ON SMOOTH SO $O_{0}(p, q)$-ACTIONS ON S^{p+q-1}, II

Fuichi Uchida*

(Received November 6, 1995, revised March 14, 1996)

Abstract

Smooth actions of non-compact semi-simple Lie groups have been considered by Asoh, Mukoyama and others, in the case where the actions restricted to the maximal compact subgroup have codimension-one principal orbits. In this paper, we consider such actions on the $(p+1)$-sphere for Lorentz group of type $(p, 2)$.

Introduction. Consider the standard $\boldsymbol{S O}(p) \times \boldsymbol{S O}(q)$-action on the $(p+q-1)$-sphere S^{p+q-1}. This action has codimension-one principal orbits with $\boldsymbol{S O}(p-1) \times \boldsymbol{S O}(q-1)$ as the principal isotropy subgroup. Furthermore, the fixed point set of the restricted $\boldsymbol{S O}(p-1) \times \boldsymbol{S O}(q-1)$-action is diffeomorphic to the circle S^{1} for $p \neq 2$ and $q \neq 2$.

In the previous paper [3], we have studied the smooth $\boldsymbol{S O}_{0}(p, q)$-actions on S^{p+q-1} for $p \geqq 3$ and $q \geqq 3$, each of which is an extension of the above action, and we have shown that such an action is characterized by a pair (ϕ, f) satisfying certain conditions, where ϕ is a smooth one-parameter group on S^{1} and $f: S^{1} \rightarrow P_{1}(\boldsymbol{R})$ is a smooth function.

In this paper, we shall study the smooth $\boldsymbol{S O}_{0}(p, q)$-actions on S^{p+q-1} in the case $p \geqq 3$ and $q=1,2$. In the case $q=2$, the fixed point set of the restricted $\boldsymbol{S O}(p-1) \times$ $\boldsymbol{S O}(q-1)$-action is diffeomorphic to the 2 -sphere S^{2}, unlike the cases mentioned above. So we shall introduce a triple (S, ϕ, f), instead of the pair, satisfying certain conditions, where S is a circle in S^{2}, ϕ is a smooth one-parameter group on S, and $f: S \rightarrow P_{1}(\boldsymbol{R})$ is a smooth function.

The pair (ϕ, f) was introduced by Asoh [1] to consider smooth $\boldsymbol{S L}(2, C)$-actions on the 3 -sphere, and was improved by our previous paper [3]. The triple (S, ϕ, f) was introduced by Mukoyama [2] to consider smooth $\boldsymbol{S p}(2, \boldsymbol{R})$-actions on the 4 -sphere. Here, we notice that the Lie groups $\boldsymbol{S L}(2, \boldsymbol{C})$ and $\boldsymbol{S p}(2, \boldsymbol{R})$ are locally isomorphic to $\boldsymbol{S O} \boldsymbol{O}_{0}(3,1)$ and $\boldsymbol{S O} \boldsymbol{O}_{0}(3,2)$, respectively.

The author wishes to express gratitude to the referees and the editors for their helpful advice.

1. Subgroups of $\boldsymbol{S O}(p, q)$. Let $\boldsymbol{S O}(p, q)$ denote the group of matrices in $\boldsymbol{S L}(p+q$, \boldsymbol{R}) which leave invariant the quadratic form

[^0]$$
-x_{1}^{2}-\cdots-x_{p}^{2}+x_{p+1}^{2}+\cdots+x_{p+q}^{2}
$$

In particular, $\boldsymbol{S O}(p, q)$ contains $\boldsymbol{S}(\boldsymbol{O}(p) \times \boldsymbol{O}(q))$ as a maximal compact subgroup.
Put

$$
I_{p, q}=\left[\begin{array}{c|c}
-I_{p} & 0 \\
\hline 0 & I_{q}
\end{array}\right]
$$

where I_{n} denotes the unit matrix of order n. Clearly, a real matrix g of order $p+q$ belongs to $\boldsymbol{S O}(p, q)$ if and only if

$$
{ }^{t} g I_{p, q} g=I_{p, q} \quad \text { and } \quad \operatorname{det} g=1
$$

where ${ }^{t} g$ denotes the transposed matrix of g.
Let $\mathfrak{s o}(p, q)$ denote the Lie algebra of $\boldsymbol{S O}(p, q)$. Then a real matrix X of order $p+q$ belongs to $\mathfrak{s o}(p, q)$ if and only if

$$
\begin{equation*}
{ }^{t} X I_{p, q}+I_{p, q} X=0 \tag{1.1}
\end{equation*}
$$

Writing X in the form

$$
X=\left[\begin{array}{c|c}
X_{1} & X_{2} \\
\hline X_{3} & X_{4}
\end{array}\right],
$$

where X_{1} is of order p and X_{4} is of order q, we see that the condition (1.1) is equivalent to the equality $X_{3}={ }^{t} X_{2}$ and the skew-symmetry of X_{1}, X_{4}.

Let $\boldsymbol{S} \boldsymbol{O}_{0}(p, q)$ denote the identity component of $\boldsymbol{S O}(p, q)$. Notice that $\boldsymbol{S O}(p, q)$ has two connected components for $p, q \geqq 1$. We see that

$$
\boldsymbol{S O}(p) \times \mathbf{S O}(q)=\mathbf{S O} O_{0}(p, q) \cap \boldsymbol{S O}(p+q)
$$

is a maximal compact subgroup of $\boldsymbol{S O} \boldsymbol{O}_{0}(p, q)$.
Here, we consider the standard representations of $\boldsymbol{S O}(p, 2)$ and $\mathfrak{s o}(p, 2)$ on \boldsymbol{R}^{p+2}. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{\boldsymbol{p + 2}}\right\}$ denote the standard basis of $\boldsymbol{R}^{\boldsymbol{p + 2}}$. Let $H(a: b: c)$ (resp. $\mathfrak{h}(a: b: c)$) denote the isotropy subgroup (resp. subalgebra) at $a e_{1}+b \boldsymbol{e}_{p+1}+c \boldsymbol{e}_{p+2}$ for (a, b, c) \neq $(0,0,0)$. Notice that $H(1: 0: 0)=\boldsymbol{S O}(p-1,2)$ and $H(0: 1: 0)=\boldsymbol{S O}(p, 1)$. Put

$$
H_{0}(a: b: c)=\boldsymbol{S} \boldsymbol{O}_{0}(p, 2) \cap H(a: b: c)
$$

We can show that $H_{0}(a: b: c)$ is connected for any (a, b, c).
Lemma 1.2. Suppose $p \geqq 3$. Let \mathfrak{g} be a proper subalgebra of $\mathfrak{s o}(p, 2)$ which contains $\mathfrak{s o}(p-1)=\bigcap \mathfrak{h}(a: b: c)$. If

$$
\operatorname{dim} \mathfrak{s o}(p, 2)-\operatorname{dim} \mathfrak{g} \leqq p+1
$$

then

$$
\mathfrak{g}=\mathfrak{h}(a: b: c) \quad \text { for some }(a, b, c) \neq(0,0,0)
$$

or

$$
\mathfrak{g}=\mathfrak{h}(a: b: c) \oplus \boldsymbol{R}^{1} \quad \text { for some }(a, b, c) \neq(0,0,0)
$$

such that $a^{2}=b^{2}+c^{2}$, where the space \boldsymbol{R}^{1} is generated by the matrix $b\left(E_{1, p+1}+E_{p+1,1}\right)+$ $c\left(E_{1, p+2}+E_{p+2,1}\right)$. Here $E_{i, j}$ denotes the matrix unit.

Proof. Let $\boldsymbol{S O}(p-1)$ denote the closed connected subgroup of $\boldsymbol{S} \boldsymbol{O}_{0}(p, 2)$ corresponding to the subalgebra $\mathfrak{s o}(p-1)$. We obtain the desired result, by considering the adjoint representation of $\boldsymbol{S O}(p-1)$ on $\mathfrak{s p}(p, 2)$ and the bracket operation on invariant subspaces. We omit the details.
q.e.d.

Let $N(p, 2)$ denote the subgroup of $\boldsymbol{S} \boldsymbol{O}_{0}(p, 2)$ consisting of matrices in the form

$$
\left[\begin{array}{cc|c}
X_{1} & 0 & X_{2} \\
0 & I_{p-1} & 0 \\
\hline X_{3} & 0 & X_{4}
\end{array}\right]
$$

where X_{1} is of order one and X_{4} is of order two. Notice that the group $N(p, 2)$ is the identity component of the centralizer of $\boldsymbol{S O}(p-1)$, and $N(p, 2)$ is canonically isomorphic to $\boldsymbol{S O} \boldsymbol{O}_{0}(1,2)$.

Put

$$
m(\theta)=\left[\begin{array}{cc|cc}
\cosh \theta & 0 & \sinh \theta & 0 \\
0 & I_{p-1} & 0 & 0 \\
\hline \sinh \theta & 0 & \cosh \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \theta \in \boldsymbol{R}
$$

Then we see that $m(\theta)$ is an element of $N(p, 2)$. Let $M(p, 2)$ denote the subgroup of $N(p, 2)$ consisting of matrices $m(\theta), \theta \in \boldsymbol{R}$.

Considering the orbit of $a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}+c \boldsymbol{e}_{p+2}$, we obtain the following (cf. [3, Proof of Lemma 1.5]):

$$
\begin{equation*}
\boldsymbol{S O} \boldsymbol{O}_{0}(p, 2)=(\boldsymbol{S O}(p) \times \boldsymbol{S O}(2)) N(p, 2) H_{0}(a: b: c) \tag{1.3}
\end{equation*}
$$

for each $(a, b, c) \neq(0,0,0)$. Moreover, we obtain

$$
\begin{equation*}
\boldsymbol{S O} \boldsymbol{O}_{0}(p, 2)=(\boldsymbol{S O}(p) \times \boldsymbol{S O}(2)) M(p, 2) H_{0}(a: b: 0) \tag{1.4}
\end{equation*}
$$

for each $(a, b) \neq(0,0)$.
2. Smooth $\boldsymbol{S O} \mathbf{O}_{0}(p, 2)$-actions on S^{p+1}.

Let $\Phi_{0}: \boldsymbol{S} \boldsymbol{O}_{0}(p, 2) \times S^{p+1} \rightarrow S^{p+1}$ denote the standard action defined by

$$
\begin{equation*}
\Phi_{0}(g, \boldsymbol{u})=\|g \boldsymbol{u}\|^{-1} g \boldsymbol{u} . \tag{2.1}
\end{equation*}
$$

Its restricted $\boldsymbol{S O}(p) \times \boldsymbol{S O}(2)$-action ψ is by orthogonal transformations and has co-dimension-one principal orbits with $\boldsymbol{S O}(p-1)$ as the principal isotropy subgroup. Put

$$
\begin{array}{ll}
G=\boldsymbol{S} \boldsymbol{O}_{0}(p, 2), & K=\boldsymbol{S O}(p) \times \boldsymbol{S O}(2), \\
H=\boldsymbol{S O}(p-1), & \psi=\left.\boldsymbol{\Phi}_{0}\right|_{\left(\boldsymbol{K} \times \boldsymbol{S}^{p+1}\right)} . \tag{2.2}
\end{array}
$$

Let $F(H)$ denote the fixed point set of the restricted H-action. Then the set $F(H)$ consists of the points

$$
x \boldsymbol{e}_{1}+y \boldsymbol{e}_{p+1}+z \boldsymbol{e}_{p+2}
$$

satisfying $x^{2}+y^{2}+z^{2}=1$, and is naturally diffeomorphic to the 2 -sphere S^{2}.
Let $\Phi: G \times S^{p+1} \rightarrow S^{p+1}$ be a smooth G-action on S^{p+1} such that its restricted K-action coincides with the action ψ, i.e., $\left.\Phi\right|_{\left(K \times S^{p+1}\right)}=\psi$.

First we shall show that there exists a smooth function

$$
f: F(H) \rightarrow P_{2}(\boldsymbol{R})
$$

uniquely determined by the condition: the isotropy subgroup G_{Y} at $Y \in F(H)$ contains $H_{0}(a: b: c)$, if $f(Y)=(a: b: c)$. Here, $P_{2}(\boldsymbol{R})$ denotes the real projective plane while G_{Y} denotes the isotropy subgroup at Y with respect to the given G-action Φ.

Since G_{Y} contains $H=\boldsymbol{S O}(p-1), G_{Y}$ contains a unique subgroup of the form $H_{0}(a: b: c)$ by Lemma 1.2. It remains only to show the smoothness of f. Let g_{Y} denote the Lie algebra of the subgroup G_{Y}. Considering the subalgebra $\mathfrak{h}(a: b: c)$, we see that the following elements are contained in $\mathfrak{g}_{\boldsymbol{Y}}$,

$$
\begin{aligned}
& a\left(E_{i, p+1}+E_{p+1, i}\right)+b\left(E_{1, i}-E_{i, 1}\right) \\
& a\left(E_{i, p+2}+E_{p+2, i}\right)+c\left(E_{1, i}-E_{i, 1}\right) \\
& b\left(E_{i, p+2}+E_{p+2, i}\right)-c\left(E_{i, p+1}+E_{p+1, i}\right)
\end{aligned}
$$

for each $2 \leqq i \leqq p$. Hence we obtain the smoothness of f (cf. [3, §2]).
The subgroup $N(p, 2)$ acts on $F(H)$ via $\left.\Phi\right|_{(N(p, 2) \times F(H)}$, since $N(p, 2)$ is contained in the normalizer of H. On the other hand, the standard representation of $\boldsymbol{S O} \boldsymbol{O}_{0}(1,2)$ on \boldsymbol{R}^{3} induces a smooth action of $\boldsymbol{S} \boldsymbol{O}_{0}(1,2)$ on the real projective plane $P_{2}(\boldsymbol{R})$. Via the canonical isomorphism of $N(p, 2)$ onto $\boldsymbol{S} \boldsymbol{O}_{0}(1,2)$, we may regard $P_{2}(\boldsymbol{R})$ as an $N(p, 2)$ manifold.

Put

$$
j_{1}=\left[\begin{array}{cc}
-I_{2} & 0 \tag{2.3}\\
0 & I_{p}
\end{array}\right], \quad j_{2}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{2}
\end{array}\right] .
$$

Then these matrices act on $F(H)$ via the orthogonal K-action ψ and act on $P_{2}(\boldsymbol{R})$ by

$$
j_{1}(a: b: c)=j_{2}(a: b: c)=(-a: b: c)
$$

Put $N(p, 2)^{+}=N(p, 2) \cup j_{1} N(p, 2)$. Then, $N(p, 2)^{+}$is a subgroup of the normalizer $N(H)$ of H in G, and $N(p, 2)^{+}$is naturally isomorphic to $N(H) / H$. Notice that j_{2} is contained in $N(p, 2)$, and $j_{1} j_{2}$ commutes with each element of $N(p, 2)$.

Lemma 2.4. The function $f: F(H) \rightarrow P_{2}(\boldsymbol{R})$ is $N(p, 2)^{+}$-equivariant.
Proof. Let $n \in N(p, 2)^{+}$and $(a: b: c) \in P_{2}(\boldsymbol{R})$. We can write

$$
n\left(a e_{1}+b e_{p+1}+c e_{p+2}\right)
$$

in the form $a^{\prime} \boldsymbol{e}_{1}+b^{\prime} \boldsymbol{e}_{p+1}+c^{\prime} \boldsymbol{e}_{p+2}$ in the standard representation space $\boldsymbol{R}^{\boldsymbol{p + 2}}$ of $\boldsymbol{S} \boldsymbol{O}_{0}(p, 2)$. In this case, we obtain

$$
n H_{0}(a: b: c) n^{-1}=H_{0}\left(a^{\prime}: b^{\prime}: c^{\prime}\right)
$$

in $\boldsymbol{S O} \boldsymbol{O}_{0}(p, 2)$, and

$$
n(a: b: c)=\left(a^{\prime}: b^{\prime}: c^{\prime}\right)
$$

in $P_{2}(R)$.
Suppose $f(Y)=(a: b: c)$. We see that

$$
H_{0}(a: b: c) \subset G_{Y},
$$

by the definition of the function f. Hence we obtain

$$
H_{0}\left(a^{\prime}: b^{\prime}: c^{\prime}\right)=n H_{0}(a: b: c) n^{-1} \subset n G_{Y} n^{-1}=G_{\Phi(n, Y)} .
$$

Therefore,

$$
f(\Phi(n, Y))=\left(a^{\prime}: b^{\prime}: c^{\prime}\right)=n(a: b: c)=n f(Y) .
$$

The equation means that f is $N(p, 2)^{+}$-equivariant.
By the definition of the function f, we see that

$$
\begin{equation*}
N(p, 2)_{Y}^{+} \supset N(p, 2)^{+} \cap H_{0}(a: b: c) \tag{2.5}
\end{equation*}
$$

for $f(Y)=(a: b: c)$.
3. Certain symmetric matrices. Let a smooth action ϕ of $N(p, 2)^{+}$on $F(H)$ and a smooth function $f: F(H) \rightarrow P_{2}(\boldsymbol{R})$ be given. Suppose that f is $N(p, 2)^{+}$-equivariant. Let $P(Y)$ denote the symmetric matrix of order $p+2$ defined by

$$
P(Y)=\left(a^{2}+b^{2}+c^{2}\right)^{-1} V(a, b, c)^{t} V(a, b, c)
$$

for $f(Y)=(a: b: c)$, where $V(a, b, c)=a e_{1}+b e_{p+1}+c e_{p+2}$, and define

$$
U(Y)=\left\{g \in G \mid g P(Y)^{t} g=P(Y)\right\} .
$$

Then, clearly the identity component $U_{0}(Y)$ of $U(Y)$ coincides with $H_{0}(a: b: c)$, and there is a positive real number $\lambda(n, Y)$ such that

$$
\begin{equation*}
n P(Y)^{t} n=\lambda(n, Y) P(\phi(n, Y)) \tag{3.1}
\end{equation*}
$$

for each $Y \in F(H)$ and $n \in N(p, 2)^{+}$.
Lemma 3.2. Suppose $k P(Y)^{t} k=P\left(Y^{\prime}\right)$ for $Y, Y^{\prime} \in F(H)$ and $k \in \boldsymbol{S O}(p) \times I_{2}$. Then, there are the following possibilities: (1) $k \in H$ and $f(Y)=f\left(Y^{\prime}\right)$, (2) $j_{1} k \in H$ and $j_{1} f(Y)=$ $f\left(Y^{\prime}\right)$, or (3) $f(Y)=f\left(Y^{\prime}\right)=(0: b: c)$.

Proof. Put $f(Y)=(a: b: c)$. We have

$$
k\left(a \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}+c \boldsymbol{e}_{p+2}\right)=a^{\prime} \boldsymbol{e}_{1}+b \boldsymbol{e}_{p+1}+c \boldsymbol{e}_{p+2}
$$

in the standard representation space \boldsymbol{R}^{p+2} of $\boldsymbol{S O} \boldsymbol{O}_{0}(p, 2)$ and $f\left(Y^{\prime}\right)=\left(a^{\prime}: b: c\right)$ by the assumption. Moreover, $a^{\prime}= \pm a$.

If $a^{\prime}=a \neq 0$, then $k \in H$, which is the case (1). If $a^{\prime}=-a \neq 0$, then $j_{1} k \in H$, which is the case (2). If $a^{\prime}=a=0$, then it is the case (3).
q.e.d.
4. Construction of $\boldsymbol{S O} \boldsymbol{O}_{0}(p, 2)$-actions. Let a smooth action ϕ of $N(p, 2)^{+}$on $F(H)$ and a smooth function $f: F(H) \rightarrow P_{2}(\boldsymbol{R})$ be given.

Suppose that the restriction of ϕ on $K \cap N(p, 2)^{+}$coincides with the restriction of the orthogonal K-action ψ, while f is $N(p, 2)^{+}$-equivariant and satisfies the condition (2.5). The condition (2.5) can be restated as

$$
\begin{equation*}
N(p, 2)_{Y}^{+} \supset N(p, 2)^{+} \cap U_{0}(Y) \tag{4.1}
\end{equation*}
$$

for each $Y \in F(H)$.
We shall show how to construct a smooth $\boldsymbol{G}=\boldsymbol{S} \boldsymbol{O}_{0}(p, 2)$-action on the ($p+1$)-sphere S^{p+1} from the pair (ϕ, f). We use the notation in (2.2) and (2.3). Put $K^{\prime}=\boldsymbol{S O}(p) \times I_{2}$.

By (1.3) and the facts that $U_{0}(Y)=H_{0}(a: b: c)$ for $f(Y)=(a: b: c)$, and that $N(p, 2)$ contains $I_{p} \times \boldsymbol{S O}(2)$, we obtain the decomposition

$$
\begin{equation*}
G=K^{\prime} N(p, 2) U_{0}(Y) \tag{4.2}
\end{equation*}
$$

for each $Y \in F(H)$.
Take $(g, X) \in G \times S^{p+1}$. Let us choose

$$
\begin{gathered}
k \in K, Y \in F(H) ; \psi(k, Y)=X, \\
k_{0} \in K^{\prime}, n \in N(p, 2), h \in U_{0}(Y) ; g k=k_{0} n h,
\end{gathered}
$$

and put

$$
\begin{equation*}
\Phi(g, X)=\psi\left(k_{0}, \phi(n, Y)\right) . \tag{4.3}
\end{equation*}
$$

We shall show that Φ is well-defined and is a smooth G-action on S^{p+1}. For the proof, we need the following:

Lemma 4.4. Let $Y \in F(H)$. Suppose $k n h=k^{\prime} n^{\prime} h^{\prime}$ for $k, k^{\prime} \in K^{\prime}, n, n^{\prime} \in N(p, 2)$, and $h, h^{\prime} \in U_{0}(Y)$. Then

$$
\psi(k, \phi(n, Y))=\psi\left(k^{\prime}, \phi\left(n^{\prime}, Y\right)\right) .
$$

Proof. We obtain

$$
k n P(Y)^{t} n^{t} k=k^{\prime} n^{\prime} P(Y)^{t} n^{\prime} k^{\prime} .
$$

Then, by (3.1)

$$
\lambda k P(\phi(n, Y))^{t} k=\lambda^{\prime} k^{\prime} P\left(\phi\left(n^{\prime}, Y\right)\right)^{t} k^{\prime}
$$

for certain positive real numbers $\lambda, \lambda^{\prime}$. Comparing the traces of both sides, we obtain $\lambda=\lambda^{\prime}$ and

$$
k P(\phi(n, Y))^{t} k=k^{\prime} P\left(\phi\left(n^{\prime}, Y\right)\right)^{t} k^{\prime} .
$$

Then we have the following possibilities, by Lemma 3.2,
(1) $k^{-1} k \in H$,
(2) $j_{1} k^{-1} k \in H$,
(3) $f(\phi(n, Y))=f\left(\phi\left(n^{\prime}, Y\right)\right)=(0: b: c)$.

In the case (1), we see that

$$
n^{-1} n^{\prime}=\left(n^{-1} k^{\prime-1} k n\right)\left(h h^{\prime-1}\right)
$$

is contained in $N(p, 2)_{Y}^{+}$by (4.1). Hence

$$
\phi(n, Y)=\phi\left(n^{\prime}, Y\right),
$$

and we obtain the desired equation by $k^{-1} k \in H$.
In the case (2), we see that

$$
n^{-1} j_{1} n^{\prime}=\left(n^{-1} j_{1} k^{\prime-1} k n\right)\left(h h^{\prime-1}\right)
$$

is contained in $N(p, 2)_{Y}^{+}$by (4.1). Hence

$$
\phi(n, Y)=\phi\left(j_{1} n^{\prime}, Y\right),
$$

and we obtain the desired equation by $j_{1} k^{\prime-1} k \in H$.
In the case (3), we see that

$$
\psi\left(j_{1}, \phi(n, Y)\right)=\phi(n, Y)
$$

by (2.5). Hence

$$
\phi(n, Y)=y e_{p+1}+z e_{p+2},
$$

and we see that

$$
\psi(k, \phi(n, Y))=\psi\left(k^{\prime}, \phi(n, Y)\right)
$$

for any $k, k^{\prime} \in K^{\prime}$. On the other hand,

$$
n^{\prime} n^{-1}=\left(k^{\prime-1} k\right)\left(n h h^{-1} n^{-1}\right)
$$

is contained in $N(p, 2)_{\phi(n, Y)}^{+}$by (4.1). Hence

$$
\phi(n, Y)=\phi\left(n^{\prime}, Y\right)
$$

and we obtain the desired equation.
q.e.d.

Proposition 4.5. Φ in (4.3) is well-defined and is an abstract G-action such that $\left.\Phi\right|_{\left(K \times S^{p+1}\right)}=\psi$.

Proof. For $(g, X) \in G \times S^{p+1}$, let us choose

$$
X=\psi\left(k_{1}, Y_{1}\right)=\psi\left(k_{2}, Y_{2}\right)
$$

as in (4.3), where $k_{i} \in K, Y_{i} \in F(H)$, and

$$
g k_{1}=k_{0} n h
$$

where $k_{0} \in K^{\prime}, n \in N(p, 2), h \in U_{0}\left(Y_{1}\right)$.
We have $k_{1}^{-1} k_{2}=k^{\prime} k^{\prime \prime}$, where $k^{\prime} \in K^{\prime}$ and $k^{\prime \prime} \in K \cap N(p, 2)$. Then, we have the following possibilities,
(1) $k^{\prime} \in H$, (2) $j_{1} k^{\prime} \in H, \quad$ and (3) $\psi\left(j_{1}, Y_{1}\right)=Y_{1}$.

In the case (1), we see that $Y_{1}=\psi\left(k^{\prime \prime}, Y_{2}\right)$, and

$$
g k_{2}=k_{0}\left(n k^{\prime \prime}\right)\left(k^{\prime \prime-1} h k^{\prime} k^{\prime \prime}\right)
$$

where $n k^{\prime \prime} \in N(p, 2)$ and $k^{\prime \prime-1} h k^{\prime} k^{\prime \prime} \in U_{0}\left(Y_{2}\right)$. Hence we obtain

$$
\psi\left(k_{0}, \phi\left(n k^{\prime \prime}, Y_{2}\right)\right)=\psi\left(k_{0}, \phi\left(n, Y_{1}\right)\right)
$$

In the case (2), we see that $\psi\left(j_{1}, Y_{1}\right)=\psi\left(k^{\prime \prime}, Y_{2}\right)$, and

$$
g k_{2}=\left(k_{0} j_{1}\right)\left(j_{1} n j_{1} k^{\prime \prime}\right)\left(k^{\prime \prime-1} j_{1} h k^{\prime} k^{\prime \prime}\right)
$$

where $k_{0} j_{1} \in K^{\prime}, j_{1} n j_{1} k^{\prime \prime} \in N(p, 2)$, and $k^{\prime \prime-1} j_{1} h k^{\prime} k^{\prime \prime} \in U_{0}\left(Y_{2}\right)$. Hence we obtain

$$
\psi\left(k_{0} j_{1}, \phi\left(j_{1} n j_{1} k^{\prime \prime}, Y_{2}\right)\right)=\psi\left(k_{0}, \phi\left(n, Y_{1}\right)\right)
$$

In the case (3), we see that $Y_{1}=\psi\left(k^{\prime \prime}, Y_{2}\right), k^{\prime} \in U_{0}\left(Y_{1}\right)$ and

$$
g k_{2}=k_{0}\left(n k^{\prime \prime}\right)\left(k^{\prime \prime-1} h k^{\prime} k^{\prime \prime}\right)
$$

where $n k^{\prime \prime} \in N(p, 2)$ and $k^{\prime \prime-1} h k^{\prime} k^{\prime \prime} \in U_{0}\left(Y_{2}\right)$. Hence we obtain

$$
\psi\left(k_{0}, \phi\left(n k^{\prime \prime}, Y_{2}\right)\right)=\psi\left(k_{0}, \phi\left(n, Y_{1}\right)\right)
$$

Combining these results and Lemma 4.4, we see that Φ in (4.3) is well-defined.

Take $g, g^{\prime} \in G$ and $X \in S^{p+1}$. As in (4.3), let us choose $X=\psi(k, Y)$, where $k \in K$, $Y \in F(H)$, and

$$
g k=k_{0} n h, \quad g^{\prime} k_{0}=k_{1} n_{1} h_{1}
$$

where $k_{0}, k_{1} \in K^{\prime}, n, n_{1} \in N(p, 2), h \in U_{0}(Y)$ and $h_{1} \in U_{0}(\phi(n, Y))$. Then,

$$
\begin{aligned}
\Phi\left(g^{\prime}, \Phi(g, X)\right) & =\Phi\left(g^{\prime}, \psi\left(k_{0}, \phi(n, Y)\right)\right)=\psi\left(k_{1}, \phi\left(n_{1}, \phi(n, Y)\right)\right) \\
& =\psi\left(k_{1}, \phi\left(n_{1} n, Y\right)\right)=\Phi\left(g^{\prime} g, X\right),
\end{aligned}
$$

because

$$
g^{\prime} g k=k_{1}\left(n_{1} n\right)\left(n^{-1} h_{1} n h\right),
$$

$n_{1} n \in N(p, 2)$ and $n^{-1} h_{1} n h \in U_{0}(Y)$.
This shows that Φ in (4.3) is an abstract G-action.
Finally, take $(k, X) \in K \times S^{p+1}$ and put $X=\psi\left(k_{1}, Y\right)$, where $k_{1} \in K, Y \in F(H)$. We have $k k_{1}=k^{\prime} k^{\prime \prime}$, where $k^{\prime} \in K^{\prime}$ and $k^{\prime \prime} \in K \cap N(p, 2)$. Then,

$$
\Phi(k, X)=\psi\left(k^{\prime}, \phi\left(k^{\prime \prime}, Y\right)\right)=\psi\left(k^{\prime} k^{\prime \prime}, Y\right)=\psi(k, X) .
$$

This shows $\left.\Phi\right|_{\left(K \times S^{p+1}\right)}=\psi$.
q.e.d.

Notice that the continuity of Φ is unknown at this stage. In the remainder of this section, we shall show the smoothness of the G-action Φ.

Define $S=f^{-1}\left(P_{1}(\boldsymbol{R})\right)$. This means that the set S consists of the points $Y \in F(H)$ such that $f(Y)=(*: *: 0)$. Then the points $\pm e_{1}$ are contained in S.

Considering the orbits of $I_{p} \times \boldsymbol{S O}(2)$, we see that the function f is transversal to $P_{1}(\boldsymbol{R})$ at each point of $S-\left\{ \pm \boldsymbol{e}_{1}\right\}$. Clearly S is invariant under the restricted $M(p, 2)$ action and the actions $\psi\left(j_{\varepsilon},-\right)$ for $\varepsilon=1,2$.

Consequently, we see that S is a one-dimensional closed submanifold of $F(H)$.
The subset of S consisting of the points Y with $f(Y)=(a: b: 0)$ such that $a b>0$ has two connected components. Denote by S_{+}the component contained in the upper hemisphere. Then there is a smooth positive-valued function β on S_{+}such that $f(Y)=(1: \beta(Y): 0)$.

Lemma 4.6. For $(\theta, Y) \in \boldsymbol{R} \times S_{+}$, we have $\phi(m(\theta), Y) \in S_{+}$if and only if

$$
\begin{equation*}
(1+\beta(Y) \tanh \theta)(\beta(Y)+\tanh \theta)>0 \tag{4.7}
\end{equation*}
$$

Proof. Since f is $N(p, 2)^{+}$-equivariant, we obtain

$$
f(\phi(m(\theta), Y))=(1+\beta(Y) \tanh \theta: \beta(Y)+\tanh \theta: 0)
$$

Then the "only if" part is clear. Suppose (4.7) holds. Then,

$$
\phi(m(\theta), Y) \in S_{+} \cup j_{1} j_{2}\left(S_{+}\right)
$$

and we see that $\phi(m(\theta), Y)$ is not contained in $j_{1} j_{2}\left(S_{+}\right)$by considering orbits of the
$M(p, 2)$-action.
q.e.d.

Define

$$
\begin{aligned}
D_{+} & =\left\{(\theta, Y) \in \boldsymbol{R} \times S_{+} \mid \phi(m(\theta), Y) \in S_{+}\right\}, \\
W_{+} & =\left\{(g, Y) \in G \times S_{+} \mid \pm \operatorname{trace}\left(g P(Y)^{t} g\right) \neq\left(1-\beta(Y)^{2}\right)\left(1+\beta(Y)^{2}\right)^{-1}\right\}
\end{aligned}
$$

Clearly D_{+}is an open set of $\boldsymbol{R} \times S_{+}$and W_{+}is an open set of $G \times S_{+}$. Notice that

$$
\operatorname{trace}\left(g P(Y)^{t} g\right)=\cosh 2 \theta+2 \beta(Y)\left(1+\beta(Y)^{2}\right)^{-1} \sinh 2 \theta
$$

for the decomposition $g=k m(\theta) u$, where $k \in K, \theta \in \boldsymbol{R}, u \in U_{0}(Y)$ and $Y \in S_{+}$.
Now, we have the following results, whose proof is quite similar to that of Lemma 4.7 in [3].

Lemma 4.8. For $(g, Y) \in G \times S_{+}$, we have $(g, Y) \in W_{+}$if and only if there is a decomposition $g=k m(\theta) u$, where $k \in K, \theta \in \boldsymbol{R}$, and $u \in U_{0}(Y)$ such that $(\theta, Y) \in D_{+}$.

Lemma 4.9. There is a smooth mapping $\Delta: W_{+} \rightarrow(K / H) \times D_{+}$defined by $\Delta(g, Y)=$ $(k H,(\theta, Y))$, where $g=k m(\theta) u ; k \in K, \theta \in \boldsymbol{R}$, and $u \in U_{0}(Y)$.

By the definition of S_{+}, there exists only one point \boldsymbol{w}_{0} of S such that $f\left(\boldsymbol{w}_{0}\right)=(0: 1: 0)$ and \boldsymbol{w}_{0} is contained in the closure of S_{+}. Define

$$
\begin{aligned}
& S_{1}(\Phi)=\left\{\Phi\left(g, e_{1}\right) \mid g \in G\right\}, \\
& S_{1}\left(\Phi_{0}\right)=\left\{\Phi_{0}\left(g, e_{1}\right) \mid g \in G\right\}, \\
& S_{2}(\Phi)=\left\{\Phi\left(g, \boldsymbol{w}_{0}\right) \mid g \in G\right\}, \\
& S_{2}\left(\Phi_{0}\right)=\left\{\Phi_{0}\left(g, e_{p+1}\right) \mid g \in G\right\} .
\end{aligned}
$$

Here, Φ is the G-action defined by (4.3) and Φ_{0} is the standard G-action. By (4.3) and the conditions on ϕ and f, we see that there are positive real numbers $r_{1}, r_{2}<1$ such that

$$
\begin{aligned}
& S_{1}(\Phi)=\left\{\boldsymbol{v} \oplus \boldsymbol{w} \in S\left(\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{2}\right) \mid\|\boldsymbol{w}\|<r_{1}\right\}, \\
& S_{2}(\Phi)=\left\{\boldsymbol{v} \oplus \boldsymbol{w} \in S\left(\boldsymbol{R}^{\boldsymbol{p}} \oplus \boldsymbol{R}^{2}\right) \mid\|\boldsymbol{v}\|<r_{2}\right\} .
\end{aligned}
$$

On the other hand, it is clear that

$$
\begin{aligned}
& S_{1}\left(\Phi_{0}\right)=\left\{\boldsymbol{v} \oplus \boldsymbol{w} \in S\left(\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{2}\right) \mid\|\boldsymbol{v}\|>\|\boldsymbol{w}\|\right\}, \\
& S_{2}\left(\Phi_{0}\right)=\left\{\boldsymbol{v} \oplus \boldsymbol{w} \in S\left(\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{2}\right) \mid\|\boldsymbol{v}\|<\|\boldsymbol{w}\|\right\} .
\end{aligned}
$$

Define two G-maps $F_{\varepsilon}: S_{\varepsilon}(\Phi) \rightarrow S_{\varepsilon}\left(\Phi_{0}\right) ; \varepsilon=1,2$ by

$$
\begin{aligned}
& F_{1}\left(\Phi\left(g, e_{1}\right)\right)=\Phi_{0}\left(g, e_{1}\right), \\
& F_{2}\left(\Phi\left(g, w_{0}\right)\right)=\Phi_{0}\left(g, e_{p+1}\right) .
\end{aligned}
$$

Notice that the smoothness of the G-action Φ is unknown at this stage.

Lemma 4.10. $\quad F_{1}$ and F_{2} are diffeomorphisms.
Proof. We can write

$$
\phi\left(m(\theta), \boldsymbol{e}_{1}\right)=x(\theta) \boldsymbol{e}_{1}+y(\theta) \boldsymbol{e}_{p+1}+z(\theta) \boldsymbol{e}_{p+2} .
$$

Considering the action $\psi\left(j_{2},-\right)$, we see that $x(\theta)$ is an even function while $y(\theta)$ and $z(\theta)$ are odd functions. Hence there exist smooth even functions $u(\theta), v(\theta)$ such that

$$
y(\theta)=\theta \cdot u(\theta), \quad z(\theta)=\theta \cdot v(\theta) .
$$

Considering the function f, we see that $(u(\theta), v(\theta)) \neq(0,0)$ for each θ.
Define $a: \boldsymbol{R} \rightarrow \boldsymbol{S O}(2)$ and $\tau: \boldsymbol{R} \rightarrow\left(-r_{1}, r_{1}\right)$ by

$$
\begin{aligned}
& a(\theta)=\left(u(\theta)^{2}+v(\theta)^{2}\right)^{-1 / 2}\left[\begin{array}{cc}
u(\theta) & v(\theta) \\
-v(\theta) & u(\theta)
\end{array}\right], \\
& \tau(\theta)=\theta\left(u(\theta)^{2}+v(\theta)^{2}\right)^{1 / 2}
\end{aligned}
$$

Then

$$
a(\theta)\left[\begin{array}{l}
y(\theta) \\
z(\theta)
\end{array}\right]=\left[\begin{array}{c}
\tau(\theta) \\
0
\end{array}\right] .
$$

Since the curve $\phi\left(m(\theta), \boldsymbol{e}_{1}\right)$ is transverse to each latitude, we see that τ is a diffeomorphism. Then, we obtain a K-equivariant diffeomorphism $h_{0}: S_{1}(\Phi) \rightarrow S_{1}(\Phi)$ defined by

$$
h_{0}(\boldsymbol{v} \oplus \boldsymbol{w})=\boldsymbol{v} \oplus a \tau^{-1}(\|\boldsymbol{w}\|) \boldsymbol{w} .
$$

Next, there is an odd function $s_{1}:\left(-r_{1}, r_{1}\right) \rightarrow \boldsymbol{R}$ determined by

$$
s_{1}(\tau(\theta))=(\cosh 2 \theta)^{-1 / 2} \sinh \theta,
$$

and hence there is a smooth even function $\sigma_{1}:\left(-r_{1}, r_{1}\right) \rightarrow \boldsymbol{R}$ such that $s_{1}(\tau(\theta))=$ $\tau(\theta) \sigma_{1}(\tau(\theta))$. Then, we obtain a K-equivariant diffeomorphism $h_{1}: S_{1}(\Phi) \rightarrow S_{1}\left(\Phi_{0}\right)$ defined by

$$
h_{1}(\boldsymbol{v} \oplus \boldsymbol{w})=c_{1} \boldsymbol{v} \oplus \sigma_{1}(\|\boldsymbol{w}\|) \boldsymbol{w},
$$

where c_{1} is a positive scalar.
By definition, we see that

$$
h_{1} h_{0}\left(\phi\left(m(\theta), \boldsymbol{e}_{1}\right)\right)=\boldsymbol{\Phi}_{0}\left(m(\theta), \boldsymbol{e}_{1}\right)
$$

for each θ, and hence

$$
h_{1} h_{0}\left(\Phi\left(g, \boldsymbol{e}_{1}\right)\right)=\Phi_{0}\left(g, \boldsymbol{e}_{1}\right)
$$

for each $g \in G$. Therefore, $F_{1}=h_{1} h_{0}$ is a diffeomorphism.
Similarly, we can write

$$
\phi\left(m(\theta), \boldsymbol{w}_{0}\right)=x(\theta) \boldsymbol{e}_{1}+y(\theta) \boldsymbol{e}_{p+1}+z(\theta) \boldsymbol{e}_{p+2} .
$$

Considering the action $\psi\left(j_{1},-\right)$, we see that $x(\theta)$ is an odd function while $y(\theta)$ and $z(\theta)$ are even functions. By an argument similar to that above, we see that $x(\theta)$ is a diffeomorphism of \boldsymbol{R} onto the interval $\left(-r_{2}, r_{2}\right)$ and there is a smooth mapping $b: \boldsymbol{R} \rightarrow \boldsymbol{S O}(2)$ such that

$$
b(\theta)\left[\begin{array}{l}
y(\theta) \\
z(\theta)
\end{array}\right]=\left[\begin{array}{c}
\left(1-x(\theta)^{2}\right)^{1 / 2} \\
0
\end{array}\right] .
$$

Next, there is an odd function $s_{2}:\left(-r_{2}, r_{2}\right) \rightarrow \boldsymbol{R}$ determined by

$$
s_{2}(x(\theta))=(\cosh 2 \theta)^{-1 / 2} \sinh \theta,
$$

and hence there is a smooth even function $\sigma_{2}:\left(-r_{2}, r_{2}\right) \rightarrow \boldsymbol{R}$ such that $s_{2}(x(\theta))=$ $x(\theta) \sigma_{2}(x(\theta))$.

Then, we obtain K-equivariant diffeomorphisms $h_{2}: S_{2}(\Phi) \rightarrow S_{2}(\Phi)$ and $h_{3}: S_{2}(\Phi) \rightarrow$ $S_{2}\left(\Phi_{0}\right)$ defined by

$$
\begin{aligned}
& h_{2}(\boldsymbol{v} \oplus \boldsymbol{w})=\boldsymbol{v} \oplus b x^{-1}(\|\boldsymbol{v}\|) \boldsymbol{w}, \\
& h_{3}(\boldsymbol{v} \oplus \boldsymbol{w})=\sigma_{2}(\|\boldsymbol{v}\|) \boldsymbol{v} \oplus c_{2} \boldsymbol{w},
\end{aligned}
$$

where c_{2} is a positive scalar. Then, we see that

$$
h_{3} h_{2}\left(\phi\left(m(\theta), \boldsymbol{w}_{0}\right)\right)=\Phi_{0}\left(m(\theta), \boldsymbol{e}_{p+1}\right)
$$

for each θ, and hence

$$
h_{3} h_{2}\left(\Phi\left(g, \boldsymbol{w}_{0}\right)\right)=\Phi_{0}\left(g, \boldsymbol{e}_{p+1}\right)
$$

for each $g \in G$. Therefore, $F_{2}=h_{3} h_{2}$ is a diffeomorphism.
This completes the proof of Lemma 4.10.
Proposition 4.11. Φ in (4.3) is a smooth G-action.
Proof. By Lemma 4.10 we see that the restrictions of Φ to $G \times S_{1}(\Phi)$ and $G \times$ $S_{2}(\Phi)$ are smooth. Define

$$
W(\phi)=\left\{(g, \phi(k, Y)) \mid g \in G, k \in K \text { and }(g k, Y) \in W_{+}\right\} .
$$

Then, we see that $W(\Phi)$ is an open set of $G \times S^{p+1}$, since W_{+}is an open set of $G \times S_{+}$. Furthermore, we see that the restriction of Φ to $W(\Phi)$ is smooth, since Δ is smooth by Lemma 4.9. Consequently, we obtain the smoothness of Φ, because three open sets $W(\Phi), G \times S_{1}(\Phi)$ and $G \times S_{2}(\Phi)$ cover $G \times S^{p+1}$.
q.e.d.

Thus we have proved the following.
Theorem 4.12. Suppose $p \geqq 3$. Then, there is a one-to-one correspondence between
the set of smooth $\boldsymbol{S O}_{0}(p, 2)$-actions on S^{p+1} whose restricted $K=\boldsymbol{S O}(p) \times \boldsymbol{S O}(2)$-action is the standard orthogonal action and the set of pairs (ϕ, f), where ϕ is a smooth $N(p, 2)^{+}$-action on $S^{2}=F(H)$ whose restriction on $K \cap N(p, 2)^{+}$coincides with the standard K-action and $f: S^{2} \rightarrow P_{2}(\boldsymbol{R})$ is a smooth $N(p, 2)^{+}$-equivariant function satisfying the condition (4.1).
5. Construction of (ϕ, f). In the previous section, we saw how to construct a smooth $\boldsymbol{S O} \boldsymbol{O}_{0}(p, 2)$-action on S^{p+1} from a pair (ϕ, f), where ϕ is a smooth $N(p, 2)^{+}$-action on $S^{2}=F(H)$ and $f: S^{2} \rightarrow P_{2}(\boldsymbol{R})$ is a smooth $N(p, 2)^{+}$-equivariant function, satisfying certain conditions.

We now consider how to construct such a pair (ϕ, f).
Put $J_{\varepsilon}=\psi\left(j_{\varepsilon},-\right)$ for $\varepsilon=1,2$ and $J=J_{1} J_{2}$ on $S^{2}=F(H)$. Then J_{1}, J_{2} are involutions on S^{2}, and J is the antipodal involution. Let S be a one-dimensional closed submanifold of S^{2}, which transversely intersects each latitude and is invariant under the involutions J_{1} and J_{2}. In particular, $\pm e_{1}$ are contained in S.

Put $K^{\prime \prime}=I_{p} \times \boldsymbol{S O}(2) . K^{\prime \prime}$ acts orthogonally on S^{2} via the restricted action of ψ, and the set of $K^{\prime \prime}$-orbits coincides with the set of latitudes.

Suppose a smooth one-parameter group ϕ_{0} on S and a smooth map $f_{0}: S \rightarrow P_{1}(\boldsymbol{R})$ satisfy the following condition:
(a) $J_{\varepsilon} \phi_{0}(\theta, Y)=\phi_{0}\left(-\theta, J_{\varepsilon}(Y)\right), \quad \varepsilon=1,2$,
(b) $f_{0} J_{\varepsilon}(Y)=j_{\varepsilon} f_{0}(Y), \quad \varepsilon=1,2$,
(c) $f_{0} \phi_{0}(\theta, Y)=m(\theta) f_{0}(Y)$,
(d) $f_{0}(Y)=(1: 0: 0) \Leftrightarrow j_{2}(Y)=Y$,
(e) $f_{0}(Y)=(0: 1: 0) \Leftrightarrow j_{1}(Y)=Y$.

Here, $P_{1}(\boldsymbol{R})$ is the subspace of $P_{2}(\boldsymbol{R})$ consisting of the points $(*: *: 0) . P_{1}(\boldsymbol{R})$ is invariant under the actions $j_{\varepsilon}(\varepsilon=1,2)$ and $m(\theta)$.

If (ϕ, f) is given, then $S=f^{-1}\left(P_{1}(\boldsymbol{R})\right), f_{0}$ is a restriction of f, and $\phi_{0}(\theta, Y)=$ $\phi(m(\theta), Y)$.

Now, we shall show how to construct (ϕ, f) from the triple (S, ϕ_{0}, f_{0}) satisfying the condition (5.1).

First, we show that f_{0} can be extended uniquely to a $K^{\prime \prime}$-equivariant map $f: S^{2} \rightarrow$ $P_{2}(\boldsymbol{R})$. Suppose

$$
\psi\left(k_{1}, Y_{1}\right)=\psi\left(k_{2}, Y_{2}\right)
$$

for $k_{i} \in K^{\prime \prime}, Y_{i} \in S$. Then, we obtain

$$
k_{1} f_{0}\left(Y_{1}\right)=k_{2} f_{0}\left(Y_{2}\right)
$$

because, by assumption we have the following two possibilities:
(1) $Y_{1}=Y_{2}= \pm e_{1}$,
(2) $Y_{1}=J_{2}^{\varepsilon} Y_{2}$ and $k_{1}^{-1} k_{2}=j_{2}^{\varepsilon}(\varepsilon=0,1)$.

So, we can define

$$
\begin{equation*}
f(\psi(k, Y))=k f_{0}(Y) \quad \text { for } \quad k \in K^{\prime \prime} \text { and } Y_{i} \in S \tag{5.2}
\end{equation*}
$$

Next, we construct an $N(p, 2)$-action ϕ on S^{2}. We obtain the decomposition

$$
N(p, 2)=K^{\prime \prime} M(p, 2)\left(H_{0}(a: b: 0) \cap N(p, 2)\right)
$$

for each $(a, b) \neq(0,0)$ by (1.4). Since $U_{0}(Y)=H_{0}(a: b: 0)$ for $f_{0}(Y)=(a: b: 0)$, we obtain

$$
N(p, 2)=K^{\prime \prime} M(p, 2)\left(U_{0}(Y) \cap N(p, 2)\right)
$$

for each $Y \in S$.
Take $(g, X) \in N(p, 2) \times S^{2}$. Let us choose

$$
\begin{gathered}
k \in K^{\prime \prime}, Y \in S ; \psi(k, Y)=X, \\
k_{0} \in K^{\prime \prime}, h \in U_{0}(Y) \cap N(p, 2) ; g k=k_{0} m(\theta) h,
\end{gathered}
$$

and put

$$
\begin{equation*}
\phi(g, X)=\psi\left(k_{0}, \phi_{0}(\theta, Y)\right) . \tag{5.3}
\end{equation*}
$$

We shall show that ϕ is well-defined and is a smooth $N(p, 2)$-action on S^{2}. We need the following lemma.

Lemma 5.4. Suppose $k m(\theta) h=k^{\prime} m\left(\theta^{\prime}\right) h^{\prime}$ for $k, k^{\prime} \in K^{\prime \prime}, h, h^{\prime} \in U_{0}(Y) \cap N(p, 2)$ for $Y \in S$. Then

$$
\psi\left(k, \phi_{0}(\theta, Y)\right)=\psi\left(k^{\prime}, \phi_{0}\left(\theta^{\prime}, Y\right)\right) .
$$

Proof. We obtain

$$
k P\left(\phi_{0}(\theta, Y)\right)^{t} k=k^{\prime} P\left(\phi_{0}\left(\theta^{\prime}, Y\right)\right)^{t} k^{\prime}
$$

from (5.1, c) in a way similar to that in the case (3.1). Then we have the following possibilities by direct calculation:
(1) $f_{0} \phi_{0}(\theta, Y)=f_{0} \phi_{0}\left(\theta^{\prime}, Y\right)=(1: 0: 0)$,
(2) $k=k^{\prime}$,
(3) $k j_{2}=k^{\prime}$.

In the case (1), we see that $\phi_{0}(\theta, Y)=\phi_{0}\left(\theta^{\prime}, Y\right)= \pm e_{1}$ by considering the orbits of ϕ_{0}. Hence we obtain

$$
\psi\left(k, \phi_{0}(\theta, Y)\right)=\psi\left(k^{\prime}, \phi_{0}\left(\theta^{\prime}, Y\right)\right)= \pm e_{1}
$$

for any $k, k^{\prime} \in K^{\prime \prime}$.
In the case (2), we see that $m(\theta) h=m\left(\theta^{\prime}\right) h^{\prime}$. Then we obtain

$$
m\left(\theta-\theta^{\prime}\right)=h^{\prime} h^{-1} \in U_{0}(Y)
$$

Then $\theta=\theta^{\prime}$ by the definition of $U_{0}(Y)=H_{0}(a: b: 0)$. Hence we obtain

$$
\psi\left(k, \phi_{0}(\theta, Y)\right)=\psi\left(k^{\prime}, \phi_{0}\left(\theta^{\prime}, Y\right)\right) .
$$

In the case (3), we see that $m(\theta) h=j_{2} m\left(\theta^{\prime}\right) h^{\prime}$. Put $2 \tau=\theta+\theta^{\prime}$. Then we obtain

$$
I_{p+2}=m(-\theta) j_{2} m\left(\theta^{\prime}\right) h^{\prime} h^{-1}=m(-\tau) j_{2} m(\tau) h^{\prime} h^{-1} .
$$

Hence we obtain

$$
j_{2}=m(\tau) h^{\prime} h^{-1} m(-\tau) \in H_{0}(c: d: 0)
$$

for $f_{0} \phi_{0}(\tau, Y)=(c: d: 0)$. Then $d=0$, and hence $\phi_{0}(\tau, Y)$ is J_{2}-invariant. Therefore,

$$
\phi_{0}\left(\theta^{\prime}, Y\right)=J_{2} \phi_{0}(\theta, Y) .
$$

Hence we obtain

$$
\psi\left(k, \phi_{0}(\theta, Y)\right)=\psi\left(k^{\prime}, \phi_{0}\left(\theta^{\prime}, Y\right)\right) .
$$

q.e.d.

Proposition 5.5. $\quad \phi$ in (5.3) is well-defined and is a smooth $N(p, 2)$-action.
Proof. For $(g, X) \in N(p, 2) \times S^{2}$, let us choose

$$
\begin{equation*}
X=\psi\left(k_{1}, Y_{1}\right)=\psi\left(k_{2}, Y_{2}\right), \tag{i}
\end{equation*}
$$

where $k_{1}, k_{2} \in K^{\prime \prime}, Y_{1}, Y_{2} \in S$, and
(ii)

$$
g k_{1}=k_{0} m(\theta) h
$$

where $k_{0} \in K^{\prime \prime}, h \in U_{0}\left(Y_{1}\right) \cap N(p, 2)$.
By the condition (i), we have the following possibilities:
(1) $Y_{1}=Y_{2}= \pm e_{1}$,
(2) $k_{1}^{-1} k_{2}=j_{2}^{\varepsilon}, Y_{1}=J_{2}^{\varepsilon}\left(Y_{2}\right)$ for $\varepsilon=0,1$.

In the case (1), we obtain

$$
k_{1}^{-1} k_{2} \in U_{0}\left(Y_{1}\right)=U_{0}\left(Y_{2}\right)
$$

and

$$
g k_{2}=k_{0} m(\theta) h k_{1}^{-1} k_{2}, \quad h k_{1}^{-1} k_{2} \in U_{0}\left(Y_{2}\right) .
$$

Therefore, ϕ in (5.3) is well-defined in this case by Lemma 5.4.
In the case (2), we obtain

$$
g k_{2}=k_{0} j_{2}^{\varepsilon} m\left((-1)^{\varepsilon} \theta\right) j_{2}^{\varepsilon} h j_{2}^{\varepsilon},
$$

where $k_{0} j_{2}^{\varepsilon} \in K^{\prime \prime}, j_{2}^{\varepsilon} h j_{2}^{\varepsilon} \in U_{0}\left(Y_{2}\right)$. Hence we can write

$$
\psi\left(k_{0} j_{2}^{\varepsilon}, \phi_{0}\left((-1)^{\varepsilon} \theta, Y_{2}\right)\right)=\psi\left(k_{0}, \phi_{0}\left(\theta, J_{2}^{\varepsilon}\left(Y_{2}\right)\right)=\psi\left(k_{0}, \phi_{0}\left(\theta, Y_{1}\right)\right) .\right.
$$

Therefore, ϕ in (5.3) is well-defined in this case by Lemma 5.4. Consequently, ϕ in (5.3) is well-defined.

Finally, as in the proof of Proposition 4.5, we see easily that ϕ in (5.3) is an abstract action. Notice that the smoothness of ϕ can be proved in a way similar to that of Φ defined by (4.3).
q.e.d.

By definition, ϕ is compatible with the antipodal involution $J=\psi\left(j_{1} j_{2},-\right)$. Therefore, we can extend ϕ to an action of $N(p, 2)^{+}$on S^{2}.

Proposition 5.6. The map $f: S^{2} \rightarrow P_{2}(\boldsymbol{R})$ defined by (5.2) is $N(p, 2)^{+}$-equivariant and smooth.

Proof. Take $(g, X) \in N(p, 2) \times S^{2}$. Let us choose

$$
\begin{gathered}
k \in K^{\prime \prime}, Y \in S ; \psi(k, Y)=X, \\
k_{0} \in K^{\prime \prime}, h \in U_{0}(Y) \cap N(p, 2) ; g k=k_{0} m(\theta) h .
\end{gathered}
$$

Then, by definition

$$
\phi(g, X)=\psi\left(k_{0}, \phi_{0}(\theta, Y)\right) .
$$

Thus we obtain

$$
\begin{aligned}
f(\phi(g, X)) & =k_{0} f_{0}\left(\phi_{0}(\theta, Y)\right)=k_{0} m(\theta) f_{0}(Y)=k_{0} m(\theta) h f_{0}(Y) \\
& =g k f_{0}(Y)=g f(\psi(k, Y))=g f(X) .
\end{aligned}
$$

Thus f is $N(p, 2)$-equivariant. By definition

$$
f_{0}(-X)=f_{0}\left(J_{1} J_{2} X\right)=j_{1} j_{2} f_{0}(X)=f_{0}(X) \quad \text { for } \quad X \in S .
$$

Thus f is $N(p, 2)^{+}$-equivariant.
Finally, we show the smoothness of f. The smoothness of f on $S^{2}-\left\{ \pm \boldsymbol{e}_{1}\right\}$ is obvious by the definition (5.2). The smoothness of f around $\pm \boldsymbol{e}_{1}$ follows from the fact that the orbit of $\pm e_{1}$ with respect to the $N(p, 2)$-action is open.
q.e.d.

Now, it remains only to show that the pair (ϕ, f) satisfies the condition (4.1).
Lemma 5.7. The following condition holds for each $Y \in F(H)$.

$$
N(p, 2)_{Y}^{+} \supset N(p, 2)^{+} \cap U_{0}(Y)
$$

Proof. By the definition of ϕ, we see that

$$
N(p, 2)_{Y} \supset N(p, 2) \cap U_{0}(Y) .
$$

It remains to show that

$$
\begin{equation*}
j_{1} j_{2} k m(\theta) \in U_{0}(Y) \quad \text { for } \quad k \in K^{\prime \prime} \tag{1}
\end{equation*}
$$

implies

$$
j_{1} j_{2} k m(\theta) \in N(p, 2)_{Y}^{+}
$$

Put $f_{0}(Y)=(a: b: 0)$. Denote by

$$
\left[\begin{array}{cc}
s & t \\
-t & s
\end{array}\right], \quad s^{2}+t^{2}=1
$$

the $\boldsymbol{S O}(2)$-factor of k. Then (1) implies

$$
\begin{align*}
& \text { (1) } a \cosh \theta+b \sinh \theta=-a \\
& \text { (2) } a \sinh \theta+b \cosh \theta=-b s \\
& 0=-b t . \tag{3}
\end{align*}
$$

We obtain $b \neq 0$ by (1), hence $t=0$ and $s= \pm 1$ by (3). Calculating (1) $\times \sinh \theta-$ (2) $\times(1+\cosh \theta)$, we obtain $s=-1$, and hence $k=j_{2}$. Then $(a+b) e^{\theta}=b-a$ by (1) + (2). Thus we see that

$$
|a|<|b| \quad \text { and } \quad \theta=\log \frac{b-a}{a+b}
$$

Hence, there exists θ_{0} such that

$$
(a: b)=\left(-\sinh \theta_{0}: \cosh \theta_{0}\right)
$$

Then $f_{0}\left(\phi_{0}\left(\theta_{0}, Y\right)\right)=(0: 1: 0)$ and $\theta=2 \theta_{0}$. Thus

$$
J_{2} \phi_{0}\left(\theta_{0}, Y\right)=-\phi_{0}\left(\theta_{0}, Y\right)
$$

by (5.1, e), and we have

$$
\begin{aligned}
\phi\left(j_{1} j_{2} k m(\theta), Y\right) & =-\psi\left(k, \phi_{0}(\theta, Y)\right)=-\psi\left(j_{2}, \phi_{0}\left(2 \theta_{0}, Y\right)\right) \\
& =-\phi_{0}\left(-\theta_{0}, \psi\left(j_{2}, \phi_{0}\left(\theta_{0}, Y\right)\right)\right)=-\phi_{0}\left(-\theta_{0},-\phi_{0}\left(\theta_{0}, Y\right)\right) \\
& =-\phi_{0}\left(-\theta_{0}, \phi_{0}\left(\theta_{0},-Y\right)\right)=-(-Y)=Y
\end{aligned}
$$

Consequently, $j_{1} j_{2} k m(\theta) \in N(p, 2)_{Y}^{+}$.
q.e.d.

Thus we have proved the following.
THEOREM 5.8. There is a one-to-one correspondence between the set of pairs (ϕ, f) given in Theorem 4.12 and the set of triples $\left(S, \phi_{0}, f_{0}\right)$ satisfying the condition (5.1).

Remark. By Asoh [1, §9-§11], we can show that there exist infinitely many smooth $\boldsymbol{S} \boldsymbol{O}_{0}(p, 2)$-actions on S^{p+1} which are topologically mutually distinct. In fact, we can construct a smooth $\boldsymbol{S} \boldsymbol{O}_{0}(p, 2)$-action on S^{p+1} which has just $2 m$ open orbits for each positive integer m.
6. Concluding remark. We can prove the following result by an argument similar
to that in [3].
Theorem. Suppose $p \geqq 3$. Then, there is a one-to-one correspondence between the set of smooth $\mathbf{S O}_{0}(p, 1)$-actions on \boldsymbol{S}^{p} whose restricted $\boldsymbol{S O}(p)$-action is the standard orthogonal action and the set of pairs (ϕ, f) satisfying the conditions (i) to (iv) in $\S 3$ of [3], where ϕ is a smooth one-parameter group on S^{1} and $f: S^{1} \rightarrow P_{1}(\mathbb{R})$ is a smooth function.

References

[1] T. Asoh, On smooth $S L(2, C)$ actions on 3-manifolds, Osaka J. Math. 24 (1987), 271-298.
[2] K. Mukōyama, Smooth $\operatorname{Sp}(2, \boldsymbol{R})$-actions on the 4-sphere, Tôhoku Math. J. 48 (1996), 543-560.
[3] F. Uchida, On smooth $\boldsymbol{S O}_{0}(p, q)$-actions on S^{p+q-1}, Osaka J. Math. 26 (1989), 775-787.
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Koshirakawa, Yamagata 990
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 57S20.

 * Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

