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Abstract. By the covering of some toric varieties we construct a family of minimal
smooth threefolds of general type which gives some effective results on the geography
problem.

1. Introduction. The name "geography" introduced by Persson [P2] is used to
describe the distribution of the Chern numbers of algebraic manifolds of general type.
In general the Chern numbers of algebraic manifolds of general type satisfy some
inequalities. The geography problem asks whether all tuples of the numbers satisfying
all the numerical relations are the Chern numbers of some algebraic manifold of general
type. For the surface geography Persson [P2], Xiao [X], Chen [C], etc. have done a
lot of work.

Let X be a threefold of general type. Since the minimal models of X may not be
unique and may not be smooth, we have some difficulties to talk about the geography
problem. We cannot speak of the Chern numbers unless we fix a unique model in each
birational equivalence class. In this paper we restrict ourselves to certain threefolds of
general type with some smooth minimal model. The known inequalities (equalities) of
the Chern numbers, when Kx is ample, are (cf. Hunt [H]):

cl(X)<Q, c1c2(^)<0, C^ΞΞO (mod 24), 3c^(X)>Sc1c2(X).

We can ask a crude geography problem as Sommese [S] did for surfaces: what is the
closure of [cj*: c^' <?3] in P2(Q) for the smooth minimal threefolds of general type?

Hunt [H] obtained a partial answer to this question by Kummer coverings: for
any pair of rational numbers (α, β) in the two triangles ABC and DEF with
^ = (12/11,1/11), £ = (6/5,3/5), C=(14/ll, 19/33), D = (l,-2/5), £=(1,2/3), F=
(32/29, 55/87), there exists a minimal threefold of general type such that c f / c l c 2 = oc,

C*/CιC2 = β.

In this paper we use the double covers of P1 x Fn branched along some specially
chosen configuration of divisors to construct some smooth minimal threefolds of general
type, where Fn is the Hirzebruch rational surface. Then by base changes over their two
natural fibrations we get the following theorem which much improves the result quoted
above.
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THEOREM 3.2. Let (n, α, fe, r) e {(n, α, b, r) eZ+ 41 n + a> 3, r > 3, 0<b< [20/3]}\
{(0, 3, 2, r) reZ+}. Then for any pair of rational numbers (α, β) in the triangles ABC with

A — I

4rn + Sra-8rb ' 6n + \2a-l2b

2n + 2a-b 4n+lQa-llb\ _ / 1 .

4b ' 6n+12a-12b ' ~ \~2

there exists a minimal smooth complex threefold X of general type such that

cl(X)lcιC2(X) = α, c3(X)lclC2(X) = β.

NOTATION AND CONVENTIONS. The threefolds considered in this paper are com-

plex project!ve threefolds.
If X is a smooth (canonical) algebraic variety, then Kx denotes a canonical divisor

of X, χ((9χ) denotes the Euler-Poincare characteristic of the structure sheaf, c^X) denotes
the z'-th Chern class and χtopPO denotes the topological Euler-Poincare characteristic.

Fn denotes the Hirzebruch rational surface, while S^ denotes its section such that

Sl=-n.
= denotes the linear equivalence.
[a] is the greatest integer not exceeding α for α e 1?.

Z+ denotes the set of non-negative integers.

ACKNOWLEDGEMENT. I would like to thank Professors Gang Xiao and Zhijie Chen
for their advice and encouragement. Also I am very grateful to the referees for making
valuable suggestions to improve both the result and the English expressions in this
paper.

2. Some technical lemmas. In this section we will give some technical lemmas.
First we give some lemmas about the double covers between threefolds, whose proofs
are similar to those in the surface case. See [P2], [P3] for the surface case.

A double cover between two algebraic varieties π: X-+ Y is a finite morphism of
degree two. We assume that Y is a smooth variety hereafter. Then it is well known (cf.
[PI]) that π is determined by a pair (B, δ) (called the double cover data or the building
data): an even effective divisor B and an invertible sheaf δ such that Be\δ®2\. X is
normal if and only if B is reduced; X is smooth if and only if B is smooth. In the
following formulas and computations we will use Θ( — B/2) instead of δ ~1 since they
are numerically equivalent by Be \ δ®2 \.

If B is smooth, then (cf. [PI]) we have π^(9x = (9γ®δ~1 and Kx = π*(Kγ + B/2\

so we obtain the following:

LEMMA 2.1 (cf. [P3]). Let π: X-+Y be a double cover between two smooth
threefolds with building data (B,δ). Then
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(1)

(2)

(3)
If B is reduced but singular, then X is singular over the singularities of B. Similarly

to the surface case, we have a not necessarily unique resolution based on the embedded
resolution of B c Y as follows:

LEMMA 2.2 (cf. [P2]). Let π : X-^> Y be a double cover between two projective
threefolds with building data (B, δ) with B reduced. Then there exists a bίrational morphίsm
p: 7-» Y which is based on a minimal embedded resolution ofB c= 7, a smooth even effective
divisor BaΫ and an ίnvertible sheaf δePic(Ϋ) such that

-y ^ ^ ^ -»/• Ψ1 τ/

π

(1) B
(2) (B, δ) is a double cover data, and ίfπ: X^> Ϋ is the corresponding cover, Xgives

a resolution of X. (We will also call any such X the "canonical" resolution of X.)

For the proof of the lemma, notice that B c Y has an embedded resolution such
that its corresponding reduced even inverse image (cf. [P3] for the definition) is a divisor
with only normal crossing. Then one extra blow-up (if two smooth irreducible com-
ponents intersect along a smooth curve) or three extra blow-ups (if three smooth
irreducible components intersect at a point) will make the corresponding reduced even
inverse image smooth, which is what we wanted. The resolution is not unique due to

the nonuniqueness of the minimal embedded resolution of B c Y.
The "canonical" resolution in Lemma 2.2 may produce exceptional divisors on X.

In the following we will restrict ourselves to the exceptional divisors of the first kind
whose contractions give a smooth variety. Now we give the definitions and a criterion
for the exceptional divisors of the first kind of types (I) and (II), respectively.

Type (I): E^X is a divisor on X, E^P2, such that 0E(£) = 0p2( - 1). E can be
contracted to a smooth point;

Type (II): E^X is a minimal ruled surface over a curve with its fiber by /. If
Ef= — 1, then E can be contracted to a smooth curve.

LEMMA 2.3 (cf. [P2]). Let π: X-+Y be a double cover between two smooth
threefolds. Then the exceptional divisors of the first kind on X occur in the following ways:

(1) The pull-backs of the exceptional divisors of the first kind of the same type on
Y which are disjoint from the branch locus. These always come in pairs',

(2) The reduced part of the pull-back of one component F of the branch locus. For
type (I) F is ίsomorphic to P2 such that @F(F) = (9p2( — 2); for type (II) F is a minimal
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smooth ruled surface with Fg= — 2, g being the fibre of the ruling of F.
(3) The pull-backs of the exceptional divisors of the first kind of the same type on

Y which intersect the branch locus.

PROOF. The lists given above are exceptional divisors of the corresponding type,

so we only need to prove that they exhaust all the possibilities.
Let σ: X-*X be the involution induced by π and E^X an exceptional divisor.

Then either σ(E) = E or σ(E) = E'^E. Let σ(E)^E. Then π(E) = π(E') = F is disjoint

from the branch locus. Otherwise the inverse image of π(E) will consist of only one
component, which contradicts the fact that E and E' are two components of π~1(F).
Hence F, E and E' are exceptional divisors of the same type, which is (1).

Now suppose σ(E) = E. If π is ramified along E then n(E) = F is one component
of the branch locus, which is (2). If π is not ramified along E, F is not any component

of the branch locus, we get (3). In the third case F will intersect the branch locus and
the exceptional divisors do not come in pairs.

The third case does not occur in the sequel, since in our discussion the exceptional
divisors of the first kind on the base threefolds are either one component of or disjoint
from the branch locus.

In the following we give two base change lemmas which will be used in the next
section.

LEMMA 2.4 (cf. [H]). Let f t : X-*C{ (i=l, 2) be two fibrations of a threefold X
over the curves Q with #(CZ )>0, St the corresponding general fiber of fi9 such that both

/2 : Sί-*C2

 ana /i : S2-+Cι are fibrations. Then for any pair of rational numbers (α, β)
in the triangle ABC with

\

B=

i "^i v^ i/ ^2W2/
— I

2} + c2(S2) ' cl(S2) + c2(S2),

there exists a threefold X such that cl(X)lc^c2(X) = α, c3(Z)/c1c2(T) = β, and X is smooth

minimal if X is.

If X has two fibrations over F1, then we have:

LEMMA 2.5. Let /1?/2: X ^P1 be two fibrations of the smooth threefold X in
Lemma 2.4, and Ft the general fibre of S^P1. Then there exists a smooth threefold X

such that X has two fibrations over elliptic curves and

d(X) = 4cl(X) - 24^(50 - 24Cl

2(52) + 96χtop(F2),
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Clc2(X) = 4Clc2(X) - 8(̂ 6 )̂ + c2(SΊ)) - 8(c?(S2) + c2(S2)) + 48χtop(F2) ,

c3(l) = 4c3(Z) - 8^(50 - 8c2GS2) + 1 6χtop(F2) .

Sf (ι = l5 2) Z?e ί/ze general fibers of X. Then

(ι= 1, 2) .

PROOF. Let E^P1 (/' = 1, 2) be double covers such that they do not ramify at the
critical points of ft and 1 '̂s elliptic curves. Then (Xxpί £\) xpι £"2 is what we wanted.
The invariants can be calculated in a standard way.

REMARK 2.6. Instead of the elliptic curves we can use any two curves Eί (ί= 1, 2)
of genera >0 to get a general form of Lemma 2.5, which involves the ramification
degrees and degrees of the base changes besides the above parameters. For the proof
of our main theorem, however, Lemma 2.5 is sufficient.

3. Construction. In this section we will construct a family of smooth minimal
threefolds of general type with two fibrations to get some partial results on the geography
problem.

First we will give some remarks about the canonical singularities: By the "canonical"
resolution of double cover, if the branch locus has some singularities such that the

resulting variety has the corresponding canonical singularities and their resolutions up
to terminal singularities are really resolutions (cf. [R]), then as in the surface case the
adjunction formula of the canonical divisor does not involve the exceptional divisors,
and we can regard the branch locus as smooth when calculating K3 and χ(&) by the
Riemann-Roch theorem. Therefore if the branch locus has singularities of the type
xy = Q or xyz = 0, one can check easily that K3 and χ((9) can be calculated as if the
branch locus is smooth. The topological Euler characteristic can be calculated by some
standard formula.

Now let V be the toric variety PίxFn. Then by [O], K$ = -48, χ((9v) = l,pg(V) =

0, Xtop(P) = 8, and Pic(F) is freely generated by £4:=ptxFM, Ej^/^xS^ and
E6: = P1x P1. Moreover,

χtop(F) =

Let us fix two non-negative integers a and b such that b<\_2aβ~\. Persson [P2]
constructed three bisections SiG\2Soΰ + (b + 2ri)Pl \aFn such that S1+S2 + S3 has
exactly 2n + 2b infinitely near triple points {Aί9 •-,A2n+2b} and no other singular
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points. Choose 2a — 3b fibers P*. in Fn not passing through the 2n + 2b points and let

B=P! xFn+p2xFn+' - +p2r x Fn

+ P1 x Pi + P1 x P}2 + - - - + P1 x P}2a_3b .

Then B = 2rE4 + 6E5 + (6n + 2a)E6 has 2n + 2b triple lines P1 xAt (l<i<2n + 2b) and
some double lines as its singularities. Moreover

KB2=-72n-48a-l6ar-24rn-48r,

Let W be the double cover of V branched along B. Then W is singular. We will
give its "canonical" resolution as follows.

Let π1 : V^Vbe the blow-up of V along all the 2n + 2b triple lines PlxAi^Pi

(l<ί<2n + 2b). Since all their normal bundles are isomorphic to 0Pι00Pι, the
exceptional divisor E1 consists of mutually disjoint 2n + 2b copies of P1 x P1. Now

^ = 0 , πfE4Ef =-(2n + 26) ,

= πf

and

where D~ represents the strict transform of D and /i is the fiber of J5Ί. Hence (/^ x FM)~
is the blow-up of pt x Fn centred at the 2n + 2b points/^ x AJ9 (P1 x P^)~ =/>1 x P1 and
(P1 x Si)~ =P^ x St. Therefore the resulting branch locus B^ is

It has 2n + 2b quadruple lines (P1 x St)~ n£Ί. All their normal bundles are isomorphic
tO GplφOpl.

Let π 2 : V2^Vl be the blow-up of Kx along all the quadruple lines. Then the
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exceptional divisor E2 also consists of mutually disjoin 2n + 2b copies of P1 x P1. Hence

c2( v2) = π*π*c2( V) - 2π*/ι - π2*£? - E* ,

E2π}π?E5 = E2π$π?E6 = 0 , E2πξπfEl = 0 ,

El = 0 , E2f2 = - (2n + 2ft) , E^πξπfE^ =-(2n + 26) ,

Ef = 0 , π2*/ι£2 - 0

and

< i < 2rc + 26) ,

π2*/ι=/Γ+/2,

where Z>= and /)" represent the strict transforms of D~ and /), respectively, and /2 is
the fibre of E2. Therefore ( p ί X F J ^ is the blow-up of (piXFn)~ centred at 2n + 2b

points, (P1 x StΓ =P* x Si9 (P1 x P^Γ ^P1 x P^ and EΪ ^E^
Now the resulting branch locus is

It has only double lines, xy = 0 and xyz = 0, as its singularities, which give some canonical
singularities on the covering variety WK2.

Let V be the blow-up of V2 such that the resulting branch locus B is smooth, and

ϊί^the covering variety. Then we have to blow up 2r(2n + 26) + (20 — 36)(2r + 6) rational
curves and 6r curves of genus n + b — I. E~, the strict transform of El in F, consists of
2n + 2b copies of E^ =Pl x P1 such that for each copy E^f^ — — 2. By Lemma 2.3,
the strict transform in W of each E^ can be contracted to a smooth rational curve.
Denote by W* the contracted variety of W. Then W* is what we wanted. We will

calculate its invariants.

Φ \<P2 Ui \<P
ψ 4 Φ

W* V -^>F2 -^>K! ^V.

Since B2 has only singularities of types xy = 0 and xyz = Q, by Lemma 2.1 and the
remark in the second paragraph of this section we get
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2(KV + 5/2)3 - 6(r - 2)(2ιι + 2*)

6(r - 2)(3/ι + 2α - 4) - 6(r - 2)(2« + 2ft) ,

where

χtop(£) = 24 + (2n + 2ft)(4r - 2) + (2a - 3ft)(l 2r + 4) + 8r ,

since in the resolution process from V2 to K, each pf x Fπ was blown up, and the
topological invariant is affected.

In W the strict transform E of Eί can be contracted to 2n + 2ft smooth rational

curves, and

2E=φ*(πξ(πζEl-E2)-E3)9

where E3 is the exceptional divisor for the blow-up along the curves EΪ n (pt x Fn)
 =

 9 and

Hence we get

cϊ(W*) =

= 24r + 36n + 24a + 6rft -Urn- 12ra - 48 ,

= 48r + 24« + 48α + 48rft - 24m - 48rα - 48ft - 24 ,

3( W*) = c3(W)- 2(2n + 2ft)

W* has two natural fibrations over P1 whose general fibers Sί9 S2 are double
covers of the corresponding fibers of V to P1. S2 is obtained by contracting the 2« + 2ft

copies of the (— l)-curves in the corresponding general fiber of W over P1, so we get
by [P2]
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THEOREM 3.1. Let W* be the contraction of the ''canonical'" resolution of the double
cover of V branched along the divisor B. Then W* is a smooth minimal threefold of general
type which has two natural fibratίons over P1 if n + a> 2, r>2, unless rc = 0, a = 3 and
b = 2. The Chern numbers of W* and the two general fibers Sl9 S2 are described as above.

PROOF. We only need to prove that Kw* is nef under the conditions, since by [P2]
it is of general type. Now ̂ 2 = φf(πfπ?(^ + 5/2)-E2), and the first Chow group

At(W2) of W2 is generated (cf. [O]) by φ^(E^E^ φί(E^E^)9 φ$(EϊE;), φξ(E^E^)9

φξ(EϊE2)9 and φξ(E^E2). Moreover,

The pull-back of the generators of Al(W2) to W9 together with the exceptional divisors
of W^W2, gives a set of generators of A±(W}. Contracting the exceptional divisors of
the first kind in W, we find that the strict transform of E^E^ is contracted to 2n-\-2b
points in W*, and the images in W* of the exceptional divisors of W^W2 do not

intersect Kw*. Hence Kw* is nef as claimed.

By Lemmas 2.4 and 2.5 we get:

THEOREM 3.2.1 Let (n, a, b, r)e{(n, α, b9 r)eZ+4\n + a>3, r>3, 0<Z><[2α/3]}\
{(0, 3, 2, r) I reZ+}. Then for any pair of rational numbers (α, β) in the triangle ABC with

-2n-2b-

4rn + 8rα - Srb 6n+12a-l2b

I 2n + 2a-b 4n+lθΛ-llίΛ / I 5
£> ̂ l , I , C = l —, —

1 - 4f> 6n+12α-12Z)/ V "

there exists a minimal (smooth) threefold X of general type such that cf(Ar)/c1c2(AΓ) = α,

Now we will give some examples to cover the area in C2(cf/c1c2, c^c ̂ c^. We can
get more by evaluating (n, a, b, r):

If n = b = Q, then B=C, and the triangle degenerates to a line segment;

1 See the appendix by Mei-Chu Chang in this volume.
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If (n,α,6) = (0,3,1), r>3, then ^(r) = ((5r-2)/16r, 7/24), B -(5/8, 19/24), C =

(1/2, 5/6);
If (n,α,fc) = (0,4,1), r>3, then Λ(r) = ((7r-2)/24r, 1/4), £ = (7/12,29/36), C=

(1/2, 5/6);
If (n, 0,6) = (0,4, 2), r>3, then Λ(r) = ((3r-2)/8r, 5/12), 5 = (3/4, 3/4), C = (l/2,

5/6);
If /ι>2, α = ft = 0, r>3, then Λ(r) = ((r- l)/2r, 2/3), Λ = (l, 2/3), C=(l/2, 5/6).

REMARK 3.3. As pointed out by the referees, by Theorem 3.1 and some direct

calculations we can get some partial results on the general geography problem as follows:

for any three tuples of integers (x, y, z), if there exists an integer r>3 such that

(1) (6r
(2) 72
(3) 24
(4) 12

then there exists a smooth minimal threefold X of general type such that cf(X) — x,

The proof is straightforward: (1) is a result of the expression for the invariants of

W* by solving r, while (2), (3) and (4) are the results of 6>0, n + a>3 and b<2a/3- 1,

respectively. We use b<2a/3 — 1 instead of 6 < [20/3], which is easier and excludes the

case (n, α, i>) = (0, 3, 2).
For a given (x, y, z) it is easy to show whether there exists an integer r satisfying

the above conditions or not.

Combining Theorem 3.1 and Remark 2.6, we can get the same kind of results as

in the Remark 3.3, but all these seem to be too vague to be useful, so we omit it.
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Appendix by Mei-Chu CHANG*

In this appendix we give a "global" statement of Liu's theorem.

Let L = (l/4, 1/6), Af=(l/3, 2/3), C=(l/2, 5/6), and N=(l, 2/3) be four points on
the xy-plane, and let $ be the curve connecting L and N with defining equations

(1) y=

2x-l/3

(l/3)(4N/Ϊ4oc-8x-5)

2/3

l/4<x<2/7

Let R be the region bounded by the line segments LM, MC, CN and the curve $.
Then for any rational point (x, y) in R, there exists a minimal smooth complex threefold
X of general type such that cf(X)/c1c2(X) = x and c3(X)/cic2(X)=y.

(See the chart attached.)

Φ/2, 5/6)

£0/4, 1/6) CHART.
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What we need to show is that R is the union of the triangles ABC with

, -2n-2b-
A —

B = \

8rί> 6n+12α-12b

2n + 2a-b

4b 6n+12α-12b

5

where n, a, b, r are positive integers with r>3, n + a>3 and satisfying

(2) 0 < b < [2^/3] and (n, a, b) ̂  (0, 3, 2) .

First we change variables. Let

(3) h-

CLAIM. Any rational number between 0 and 1 can be written as (n + b)/(n + 2a — 2b)

ith n, 0, b satisfying (2).

PROOF. Let p/q be such a rational number. We take

a = q—p + 3, b = 2, and n = 2p — 2.

D

Expressing the coordinates of points A, B in terms of h and r, we have

1 ft h 1

Let P(l/2, 2/3) and Dr = (l/2- l/2r, 2/3). Then A. moves from M to P along MP
(note that D3 = M and Dm = P). Bh moves from C to TV along CAT. With r fixed, ^Λ>,
moves from L to Dr along LDr.

It is easy to see that, for h fixed, the line AhaΰBh has the smallest slope among all
AhrBh. In other words, <^ is the oscillating curve of the family {AhtQOBh}h9 and we are
working on the family of lines connecting LP and CN.

To find the defining equation of δ, we let φ(x, y,h) = Q be the equation of the line
AhBh, with

1 h 1 h
Ah = [ —+—, —+ —

h l 4 4 6 2
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and Bh as in (4). Here

Then

Note that the line LP intersects CN at a point where h=l/l.
Eliminating the variable h in the system {φ = 0, dφ/dh = Q}, we get the defining

equation of the oscillating curve $.

MATHEMATICS DEPARTMENT

UNIVERSITY OF CALIFORNIA AT RIVERSIDE

RIVERSIDE, CA 92521

U.S.A.






