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Abstract. In this paper the authors study the weighted ZΛboundedness for higher
order commutators of a class of oscillatory singular integrals with rough kernel. The
main result in this paper gives a necessary and sufficient condition so that this higher
order commutator is bounded on the weighted U space with certain weight.

1. Introduction. Let us consider the oscillatory singular integral defined by

eiP^y)K(x-y)f(y)dy,

where P(x, y) is a real polynomial on RnxR", and K{x) = h(\x\)Ω(x/\x\)\x\~n with
/z(r)eBV(jR+), where BV(/?+) denotes the class of functions of bounded variation on
R+. In 1987, Ricci and Stein [7] proved that T is bounded on Lp(Rn\ 1</?<OO, if
KeCι{Rn\ϋ) and h= 1. In 1992, Lu and Zhang [6] improved the result of Ricci and
Stein and showed that T is bounded on Lp(Rn), 1</?<OO, provided ΩeLq(Sn~%
\<q<oo and $sn-ίΩ(x')dσ(x') = 0, where S"1"1 denotes the unit sphere in Rn. Moreover,
the authors of [6] gave a necessary and sufficient condition so that T is bounded on
Lp(Rn). Recently, the above result in [6] was extended by Jiang and Lu [5] to the case
of Ω G L \og+L(Sn~ι). The purpose of this paper is to study the weighted ZΛboundedness
for higher order commutators formed by T and a function in BMO(/?+). If we restrict
ourselves to the case where P(x, y) is a nontrivial polynomial, then we shall get a criterion
on weighted ZΛboundedness for the higher order commutators mentioned above.

Let us first give some definitions.

DEFINITION 1. Let b(r)eLloc(R+). We say b(ήεBMO(R+\ if

.+ = S U P TTΓ I l*W-*/
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DEFINITION 2. Suppose that ω(r)>0 and ωeLloc(R+). For 1 < / ? < O O , we say

ωeAp(R+), if there is a C > 0 such that for any /<=/?+,

i f V l Γ V"1

()/ ()" 1 / ( r lVm J/ Λι/ι
Moreover, if there is a C > 0 such that

a.e. reR+ ,

< C < oo .

then we say ωeA1(R+)9 where ω* denotes the Hardy-Littlewood maximal function of

ω defined by

1 f
)= supω*(ί)= sup — - ω{r)dr.

teI^R+ \I\

DEFINITION 3. For 1 <p< oo, we denote

Tp(R+)={ω:ω>0, ωεLloc(R+) and ω2eAp(R+)} .

Now, we may formulate our results as follows:

THEOREM 1. Let 1 <p<oo, ΩeLlog+L(S"~x), homogeneous of degree zero,

j s n _ i Ω ( x ' ) ί / σ ( x ' ) = 0 , h ( \ x \ ) e B V ( / ? + ) , £ ( x ) = b ( \ x \ ) e B M O ( / ? + ) , α « ί / ω ( x ) = ω ( | x \ ) e

£p\R+). If the operator

Ω{x~y) h(\x-y\)f(y)dy= pv ί - ^
J I x

is bounded on Lp(ω), then for any m e Z+ and any real polynomial P(x, y) on Rn x Rn, the

higher order commutator

ΐf(x) = p.v. fe
J

K\x-y |)[6(x)-b(y)Yf(y)dy
\χ-y\

is also bounded on Lp(ω).

The following theorem is the main result of this paper.

THEOREM 2. Let \<p<co. If Ω, h, b, m and ω are as in Theorem 1, then the

following three statements are equivalent:

( i ) If P(x, y) is a nontrivial polynomial (i.e., P(x, y) does not take the form of

P1{x) + P2{y) (see [6])), then T% is bounded on Lp(ω).

(ii) If a nontrivial polynomial P(x, y) satisfies

(1.1) Pix9y) = P{x-Uy-t) + R1{x9t) + R2(y9t)9 teRn,

where R1 and R2 are real polynomials, then T™ is bounded on Lp(ω).

(iii) The truncated operator
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77,0/w=p v. j Ύ^ry Wχ-y \)Wχ) - b(y)Tf{y)dy

is bounded on Lp(ω).

In proving Theorems 1 and 2, the operator MΩ defined by

MΩf{x) = sup - L I I Ω(x-y)f(y) \dy ,
r > o rn Jlx-yl<r

a variant of the Hardy-Littlewood maximal function associated with ΩeL1(Sn~1), shall

play a key role.

In 1993, Duoandikoetxea [3] gave a weighted result for MΩ\

THEOREM A. Let 1 < / ? < O O and ω(x) = ω(\x\) = v1(\x\)v2(\x\)1~p, where either

vieAι(R+) and is decreasing or vfeA^R+X i= 1, 2. Then MΩ is bounded on Lp(ω) and

WM^l^CWΩW^.-^WfW^.

In proving Theorem 2, we shall use the following weighted ZΛboundedness of

Mβ ) b, a maximal operator related to higher order commutators, defined by

= sup -L ί I Ω(x -y) \ \ b(x)-b(y)\m\ f(y) \dy ,
r > o rn Jlx-y\<r

lx-y\

where beBMO(R+).

THEOREM 3. Let \<p<co and ΩeL1(Sn~1), homogeneous of degree zero,

6(x) = Λ(|jc|)eBMO(J?+), m e Z + and ω(x) = ω(\x\)eA^p{R+). Then M^b is bounded on

Lp(ω) and

2. Some results on Tp{R+).

LEMMA 1. If\ <p< oo, then the weights in ^P(R+) have the following properties:

(ii) For any ω(r)e^(/?+), there are weights vu v2 such that ω = vγ v\~p and υ\,

Ό2

2eAx(R+).

(iii) For any ω(r)e^(/?+), there exists an ε>0 so that ω1+ε

(iv) For any ω(r)e^p{R+), there exists an ε > 0 so that p — ε>\

The above facts can be easily deduced from the definition of JfyR+) and cor-

responding properties of Ap(R+). We omit the details here.

REMARK 1. By (ii) in Lemma 1 and Theorem A, we see that if

1 <p< oo, then MΩ is bounded on Lp(ω) and
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LEMMA 2. Let l<p<oo. If 6(r)eBMO(Λ+), then there is a λ>0 such that

PROOF. From the John-Nirenberg inequality for BMO and the reverse Holder

inequality for the weights in Ap(R+), it follows that there is a λ o > 0 such that

eλoHr)eAp(R+) (see, e.g., [4])^ Now we take λ = λo/2. Then (eλb)2eAp(R+), i.e., eλbε

T + ) by the definition of A*P(R+).

LEMMA 3. For \<p<oo and λ>0, there exists an η — η(λ,p)>0 such that if

b{r)eBMO(R+) and \\b\\^+<η9 then eλb{r)e£p'{R+).

PROOF. If we take ηo = min{c/λ, c(p—\)/λ}, where c is the absolute constant in

the John-Nirenberg inequality, then when 11611*,+ <η0 we have eλb(r)eAp(R+) (see [4]).

Now we let η = ηo/2. Obviously, if 11611*,+ <η, i.e., \\2b\\^.,+ < ^ 0 , then

e2λHr)eAp{R + )

By the definition of JfyR+), we have eλbir)e^p(R+).

3. Proof of Theorem 3. Let us first give the proof of Theorem 3 by induction

on m. By Theorem A, we see that Theorem 3 holds for m = 0. Now we assume that the

conclusion of Theorem 3 holds for m— 1, and prove the conclusion for m. Since

ω E £p\R+), we can choose an ε > 0 so that ω1 + ε e £p by Lemma 1. Then by the assumption

of induction, M ^ 1 is bounded on L p (ω 1 + ε ) and

(3.1) IIMSίVl lp .ωi^^QIIOII^n-^l lφl l^ i . . , for φ e Z / ( ω 1 + ε ) .

On the other hand, by taking λ=p(\ +ε)/ε and Lemma 3, we see that there exists

an η > 0 such that

if \\b\\^+<η.

Since b e BMO implies that tb e BMO for | /1 < 1 with a smaller BMO norm, we have

(3.2) etpb(1+ε)/εεTp(R+), for M < 1 .

Without loss of generality we may assume that Ĥ H* + <η. Indeed, otherwise we take

O<<50<77 and set a{x) = δob(x)/\\b\\^f + . Thus, \\a\\^ί+=δ0<η and

Therefore, it suffices to consider M% a. By the assumption of induction and (3.2), we

see that for any 0e[O, 2π] and φGL
p(epb(1+ε)cosθ/ε),
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(3.3) .b Ψ II p,eP*>(1 + ε> cosθ/e< C2 \\Ω || LHS"-1) II ψ II p,eP*>(l+ε)cosθ/ε ,

where C 2 depends on p, b and ω, but not on θ. Applying the Stein-Weiss interpolation

theorem (see [8] or [2]) between (3.1) and (3.3), we obtain that for any θe [0, 2π] and

φeLp(ωepbcosθ),

(3.4) l|Af5,ΐ>llp.ωβp*co. ^C||β| |Li ( 5n-i ) | |φ| | J, f ω βp f cco. ,

where C=max{C 1 , C2} and depends only on/7, ό and ω, but not on θ. In the following,

we shall use the equality

(3.5) b(χ)-b(y) = — [2Keet9

2π J o

In fact, let g{z) = ezlHx)~Hy)\ ZGC. Then by the analyticity of g(z) on Cand the Cauchy

integration formula, we have

^ ί
2πi J | Z | =

And this is just (3.5). Moreover, if we denote gθ(x) = f(x)e~b(x)cosθ for any 0e[O, 2π],

then it follows from feLp(ω) that

(3.6) gθeLp(ωepbco*θ) and

Hence, by (3.5) and (3.6), we have

1
= sup

r>o rn \Ω(x-y)\\b(x)-b(y)\m\f(y)\dy

\Ω(x-y)\\b(x)-b(y)Γι

\f(y)\dy

=sup±r

2π Jo

1 Γ2π I f , , „,,, , w ,, ,
< s u p — I Ω(x — y ) | | D(X) —σ(y) |

2π Jo '>o r" J ι x - y ι < r

ι\χ-y\<

' I f(y)e-
biy)cosθ \dyebix)cosθdθ

Using Minkowski's inequality, (3.4), (3.6) and the above, we get

l|M^/llp,ω<
2π Jo

ω(x)dx
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2π J(

2π Jo

~ 2π Jo

O \JR"

2π

2π

This finishes the proof of Theorem 3.

4. Some lemmas. Before proving Theorems 1 and 2, we give some lemmas. Let

) = P v ί
JR

(?/(*) = p.v. K(x,y)f(y)dy
JR»

and

G0/W = p.v. f K(x,y)f(y)dy.
J\x-y\<l

LEMMA 4. Let 1 <p < oo α«ί/ ω(x) >0.IfGo is bounded on Lp(ω), then the inequality

(4.1) (f \Gof(x)\"ω{x)dx\"'<cί\ \f(y)\pω(y)dyX"'
\ J | x - ί | < ε / \ J | > ; - ί | < l + ε /

holds for any ε>0, where Cε is independent of t and f Conversely, if (4A) holds for

certain ε > 0, then Go is bounded on Lp(ω).

See [5] for the proof.

LEMMA 5. Let 1 </?<oo, b(x) = b(\x\)eBMO(R+\ meZ+, ω(x) = ω(\x\)eTp(R+).

IfΩeL\Sn-% homogeneous of degree zero, \K(x,y)\<C\Ω(x-y)\\b(x)-b(y)\m\x-

y\~n, and G is bounded on Lp(ω), then so is Go.

PROOF. By Lemma 4, it will suffice to prove

ί \Gof(x)\"ω(x)dx<cί \f(y)\"ω(y)dy, tsR".
J|x-ί|<l/4 J|y-ί|<5/4

Now, we split / into three parts f=fγ +f2 +/ 3 for given t, where

and
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Note that |x-/|<l/4 and \y-t\<\/2 imply \x—y\<l. Thus, we have

Gof1(x) = Gfι(x), | J C — ί | < l / 4 .

Since G is bounded on Lp(ω), we get

ί \Gof1(x)\"φ)dx=\
J | JC —f I < 1/4 J I JC — t | < ί.

\f(y)\"ω(y)dy.

\Gfί{xWω(x)dx
/ | j c- f | < 1/4

)\y-t\<l/2

By the assumption on K(x, y), we have

IG0Mx)I^ ί C\Ω{x-y)\ ! b { χ ) _ ^ | m ( f ^ ^

Thus, it follows from Theorem 3 and the above that

y y
I G0f2(x) \pω(x)dx < C I /( j ) | p ω ( ^ ) ^ .

ί|<l/4 / \J|y-ί|<5/4 /

Finally, we notice that | x - / | < l / 4 and \y — t\>5/4 imply \x—y\>\. Thus, G0/3(x) = 0

if I x — 11 < 1/4. This completes the proof of Lemma 5.

LEMMA 6. Let 1</?<OO, h{r)eL™{R+) and ω(x) = ω{\x\)eTp{R+). IfΩeL\Sn-%

homogeneous of degree zero and T, defined in Theorem 1, is bounded on Lp(ω), then for

any b(x) = b(\x\)eBMO(R+), meZ+ and any real polynomial P(x, y), the operator

) = P v f
yl H\χ-y\)lb(x)-b(y)Yf(y)dy

\x-y\<l \χ — y\

is bounded on Lp(ω).

PROOF. By Lemma 5 for m = 0, we see that the truncated operator of T defined by

) = P v. ί
J|jc-y|<l

To fix) = P v. ί Ω{X^n K\x-y \)f(y)dy
J|jc-y|<l l ^ — ^ l

is bounded on Lp(ω). By Theorem A (or Remark 1) and Lemma 3 in [5], we see that

Lemma 6 holds for m = 0. On the other hand, it follows from Lemmas 1-3 that the

results on commutators of linear operators given in [1] also hold if we use BMO(i?+)

and J£p\R+) instead of BMO(Rn) and Ap(Rn) respectively. Thus, we see that the m-th

commutator of Γ a n d Z?eBMO(/?+), defined by
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77(*) = p.v. [Ω{X y) h(\x-y \)Lb(x)-b(y)Yf(y)dy ,
J \*-y\n

is bounded on Lp(ώ). Using Lemma 5 again, we get that the truncated operator of ΓJ1, i.e.

r?i0/M=p.v. I 7^-7-A(lx"^\)Wχ)-Ky)YAy)dy,

is also bounded on Lp(ω). By the above result, Theorem 3 and Lemma 4, and using

the method proving Lemma 3 in [5], one can prove that the truncated operator T™0

is bounded on Lp(ω). We omit the details.

LEMMA 7. Let 1 <p< 00. If Ω, h, m and ω are as in Theorem 1, then the operator

)= ί
J ι * -

K\x-y\)Lb(x)-b(y)Yf(y)dy
ι \χ-y\

is bounded on Lp(ω)for any real nontrivίal polynomial P{x, y) on Rn x Rn.

PROOF. We split T^t00 as follows:

e*™ Ω { X y ) K\x-y\)\b{x)-b{y)Yf{y)dy
y | > l 1 ^ — y\

= Σ Σ ί eip™ °k{X~^ h{\x-y\)[b{x)-b{y)Tf{y)dy
7 = 1 fe = O J2J-ι<\x-y\<2J \χ— y\

oo oo

:= Σ Σ KJ,J(X),
7 = 1 f e = 0

where

Ωk(x') = Ω(x')χEk(x'),

E0 = {x'eS"-1:\Ω(x')\<l}9

and

Ek = {xfGSn-χ: 2 f c"1<|Ω(x /)l<2 f c} , keN.

Now, if we can prove the following two inequalities:

(4.2) l l^,, f c/| | p

and

(4.3) l l ^ ^ /

where7= 1, 2, . . . , k = 0, 1,..., and £>0 is independent of k, / a n d Ω, then we shall

deduce the conclusion of Lemma 7. Indeed, we choose a positive integer M> l/δ. Then



WEIGHTED ZΛBOUNDEDNESS FOR HIGHER ORDER COMMUTATORS 445

< Σ Σ wκjfkf\\p,ω
7=1k=0

= Σ \\T7j,of\\P.a+ Σ Σ llrr.M/ii,.ω+ Σ Σ \\Kj,j\\p,a
7=1 fe=l l<7<Mfc fc=lj>Mk

Using (4.2), we get

and

< C Σ Σ 2 - ^ p p
k = l j>Mk k=l

By (4.3), we have

/ 2 < c £ Σ IIOJILICS-I)!!/!!^

<C\\f\\p,ω

Thus, we obtain

This confirms the above assertion. It remains to prove (4.2) and (4.3). Let us first prove

(4.3). Since

^ IIAHL-(II-) ί \Ωk(*-y)
J2i-'ί<\χ-y\<23 \X~y\

{b{x)_b{y)r, f{y)\dy

we get

by Theorem 3. This proves (4.3).
Let us now turn to the proof of (4.2). The proof is completed by induction on m.

Since heBY(R+) and P(x, y) is a real nontrivial polynomial, by a method similar to
that in [6], we can prove that there exists an η>0 such that
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(4.4) l l ^ ° M / l p ( ) ί

where C is independent of j and k. On the other hand, we have

\< Γ
J 22J-1<\χ-y\<2J \ χ — y\

From (iii) in Lemma 1 and Remark 1, it follows that

l|Γ?,M/||P f ωi + . : £ ^

Combining the above with (4.4), and using the Stein-Weiss theorem of interpolation

with change of measure [8], we get

where ηγ >0 is independent of7, k, /and Ω. This shows that (4.2) holds for ra = 0. We

now assume that (4.2) holds for m— 1, i.e., for any φeLp(ω) with ωeJFp(R+) we have

(4.5) \\K^φ\\P

By ωeJFp(R+) and Lemma 1, there exists an ε>0 so that ω1+εeJFp(R+). Therefore, for

any φeLp(ω1+ε),

Repeating the proof of Theorem 3, we can obtain the following results: For any ΘE

[0,2π] and φεLp{epb(1+ε)cosθ/ε),

(4.7) II T™j kφ\\pepb(l+e) cos θ/ε< C2 ηm- ίJ\\Ωk\\L^(Sn- l

where C and γ\'ή-ι depend on /?, b and ω, but not on7, k and θ. By interpolating with

change measure between (4.6) and (4.7), we see that for any θe[0, 2π] and φe

Lp{ωepbcosθ),

(4.8) II^J>l l P , ω βP-osβ<C2-^| |Ω k | | L O O ( S n- 1 ) | |φ | | p , ω e ί , b cose,

where C and δ>0 are independent of j, k and θ. Moreover, if we let gθ(x) = f(x)e~b(x)elθ,

then it is easy to check that for any θe[0, 2π],

(4.9) gθeLp(ωepbc™θ) and | |^ | | p , ω e pbco.β=| |/ | | P i ω .

For simplicity, we denote

Thus, by (3.5) and the above notation, we have
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)= ί Km_ι{x,y)\b{x)-b{y)-]f{y)dy

_.(x,y)(±-

= -*- Π " f Km_1(x,
2π Jo JR.

= - L Γ Γ?,7,ί(flfβχx)
2π Jo

Hence, by Minkowski's inequality, we get

1/P

dθ

2π

From (4.8) and (4.9), it follows that

I Γ2π

2π

Thus, we proved (4.2) for m and the proof of Lemma 7 is completed.

5. Proofs of Theorems 1 and 2. Theorem 1 can be directly deduced from Lemmas

6 and 7. Let us now give the proof of Theorem 2.

(i) => (ii). This step is obvious,

(ii) => (iii). Set

= P V ί
J\

K\x-y\)ίb(x)-b(y)Yf(y)dy
\x-y\<i \χ-y\n

eiPix,y)

 Ω(x~y) h(\x-y\)lb(x)-b(y)Yf(y)dy
-vi>i \*-y\

From Lemma 7, it follows that Γ"fQ0 is bounded on Lp(ω). So T™0 is a bounded opera-

tor on Lp(ω). We take a teRn. For | x - ί | < l , we have
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Thus, by Lemma 4, we have

(5.1) ( ί I TlJ{x) \"ω(x)dx\IP < c( ί
\J | ;c- ί |<l / \J | y- ί |<2

where C is independent of t and/. By (1.1), we write

fm fί \_ -iRx(x,t) iP{x,y)jζ / \rs\-iP(χ-t,,
1 b,OJ \Λ) — ̂  p.v. i er τvm^Λ, y)j \y)v

J | x - y | < l

for teR", where

Express

" uy ~ t]e " iR2iy't
}dy

\x-y\n

~t] into the Taylor series:

oo

= Σ
oo

-t,y-t)]k= Σ ft
Thus, we have

| x - t | < i
^ Σ i V ΣI bμ,v

i J C — ί i

(x-tf

exp(iP(x,
J\x-y\<l

-ίR2(y,t))(y-tγdy ω(x)dx

k = 0 k\ μ,v ^ \ J | χ - ί | < l

where ξ = (l, ! , . . . , ! ) . By (5.1), we obtain

ω(x)dx

00 1

Σ V Γ Σ
k = 0 kϊ μ,v

00 1

Σ4T

| y - ί | < 2

| y - f | < 2

1//7

k]( ί
J\J|v-ί|</ | j > - f | < 2



WEIGHTED ZΛBOUNDEDNESS FOR HIGHER ORDER COMMUTATORS 449

\f(y)\'ωiy)dy
\y-t\<2

<c(\ \f(y)\pω(y)dy)IP,
\J|y-ί|<2 /

where η = (2,2,..., 2). By Lemma 4, we see that the above implies (iii).

(iii) => (i). This step is just a direct result of Lemmas 6 and 7. This completes the

proof of Theorem 2.
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