Tohoku Math. J.
48 (1996), 437449

WEIGHTED L?-BOUNDEDNESS FOR HIGHER ORDER
COMMUTATORS OF OSCILLATORY
SINGULAR INTEGRALS

Dedicated to Professor Satoru Igari on his sixtieth birthday
YONG DING AND SHANZHEN Lu

(Received March 30, 1995, revised October 25, 1995)

Abstract. In this paper the authors study the weighted L?-boundedness for higher
order commutators of a class of oscillatory singular integrals with rough kernel. The
main result in this paper gives a necessary and sufficient condition so that this higher
order commutator is bounded on the weighted L? space with certain weight.

1. Introduction. Let us consider the oscillatory singular integral defined by

Tf (x)=p-V~j e TEIK(x—y) f(y)dy
R
where P(x, y) is a real polynomial on R"x R", and K(x)=h(| x|)Q(x/|x|)|x|™" with
h(r)e BV(R ), where BV(R ) denotes the class of functions of bounded variation on
R.. In 1987, Ricci and Stein [7] proved that T is bounded on L?(R"), 1<p< o, if
KeCY(R"\0) and A=1. In 1992, Lu and Zhang [6] improved the result of Ricci and
Stein and showed that T is bounded on LP(R"), 1<p<oo, provided Qe LYS"™1),
1<g<oo and [, , Qx)do(x')=0, where S"~ ' denotes the unit sphere in R". Moreover,
the authors of [6] gave a necessary and sufficient condition so that 7 is bounded on
L?(R™). Recently, the above result in [6] was extended by Jiang and Lu [5] to the case
of Qe Llog* L(S"™!). The purpose of this paper is to study the weighted LP-boundedness
for higher order commutators formed by T and a function in BMO(R ;). If we restrict
ourselves to the case where P(x, y) is a nontrivial polynomial, then we shall get a criterion
on weighted LP-boundedness for the higher order commutators mentioned above.
Let us first give some definitions.

DerINITION 1. Let b(r)e L, (R ). We say b(r)e BMO(R ), if
1
1614, += sup —J |b(r)— by ldr< o ,
1Ry |I] Jg

where by =|1|""[,b(r)dr.

1991 Mathematics Subject Classification. Primary 42B20, Secondary 42B25.
Research was supported by the National Natural Science Foundation of China.



438 Y. DING AND S. LU

DEFINITION 2. Suppose that w(r)>0 and we L, (R,). For 1<p<oo, we say
we A,(R,), if there is a C>0 such that for any /Ic R,

(I_}I J; w(ﬂdr)(ﬁ J; w(r)~ e 1)a'r>p_ 1 <C<ow.

Moreover, if there is a C>0 such that
o*(r)<Cw(r) ae. reR.,

then we say we 4,(R ), where w* denotes the Hardy-Littlewood maximal function of
w defined by

w*@t)= teﬁg& |;| Ia)(r)dr .
DermniTION 3. For 1 <p< o0, we denote
A(R,)={0:0>0,weL,(R,)and o’ 4,R,)}.
Now, we may formulate our results as follows:

THEOREM 1. Let 1<p<oo, QeLlog*L(S"™ '), homogeneous of degree zero,
Jgn-1Q(x")da(x")=0, h(lx|)eBV(R,), b(x)=b(x])eBMO(R,), and w(x)=w(lx|)e
A'T,(R +). If the operator

Qx—y)
| x—y|"

is bounded on LP(w), then for any me Z . and any real polynomial P(x, y) on R" x R", the
higher order commutator

Tf(x)=p.v. j h(| x—y).f(y)dy

T3 () =p.v. f P %(x_iyy‘-}h(l x— y DIbx) — BN ()

is also bounded on LP(w).

The following theorem is the main result of this paper.

THEOREM 2. Let l<p<oo. If Q, h, b, m and w are as in Theorem 1, then the
following three statements are equivalent:

(i) If P(x,y) is a nontrivial polynomial (i.e., P(x, y) does not take the form of
P(x)+ P,(y) (see [6])), then T} is bounded on LP(w).

(i) If a nontrivial polynomial P(x, y) satisfies

(11) P(X,y)=P(X—t,y'—t)+Rl(X,t)+R2(y,t), IER",

where R, and R, are real polynomials, then T} is bounded on LP(w).
(iii) The truncated operator
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_ Q(x —
Tz",of(x)=p.v.f LTI 1y NEBO) — BT ()

|x—yl<1 |x_y|n

is bounded on LP(w).

In proving Theorems 1 and 2, the operator M, defined by

1
Mo fi (X)=Sulo> o | Qx—y)f(P)dy,
r> lx=yl<r
a variant of the Hardy-Littlewood maximal function associated with Qe L!(S" 1), shall
play a key role.
In 1993, Duoandikoetxea [3] gave a weighted result for M,

THEOREM A. Let 1<p<oo and w(x)=o(x|)=v,(x)v,(|x|)! "7, where either
v;€ A{(R,) and is decreasing or v}e A,(R.), i=1,2. Then My, is bounded on LP(w) and

“MQf”p,wSC”Q”Ll(S"‘l)”f”p,w .

In proving Theorem 2, we shall use the following weighted LP-boundedness of
M3 ,, a maximal operator related to higher order commutators, defined by

1
MG/ (¥)=5Up — | 2x=p)1b(x)=b() " f(¥)dy,

F Jix-yi<r

where be BMO(R ).

THEOREM 3. Let 1<p<oo and QeL'(S"" '), homogeneous of degree :zero,
b(x)=b(x|)e BMO(R,), me Z, and w(x)=w(|x|)e;1:(R+). Then M3, is bounded on
LP(w) and

”Ms,bf”p,msC”Q”L’(S"’l)”f”p,w .

2. Some results on ;1\;,(R+).

LEMMA 1. If 1<p< oo, then the weights in za:(R+) have the following properties:

(i) AR.)=4,R.)

(ii) For any w(r)e A(R.), there are weights v, v, such that ®=v, - v3~? and v},
vie A (Ry). - -

(iii) For any w(r)e AR ), there exists an £>0 so that w' **€ A(R.).

(iv) For any w(r)e/T;(R+), there exists an ¢>0 so that p—e>1 and a)e;i;_s(RJr).

The above facts can be easily deduced from the definition of A:(RQ and cor-
responding properties of 4,(R,). We omit the details here.

REMARK 1. By (ii) in Lemma 1 and Theorem A, we see that if we,ff;(R,r),
1<p< oo, then M, is bounded on L?(w) and
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IMof o< ClRlL1sm- 1)1l po -
LEMMA 2. Let 1<p<oo. If b(r)eBMO(R,), then there is a A>0 such that
e*Me I(R.,).

Proor. From the John-Nirenberg inequality for BMO and the reverse Holder
inequality for the weights in A,(R.), it follows that there is a 4,>0 such that
e’ e 4 (R,) (see, e.g., [4]). Now we take A=41y/2. Then (e*)’c 4, (R.), ie., e*’e
A(R.,) by the definition of 4,(R.,).

LEMMA 3. For 1<p<oo and A>0, there exists an n=n(4, p)>0 such that if
b(r)eBMO(R.) and ||b|l,. + <n, then e*P e A,R.).

Proor. If we take n,=min{c/A, ¢(p—1)/1}, where c is the absolute constant in
the John-Nirenberg inequality, then when [|b],, . <7, we have e**® e 4 (R ) (see [4]).
Now we let #=7,/2. Obviously, if ||b]l, + <n, i.e., [12bl,, + <no, then

e 4 (R.).

By the definition of 4,(R,), we have e e 4,(R ).

3. Proof of Theorem 3. Let us first give the proof of Theorem 3 by induction
on m. By Theorem A, we see that Theorem 3 holds for m=0. Now we assume that the
conclusion of Theorem 3 holds for m—1, and prove the conclusion for m. Since
we 1:1:(R+), we can choose an ¢>0so thatw! *¢e /’f;, by Lemma 1. Then by the assumption
of induction, M3 ' is bounded on LP(w'**) and
G IME 0l <CilQ sl @lpoive,  for geLP@!*).

On the other hand, by taking A=p(1 +¢)/e and Lemma 3, we see that there exists
an >0 such that

et e LAR,), if by <n.
Since b€ BMO implies that the BMO for | 7| <1 with a smaller BMO norm, we have
(3.2) eirolke S(R,), for |t|<1.

Without loss of generality we may assume that ||b]|, , <#. Indeed, otherwise we take
0<do<n and set a(x)=0,b(x)/|6| 4. +. Thus, |a|, +=0,<n and

z,bf(x)=<%-)m n S

0

Therefore, it suffices to consider M, ,. By the assumption of induction and (3.2), we
see that for any 0 [0, 2r] and ¢ € LP(eP>( +9)cos/e) |
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(33) 1M 0l e 0 con0ie < Coll Al gm0l v +rconore

where C, depends on p, b and w, but not on 8. Applying the Stein-Weiss interpolation
theorem (see [8] or [2]) between (3.1) and (3.3), we obtain that for any 6€[0, 2r] and
pe Lp(wepb cos 0),

(34 IMG5 " @l pwers coso < CllQIisn-1) | @1l p,erv coso

where C=max{C,, C,} and depends only on p, b and w, but not on 6. In the following,
we shall use the equality

1 2n 0 )
(3.5) b(x)—b(y)=—j e I =b 0N~

2n Jo
In fact, let g(z) =e?b® b0 z¢ C. Then by the analyticity of g(z) on C and the Cauchy
integration formula, we have

1
Bx)—B() =g'(0) =—— f 96) 4,
|

27” z|=1 |Z|2

And this is just (3.5). Moreover, if we denote gg(x)= f(x)e ™ for any 0€[0, 2n],
then it follows from felLP(w) that

(3.6) go€ LA (we™ %) and  ||ggllp,wervcoso=1f | pcr -
Hence, by (3.5) and (3.6), we have

r

M}"z,bf(X)=SupL,,J | Q(x—y) || b(x)—b(y) ™| f(¥)|dy
r>0 lx=yl<r

—sup— | Qx— )| b(x)— b(y) [~

n
r>0 r |x—yl<r

2n
. LJ ee“’[b(x)—b(y)]e—iodg‘lf(y) |dy

27 Jo

2n

< T L |Q(x— )| Bx)—b(y) "~

n
2n o r>o0r |x—y|<r

. I f(y)e_b(y) cos 6 Idyeb(x) cos 6 70
1 2n
=E J Moy (go)(x) * ebIcost gg
0

Using Minkowski’s inequality, (3.4), (3.6) and the above, we get

pw(x)dx) "

1 ” . X) cos
||M3,bf||p,w£<J‘ Ej M5 Y (go)x)e?™os0dh
R" 0
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1 f2n ) .
<— <f |:M @b l(go)(x)] w(x)e Pt o dx) o
21 Jo \Jn

1 (f2=n

= ”Mg,_b l(go)“p,wel"’ °°59d0

2n Jo
1 f2n

< c- "Q||L1(S"'1)“gellp,wel"’"‘°sed0
21 Jo

=ClQlLisn- ol SN po -
This finishes the proof of Theorem 3.

4. Some lemmas. Before proving Theorems 1 and 2, we give some lemmas. Let
Gf(x)=p.v. j K(x, y) f(»)dy
Rn
and

Gof(x)=p.v. J K(x, y)f(y)dy .

|x—yl<1

LEMMA 4. Let 1 <p< oo and w(x)=0. If G, is bounded on L?(w), then the inequality

1/p 1/p
4.1 ( [ | Go f1 (X)I”w(X)dX> SCEU 1 f(») I"w(Y)dy>
|x—tl<e ly—tj<1l+e
holds for any ¢>0, where C, is independent of t and f. Conversely, if (4.1) holds for
certain >0, then G, is bounded on L?(w).
See [5] for the proof.

LeMMmA 5. Letl<p<oo, b(x)=b(x|)e BMO(R ), me Z,, o(x)=w( x |)61:1:(R+).
If Qe LY(S" 1), homogeneous of degree zero, | K(x, y)| < C| Q(x—y)|| b(x)—b(y)|™| x —
y|7", and G is bounded on L*(w), then so is G,.

PrOOF. By Lemma 4, it will suffice to prove

J | Go.f(x) P x)dx < C J /() Poly)dy,  teR".
|x—t|<1/4

ly—t|<5/4

Now, we split f into three parts f=f, +f, +f5 for given ¢, where
S1(») =f(y)x{|y—t| < 1/2)(Y) s

f2(y) =f(J’)X(1/2 <|y-t|< 5/4)(y) s
and
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f3(») =f(}’)Xuy-t|25/4)()’) .
Note that [x—¢|<1/4 and [y—t|<1/2 imply | x—y|< 1. Thus, we have
Gofi¥)=Gfi(x), |x—t|<1/4.
Since G is bounded on L?(w), we get

J | Go f1(x) [Poo(x)dx = j | Gf1(x) Peo(x)dx
|x—t|<1/4

|x—t|<1/4
<c f S O) Py -
ly—tl<1/2

By the assumption on K(x, y), we have

|Gofulx) < J o)

1/4<|x-y|<3/2 [x—y|"

[6G)=b(y) | f(y) Idy

< CMg,bfz(x) .

Thus, it follows from Theorem 3 and the above that

1/p 1/p
(J 1 Go f(x) I”w(x)dx) <C <J | /() l"w(y)dy> / .
|x—t|<1/4 ly—t|<5/4

Finally, we notice that | x—¢|<1/4 and |y —t|>5/4 imply | x —y|> 1. Thus, G, f5(x)=0
if | x—t|<1/4. This completes the proof of Lemma 5.

LemMA 6. Let 1<p<oo, hr)e L*(R,) and w(x)=w( x|)e A(R,). If Qe L}(S"™Y),
homogeneous of degree zero and T, defined in Theorem 1, is bounded on LP(w), then for
any b(x)=>b(x|)e BMO(R,), me Z, and any real polynomial P(x, y), the operator

. Q(x —
TPof(x)=p.v. j P % () x—y )[bG)— b))y

|x—yl<1 l - |
is bounded on LP(w).

PrOOF. By Lemma 5 for m=0, we see that the truncated operator of T defined by

Ty f(9=p.v. f DO -y fy)dy
|x—y|<1 | x—yl

is bounded on L?(w). By Theorem A (or Remark 1) and Lemma 3 in [5], we see that

Lemma 6 holds for m=0. On the other hand, it follows from Lemmas 1-3 that the

results on commutators of linear operators given in [1] also hold if we use BMO(R )

and /ZI:(R+) instead of BMO(R") and A,(R") respectively. Thus, we see that the m-th

commutator of T and be BMO(R ), defined by
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T3 =p.v. j %_y}f) W x—y DB —B(Y)T™ )y

is bounded on LP(w). Using Lemma 5 again, we get that the truncated operator of Tp, i.e.
— Qx—
Thof(X)=p.v. J |)£—y)|)—,,) (| x—y D[b(x)—b(y)]"f(»)dy ,
[x—yl<1 -

is also bounded on LP(w). By the above result, Theorem 3 and Lemma 4, and using
the method proving Lemma 3 in [5], one can prove that the truncated operator T},
is bounded on L?(w). We omit the details.

LEMMA 7. Let 1<p<oo. If Q, h, m and w are as in Theorem 1, then the operator

Ty ()= P —Qf‘_;yy) () x — y DB — ()T Gy

|x-y|l>1 | |
is bounded on L*(w) for any real nontrivial polynomial P(x, y) on R" x R".

Proor. We split T}, as follows:

Qx—y)

Thof(X)= e!fe ol x—y DIb(x)—b(y)]"f(y)dy

|x=y|=>1 l - I

-3 3 f et I ) — BT )y
20-l<g|x—y|<2J

j=1k=0 |x—y]|
Z Z T jkf
j=1k=0
where
Qx")=Q(x")xg(x")
E,={x'eS" ':|Qx)|<1},
and

E,={x'eS" 1:2¥"1<|Q(x)|<2"}, keN.

Now, if we can prove the following two inequalities:

4.2) 177 S o< C27 ) 2| ogsn- )l f 1l 50
and
4.3) 175 50 S g, < CUQeN Lrsn- 1| f N 5o 5

where j=1,2,..., k=0,1,..., and 6>0 is independent of k, f and Q, then we shall
deduce the conclusion of Lemma 7. Indeed, we choose a positive integer M > 1/3. Then
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1750 N p0=<

||Mg

X 1T

Z 175 50 f | po+ Z Yo TS et i Y ITE S N

k=1 1<j<Mk k=1 j>Mk
:=]1+]2+]3.
Using (4.2), we get

0
< X C2 N lleisn 1 po <1 Ny

and

L<CY Y 279Qu eyl fllpo

k=1 j>Mk
<CY ¥ 272 £l <Cl o Z 27Dk O f o -
k=1 j>Mk . k=
By (4.3), we have
L<CY Y sl flpe

k=1 1<j<Mk

<Clflpe Z kzk'|Ek|SC”f”p,w”Q||L|og+L(s"-1)5C||f||p,w .

Thus, we obtain

1750l 50 <ClLf N o -

This confirms the above assertion. It remains to prove (4.2) and (4.3). Let us first prove
(4.3). Since

Q
T3, S0 < ||hnmn,j T2 4 b)) 1) 1y

2i-1<g|x—y|<2J lx— I
SC.M;”?k,bf(x),
we get

175 jacS oo SCIMG S 1150 < Cl il L1511/ 15,0

by Theorem 3. This proves (4.3).

Let us now turn to the proof of (4.2). The proof is completed by induction on m.
Since he BV(R.) and P(x, y) is a real nontrivial polynomial, by a method similar to
that in [6], we can prove that there exists an #>0 such that
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4.4) [ Tg,j,kf”pﬁCZ_"j“Qk”Lw(sn-1)“f||p s
where C is independent of j and k. On the other hand, we have

| 2x =) A x =y

ITE,j.kf(X)ISf oy | fDNdy<C- Mg, f(x).

2i-1<|x—y|<2i | x

From (iii) in Lemma 1 and Remark 1, it follows that

T3 jucf N pwt+e < C = 1Mo, [l par+e < ClQillLisn- 1) 1 ot +e < CllQill Logsn- 1y | f | pot = -

Combining the above with (4.4), and using the Stein-Weiss theorem of interpolation
with change of measure [8], we get

175 jif po < C27 ™Rl Loogsn- 1)1/ 1 o »

where 7, >0 is independent of j, k, fand Q. This shows that (4.2) holds for m=0. We
now assume that (4.2) holds for m—1, i.e., for any ¢ € LP(w) with we/Tp(R+) we have

4.5) I jk(p”pw— c27mm- U”Qk”Lw(sn yllel,e -

By we;l:(R+) and Lemma 1, there exists an ¢>0 so that w! *¢e 4, (R ). Therefore, for
any @ e LP(w! ™),

(4.6) IT5 7k @l gt o< C27 = Q| eoisn- 1y |9l ot e -

Repeating the proof of Theorem 3, we can obtain the following results: For any fe
[0, 2] and ¢ € LP(ePb! +) cosley

(4.7) “ T;)”,;,I%(P”p,epb(l +¢) cos 0/e S C2_’7;',‘7 ‘J” Qk“Loo(sn— 1)”<p|lp,el’b(‘ +&)cos 6/ 4

where C and #,,_, depend on p, b and w, but not on j, k and 6. By interpolating with
change measure between (4.6) and (4.7), we see that for any 6€[0,2n] and @€
L”(we pb cos 9)’

(4.8) 173740 puaerveono < €2l gm0l per oo

where C and 6 >0 are independent of j, k and . Moreover, if we let gy(x)= f(x)e 2™,
then it is easy to check that for any 6 [0, 2n],

4.9) go€ L(we™ ) and ||gollp,werscoso =11l p.c0 -

For simplicity, we denote

Qx—y)
[x—yl"

Thus, by (3.5) and the above notation, we have

K- y(x, y)=eFe h( x =y DIb()—bOII™ ™ hzs-1 <1 -yi <2 =) -
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Ty S (xX)= j K~ 10x, y)[b(x) —b(y)] f(y)dy
R"

1 2n 0 )
=J K1, y)<2— f e “"""”‘”’e""d0>f(y)dy
R 7

0

1 2n ) ) .
T om j f Ko 1(% ) f(p)e ™20 dy - £be . o=i0p
2 Jo Jme

1 2n ) |
o | Tr - e e,
0

Hence, by Minkowski’s inequality, we get

1 2n p 1/p
IT5 S N po=< o j q T3 4 (gelx)e™ w(X)dX> do
T Jo Rn
1 2n
= '27 o H T'b't j,k1 (go)“p,wepb cos 9d9 .

From (4.8) and (4.9), it follows that

2n

1 o
I T5 ;xS “”"”SE j C27 )| Qpl Loogsn- 1) |96l .coe b cos 0dO
0

=C27Y)| Q) Loisn- I Ny -

Thus, we proved (4.2) for m and the proof of Lemma 7 is completed.

447

5. Proofs of Theorems 1 and 2. Theorem 1 can be directly deduced from Lemmas

6 and 7. Let us now give the proof of Theorem 2.
(i)=>(ii). This step is obvious.
(ii) = (iii). Set

. Q(x—
TPf()=p.v. j P —g_—yﬁ () x— y Db — BONT™F ()

|x—yl<1 I ,n

4 f PG LQx—y) h( x—y )[b(x)— b(¥)]™f (y)dy
|x-yl21

lx—y["

=Thof(X)+Th o f(X) .

From Lemma 7, it follows that T}’ is bounded on LP(w). So T}, is a bounded opera-

tor on LP(w). We take a te R". For | x—t|<1, we have

Ty of(x)=Tholf( tpe2( ")) .
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Thus, by Lemma 4, we have

1/p 1/p
(5.1) <J [ Th0f(x)[P a)(x)dx> <C (J Lf(y)IP w(y)dY> )
|x—tl<1 ly—t]|<2

where C is independent of ¢ and f. By (1.1), we write
Tiof(x)=e"®p.y. f eTENK, (x, y) (e e~ RNy
|x—y|<1

for te R", where

(x y)
-y

Express e~ P*~4=1 into the Taylor series:

Ko, y)= h( x —y N[b(x)—b(y)]" .

©
—tP(x tLy—t) _ Z

k
" Pe—t, y— 1= kzo( A [Zﬂaaﬂ(x—t)“(y—nﬁ]

z)"

0
-3
k=0

Zbuv(x_t)"(y_t)v
uv
Thus, we have
_ 1/p © ]
<J sz',",of(x)l"w(x)dx> <X —'Zlbu,vl (J
|x—t|<1 k=0 k! n,v |x—t]<1

. j exp(iP(x, Y)K,.(x, ) f(y)exp(—iR,(y, t)(y—t)'dy
|x=yl<1

_kzo k! » Zlb'” e <£x—t|<l

where £=(1, 1, ..., 1). By (5.1), we obtain

1/p
< J | T2 |pw<x)dx>
|x—t|<1

2 o 21 q

ly—tl<2

(x—1)

! w(x)dx) Up

P i/p
w(x)dx) ,

Ty olexp(—iRy(+, NS+ )+ —1)"](x)

I/\

1/p
/Dy —1) I‘”w(y)dy>

I/\
ans

1/p
byyl1&"n I(J | f(») I”w(y)dy>
ly—ti<2

ZI
1/p
[ la, 51 &% 0P I"]U [ f() l”w(y)dy>
ly—t|<2

1
o k!
1
o k!

I/\
ubﬂg
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1/p
=Cexp( Z,, |Gppll €% n”l)(j | /() I"w(y)dy>
@ ly—t|<2

1/p
sC(J [ f(») I"w(y)dy> ,
ly—t|<2

where n=(2, 2, ..., 2). By Lemma 4, we see that the above implies (iii).

(iii) = (i). This step is just a direct result of Lemmas 6 and 7. This completes the

proof of Theorem 2.
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