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Abstract. Interfacial water waves of permanent profile between two fluids of
different densities are considered. We will show that interfacial waves are generalizations
of surface waves, which have been studied extensively in both mathematical and physical
papers. The purpose of the present paper is to give a mathematical explanation for
numerical results on bifurcations of surface waves by Shόji and ourselves. A hypothesis
of degeneracy plays a key role in the present analysis. In fact, we showed in an early
paper that a certain degenerate bifurcation point, if it is assumed to be present, can
elucidate the complicated bifurcation structure of the surface waves by Shόji. However,
in previous papers, we proved unexpectedly that any degenerate bifurcation point does
not appear if we vary the depth of the flow. So, the idea of degeneracy has not been
physically substantiated in the category of surface waves. In this paper we prove that
such a degenerate bifurcation point actually exists when we vary the "ratio of the
propagation speeds between the upper and lower fluids. Consequently the complicated
structure of the surface waves can be explained by regarding the surface waves as special
cases of the interfacial waves.

1. Introduction. We consider progressive water waves on the interface of two
fluids with different densities. By definition, progressive waves move at a constant speed
and do not change their profiles during the motion. Therefore the profiles are stationary
when we observe them in a suitably moving coordinate system. The interface is a free
boundary to be sought. We employ the following terminology:

• surface wave means a free boundary and the associated fluid motion in which
the fluid below the free boundary is taken into account but the fluid motion
above the free boundary is neglected;

• interfacial wave means a free boundary and the associated fluid motion in which
both the motions above and below the interface are taken into account.

The present paper has two purposes. The first of them is to reformulate the problem
of the interfacial waves by modifying Kotchine [13]. We will show that our reformulated
interfacial wave problem contains the surface wave problem as a special case. We
actually shows that our formulation contains a new parameter: b = mucl/(mιcf), where
mu and mι are the mass densities of the upper and lower fluids, respectively, and cu and
ct are mean speeds of the upper and lower fluids, respectively. When the parameter b
is equal to zero, our formulation reduces to the surface wave problem given in [16].
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Our motivation for this generalization is to establish a mathematical theory of the
bifurcation of capillary-gravity surface waves. The reader might wonder why the in-
terfacial waves should be treated when our purpose is to understand the surface waves.
We will show that the generalization from the surface to interfacial waves is natural
from the singularity-theoretic viewpoint. The generalization or more specifically the
additional parameter b is needed in the sense that a degenerate bifurcation point which
was conjectured to exist in earlier papers [19], [21] is proved to exist by introducing
the parameter b.

The second purpose of the present paper is to prove that such a degenerate
bifurcation point exists when we vary the ratio of the propagation speeds between upper
and lower fluids. In this way, the degenerate bifurcation hypothesis is substantiated.

We now explain the situation stated above in more quantitative way. The numerical
computation in [24] is concerned mainly with the capillary-gravity surface waves of
infinite depth. The problem involves two parameters which are related with the gravity
constant and the surface tension coefficient, respectively. Namely, the problem of the
surface wave of infinite depth is a bifurcation problem of two parameters. Two parameters
ensure generically the existence of double bifurcation points, i.e., the point from which
two branches of different modes bifurcates. Wilton [26] was the first to consider one
of the double bifurcation points and he found mixed mode waves. Nowadays, we have
a general theory of bifurcation at double bifurcation points like [5], [7], [8], [9] and
can apply it to the problem of the surface waves. This theory predicts qualitative
bifurcation diagrams in a rigorous way. The computation in [24], however, revealed
that the actual bifurcation diagrams are more complicated than what are guaranteed
by the generic bifurcation theory in [5], [7], as was pointed out by [19]. There, it was
also pointed out that a certain degeneracy hypothesis (which will be introduced later
in §5) well explains the diagrams of what is called mode (1,2) in [24]. Namely, if we
admit the existence of a certain degenerate bifurcation point, then an abstract theorem
in [6], [15], [17] is applicable and its abstract bifurcation diagrams reproduce almost
all of those in [24] as far as waves of mode (1,2) are concerned. Therefore, in order
to obtain a complete understanding of the phenomena, it is natural to consider the
problem with an additional parameter, since we can expect the existence of a kind of
degeneracy only when we have an additional parameter.

We guessed at the beginning that the required parameter is the ratio between the
wave length and the depth of the fluid. However, the numerical computation showed
that the numerical bifurcation diagrams with varying depth have no qualitative difference
(cf. [24]). This is natural since we have the following fact proved in [19], [21]: for any
value of the depth, the bifurcation equation does not degenerate in the way as is required
by [19]. Thus we must consider the surface wave problem in a situation where it is
embedded in an enlarged problem with additional new parameter(s). This is the
motivation for the present study of interfacial waves.

This paper is composed of eight sections. In §2 we introduce an equation originally
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due to Levi-Civita [12] and Kotchine [13], which is a fundamental equation for the

progressive water waves. In §3 we give a functional-analytic setting of the problem and

in §4 we consider bifurcation equations around a double bifurcation points. There,

a simplification by means of its O(2)-equivariance is introduced. The presence of

O(2)-equivariance in the surface wave problem was first recognized by [2], [16]. Its

existence and usefulness in the interfacial wave problem will be explained here. The

bifurcation equations are classified by a pair of two positive integers, which we call a

mode. We consider only the cases of mode (1, 2). In §5, we study the bifurcation equation

at the double bifurcation point of mode (1, 2). The analysis there helps us to prove in

§6 that the bifurcation equation has degenerate bifurcation points as was required by

[19]. We prove in §7 that there is no triple bifurcation point, which seems to have its

own interest. Finally we consider a degenerate bifurcation point of different kind, which

may serve as a guide to further numerical researches.

2. The fundamental equation. We consider progressive water waves on the

interface of two fluids of different densities. Both of the fluids are assumed to be

incompressible and inviscid. The flows are assumed to be two-dimensional and ir-

rotational. In a reference frame moving at the propagating speed of the interface, we

take (x, y) coordinate system with x horizontally to the right and y vertically upwards.

The two layers of the fluids are bounded by two flat, parallel, and horizontal walls

placed on y= — hx and y = hu. We assume that hx and hu are positive constants. We let

y = h(x) represent the interface, which is stationary in our coordinate system. We further

assume that the wave profile is periodic in x with a period, say L, and that the wave

profile is symmetric with respect to the j-axis. By the periodicity assumption, it suffices

to consider the fluid in the rectangle

« = {(xj); -L/2<x<L/2, -h^yKK}.

By the assumptions above, the fluid motion is described by the velocity potential

and the stream function..We denote by

fl=U^iVl9 and fu=Uu + iVu

the complex potentials of the lower and upper flows, respectively. Here Uι and Uu are

the velocity potentials and Vx and Vu are the stream functions. Then the problem is to

find a period L, a wave profile function y = h{x) and complex potentials such that/j and

fu are analytic functions of z = x + iy in -hx<y<h(x) and h(x)<y<hu, respectively.

They satisfy the following (l)-(7):

(1) uι(±—,y\=±—9 on -hι<y<h(±L/2), respectively,
\ 2 / 2

±^2L' o n



36 H. OKAMOTO

(3)

(4)

(5)

(6)

(7)

Λ=V =( on = h(x),

o n v = — /

on y = hu,

im —

mx) L 2

im —
lh(x) |_ 2

lim
dfu

dz

+gy+

+gy+

-1-
-1-

where px and /7U are the pressures, mu and mf are the mass densities of the upper and

lower fluids, respectively, g is the gravity acceleration. ch cu, ax and au are constants

satisfying atCι>0 and aucu>0. Physical meanings of (l)-(7) are well-known; see, for

instance, Crapper [4], Kotchine [13], or Zeidler [27]. The reason that ax and cx (au and

cu) have the same sign is explained in [21]. We remark that the stream function V,

which is denned as V=VX for y<h(x) and V=VU for y>h(x), is continuous in the

rectangle R. The complex velocities dfu/dz and dfjdz, may, however, have a jump

discontinuity at the interface. The discontinuity may appear in the tangential component

but both of the normal components of the complex velocities are zero at the interface

by (3).

The above formulation involves pt and/?u, hence it is not closed in h,fx and/ u only.

A closed formulation is obtained as follows: At the interface, we assume the Laplace

relation

(8) Pι=pu+TK,

where Γis the surface tension coefficient and A'is the curvature of the boundary y = h(x).

K is represented as

h'
(9) K=-

where the primes mean the differentiation with respect to x. We combine (6) and (7)

with (8) to obtain

(10)
2 Jz

2 wu

mt

dfu

dz
K= constant,

which holds on y = h(x). Accordingly we can formulate the problem as to find a period

L, a wave profile function y = h(x) and complex potentials such that/J and/u are analytic

functions of z = x + ίy in — Az<j;</ι(x) and h(x)<y<hu9 respectively, and satisfy (l)-( 5)

and (10).

We now rewrite this problem in a more convenient form as Kotchine [13] did.
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The aim of the remaining part of the present section is to show that the problem above
is equivalent to the following one:

Find Iπ-periodic functions θ = θ(σ) and S=S(σ) such that

2 dσ Γt dσ \ dσ

(0<<τ<2π),

(12) Γι^^- = ΓuQxp(-(HΘ)o§-HΘ) (0<σ<2π),

dσ

where

S(σ) = σ + S(σ), θ = θo§~1

and

, = — I**e-WM*co*θ{σ)dσ , Γu = — Γ
2π Jo 2π J o

(13) Γ, = — Ie-WM*co*θ{σ)dσ , Γu = — ΓVM )<σ)cos0(σ)dσ .
2 J 2 J

H and H are linear operators defined through the Fourier series as follows:

oo 1 _j_ Jin(
Σ iβnsinnσ + bncosnσ) j = ^

( QO \ oo l _ j _ r -

Σ (απ sin «σ + έw cos nσ) I = ^
1

Note that the problem involves five dimensionless parameters b, p, q, rι and ru.
These parameters are defined by

(16) A-^4, p
fmι

and

2πa,

cxL J \ cuL

Note that 0<η<l<rM<H-oo. Since θ and S are 2π-periodic, we regard them as func-
tions on the circle S1. In this formulation, S is tacitly assumed not to be too large so
that S is an isomorphism from S1 onto itself.

REMARK. If b = 0, then (11) contains unknown θ only and the equation with b = 0
represents the problem of surface wave, which was considered in [16], [24]. Our
formulation (11)-(16) is due to [13] but there is a slight modification. Hence we think
it is worthwhile to give a complete derivation of (11)—(16).
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Derivation of (11)—(16): We define real-valued functions θh θu, τt and τu by

(17) βI + rr, = iΊog —-f1 (\x\ίL/29 -I
\Cι dz,

and

(18) θu + fru = ilog(— ^f) (\x\<L/29 h(x)<y<hu).

\cu dz )

Following Kotchine [13], we introduce independent variables

2πifΛ r ( iπίfΛ

\ ctL ) \ cJL )
and dependent variables

We regard ωι and ωu as functions of ζt and ζu, respectively. Note that ζι runs in

rt<IζιI< 1 as z does in —hχ<y<h(x\ \x\<L/2. Similarly ζu runs in 1 <ζ u <r u when z

does in h(x)<y<hu, \x\<L/2. Note also that the negative real axis corresponds to

{x= ±L/2}. Since dfjdz and dfu/dz are periodic in x, the functions ωt{ζt) and ωu(ζu)

are continuous across the negative realsand axis. Therefore, ωt and ωu are analytic in

the complete annuli rx < \ ζ, | < 1 and 1 < | ζu \ < rM, respectively. The conditions (4), (5)

imply that dfjdz and dfjdz are real numbers on the circles \ζι\ = rι and \ζu\ = ru,

respectively. Thus, θt and θu vanishes at | ζz | = rf and | ζ t t | = rα, respectively. By this

property of θι and θu, the analytic functions ωt and ωu can be expanded in the Laurent

series

oo

(19) ωι = ioco+ Σ [(βn — iotn)ζΊ — (βn + ioιn)rι

2nζι~
n'] i n rt<\Ct\<l ,

00

(20) ωu = i a 0 + Σ l(bn + ian)ζΰn — ( b n — ian)r~2nζl~] i n l < | ζ M | < r M ,
n = l

where an, bn, ctn and βn are real constants.

If we assume the smoothness of the interface, then each of these expansions can

be continued up to the boundary | ζι \ = | ζu \ = 1. Let (p, σ) be the polar coordinates for

ζh i.e., £j = pe ί σ. Similarly we define ζu = p'eiσ'. Expansions of the form (19), (20) imply

that

(21) τz(l, σ) = H(θι(\, σ)) + α0 , τM(l, σ')= -H(θu(\,

On the other hand, the equations (17) and (18) are written as

dz L „, dz L
*- ' If Λ v ' ii/

dζ, 2πiζ, dζu 2πiζu

-e
,iωu
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On the interface, we have ζt = eiσ and ζu = eίσ'. Thus, (22) yields

i^L ( - τ ι i l σ ) θ J ί l ) - τ i ( 1 σ ) i(23)

and

(24)

dσ dσ 2π

2π

l, σ))

l, σ')).

These are the parameterizations of the interface. So, these two equations represent the

same curve in the (x, y) plane: in particular, we must have x(2π) — x(0)= — L in either

representation. This condition determines α 0 and a0:

(25) I° = — I
2π J o 2π J o

We note that

if

which comes from the fact that the velocities on either side of the interface are tangent

to the interface. We now define θ by

θ(σ) = θι(l,σ).

Then we define Γ, and Γu as in (13). By (21), (22) and (25), we have

- ^ = 4fexp{-jy(0,(l, σ))-H(θu(h *'))} ,
/ Γ

which is just (12).

We now rewrite (10) by means of θ(σ). On the interface, we have V=0. Therefore,

(17) and (18) give

df,
dz

df»
dz

= cϊe2τ>, 2πeτ

dx L cos θt dσ

By the last formula and (9), we easily obtain the following expression for the curvature:

eτ> 80,

on p = 1 ,

κ

L dσ '

We now differentiate (10) with respect to σ. Then we get

( e b e ^ p e ώ θ ι + q ( e
2 dσ dσ \ dσ

where τM = τM(l, σ'). We now obtain (11) by (25).
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3. Function spaces. We apply the mathematical bifurcation theory of Golubitsky
and Schaeffer [7], [8], [9]. To this end we use a mathematical setting with function
spaces. Namely, for a non-negative integer k, we define Hubert spaces Xk by

ίXk = <f=
n=ί

or we can symbolically write Xk = Hk(Sί)/R, where S1 means the circle. Xk is equipped
with the norm

l/2

LEMMA 1. IfSeX2 satisfies \\S\\2< sfβ/π, then S(σ) = σ + S(σ) has an inverse and

I—S'1 belongs to X29 where I is the identity operator.

PROOF. By the Sobolev embedding theorem, X2 is continuously embedded into
C^S1). So, Sis continuously differentiate. Suppose that S=ΣΓ=i (αΠsin«σ +/?„cos«σ)
is the Fourier expansion of S. Then,

dS
Σ n{\*n\ + \βn\)<( Σ -V)ί Σ n\x

dσ π = i \ w ^i n*

for all σ, since \\S\\2<yl~6lπ. Hence σ\->σ + S(σ) is a strictly increasing function. This
guarantees that S is a C^-diffeomorphism of the circle S1. Set σ+Γ(σ) = S~1(σ).
Differentiating σ = £(σ + Γ(σ)) twice with respect to σ, we have

T"(σ)S'(σ + T(σ)) + S"(σ + T(σ))(l + Γ(σ))2 = 0 .

It is now easy to show that T= —I+S'1 actually belongs to X2. •

For a given >/e[0, 1) we define an operator Hη by

( \ 1 + w
Σ (ansmnσ + bncosnσ))= Σ —( — ancosnσ + bnsinnσ).

n = i ) « = i l-η2n

We then define a nonlinear operator F: R3 x [0, I)2 xZ>->Xo x ^ by F=(Fl9F2)9

where

(27) J W , Λ 4, ̂  ^ 2 ; β>
2 dσ \ dσ

and
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(28) F2(b, p, q, ηu η2; θ, S) = Γ,exp([/ ί ,/]o5)cos(θ)- Γuexp(-Hηίθ)cos(θ),
aσ

with S(σ) = σ + S(σ), 8= θ ° § ~1 and

i Γ2π i Γ2π

(29) Γt = e-H'Mσ)cosθ(σ)dσ, Γu = eH"&σ)cosff(σ)dσ.
2π Jo 2π J o

Note that f/z = rz and η2 = r~1 in the notation of the previous section.

Thus, our task is to determine the zeros of F. Clearly, 0 = 0 and S(σ) = 0 solve ^ = 0

for any value of the parameters fe, p, q, ηx and η2. We remark that 0 = 0 corresponds

to the case where h(x) is constant, so the corresponding interface is flat (see (23)).

We now prove:

LEMMA 2. The mapping F is a well-defined, smooth mapping from R3 x [0, I ) 2 x D

into Xo x Xx and satisfies F(b, p, q, ηuη2\ 0, 0) = 0.

PROOF. We prove that (i) F is a smooth mapping into L2(S'1) x H1^1) and then

prove that (ii) the range of F is actually in XoxXί.

(i) is easily seen by the Sobolev embedding theorem and the fact that Hη is a linear

isomorphism from Xs onto itself for any s. To prove (ii), we consider, for a given

function θeX2, the analytic function

^ 4 ^
-ηin \-η\n

where ocn and βn are the Fourier coefficients of 0, i.e.,

+ 00+ 00
σ ) = Σ (αn S ί n W σ + βn C 0 S w σ )

Since ΘGX2, Ω is analytic inηi<\ζ\<\ and continuous up to the boundary | ζ | = 1. It

satisfies

(σ) and

By Cauchy's integral formula, it holds that

J|ζ| = l C>\ζ\s

Taking the real part and noting that Re[Ω(η1e**)'] = 09 we obtain

Jo €

This shows that FίeX0. On the other hand, the change of variables shows that
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(*2π JP Γ2π

eί
H^°§cos(θ)—dσ= eH

Jo dσ Jo

This and the definition of Γt and Γu prove that F2eXί. Π

REMARK. If rx = 0, then Γt = 1 for any θ. Similarly, if ru = 0, then Γu = 1 for any θ.
These are proved in the same way as in [16].

4. Bifurcation equation. In this section we compute the bifurcation equation via
the Lyapunov-Schmidt method. Then, exploiting its O(2)-equivariance, we rewrite it in
a normal form.

We begin with determining the bifurcation set of parameters. For this purpose, we
need the Frechet derivatives:

LEMMA 3. The first order Frechet derivatives of F at 0 = 0, 5 = 0 are given by

DeFab, p, q, ηl9 η2 0, 0)w = —-p™- + b—n^-pw + q—\ (weX2),

dσ dσ dσ

DsF^b, p, q, ηl9 η2 0, 0)Γ=0 (TeXJ ,

, p, q, ηl9 η2 0, 0)w = Hηίw + Hη2w (weX2) ,
dT

DsF2(b, p, q9 ηl9 η2 0, 0)T=~-
dσ

The proof is straightforward if we note that

(30) Γ ι = 1 + T - [2πί(Hηίθ)22

4π J o

(31) Γ « = 1 + T

and e ~ Hθ sin(θ) = θ - ΘHΘ + O( || θ \\3), etc. •

For notational convenience, we define the following symbols:

LEMMA 4. ΓΛe Frechet derivative of F with respect to (θ, S), which is denoted by

DβF2 DSF2

has a nontrivial null space if and only if there is a positive integer n such that
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(32) [L{ή) + bU{ή)]n = p + n2q.

In this case,

_ / L(n)+l/(n) . \ . _, ( L(n)+U(n) \

Σn = sin nσ, sin nσ and Σn = cos nσ, cos nσ
\ n / \ n )

are null vectors'. Namely, Dθ sFΣn = Dθ SFΣ^ = O.

This lemma is easily proven by Lemma 3.

Later we will prove that (ft,pθ9 qo,ηl9η2; 0,0) which satisfies (32) is actually a

bifurcation point. Namely there is a nontrivial solution to F=0 in any neighborhood

of (ft, p0, q0, ηί9 η2 0, 0) in R3 x [0, I ) 2 x D. It is, however, very important to notice that

some of the bifurcation points differ from others by the dimension of the null space.

In fact, some (ft, p, q, ηί9 η2) satisfies (32) for two distinct «'s.

DEFINITION 1. If (ft, /?, q, ηl9 η2) satisfies (32) for one and only one n, then we call

it a simple bifurcation point of mode n. On the other hand, if (ft, p, q, ηl9 η2) satisfies

(32) for two and only two integers n and m (nφm\ then we call it a double bifurcation

point of mode (m, ή).

We note that the kernel of DΘSF(b,p9q9ηuη2; 0,0) is a two-dimensional space

spanned by Σn and Σ'n9 if (ft, p, q, ηl9 η2) is a simple bifurcation point. On the other hand,

the kernel of DΘSF(b, p, q9 ηl9 η2 0,0) is a four-dimensional space spanned by Σn9 Σm9

Σ'n, and Σ'm9 if (b,p,q,ηl9η2) is a double bifurcation point. The reader may wonder

whether triple bifurcation points exist or not. We actually prove in the last section that

there is no triple bifurcation point.

The bifurcation from a simple bifurcation point is literally simple but the bifurcation

from the double bifurcation point is rather complicated and many of them are not yet

investigated completely. In fact, Shδji [24] computed many bifurcation diagrams which

did not seem to appear in the previous literature. Among her computations, we focus

in this paper on the bifurcation of mode (1,2) and show that some degenerate bifurcation

equations, which will be introduced later in §5, will explain many of her computations

and that the Kotchine equations (27), (28) do contain such a degenerate bifurcation point.

Although our main concern is to study the double bifurcation point of mode (1, 2),

it will be useful for later analysis to give a mathematical description of a general double

bifurcation point of mode (m, ή). Without loss of generality, we assume that 0<m<n.

A double bifurcation point of mode (m, ή) is characterized by

{L(m) + bU(m))m = p + m2q , (L(ή) + bU{ri))n = p + n2q.

We define

PoΦ, ni> *l2> m > n ) = —7 Γ{wL(m)-mL
n2 m2
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λ mL(m) - nL(ή) + b[mU{m) - ήU(ήf\

m2-n2

It is easy to observe that the bifurcation points of mode (m, n) are characterized as

(b, /?, g, ηl9 η2 θ9 S) = {b9 po(b, ηl9 η29 m, n), qo(b9 ηl9 η2, m, n)9 ηl9 η2 0, 0). So we have an

important fact: the set of all the double bifurcation points of mode (m, ri) is a three-

dimensional manifold parameterized by Z>, ηί and η2. As is mentioned before, we will

prove in §7 that there is no triple bifurcation point in the range 0<b,p,q<co,

ηl9 η2 e [0, 1). So, all the points on the manifold satisfy (32) for exactly two integers m

and n.

LEMMA 5. At the double bifurcation point of mode (m, ή), the cokernel of Dθ sF(b,

p0, q0, ηl9 η2 0, 0) is spanned by

(sin mσ, 0), (cos raσ, 0), (sin nσ, 0), (cos nσ, 0) .

PROOF. By Lemma 3, the operator dual to DΘSF is represented as

d d2 \

dσ dσ dσ

0 "
\ dσ I

The conclusion is easily derived from this formula. •

We now prove that F satisfies a certain property which is called O(2)-equivariance

and that this property forces F to be of a special simple form (see (37), (38) below).

We first define an action of the orthogonal group O(2) on D as follows: Let us recall

that O(2) is generated by rotations of angle α e [0, 2π) and a reflection. Accordingly,

yβ(σ) = θ(σ - α), yΛS(σ) = S(σ - α), (0 < α < 2π),

y_0(σ)=-0(-σ), yS(σ)= - S ( - σ )

define an action of O(2) on D, where ya represents the element of O(2) corresponding

to the rotation of angle α and y_ the reflection. We also define an action of O(2) on

the range space of F, i.e., for (fl9f2)eXoxXί we define

7«/i(σ) =Λ(σ - α), yJ2(σ) =/2(σ - α), (0 < α < 2π),

y-Mσ)= - Λ ( - σ ) , y_/ 2 (σ)=/ 2 (-σ).

Note that y_ acts on the second variable oddly in the defining domain, while it does

evenly on the second variable in the range of F. We now prove:

PROPOSITION 1. The mapping F(b,p,q,ηuη2; -, - ) : D-^>XoxX1 is O(2)-equi-

variant, by which we mean
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F{b, p , q, ηl9η2; γ(θ9 S)) = γF{b, p9q,ηl9η2;θ9 S) (yeO(2)) .

PROOF. Note that the following relations hold in D:

, H(y _ θ)(σ) = (H0)( - σ),

Here, an obvious action of ya and y_ on S=σ + S(σ) is assumed. The proposition follows

from these. •

As is emphasized in [8], [9], an equivariance with respect to a group greatly

simplifies the bifurcation equation and reduces the labor necessary for the analysis. The

effect of O(2)-equivariance is fully discussed in [9]. Following it, we explain the analysis

here in our context. Proposition 1 enables us to simplify the bifurcation equation as

follows: Let us use the following notation:

• Q>9 p 0, q0, ηί9 r\2\ 0, 0) is a double bifurcation point of mode (m, ή) with 0 < r a < « ,

parameterized by (b, ηί9 η2);

• DΘSF° denotes the Frechet derivative of F at (b, p 0, q0, ηx, η2 0, 0) with respect

to (0, S);

• P denotes the ZΛprojection from L2(SX) onto the four-dimensional subspace

spanned by sin mσ, cos mσ, sin nσ and cos nσ;

• Z is the ZΛorthogonal complement of N(DΘSF°) in X2 x X2, where N( ) denote

the null space ( = kernel).

Note that the range of DΘSF° is l(I — P)X2]xX1. Now we consider the following

equation:

(33) (I-P)Fx(b, p, q, ηί9 η2; xΣm + yΓm + zΣn + wΓn + φ{b, p9 q9 ηl9 η2; x, y9 z, w)) = 0,

(34) F2(b9 p9q9ηl9η2l ^m + yΓm + zΣn + wΓn + φ{b, p , q, ηl9η2; x 9 y9 z9 w)) = 0 .

The equations (33) and (34) uniquely define a Z-valued mapping φ in some open set

containing (ft, p0, q0, ηί9 η2 0, 0, 0, 0). We define G by

G(b, p, q9 ηl9 η2 x, y9 z, w) = PF1(b9 p9 q9 ηl9 η2 xΣm + yΓm + zΣn

p, f̂, f|i, η2 x, y, z, w)).

This mapping G is the bifurcation equation.

By Proposition 1 and the fact that the bifurcation equation inherits the group

equivariance from the basic differential equation (cf. [8]), we see that G too has an

O(2)-equivariance. To represent this more conveniently, we identify (x, y9 z, w)e/?4 with

(ξ9 C) G C2 in the way that ξ = x + iy, ζ = z + iw. Therefore, we can regard G as a mapping

defined on (some open subset of) R5 x C 2 . Similarly, we can regard G as a mapping

taking its value in C 2 . Let (G1 ? G2) be the componentwise expression of G in C 2 . We

now have:
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PROPOSITION 2. The mapping G above is O(2)-equivariant in the sense that the

following two conditions hold true.

(35) G(b,p9q,ηi,η2;e
imaξ,eίnaζ) =

(e^G^b, p, q, ηl9η2; ξ, ζ\ ein*G2(b, p, q, ηl9 η2 ξ, Q), (αe[0, 2π))

(36) Gφ, p, q, ηί9 η2 ξ, ζ) = (Gί(b, p, q, ηu η2 ξ, £), G2(b, p, q9 ηl9 η2 ξ, ζ)).

The proof is straightforward by definition.
Proposition 2 forces the mapping G to be of a special form. Let us introduce some

symbols, which and the terminology below are borrowed from [7], [8], [9].

REMARK. From now on, we write/: /?->/?, even when the defining domain of/
is some small open set of R. Strictly speaking, we consider mapping germs at the origin,
although we write them as if they were defined in the whole space.

DEFINITION 2. Let A: be a positive integer. We call a function /: RkxC2-+R
O(2)-invariant iff (a; eim*ξ, einaζ)=f(a; ξ, ζ) and/(α; £ ζ)=f(a; ξ, ζ) are satisfied for
all αe[0, 2π) and aeR\ ξ, ζeC.

The set 2? of all germs (at the origin) of O(2)-invariant C°°-functions is a commutative
ring with unity. The set E of all the mapping G: R5xC2^C2 satisfying (35), (36)
constitutes an is-module. In order to give a simple expression for E and E, we need to
introduce two positive integers ή and rri. We define them to be coprime positive integers
satisfying n/m = n'/m'. We now have:

PROPOSITION 3. Any element fe E is of the form

f(a; ξ,ζ) = g{a;u,v9s),

where g is a C00-function of k + 3 variables, and M, t;, s are defined by

u = \ξ\2, v = \ζ\2, s = R e [ f ' C m ' ] .

PROPOSITION 4. The module E is generated over E by the four elements

et = (ξ,0), e2 = (0,?"'- 1ί" '), e3 = (0,ζ), e4 = (0, {T" ' " ' ) •

In particular, the mapping G at the bifurcation point of mode (1,2) is of the form

(37) G^f.ξ+m,

(38) G2=f3ζ+f4ξ
2,

where fj are of the form

fj=fj(b, p, q, ηlt η2 | ξ \2, \ ζ \2, Re[ξ"2C]) (/= U 2, 3, 4) .

The proofs of Propositions 3 and 4 can be found in [15] and [8].
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5. Bifurcation equation of mode (1, 2). In this section we compute the Taylor

coefficients of the bifurcation equation of mode (1,2). Then we define the degenerate

bifurcation point which was mentioned in §1. We show that a theorem in [15] is

applicable to the problem now in question.

The bifurcation equation G: R5 x C2 -> C2 is now written as in (37), (38). We use

the theory in [7], [8], [9] in which mapping germs containing one-parameter are

considered. Our mapping, however, has five parameters. We thereby pick up an arbitrary

point (b, p0, q0, ηu η2) which defines a double bifurcation point of mode (1, 2). We then

take any smooth curve in R5 which goes through the point and is transversal to the

three dimensional manifold defining the double bifurcation point of mode (1,2). We

take a coordinate λ along this curve such that λ = 0 corresponds to the point

Φ, Po> 4o> *h> Vi)' We regard G as a mapping germ of (λ, ξ, ζ), so we can write as

(39) Gi=/iW; u9Ό9s)ξ+f2(λ; u9v,s)ξζ,

(40) G2=f3(λ; u, Ό, s)ζ+f4(λ; u, υ9 s)ξ2 .

If we show that this mapping is finitely determined and if we compute universal

unfoldings, then the equation (35) can be realized by one of the unfolded mappings (cf.

[7], [8]). Thus we are led to the analysis of (39), (40).

Since G is a bifurcation equation, all the derivatives of first order vanish at the

origin. Accordingly /}(0; 0, 0, 0) = 0 (7=1,3). To be more precise, /}(0; 0, 0, 0) = 0

(j= 1, 3), whatever the choice of (b, p0, q0, ηu η2) may be. In order to go further, we

need to compute/2(0 0, 0, 0) and/4(0 0, 0, 0), which depend implicitly on (b, ηl9 η2).

Before going into the details we can make some simple observations.

By the Taylor expansion, we have

(41) G

(42) G2 = (δλ + άu + έυ + 2s + fΊ)ζ + (k2 + e1λ + e2u + e3v + e4s + fs)ξ2 ,

where ε,δ,dj,ej (7=1,2,3,4), a,c,d,ά,c,ct,kl9k2 are real constants depending on

(b, ηu η2).fj are terms of order >2. If both kx and k2 are different from zero, we can

divide G1 by/2 and G2 by/4, respectively. The divided mapping is O(2)-equivalent, in

the sense of [7], to the original mapping. So, it suffices to analyze

(43)

(44)

though the coefficients β, a, c, etc. are different from those in (41) and (42). f9 and/ 1 0

are of order > 2.

The bifurcation equations (43) and (44) were analyzed in [5] and later in [9],

[15]; The latter papers made an analysis faithful to the Golubitsky-Schaeffer theory. Al-

though these papers were not concerned with the water wave problem, their analyses
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are applicable to the present problem, since theirs and ours are based only on
O(2)-equivariance. Our conclusion in [15] agrees with those in [5], which shows that
the equations (43) and (44) can reproduce only a part of the interesting secondary
bifurcations which were numerically found in Shδji [24]. In order to explain the situation
we use Theorem 3.2 of [15]:

THEOREM 1. Assume that εδc φ 0 and εc φ δ(c - ά/2) in (43) and (44). Then, (43) and
(44) are O(2)-equivalent in the sense of [7] to

(45)

(46)

This theorem enables us to easily draw the bifurcation diagram, since it suffices to
compute the roots of the algebraic equations. Let us show this by an example. Shδji
obtained the diagram in Figure 1, which is reproduced from [21]. Here only symmetric
waves are plotted. The symmetry of the waves is represented by θ(σ)= —θ( — σ). This
is equivalent to Im ξ = 0, Im ζ = 0 in (45), (46). The primary pitchfork has two secondary
bifurcation points which are connected by a loop having two turning points. On the
other hand, the non-degenerate bifurcation equations (45) and (46) can reproduce only
a diagram corresponding to (I2-h) of [5], which is the encircled part in Figure 2. So
the turning points are not captured by (45), (46), let alone the loop in Figure 1. Later,

= 0.610000

> q

FIGURE 1. Bifurcation diagram when b=\, 7/i=*72

 = O a n d p = 0.6l. q is taken as
a bifurcation parameter. The >>-axis represents the sum of the first two Fourier
coefficients of θ. A big loop having two turning points are observed.
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FIGURE 2. A blow-up of Figure 1 near the primary pitchfork. The part enclosed
by a broken line is the diagram which is reproduced by (44) and (45).

Fujii et al. [6] introduced a notion of degeneracy and showed that turning points are

reproduced if the degeneracy exists. We pursue their idea but along the Golubitsky-

Schaeffer theory (see below).

By these observations, it is natural to study the case where either ε,δ,c,εc—

δ(c — ά/2), ku or k2 vanishes.

The possibility of ε = 0 or <5 = 0 will be considered in §8. We do not know if the

degeneracy c = 0 o r εc = δ(c — ά/2) happens or not. Instead, we will only consider the

possibility of kx = 0 and/or £ 2 = 0, since we will later see that the occurrence of kx = 0

is sufficient for our purpose. We content ourselves that generically εcΦδ(c — ά\Ί) and

cφO.

Recall that the constants kx and k2 depend on (b,ηl9 η2). So it is natural to ask

whether there is a (b0, η(?\ η2

0)) such that k1 = 0 or k2 = 0. [6], [17], and [19] considered

the case where kx vanish while k2 does not. Recall that they consider only the case b = 0.

This assumption is the degeneracy assumption which was referred to in the introduction.

If this is the case, then we can divide G2 by/ 4. We then obtain (41) and

(47) G2 = (δλ + άu + cv + cϊs+f11)ζ + ξ2,

Theorem 4.1 of [15] shows that the bifurcation equations (41), (47) are O(2)-equivalent

(in the sense of [7]) to

(48)

(49)

t = (ελ + au + cv + ds)ξ + d3vξζ ,
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where ε, δ, a, c, a, c, dx and d2 are nonzero real constants different from those in (41)
and (47). Its universal unfolding in the sense of [7] is

(50) G1

(51)

where α, /?, γί9 y2, y3 and yA are unfolding parameters. Among these parameters, α and
β are essential and γί9..., γ4 are modal parameters in the sense of Golubitsky and
Schaeίfer [8].

It was shown that (50) and (51) can reproduce all the bifurcation diagrams of mode
(1,2) in Shδji [24]. For instance, the whole picture of Figure 1 is obtained from (50),
(51). Since this is explained in [17], [18], [21], especially in [21], we do not repeat it
here. However, we would like to emphasize that the existence of any degenerate
bifurcation point has not been proven in these papers.

6. Existence of degenerate bifurcation point. We have seen that the existence of

a degenerate bifurcation equation such that/2(0; 0, 0, 0) = 0 is expected somewhere in

the manifold

P=Po(b, ηί9 η2) ,

The aim of the present section is to show the existence by explicitly computing

Λ(θ; 0,0,0).
In order to derive a concrete expression for/2(0; 0, 0, 0), we give formulas necessary

for the computation of/2(0; 0, 0, 0).

LEMMA 6. The second order Frέchet derivatives of F are:

(52) DJF\{v, W) = 2^-(HηivHηiW)-2b^-(Hη2vH
aσ dσ

(53) L>eDst!(w, i ) = b—— <—y i —HηA ——1 \> (w, 1 eX2) ,

(54) D^F^=0.

Note that

d2

DeDsFXw, T) = ——F1(b9 pθ9 qθ9 ηl9 η2 tw9 sT)
otos

which is not symmetric with respect to w and T.

PROOF. We first consider
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F& p , q, ηl9 η2; θ, 0) = l ^ ( r U b Γ l e + q Γ ι e ^ ^
2 dσ \ dσ) Γt

(52) is easily derived from this and the equalities (30) and (31). By

we obtain (54).

We now consider

b 0 ! V bb9p9q,ηuη2;0,!Vw b
dσ

where w = w°S(σ)~1 and K is independent of S. Deriving (53) from this is an easy

exercise. •

Using these formulas, we calculate some quantities involving the second order

derivatives. The quantities below are needed in the computation of the bifurcation

equation.

LEMMA 7.

(55) D$Fl(smσ, smσ) = A(l, I)sin2σ ,

(56) Dl F?(sin σ, sin 2σ) = A(l9 2) sin σ + B(l, 2) sin 3σ ,

(57) D β D s F;(sinσ,sin2σ)=-6l/(l)sinσ-—(l/(3)-l/(l))sin3σ,

(58) DβDsFΪ(sin 2σ9 sin σ) = b(U(l)-1/(2)) sin σ + 36(1/(2)-1/(3)) sin 3<τ ,

(59) D^DsF0! (sin σ, sin σ) = 6(1/(1) -1/(2)) sin 2σ ,

where

2

The expression for B(l, 2) is unnecessary.

PROOF. Since all computations are elementary, we only prove (55). By (52),

7, sin σ)

= 2 — ( L ( l ) 2 cos2 σ - bU(l)2 cos2 σ - 2q0L(l) cos2 σ) - 2p0L(l) sin σ cos σ
dσ
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Since m = 1 and n = 2, we have

and

Consequently the coefficient of sin2σ is represented as in the lemma. D

We now compute the coefficients.

THEOREM 2. // holds that

/2(0; OΛ 0 > = « I ^ }

and

/ 4 (0; 0, 0, 0) = 2L(l)L(2)-4L(l)2 + 2ftί/(l){2ί/(l)-1/(2)}

PROOF. We note that

/2(0;0,0,0) ^ |
dxoz

Hence

(60) —(λ; ξ, O = PDβF1(#)(sinσ

where # denotes (b, p 0 , f̂0, //1? ^/2i xΣ1+yΓί+zΣ2 + wΓ2 + φ) and (</>l5 </>2) denotes the

components of φ. Differentiating (60) with respect to z and noting that φ\,x = φ°2,x = Q,

we obtain

(61) ^ ^ ( 0 ; 0, 0) = PDθF°1(φ°U

dxoz

, sin2σ)

, sin σ)

+ —[L(l)+£/(l)][L(2)+t/(2)]PD|F;(sin2σ, sinσ).

Since φ is Z-valued and since DF\ commutes with P by Lemma 3, the first and second

terms on the right hand side vanish. By (54), we obtain
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(62) — — ( 0 ; 0, 0) = PD2F°(sinσ, sin2σ) + L ^ + t 7 ^ p^y^F? (sin σ, sin2σ)
dxdz 2

+ [L(l) + l7(l)]«V) sF;(sin 2σ, sin σ),

which, together with Lemma 7, implies

/2(0 0, 0,0) = A(l, 2) + b|[(t/(l)-17(2)] [L(l) +17(1)] - y 17(1)[L(2) +1/(2)] j

The coefficient /4(0 0, 0, 0) is computed from

/4(0;0,0,0) = 4%(0;0,0).
ox

In a similar way we have

- ^ ( 0 0, 0) = PDθ

2FΪ(sin σ, sin σ) + 2[L(1) + l/(l)]PDβDsFΪ(sin σ, sin σ).

Then Lemma 7 completes the proof.

COROLLARY 1. We define a function Φ(x)for 0 < J C < 1 by

" (i-*)2

Then /2(0 0, 0, 0) andf4(0 0, 0, 0) vanish simultaneously when

(63) b = Φ ^

COROLLARY 2. If 6 = 0, ί/κ?« neiϊλer /2(0; 0, 0, 0) nor /4(0; 0, 0, 0) vanish for
0, 1).

Concluding remark: Corollary 2 is already known ([19], [21]). However, Corollary
1 is surprising. We found a degenerate bifurcation point but it is actually more degenerate
than we expected. Our computation shows that the aspect ratio of the flow, i.e., the
depths of the upper and the lower fluid, play little role in the bifurcation from the
singularity-theoretic viewpoint. Now that a strongly degenerate bifurcation point was
found, it is not surprising in retrospective that there are so many solutions to the
interfacial wave problem, which were found numerically. For numerical computations
we refer the reader to [10], [14], [22], [23], [25].

When both of the two layers of fluids are infinitely deep, then the degenerate
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bifurcation point appears where b = \. In other words, more complicated bifurcation

may be possible when the average energy densities of the two flows are equal or close to

each other.

7. The triple bifurcation point. This section is devoted to proving that there is

no triple bifurcation point in (ft, /?, q, ηu η2)e [0, oo) x [0, oo)2 x [0, I ) 2 . The next lemma

is sufficient for our purpose. This lemma shows that there are triple bifurcation points

but they all exist in the unphysical range ft<0.

LEMMA 8. For an arbitrary (ηί9 η2) e [0, I) 2 , there exists one and only one (ft, p, q) e

R3 satisfying (32) with three different positive integers. This unique solution satisfies that

b<0.

PROOF. Let (ηί9 η2)^LO, I ) 2 be given. Suppose three integers 0<l<m<n are

given. Then we look for (ft, p, q) such that

-nU(n)\/q\ I nL(ri)\

(64) m2 1 -mU(m) )\ P ) = \ mL(m)

The determinant of the coefficient matrix is computed to be

nl/(n)(/2 - m2) + mU{m)(n2 -12) + lU(l)(m2 - n2),

which we shall write g{η2). We put x = η\ and multiply this quantity by ( 1 — xι)(\-

xm)(l — xn). Then proving g{η2)ΦQ is equivalent to proving that

+ l(m2 - n2)(l + x ' χ i - xn)(l - xm)

is nonzero for all xe[Q, 1). However, this is exactly what was proven in the appendix

of [16]. Therefore (64) is uniquely solvable.

Now we eliminate p and q to obtain

Since g does not vanish in [0, 1), ft is negative. •

This result is also unexpected in that even five parameters cannot give us a triple

bifurcation point. However, triple bifurcation points exist in the region b<0. We may

discard such points because of its unphysical meaning, but we must note that our

problem (11), (12) has an equally valid mathematical meaning for negative b. So such

triple bifurcation points may affect the structure of the solutions. In fact, even some

surface waves suggest the influence of triple bifurcation point. Zufiria's numerical

computations of non-symmetric water waves (cf. [28], [29], [30], [31]) seem to strongly
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suggest the existence of a triple bifurcation point of mode (1, 3, 6). Though such a triple

bifurcation point was proven not to exist in the surface wave problem, we have proven

the existence in the interfacial wave problem with h < 0 . Since the surface wave problem

is embedded in the interfacial wave problem, it might be possible to interpret Zufiria's

bifurcations as the effect of the triple bifurcation of interfacial waves.

8. The case where εδ = 0. Here we examine if there is a (b, η1,η2) which makes

ε or δ vanish.

We first note that the tangent space at the point (ft,/?0(l, 2), # 0 (l, 2), ηu η2), is

spanned by the three vectors

(65) (3, 4U(1)-2U(2), 2U(2)-U(1\ 0,0),

(66) (0, 4L(1) - 2L(2), 2L(2) - L(l), 3, 0),

(67) (0,4bύ(l)-2bϋ(2l 2bύ(2)-bύ(l), 0, 3),

where the dots mean the differentiation with respect to ηί or η2. On the other hand,

we have

Let {λ°u λ29 Λ-3, λ%, λ°) denote the tangent vector at λ = 0 of the curve which we have

chosen to pick up the parameter (see the beginning of the present section). Then we

obtain

By the definition, (λ°u λ°2, λ%, λ% λ°5) is orthogonal to the tangent vectors (65)-(67). It is

easy to see that

(68) (£/(l), - 1 , -l,L(l),fot/(l))

is orthogonal to the three tangent vectors (65)-(67) above. Therefore ε vanishes if and

only if (λ°u λ°2, λ%, λ% λ°5) is orthogonal to the four vectors (65)-(68).

Similarly, δ = 0 if and only if (λ°u λ°2, λ°3, λ% λ°5) is orthogonal to (65)-(67) and

(2U(2\ - 1 , -4,2L(2),2fc*7(2)).
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