have

"0J-f dx[
J G . JE*

dXσ(\ ^
E»-» VLO 0 a'ί

= |
J G

σ(xβ)σ(x)\detx\s

Edx

(\
V L

\ σ(a'ί)|/|Γn+V*ί | σ(a'

- M + l
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In view of Lemma 7.4, it now remains to show

(7.7) BS(YO ι(g))= ί σ(yg)σ(y)\ dety \%dy .

Since both sides of (7.7) is right A^-invariant as functions in g e G, we may suppose that

g is of the form

l_0 a]

ί 'A Γ ^ Γ JV (\x

dx\ dt\ dXσΠ
J Go JE* JEn~l \L *

Then the left-hand side of (7.7) equals

0 at

On the other hand, decomposing yeG into

Γx Xl nk\ ikeK.xsG
Lθ ί J

we see that the right-hand side of (7.7) equals

ίAΛ-Mί: 'Mi' s-π + 1

This proves the proposition. q.e.d.

7.7. We now finish the proof of Theorem 7.2. Let WeSh(ξ, Ξ) and assume that

Re(s) and Re(s') are sufficiently large. We calculate the integral

,s')= ί
JG

in two ways. By (7.4) and Lemma 6.8, Jw(s, sr) equals

(7.8) Jπ(s
JG

From Lemma 7.5, we get

(7.9) Ms, sΊ=

L&;s)LAΞ;s)
ζ{£\s+s' + n-l)
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On the other hand, by Proposition 7.6 and (7.4), Jw(s9 sf) equals

GO\G

x\cc(g)-det(g0

(note that a{gog) = cc(g), a'{gog) = a'{g) and β{gog) = g0 β{g) for g0 e Go and g e G). Changing

the variable g0 into g0 βig)'1 and applying Lemma 6.8 and Lemma 7.5, we get

(7.10)

The theorem is a consequence of (7.9) and (7.10). q.e.d.

Part II. Global theory.

8. Global Shintani functions attached to automorphic forms.

8.1. Throughout Part II, we fix a finite extension E of Q. Let ^ be the set of

primes of E and 0>f (resp. 0>

oo)
tne s e t °f finite (resp. infinite) primes of E. For ve0>, Eυ

stands for the completion of E at v and write | \v for the normalized valuation | \Ev

(see §1.1 and §5.1). For vG&f, let ov be the ring of integers of Ev and fix a prime element

πv of ov. We put qΌ = HoΌ/πvoυ). The adele ring A=AE (resp. the idele group Ax =AE)

of E is the restricted direct product of Ev (resp. Eζ) with respect to \\Όep ov (resp.

ΓLeί? °v )• W e write | a \A for the idele norm of a e Ax : | a \A = Π ϋ e ^ I α If D e n o t e by ί/£

the discriminant of E. We set

(8.1) ζE(S)~\dE\S/2 Π CEV(
S) > ζiE)(S)= ΓΊ ^£( ' S ~0

(for the definition of ζEv(s), see §6.2). The (completed) Dedekind zeta function ξE(s) is

holomorphic except at simple poles s = 0 and s= 1, and satisfies the functional equation

8.2. We consider G = GL(ή) as a linear algebraic group defined over E and denote

by GA = G(A) the adelization of G over E. Throughout Part II, we define the Haar

measure dg on GA to be the product measure Y\ve<?dgv, where each Haar measure dgv

on GEv is

subgroup

normalized as in
of GV = G(EV) given

K

§1.1
by

V

and §5.1.

GUn, ov)

O(n, R)

U(n)

For

if

if

if

ve0>, let

ve0>f

EV = R

E=C.

Denote by C^iG^GJK^ the space of smooth functions on GE\GA/KA, where KA =

Y[vepKv. Let T be the group of diagonal matrices in G and WG = NG(T)jT the Weyl
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group of (G, T).

8.3. Let vE&n- Denote by JΓGυ the center of the universal enveloping algebra of

Ue{Gv)®RC. Then &Gv acts on C^G^GJK^ via right translations. Recall that

nomc(&Gv,C) = {ΞA\ΞeXunr(Tv)/WG} (cf. §5.2). Next let υe0>f. The Hecke algebra

JP(GV9 /Qacts on C^{GE\GAjKA) via

(F* Φ)(g) = F(gy)Φ( y)dy (Fe C^iGΛGJKX Φ e J^(GV, Kv)),

J
Recall that H o m ^ G , , /Q, C) = {Ξ* \ΞeXunr(Tv)/WG} (cf. §1.2).

8.4. Let Ω be a Hecke character of E unramified everywhere. By definition, Ω is

a continuous homomorphism of E*\A * to C x trivial on Y\ve#> o* x Πue^oo^"' w n e r e

El = {teEϊ\\t\v=\) for ve^. Denote by C°°(GE\GJKA;Ω) the space of F e

C™{GE\GAIKA) satisfying F(tg) = Ω(t)F{g) (geGA,teAx). Let Ξ = (Ξv)eY[ve^Xunτ(Tv).

Under the assumption ΞυΛ— Ξvn = Ωv for every ve&, we let s/(GE\GJKΛ; Ω; Ξ) be

the space of Fe C°°(GE\GA/KA; Ω) satisfying the following conditions:

(8.2) For every v e0>f, we have F*Φ = Ξ*(Φ)F (Φ e Jt(Gv, Kv)).

(8.3) For every ve^, we have RZF=Ξ£(Z)F (Ze&Gv).

(8.4) F is slowly increasing on GE\GA (cf. [G-J, §10]).

We call s/(GE\GA; Ω; Ξ) the space of automorphic forms on G with eigenvalues Ξ. By

definition, Fejtf(GE\GA/KA; Ω; Ξ) is cuspidal if $NεXNAF(ng)dn = 0 (geGA) for the uni-

potent radical N of any proper parabolic subgroup of G. Let ̂ CVLSV(GE\GAjKA\ Ω; Ξ) =

{Fes/(GE\GJKA; Ω; Ξ)\F is cuspidal}. If Fe^cusp(GE\GA/KA; Ω; S), F is rapidly de-

creasing on GE\GA (cf. [G-J, §10]).

8.5. Let Fesrf{GE\GAjKA\ Ω; Ξ). We define the (completed) standard L-function

ξ(F;s) by

where LEv(Ξv; s) is defined by (6.2). Put

(8.6) F(g) = F(tg-1).

Then we see that Fesrf(GE\GAIKA\Ω~ι\Ξ~ι) with Ξ~1=(Ξ;1)ve^ and that ξ(F;s) =

Y\ve^LEv(Ξ~1;s). It is known (cf. [G-J, §13]) that ξ(F;s) is continued to a mero-

morphic function of s on C and satisfies the functional equation

(8.7) ξ(F;s) = ξ(F;l-s).

Moreover, ξ(F; s) is entire if F is a cusp form. For a Hecke character χ of F, define the

twisted L-function of F b y ξ(χ®F; s) = \dE\ns/2γ\v^LEv(χv® Ξv;s) (cf. §6.2).

8.6. Recall that G0 = GL(n-\) is embedded into G via
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U 01
Lo ij00 l

Let (Ω, ω) be a pair of Hecke characters of E both unramified everywhere. We put

,A; ω) = j / e C°[GβtΣ\GβJKβjί ω) ί ^ \f(x)\2dx<oo\,

where Gx

OjA = {xeGoM\ |detx\Λ = 1}.

LEMMA. Lei / e C%(GoJL\GOiA/KoA, ω) and Fe C™{GE\GAIKA, Ω). Assume that F
is rapidly decreasing on GE\GΛ. Then the integral

rAβ)= ί
JG

(8.8) W;M= f(x)F(xg)dx
>GO,E\GO,A

converges absolutely and uniformly for g in a compact subset of GA.

PROOF. Let C be a compact subset of GA. The estimate due to Jacquet and Shalika
[J-S2, p. 799] asserts that for every N>0 there exists a positive constant c = c(C,N)
depending only on C and TV such that

IJ) ( i 6 G M , ^ e C ) .

Then the integral (8.8) is majorized by

if ) 1 / 2 f*5

c'\ \f{x)\2dx\ x ^ ω Inf{r(π-1)iV,/(M"1)iV}ί/x/,
I JGO,E\GX

OA J J O

where c' is a positive constant depending only on C and N, and μωeR is defined by
I ω(tf) I = I a |5ω (a e Λ x ) . If we take N sufficiently large, the last integral is convergent and
we are done. q.e.d.

8.7. Suppose that Ξ = (Ξv)eY\ve^Xunτ(Tv) and ξ = (ξv)eY[ve^Xunr(T0J satisfy
ΞvΛ" Ξvn = Ωv and ξΌy ' ξVffί _ i = ωv for every ve£? with certain Hecke characters Ω
and ω, where Γ (resp. To) is the group of diagonal matrices in G (resp. Go). We set

; ω; ξ) = ά{GOtE\GoJKo,A; ω; ζ)nCftG.J\G0JKβtA; ώ).

Let Fe^QUSp(GE\GA/KA;Ω;Ξ) and fedL*(Go,E\GoJKOtA;ω;ξ). We call the function
WfF(g) on G4 defined by (8.8) the global Shintani function attached to (/, F). Since the
restriction of WίF to G£t) is in Sh^,,, SB), the uniqueness of local Shintani functions at
the non-Archimedean primes (Theorem 3.1) implies

(8.9) WfM=WJgx) Π Wυ{gv),

where g = ga>X[vm,tgveGΛ with g^eG^^W^^G^ Wκ is the restriction of WίJr to
Gx and, for υe0>f, Wυ is the element of Sh(C SJ with Wv(\)=\.
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8.8. Let fe^(GOiE\GoJKOtΛ;ω;ξ) and Fes/cusp(GE\GA/KA;Ω; Ξ) (we do not
suppose that fesrfL2). In the next section, we need the following twisted form of the
global Shintani function:

(8.10) WLF{g\ s)= f f(x)F(xg)\detx\s

Adx (geGA, seQ.
JGO,E\GO,A

Due to the results of Piatetski-Shapiro [PS, §2], we have the following:
( i ) The integral (8.10) is absolutely convergent in the half plane Re(s)>c

for some c. (Note that the integral is absolutely convergent for any seC if fe
^LAGO,E\GOJKOA- ω; ξ) (cf. Lemma 8.6).)

(ii) The function WfF(g;s) is continued to an entire function of s on C and
satisfies the functional equation WfF(g\ s)= Wfp^g'1; —s).

(iii) We have

where Wf$ and W¥^ are the usual Whittaker functions attached to / and F:

Wf,f(x)= ί f(nx)
JNO,E\NO,Λ

NE\NA \ »= 1

(ψ is a nontrivial additive character of E\A). Note that this implies WftF(g; s) = 0 unless
/ is generic.

Moreover, we have the following Euler product for WfF(l; s) (cf. [J-S2]; see also
[Bu]):

(8.11) Wf

where

Z 0 0(/®F;s) =

and L{f ® F; s) is the tensor L-function of the pair (/, F):

L(f®F;s)= Π j Π Π (l-ίi>B)Sj>χ-

9. Rankin-Selberg convolution (I).

9.1. In this section, we give an application of the first integral formula stated in
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§6 to an integral expression of the automorphic L-functions for GL{ή). For seC and

X=Y[vepXveAn~ί(XveE"~^ we put

(9.1) Vs(J\f)=Π VEv,s(Xv),

where v£v,s: E"~1-+C is given by (6.4).

9.2. P R O P O S I T I O N . Let Fes/cusp(GE\GJKA;Ω; Ξ) and fes/(GOtE\GoJKθ9Λ;ω;

ξ). IfKe(sί) and Re(s 2 ) ore sufficiently large, then

n

~2

(For the definition of WftP{g; s), see §8.8.)

PROOF. Observe that the restriction of WftF(*;s) to GEv belongs to Sh(ξs

v,Ξv),

where ξs

v = (ξvj \ \s

Ev)i<i<n-i- Then the proposition is an immediate consequence of

Theorem 6.4. q.e.d.

9.3. In the remainder of this section, we let Fejtfcusp(GE\GA/KA;Ω;Ξ) and

festfL2(GoE\GoΛ/KOfA;ω;ξ). To define a Rankin-Selberg convolution, we introduce

certain Eisenstein series on G = GL(ή). Let P and Q be the standard maximal parabolic

subgroups of G of types (n— 1,1) and (l,n—1), respectively. Namely, P = NPMP and

β = NQMQ where

J
Note that P and β are not conjugate in G if « > 3. Let <5P and δ Q be the modules of PA

and QA. We use the same letters δP and (5β to denote their natural extensions to GA.

Namely,

(9.2)

(9.3)

Λ 1 1 IT I —

δQl \k) =

det# 0

tn-l

detg0
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{goeGOιA, teA",keKΛ). For geGΛ and seC, we get

(9.4) φ(g; s; /, Ω ' u, P) = {ωΩ)~

(9-5)

Define the Eisenstein series as follows (cf. [J-Sl]):

(9.6) E(g;s;f,Ω-ι;P)= £ Φ(J9; s; f, Ω~u, P)
γePE\GE

(9.7) E{g;s;\;Q)= Σ Φ(yg; s; 1; Q).
yeQE\GE

The series are absolutely convergent if Re(s) is sufficiently large. Put

(9.8)

Then E*(g; s;f,Ω~ *; P) is continued to an entire function of s and satisfies the functional

equation E*(g; s; /, Ω"1; P) = E*(tg~1; - 5 ; /, Ω P). Next set

(9.9) E*(g; s; 1; Q) = ξAs + -)E{g; s; 1; β ) .

Then E*(g; s; 1; β) is continued to a meromorphic function of s on C, holomorphic

except at simple poles s = n/2 and — n/2 with residues | dE | and —\dE\, respectively, and

satisfies the functional equation E*(g; s; 1; Q) = E*(tg~1; — s; 1; Q). The normalized

Eisenstein series (9.8) and (9.9) are slowly increasing functions of g on GE\GA with

central characters Ω~ι and 1 (the trivial character), respectively. We now define a

convolution attached to (/, F) of Rankin-Selberg type by

(9.10) Z%F(sus2)= F(g)E*(g; s,; /, Ω" 1 ; P)E*(g; s2; 1; Q)dg .

The integral (9.10) is absolutely convergent if R e ^ ) and Re(s2) are sufficiently large.

By the properties of the Eisenstein series stated above, ZJ F(su s2) is continued to an

entire function of (^l5 s2) on C2 (note that the Eisenstein series is orthogonal to any

cusp forms). The main result of this section is stated as follows:

9.4. THEOREM. We have

sι+s2 + ^)w^U
n n 2) \ n

9.5. To prove the theorem, we need some preparation. For i,j (\<ίj<n, iφj),



194 A. MURASE AND T. SUGANO

put Uij = {ln + aΈij\aeE}, where Eij = (δikδjl)1<kJ<neMn(E). ¥oτj(l<j<n), let w,e

GE be the permutation matrix corresponding to the transposition (\j) and put

£/, = Πi£j</ uiy N o t e t h a t UJ ί s a subgroup of G£ and Un = NPE (cf. §9.3). The Bruhat

decomposition for G implies

(9.11) E(g; s;l;Q)=Σ Σ Φ(™jW, S U Q)
J = l ueUj

9.6. The following result is elementary and we omit its proof.

LEMMA. For XeΛn~1 and seC, we have

9.7. THE PROOF OF THEOREM 9.4. Set

fA*i> si)= ί F{g)E(g; sx; /, Ω'1; P)E(g; s2; 1; Q)dg .
JZAGE\GA

Note that Z*f F(1y1, ,y2) = ^(^2 + n/2)ξ(Ωω (x) /; 5X + 1 ) Z / F ( ^ ! , 5 2 ) . Unwinding the Eisenstein

series E(g; s x; f9 Ω~ lm

9 P), we have

/>i,J2)= F(p)φ(p;sί;f,Ω-1;P)E(p;s2; 1;

([V-"([V

where

is a left invariant measure on ZA\PA. By (9.11), ZfF(sι, s2) equals

.*WV ίϊϊ ?]-
We claim that the term for7 with 1 <j<n— 1 vanishes. Observe that every WjW (we t/j)

normalizes NPtΛ and that 0(gf; s; 1; Q) is a left NP^-invariant function of g. Then we have
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UAΐr ί][ϊ ϊ

by the cuspidality of F, which proves our claim. Thus ZftF[sί9 s2) equals

Since

by Lemma 9.6, ZfJ,(sl9 s2) equals

UL...
The theorem now follows from Proposition 9.2. q.e.d

9.8. REMARK. In view of Theorem 9.4 and §8.8 (iii), we have proved that the
product E(g; st; /, Ω"1; P)E(g; s2; 1; Q) has no cuspidal component unless / is generic.

10. Orbit decomposition.

10.1. Let Gx = GL(fi + l). We often regard G = GL(n) (and G0 = GL(n-l)) as a
subgroup of (?! via the embedding

ι(g)
LO g

Let /*! be the standard parabolic subgroup of Gx corresponding to the partition

n + l = l + ( n _ l ) + l as in §7.1. Recall that P1 = N1MU where

1 * *

0 1,.! *

0 0 1

and t9feGLil)9goeGo

For ί ( ! < / < « + ! ) , let e^^O,. . . , 0, 1, 0,..., 0)eEn + 1 be the vector with the i-th
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component 1 and the others 0. Then P1 = {g1 eGx \gx e 1 = > l e 1 , tg~1 tn + ι = λ'tn

10.2. Let #* = {(*, y)eEn + 1 xEn + 1\ <x, y> :='xy = 1}. The group G 1 > £ acts on

transitively by gx (x, y) = {g1x, tgΐ1y). Then GE is the isotropy subgroup of (e1? e

in G l f ,

10.3. Define the elements Tt (0<i<5) of G 1 > £ as follows:

(10.1) Yo =

1

0

1

" 0

0

1

0

!„-
0

0

1.-
0

0

i 0

1 _
. Ά =

- 1 ~

i 0

0

1 0

ί In-!

0 0

, Y5 =

" 1

e (!„

0

0

0

1

- ' e

-i-e

0

• e)
0 "

0

1 _

0

0

_ 1

0

!„-
ί

1

e

- 1

0

0

where e = '(l, 0 , . . . , 0 ) e £ " " 1 (e = 1 if n = 2). We put J ί = Ϊ J " 1 ^ YjnG. Then, viewed as

subgroups of G, the J f ' s are given as follows:

(10.2) lo =

Γ l
0

1 °
*

9'

0

*

*

t

, J 2 3 =

" 1

*

0

*

o Ί
0

t

g'eGL(n-2),tφO

g'eGL(n-2),t¥=0

-t. :
ί * *

0 g' *

0 0 f

g'eGL(μ-2),t,t'Φ0

10.4. PROPOSITION, (i) GUE = \J^=oPltEYiι(GE) (disjoint union).

(ii) If i>0, there exists a normal subgroup Ut of lt such that U( is the unipotent

radical of a proper parabolic subgroup of G and that

PROOF. Let (x, y) e 3C and write

j " 1
cNι.

x = x2
y =

1

n-l .

1

Put
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We have ^ = IJ t

5=o^ΐ (disjoint union) and &i = P1J1Yί (ei, ex) (0<i<5), which proves
(i). Put

and C/3 = t/4

Then it is easily checked that each Ut satisfies the condition of (ii). q.e.d.

11. Rankin-Selberg convolution (II).

11.1. We keep the notation of §8 and §10. Let Fs s/cusp{GE\GJKA; Ω; Ξ) and

fe£/L2(GoE\G0fΛ/KoA;ω;ξ). Put KίtΛ = Y\υe^KlίΌ, where Klv is defined in the same

way as that for Kv in §8.2. For s, s' e C, we define a function φ(*; s, s'; f) on GίjΛ by

(11.1) φ\ nx 9o

t'

where n1eNlfA, /, /' GAX ,goe GoA and kx e K1A. If Re(s) and Re^') are sufficiently large,

the Eisenstein series

(11-2) <% i ;s,s';/)= Σ <Kylΰil s,s';f)

yiePi)E\G1,E

is absolutely convergent. Put

(11.3) g*(gi;s,s';f) = ξE(s + s' + \)ζ(f;sf + \)ξ(?;s+mgi;s,sf;f),

where f(x) = f(tχ-1)e^L2(G0,E\G0JK0^ ω"1; Γ 1 ) and ζ(f s) is the completed
standard L-function of / (see §8.5). Then $*{${, s, s'; /) is continued to a meromorphic

function of (s, s') on C 2 and satisfies the functional equation

Moreover, <f*(^i; 5, s'; f) is a slowly increasing function of gγ on GγE\G± A.

11.2. Let Cf{R +) be the space of compactly supported smooth functions on R +

(the set of positive real numbers). For o e C ^ Λ ί ) , we set

(11.4) iT*F(s, s'; υ)= F(g)£*(ι(g); 5,
J GE\GA

Since F(gf) is rapidly decreasing and $*(ι(g)\ s, s'\ f) is slowly increasing on GE\GA, the

integral (11.4) is absolutely convergent and defines a meromorphic function of (s, s') on



198 A. MURASE AND T. SUGANO

C 2 . Note that the integral

J GE\GA

F(g)<?*(ι(g);s,s';f)dg

is not necessarily absolutely convergent.

11.3. Take a sequence {ΌJ} in Cc°°(/?+) satisfying

(11.5)

(11.6)

Q<υί(x)<υ2(x)<--<1

lim Όj(x) = 1

for every x>0. The aim of this section is to show the following:

11.4. THEOREM. Assume that Re(s), Re(y) are sufficiently large. Then we have

Hm ir;>,s';»,0H^Γ^

(Note that the limit is independent of the choice of {ΌJ}.)

11.5. For geGA, we take oc(g), a'(g)eA* and β(g)eCoA so that

αfo)
(11.7) Yo

(«! eiV\tA, kitKxJ). We put

(11.8) ^rA^s' o]

β(g)

GE\GA

Note that

(11.9) 2}%fc sr; υ) = ξE(s + s' + l)ξ(fi s'

11.6. PROPOSITION (Basic identity). For υ e Cc°°(/? ϊ) , we

<JGO,A\GA

where we put

(11.10) -ί
PROOF. Unwinding the Eisenstein series in (11.8) and using Proposition 10.4 (i),

we obtain
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/fF(5,s/;ϋ)= ί F
JGE\GA

= Σ ί
i = 0 JMUA

F(qg)φ(Yiqg; s9 5'; / M l d

where rf^ is a left invariant measure of QiA. Since JF is cuspidal, the integral over

Ά^EWΛ vanishes for i> 1 in view of Proposition 10.4 (ii). It follows that i2?/jF(s, s'; υ)

is equal to

ί
GO,A\GΛ

F(xg)φ(Yoxg; s, s'; f)o(\detx detg\Λ)dx]dg .

Since

for XGGO(A) and gεG(A), the integral over GOtE\GOtΛ is equal to

l i ( s ' + n / 2 ) ^/F(A^)~ 1g)- This completes the proof of the proposition.

; 5,5'; f) = φ(xYog; 5, 5'; f) = f(xβ(g))\ φ ) | / - / 2 | α'

q.e.d.

11.7. For g — Y\ve^ gv G GA and seC, we put

( n i l ) NGAJίg)=Π *GVM)

(for the definition of NGυtS, see (7.2)). For ϋ6Cc°°(Λϊ) and s, s 'eC, we set

(11.12)
JGA

11.8. LEMMA. For ϋ e C^ί/? ί ) α«ί/ 5, s' e C with Rφ\ Re(s') sufficiently large, we
have

S ' S ' ϋ) *

PROOF. Observe that φ * H

LzW}fF = ξ£(z)- W}yF for z e f G o

function φ we have

*) W}tF for φeJfGov (ve&f) and that

It follows that for any bi-K0 ^-invariant

ί
GO,A

if the integral is absolutely convergent. Here we put φξ-i(x) = Y\vepφξ-ι(xΌ) for

x = Y\ve0>xv€Go,A' On the other hand, by Proposition 7.6 we have
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= NGo^+nl2{χ β(g))NGoA,s+n/2(\χ βigV1) x I αfo) li+"/21 α'fo) i; ( s'+ M / 2 ).

The lemma is then proved by an argument similar to that of §7.7. q.e.d.

11.9 Let {ΌJ} be a sequence in C?(R+) satisfying (11.5) and (11.6). In view of

Lemma 11.8 and (11.9), it remains to show the following result to complete the proof

of Theorem 11.4:

LEMMA. Assume that Re(s) and Re( s ') are sufficiently large. Then

( Ϋ ) ( Ϋ )
PROOF. By the definition of W}F and the left A^-invariance of NGAS+s>+n(g), the

integral //>F(s, s'; ΌJ) is equal to

ί dg f dxf(x)NGA,s+s,+n(g) \ dεtg \s

A

+n/2Vj(\ d e t x d e t g \A) \ F(xkg)dk .
J GA * GO>E\GO,A *J KA

By an argument similar to that in the proof of Lemma 6.8, we have

f F{xkg)dk = F{x)[ φΞ(kg)dk,
J KA J KA

where ΦM = Y\VΪ»ΦΞJ<9V) for g = Y\veύ/,gυeGΛ. It follows that Jf<r(s, s'; Όj) equals

f /(x)F(x) j ί φΞ(g)NGA,s+s,+n(g)Idctg[°A

+»<2Vj(\detx detg\A)dg]dx .
JGO,E\GO,A {JGA J

By (11.5), we have

ΦΞ(g)NGA,s+S'+n(g)\ detg\>Λ

+ni2Όj(\detx <ί
ί

JG

Observe that the last integral is absolutely convergent if Re(s) and Re^') are sufficient-

ly large and that the value is independent of j and xeGoA. Since the integral

JGo E\Go Af{x)F(x)dx is absolutely convergent (cf. Lemma 8.6), we may applying Fubini's

theorem and Lebesgue's convergence theorem to obtain
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lim JfF(s, s'; Oj)= \ f(x)F(x)\ ί ΦMNGA,S+S>+»
J~* °° J c \c L J c

x lim Ό:(\άQix άQtg\^dg\dx

= f f(x)F{pc)dx [ φΞ(g)NGA,s+s,+n(g)\tetg\s

A

+n/2dg .

Since the integral over GA is equal to

< ί i ' + τX' -'+τ)ιn(π-l)/4

by Lemma 7.5, we have completed the proof of the lemma. q.e.d.
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