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Abstract. Smooth actions of non-compact semi-simple Lie groups have been
considered by Asoh, Mukoyama and others, in the case where the actions restricted to
the maximal compact subgroup have codimension-one principal orbits. In this paper,
we consider such actions on the (p+ l)-sphere for Lorentz group of type (p, 2).

Introduction. Consider the standard SO( p) x SO(q)-acύon on the (p + q — l)-sphere
Sp+q~1. This action has codimension-one principal orbits with SO(p— 1) x SO(q— 1) as
the principal isotropy subgroup. Furthermore, the fixed point set of the restricted
SO(p— 1)x SO(q— l)-action is diffeomorphic to the circle Sl for pΦ2 and qφl.

In the previous paper [3], we have studied the smooth SO0(p, ^-actions on Sp+q~1

for p^3 and ^^3, each of which is an extension of the above action, and we have
shown that such an action is characterized by a pair (</>,/) satisfying certain conditions,
where φ is a smooth one-parameter group on S1 and /: Sl-^Pί(R) is a smooth
function.

In this paper, we shall study the smooth SO0(p, ^-actions on Sp+q~1 in the case
/?^3 and q=l, 2. In the case q = 2, the fixed point set of the restricted SO(p— l)x
SO(q— l)-action is diffeomorphic to the 2-sphere S2, unlike the cases mentioned above.
So we shall introduce a triple (S, </>,/), instead of the pair, satisfying certain conditions,
where S is a circle in S2, φ is a smooth one-parameter group on S, and/: S-tP^R)
is a smooth function.

The pair (φ,/) was introduced by Asoh [1] to consider smooth SL(2, C)-actions
on the 3-sphere, and was improved by our previous paper [3]. The triple (S, φ,f) was
introduced by Mukoyama [2] to consider smooth Sp(2, /?)-actions on the 4-sphere.
Here, we notice that the Lie groups SL(2, C) and Sp(2, R) are locally isomorphic to

S00(3, 1) and S00(3, 2), respectively.
The author wishes to express gratitude to the referees and the editors for their

helpful advice.

1. Subgroups of SO( p, q). Let SO( p, q) denote the group of matrices in SL( p + q,
R) which leave invariant the quadratic form
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XI ' Xp ~r Xp + i ~r " " " ~r Xp + q

In particular, SO(p, q) contains S(O(p) x O(q)) as a maximal compact subgroup.
Put

0

0

where /„ denotes the unit matrix of order n. Clearly, a real matrix g of order p + q
belongs to SO( p, q) if and only if

I9^p,q 9 = IP,q
 and det g = 1 ,

where *g denotes the transposed matrix of g.
Let so( /?, q) denote the Lie algebra of SO( p, q). Then a real matrix X of order p + q

belongs to so( p, q) if and only if

Writing X in the form

x=

where X± is of order/? and X4 is of order g, we see that the condition (1.1) is equivalent
to the equality X3 = *X2 and the skew-symmetry of Xί9 X4.

Let SO0(p, q) denote the identity component of SO(p, q). Notice that SO(p, q) has
two connected components for p, q ̂  1 . We see that

is a maximal compact subgroup of SO0(p, q).
Here, we consider the standard representations of SO(p, 2) and so(p, 2) on Rp+2.

Let {el9 . . . , ep+2} denote the standard basis of Rp+2. Let H(a:b:c) (resp. ί)(α: b: c))
denote the isotropy subgroup (resp. subalgebra) at ael-\-bep+l + cep+2 for (α, b, c)^
(0, 0, 0). Notice that H(l : 0 : 0) = SO( p - 1, 2) and H(0 : 1 : 0) = SO( p, 1). Put

H0(a:b:c) = SO0(p, 2) n H(a:b:c) .

We can show that #0(0 : ft : c) is connected for any (a, b, c).

LEMMA 1 .2. Suppose p^3. Let Q be a proper subalgebra 0/so( p, 2) which contains

dimso(p, 2) — dimg^/?+ 1 ,
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= ί)(α: f t :c) for some (α, b, c) =£(0, 0,0),

g = ί)(α : b : c)® /? 1 /or some (α, b, c) ̂  (0, 0, 0)

187

then

or

such that a2 = b2 + c2, where the space R 1 is generated by the matrix b(El^p+ ι+Ep+ίtl) +
c(£ι,/> + 2 + £p + 2,ι) Here EtJ denotes the matrix unit.

PROOF. Let SO(p— 1) denote the closed connected subgroup of SO0(p, 2) cor-
responding to the subalgebra <5θ(p — 1). We obtain the desired result, by considering the

adjoint representation of SO(p— 1) on $o(p, 2) and the bracket operation on invariant

subspaces. We omit the details. q.e.d.

Let N( p, 2) denote the subgroup of SO0( p, 2) consisting of matrices in the form

X1 0

0 /,-!

X* 0

χ2
0

*4

where X± is of order one and X4 is of order two. Notice that the group N(p, 2) is the

identity component of the centralizer of SO(p— 1), and N(p9 2) is canonically isomorphic

toS00(l,2).
Put

m(Θ) =

coshθ

0

sinhfl

0

0

Vi

0
0

sinhθ

0

cosh^

0

0
0

0
1

θeR.

Then we see that m(θ) is an element of N( p9 2). Let M( p, 2) denote the subgroup of

ΛΓ(p, 2) consisting of matrices m(θ), 06*.

Considering the orbit ofae1-\-bep+1-\-cep + 2, we obtain the following (cf. [3, Proof

of Lemma 1.5]):

(1.3) S00( p9 2) = (S0( p) x SO(2))N( p, 2)H0(a :b:c)

for each (α, b, c)^(0, 0,0). Moreover, we obtain

(1.4) S00(p, 2) = (S0(p) x 50(2))M(p, 2)H0(a:b:0)

for each (α, 6)^(0,0).
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2. Smooth SO0( p9 2)-actions on Sp + 1 .

Let Φ0 : SO0(p, 2) x Sp + 1 -+SP+1 denote the standard action defined by

(2.1) Φ0(g,u)= \\gu\\~ lgu.

Its restricted 5Ό( p) x 5Ό(2)-action ψ is by orthogonal transformations and has co-
dimension-one principal orbits with SO(p— 1) as the principal isotropy subgroup. Put

(22) G = S00(p,2), K = SO(p)xSO(2),

Let F(H) denote the fixed point set of the restricted //-action. Then the set F(H)
consists of the points

xeί+yep+ί+zep+2

satisfying x2+y2 + z2 = 1, and is naturally diffeomorphic to the 2-sphere S2.
Let Φ: GxSp + 1-»Sp + 1 be a smooth G-action on Sp+1 such that its restricted

ΛΓ-action coincides with the action \\ι, i.e., Φ (Kχsp + l) = Ψ'
First we shall show that there exists a smooth function

uniquely determined by the condition: the isotropy subgroup Gγ at YeF(H) contains
H0(a:b:c), iff(Y) = (a: b: c). Here, P2(R) denotes the real projective plane while Gγ

denotes the isotropy subgroup at Y with respect to the given G-action Φ.
Since GΎ contains H = SO(p—\\ GΎ contains a unique subgroup of the form

//0(α: b: c) by Lemma 1.2. It remains only to show the smoothness of/. Let cjy denote
the Lie algebra of the subgroup Gγ. Considering the subalgebra t)(a : b : c), we see that
the following elements are contained in gy,

for each 2^i^p. Hence we obtain the smoothness of/(cf. [3, §2]).

The subgroup N(p, 2) acts on F(H) via Φ\(N(P 2)xF(H»' smce ^(P» 2) is contained in
the normalizer of //. On the other hand, the standard representation of SO0(\, 2) on
R3 induces a smooth action of 5O0(1, 2) on the real projective plane P2(R)- Via the
canonical isomorphism of N(p9 2) onto SO0(19 2), we may regard P2(R) as an N(p9 2)-
manifold.

Put

*
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Then these matrices act on F(H) via the orthogonal K-action ψ and act on P2(R) by

j\(a: b: c)=j2(a:b:c) = (-a:b:c).

Put N(p9 2)+=N(p, 2) vjiN(p9 2). Then, N(p, 2)+ is a subgroup of the normalizer
N(H).of H in G, and N(p,2)+ is naturally isomorphic to N(H)/H. Notice that y'2 is
contained in N(p, 2), andj\j2 commutes with each element of N(p, 2).

LEMMA 2.4. The function f: F(H)-+P2(R) is N(p9 2) + -equίvariant.

PROOF. Let neN(p,2)+ and (α: b: c)eP2(Φ We can write

n(aeί+bep+ί+cep+2)

in the form 0'̂  + ft'ep + 1 +c'ep+2 in the standard representation space Rp+2 ofSO0(p, 2).
In this case, we obtain

nH0(a:b:c)n~l= H0(af: b': c'}

in 5O0(p,2), and

n(α: b : c) = («': b': c')

in P2(Λ).
Suppose/(y) = (α: b: c). We see that

//0(α: b: c) c Gy ,

by the definition of the function /. Hence we obtain

H0(a': b': c') - nH0(a: b: φ "1 c nG y n~ x = Gφ(II>y).

Therefore,

/(Φ(n, 7)) = (a': b': c') = n(a: b: c) = nf(Y).

The equation means that/is N(p, 2)+-equivariant. q.e.d.

By the definition of the function /, we see that

(2.5) N(p9 2)y

+ ID N(p9 2)+ n H0(a:b:c)

foτf(Y) = (a:b:c).

3. Certain symmetric matrices. Let a smooth action φ of N(p9 2)+ on F(H) and
a smooth function/: F(H)^P2(R) be given. Suppose that/is N(p9 2) + -equivariant.

Let P(Y) denote the symmetric matrix of order p + 2 defined by

P( Y) = (a2 + b2 + c2) -1 F(α, ft, c) rK(α, b, c)

for/(7) = (α: ft: c), where V(a,b,c) = aei + bep+ί + cep + 2, and define
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Then, clearly the identity component U0(Y) of U(Y) coincides with H0(a :b:c), and
there is a positive real number λ(n, Y) such that

(3.1) nP(Y)tn = λ(n9Y)P(φ(n9Y))

for each Ye F(H) and n e N( p, 2) + .

LEMMA 3.2. Suppose kP(Y)*k = P(Y') for 7, Y'eF(H) and keSO(p)xI2 Then,

there are the following possibilities: (1) keHandf(Y)=f(Y'), ( 2 ) j 1 k e f f a n d j \ f ( Y ) =

PROOF. Put /( Y ) - (a : b : c). We have

in the standard representation space Rp + 2 of SO0(p,2) and f ( Y ' ) = (a':b: c) by the
assumption. Moreover, α'— + α.

If fl' = α/0, then fce#, which is the case (1). If a'= — α/0, thenj\keH, which is
the case (2). If a' = a = Q, then it is the case (3). q.e.d.

4. Construction of SO0( p, 2)-actions. Let a smooth action φ of N( p, 2)+ on F(H)
and a smooth function/: F(H)^P2(R) be given.

Suppose that the restriction of φ on X n N(p, 2)+ coincides with the restriction of
the orthogonal ^-action ψ, while /is N(p, 2)+-equivariant and satisfies the condition
(2.5). The condition (2.5) can be restated as

(4.1) N(p,2)Ϊ^N(p,2)+nU0(Y)

for each YeF(H).
We shall show how to construct a smooth G = SO0( p, 2)-action on the ( p + l)-sphere

Sp+ί from the pair (</>,/). We use the notation in (2.2) and (2.3). Put K' = SO(p) x I2.
By (1.3) and the facts that U0(Y) = H0(a: b\ c) foτf(Y) = (a:b:c), and that N(p9 2)

contains Ip x SΌ(2), we obtain the decomposition

(4.2) G = K'N(p,2)U0(Y)

for each YeF(H).
Take (g,X)eG*Sp+1. Let us choose

keK, YeF(H); ψ(k,Y) = X,

k0eK', neN(p,2), heU0(Y); gk = k0nh,

and put

(4.3) Φ(g, X) = ψ(k0, φ(n, Y)) .
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We shall show that Φ is well-defined and is a smooth G-action on Sp+1. For the

proof, we need the following:

LEMMA 4.4. Let YεF(H). Suppose knh = k'rih' for k, k' e K', n, ri e N( p, 2), and

h,h'eU0(Y). Then

PROOF. We obtain

knP(YYntk = k'n'P(YYn'tk' .

Then, by (3.1)

λkP(φ(n, Y)Yk = λ'k'P(φ(ri, Y)Yk

for certain positive real numbers λ, λ' . Comparing the traces of both sides, we obtain

λ = λ' and

kP(φ(n, Y)Yk = k'P(φ(ri, Y)Yk' .

Then we have the following possibilities, by Lemma 3.2,
(1) k'-^kεH,

(2) j\V-lkeH,
(3) f(φ(n,Y))=f(φ(n',Y)) = (0:b:c).

In the case (1), we see that

is contained in N(p, 2)γ by (4.1). Hence

and we obtain the desired equation by k'~lkeH.
In the case (2), we see that

is contained in N(p, 2)γ by (4.1). Hence

and we obtain the desired equation by jlk~1keH.
In the case (3), we see that

by (2.5). Hence

φ(n9 Y) =

and we see that
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ψ(k9φ(n9Y)) = ψ(k?,φ(n,Y))

for any /c, k' eK'. On the other hand,

nfn-1=(kf-1k)(nhhf-1n-1)

is contained in N(p9 2)£(n tY) by (4.1). Hence

<Kn,Y) = φ(n'9Y)9

and we obtain the desired equation. q.e.d.

PROPOSITION 4.5. Φ in (4.3) is well-defined and is an abstract G-actίon such that

Φ U x S P + i ) = ̂

PROOF. For for, X) e G x Sp+ \ let us choose

X = ψ(kl9Y1) = ψ(k29Y2)

as in (4.3), where kteK9 Y^F(H\ and

where fc0 6 K', n e ΛΓ( p, 2), h e ί/0(Γι).
We have k^lk2 = k'k", where fc'eX' and fc"eK n N(p9 2). Then, we have the

following possibilities,
(l)fc 'efί, (2)j1k'€H, and (3) ^(Λ, F,)= JV
In the case (1), we see that yt = ψ(k", Y2), and

where nk"eN(p, 2) and /c'''̂ / '̂̂ ^^)- Hence we obtain

φ(k0,φ(nk",Y2)) = ψ^φ^YJ).

In the case (2), we see that φ(j^ Y l ) = φ(k", Y2), and

where ^o^Ί €K',j1njίk"eN(p, 2), and K'~ίjίhKk"e U0(Y2). Hence we obtain

Ά(fcoΛ, ΦUinW, Y2))=Φ(k0, Φ(n, YJ) .

In the case (3), we see that Yl =\j/(k', Y2), k'eU^YJ and

where nk" eN(p, 2) and k"~1hk'k"e U0(Y2). Hence we obtain

ψ(k0,Φ(nk",Y2)) = ψ(k0,Φ(n,Y1)).

Combining these results and Lemma 4.4, we see that Φ in (4.3) is well-defined.
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Take g.g'eG and XeSp+1. As in (4.3), let us choose X = ψ(k, Y), where keK9

YeF(H\ and

where fc0, fcx eK', n, n^N(p9 2), Λ e Ϊ/0(Y) and hx e ί/0(0(n, 7)). Then,

) = ιA(fcι, φ(nl9 φ(n, Y)))

because

g'gk = kί(nίn)(n~ίhinh)9

n1neN(p,2)anά n~ίhίnheUΌ(Y).
This shows that Φ in (4.3) is an abstract G-action.

Finally, take (k,X)eKxSp + 1 and put X = \l/(kl9 Y\ where k^K, YεF(H). We
have fcfci = /c'/cr/, where /cr e Xr and k'ΈKn N( p, 2). Then,

Φ(/c, Ar) = ^r(fc/, φ(k"9 Y)) = ψ(W9 Y) = ψ(k9 X) .

This shows Φ | ( £ χ S p + i ) — 'A q.e.d.

Notice that the continuity of Φ is unknown at this stage. In the remainder of this
section, we shall show the smoothness of the G-action Φ.

Define S = f~~ί(P1(R)). This means that the set S consists of the points YeF(H)
such that/(Y) = (* : * : 0). Then the points ±eί are contained in S.

Considering the orbits of Ip x SO(2), we see that the function / is transversal to
Pι(R) at each point of S—{±e1}. Clearly S is invariant under the restricted M(p, 2)-
action and the actions \l/(jε> — ) for ε= 1, 2.

Consequently, we see that S is a one-dimensional closed submanifold of F(H).
The subset of S consisting of the points Y with/(7) = (a : b : 0) such that ab > 0 has

two connected components. Denote by S+ the component contained in the upper
hemisphere. Then there is a smooth positive-valued function β on S+ such that

LEMMA 4.6. For (θ, Y)eR x S + , we have φ(m(θ\ Y)eS + if and only if

(4.7) (l+j8(Y)tanhθ)OS(Y) + tanh0)>0 .

PROOF. Since /is N(p, 2) +-equi variant, we obtain

f(φ(m(θ\ Y)) = (l+β(Y)tanhθ : β(Y) + tznhθ : 0) .

Then the "only if" part is clear. Suppose (4.7) holds. Then,

φ(m(θ)9Y)eS+ujJ2(S+)

and we see that φ(m(θ\ Y) is not contained in 7 17*2(5+) by considering orbits of the
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M( p, 2)-action. q.e.d.

Define

D+ = {(θ, Y)εRxS+\φ(m(θ), Y)eS + } ,

W+ = {(g,Y)εGxS+\±tmce(gP(Y)tg)ϊ(l-β(Y)2)(l+β(Y)2Γ1}.

Clearly D+ is an open set of R x S+ and W+ is an open set of G x S + . Notice that

trace(#P( 7) *g) = cosh 2Θ + 2β( Y)( 1 + β( Y )2) ~ 1 sinh 29

for the decomposition g = km(θ)u, where keK, Θ<=R, ueU0(Y) and YeS+.

Now, we have the following results, whose proof is quite similar to that of Lemma

4.7 in [3].

LEMMA 4.8. For (g, Y)eGxS+, we have (g, Y)e W+ if and only if there is a
decomposition g = km(θ)u, where keK, θεR, and w e U0(Y) such that (θ, Y)eD + .

LEMMA 4.9. There is a smooth mapping A : W+ -* (K/H) xD+ defined by A(g9 Y) =

(kH,(θ, Y))9 where g = km(θ}u\ keK,θεR, andueU0(Y).

By the definition of S+, there exists only one point WQ of S such that/(w0) = (0 : 1 : 0)
and w0 is contained in the closure of S + . Define

Here, Φ is the G-action defined by (4.3) and Φ0 is the standard G-action. By (4.3) and
the conditions on φ and/, we see that there are positive real numbers r l 5 r2 < 1 such that

S2(Φ) = {v®weS(Rp®R2)\\\v\\<r2}.

On the other hand, it is clear that

S2(Φ0) = {v@wES(Rp®R2)\\\v\\< \\w\\} .

Define two G-maps Fε : Se(Φ) -+ Sε(Φ0) ε= 1, 2 by

Notice that the smoothness of the G-action Φ is unknown at this stage.
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LEMMA 4.10. Fί and F2 are diffeomorphίsms.

PROOF. We can write

φ(m(θ\eί) = x(θ)e1+y(θ)ep+1+z(Θ)ep + 2 .

Considering the action ψ(j2, — ), we see that x(θ) is an even function while y(θ) and z(θ)
are odd functions. Hence there exist smooth even functions u(θ\ v(θ) such that

) = θ u(θ)9 z(θ) = θ v(θ).

Considering the function/, we see that (u(θ\ i;(0))^(0, 0) for each θ.
Define a: R^SO(2) and τ : J?->(-r l9 r t) by

Then

o J
Since the curve φ(m(θ), e±) is transverse to each latitude, we see that τ is a diffeomorphism.
Then, we obtain a A^-equivariant diffeomorphism h0: *S1(Φ)^ 5'1(Φ) defined by

Next, there is an odd function s1 : ( — rί9 r^^R determined by

and hence there is a smooth even function σl : ( — r^.r^-^R such that .Sι(τ(0)) =

τ(θ)σ1(τ(θ)). Then, we obtain a ΛT-equivariant diffeomorphism /zx : S'1(Φ)->51(Φ0) de-
fined by

where <?! is a positive scalar.
By definition, we see that

for each θ, and hence

for each geG. Therefore, F1=h1h0 is a diffeomorphism.
Similarly, we can write
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0(m(0), w0) = x(θ)eί+y(Θ)ep+1+z(Θ)ep + 2 .

Considering the action ι/ΌΊ> "~X we see tnat x(#) *s an °dd function while y(0) and
z(0) are even functions. By an argument similar to that above, we see that x(θ) is a
diίfeomorphism of R onto the interval ( — r2, r2) and there is a smooth mapping
b: R -»50(2) such that

b(0)
v .//Ί\2\l/2 ~|
Λ((7l j

0 J

Next, there is an odd function s2 : ( — r2, ^2) ~* ̂  determined by

s2(;c(θ)) = (cosh 20) ~ 1/2 sinh θ ,

and hence there is a smooth even function σ2 : ( — r2, r2)->/? such that ,s2(.x(0)) =

Then, we obtain Λ^-equivariant diίfeomorphisms /z2 : (̂Φ) -> S2(Φ) and /z3 : S2(Φ)
S2(Φ0) denned by

where c2 is a positive scalar. Then, we see that

H3h2(φ(m(θ), *0)) = Φ0(

for each θ, and hence

for each ^ e G. Therefore, F2 = /ι3/ι2 is a diffeomorphism.
This completes the proof of Lemma 4.10.

PROPOSITION 4.11. Φ in (4.3) is a smooth G-actίon.

PROOF. By Lemma 4.10 we see that the restrictions of Φ to G x S±(Φ) and G x
52(Φ) are smooth. Define

W(φ) = {to, φ(k, Y))\gεG,keK and (gk, Y) e W+ } .

Then, we see that W(Φ) is an open set of G x Sp+1, since ^+ is an open set of G x 5 + .
Furthermore, we see that the restriction of Φ to W(Φ) is smooth, since A is smooth by
Lemma 4.9. Consequently, we obtain the smoothness of Φ, because three open sets
W(Φ\ G x Si(Φ) and G x 52(Φ) cover G x Sp+1. q.e.d.

Thus we have proved the following.

THEOREM 4.12. Suppose p ^3. Then, there is a one-to-one correspondence between
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the set of smooth SO0(p,2)-actions on Sp + 1 whose restricted K=SO(p) x SO(2)-action
is the standard orthogonal action and the set of pairs (</>,/), where φ is a smooth
N(p, 2) + -action on S2 = F(H) whose restriction on K n N(p, 2)+ coincides with the standard
K-action and f: S2 — >P2(R) is a smooth N(p, 2)+ -equivariant function satisfying the
condition (4.1).

5. Construction of (</>,/). In the previous section, we saw how to construct a
smooth SO0(p, 2)-action on Sp+ 1 from a pair (φ,/), where φ is a smooth N(p, 2) + -action
on S2 = F(H) and/: S2-+P2(R) is a smooth N( p, 2) + -equivariant function, satisfying
certain conditions.

We now consider how to construct such a pair (</>,/).
Put Jε = ψ(jε, — ) for ε= 1, 2 and J = J1J2 on S2 = F(H). Then J l 5 J2 are involutions

on S2, and J is the antipodal involution. Let S be a one-dimensional closed submanifold
of S2, which transversely intersects each latitude and is invariant under the involutions
J1 and J2. I

n particular, i^ are contained in S.
Put K" = Ip x 50(2). K" acts orthogonally on S2 via the restricted action of if/, and

the set of K"-orbits coincides with the set of latitudes.
Suppose a smooth one-parameter group φ0 on S and a smooth map/0 : S -> Px(/?)

satisfy the following condition:

(a) JεφQ(θ,Y) = φ0(-θ9JJίY))9 ε = l , 2 ,

(b) f«JJJ)=jJo(Y)9 e = l , 2 ,

(5-1) (c) /o0o(0Jl
r) = w(θ)/0(y),

(d) /0(lr) = (l:0:0)o72(ϊ r)=l r,

(e) /0(y) = (0:l:0)oΛm=y.

Here, /*!(/?) is the subspace of P2(R) consisting of the points (* : * : 0). P^R) is
invariant under the actions yε (ε= 1, 2) and m(θ).

If (φ,f) is given, then S = f~1(Pί(R)), /0 is a restriction of/, and </>0(0, Y) =
Φ(m(θ\ Y).

Now, we shall show how to construct (φ,/) from the triple (S, 00>/o) satisfying
the condition (5.1).

First, we show that/0 can be extended uniquely to a K"-equivariant map/: S2 ->
P2(/?). Suppose

for k^K", Yi^S. Then, we obtain

because, by assumption we have the following two possibilities:

(i) y1 = y2=±*1,
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(2) Yl = J\ Y2 and *f Ik2 =J2 (ε = 0, 1 ).
So, we can define

(5.2) f(Ψ(k,Y)) = kf0(Y) for keK" and Y^S .

Next, we construct an N(p9 2)-action φ on S2. We obtain the decomposition

N( p, 2) = K"M( p, 2)(H0(a : fr : 0) n N( p, 2))

for each (α, ft)^(0, 0) by (1.4). Since C/0( Y ) = H 0(a : b : 0) for/0(Y) = (α: b: 0), we obtain

N(p9 2) = K"M(p9 2)(U0(Y) n N(p, 2))

for each YeS.
Take (#, X) e ΛΓ( p, 2) x 52. Let us choose

); gk = k0m(Θ)h,

and put

(5.3) φ(g9X) = ιl/(kθ9φ0(θ9Y)).

We shall show that ψ is well-defined and is a smooth N( p, 2)-action on S2. We
need the following lemma.

LEMMA 5.4. Suppose km(θ}h = k'm(θ')h' for k, fc'eK", h, Λ 'e 170(Γ) n N(p, 2) /or
. Then

ψ(k9φ0(θ9Y)) = ψ(k?9φ0(ff9Y)).

PROOF. We obtain

from (5.1, c) in a way similar to that in the case (3.1). Then we have the following
possibilities by direct calculation:

(1) foΦ*(θ9Y)=fQφo(ff9Y) = (1:0:0),
(2) fc = fc',

(3) kj2 = k'.
In the case (1), we see that φ0(θ, Y) = φ0(θ'9 Y)=±e± by considering the orbits of

φ0. Hence we obtain

ψ(k9 φ0(θ9 Y)) = ψ(kf, Φ0(ff9 Y))= ±e,

for any /c,/c'eK".
In the case (2), we see that m(θ)h = m(θ')h'. Then we obtain
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Then θ = ff by the definition of U0(Y) = H0(a:b: 0). Hence we obtain

ψ(k,φo(θ,Y))=ψ(k?9φ0(ff,Y)).

In the case (3), we see that m(θ)h=j2m(θf)h'. Put 2τ = θ + θ'. Then we obtain

Ip+2 = m(-θ)j2m(θf)hfh-l=m(-τ)j2m(τ)hfh-1.

Hence we obtain

j2 = m(τ)h'h ~ lm( - τ) e H0(c : d : 0 ) 9

for/0</>o(τ, Y) = (c:d: 0). Then d = 0, and hence (/>0(τ, 7) is /2-invariant Therefore,

Hence we obtain

Ψ(k9φo(θ,Y)) = ψ(k!9φ0(ff9Y)).

q.e.d.

PROPOSITION 5.5. φ in (5.3) is well-defined and is a smooth N(p, 2)-action.

PROOF. For (g9 X) e N( p, 2) x S2, let us choose

(i) X = Ψ(kl9 Yl} = ̂ (k2, F2),

where kl9 k2εK", Yl9 Y2eS, and

(ii) gkι=

where fc0 e K", λ e I70( FJ n N( p, 2).
By the condition (i), we have the following possibilities:
(1) Y1 = Y2=±cl9

(2) fcΓ Ik2 =J2 , rx = J!( 72) for ε = 0, 1 .
In the case (1), we obtain

and

Therefore, φ in (5.3) is well-defined in this case by Lemma 5.4.
In the case (2), we obtain

where k0j2eK"9j2hj2eU0(Y2). Hence we can write
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Therefore, φ in (5.3) is well-defined in this case by Lemma 5.4. Consequently, φ in (5.3)

is well-defined.
Finally, as in the proof of Proposition 4.5, we see easily that φ in (5.3) is an abstract

action. Notice that the smoothness of φ can be proved in a way similar to that of Φ
defined by (4.3). q.e.d.

By definition, φ is compatible with the antipodal involution J=ψ(j\j2, — )• There-
fore, we can extend φ to an action of N(p9 2)+ on S2.

PROPOSITION 5.6. The mapf: S2^P2(R) defined by (5.2) is N(p, 2} + -equivariant

and smooth.

PROOF. Take (g, X) e N( p, 2)xS2. Let us choose

fceK", ΓeS; ψ(k9 Y) = X ,

/c0 e K"9 h E C/0( Y) n N( p, 2 ) ; g k = k0m(θ)h .

Then, by definition

Thus we obtain

f(φ(g, X)) = k0f0(φ0(θ, Y)) = k0

)) = g f ( X ) .

Thus / is N( p, 2)-equivariant. By definition

fo(-X) = f o ( J ι J 2 X ) = J ι J 2 f o ( X ) = f o ( X ) for XeS.

Thus /is N(p9 2) + -equivariant.

Finally, we show the smoothness of/. The smoothness of /on S2 — {±el} is obvi-
ous by the definition (5.2). The smoothness of /around ±el follows from the fact that
the orbit of ±e^ with respect to the N(p9 2)-action is open. q.e.d.

Now, it remains only to show that the pair ((/>,/) satisfies the condition (4.1).

LEMMA 5.7. The following condition holds for each YεF(H).

PROOF. By the definition of φ9 we see that

N(p92)γnN(p92)<\U0(Y).

It remains to show that

(1) JJ2km(θ)EU0(Y) for kεK"

implies
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Put /0(y) = (α: b: 0). Denote by

s

-t s

the 5O(2)-factor of k. Then (1) implies

© a cosh θ + b sinh θ = — a

© a sinh 0 + b cosh θ= —bs

We obtain b ̂  0 by ©, hence ί = 0 and s = ± 1 by ©. Calculating © x sinh θ —
© x (1 + cosh 0), we obtain s = - 1, and hence k =j2. Then (α + b)eθ = b — aby © + ©.

Thus we see that

b-a
\ a \ < \ b \ and θ = log-

a + b

Hence, there exists Θ0 such that

(a : b) = ( - sinh 00 : cosh Θ0) .

Then/o(00(00, y)) = (0: 1 : 0) and Θ = 2Θ0. Thus

by (5.1, e), and we have

}= -Ψ(k, φ0(θ, y))= -

= -Φ0(-Θ0, Φ0(Θ0, - y»= -(- y)= y .

Consequently, JιJ2km(θ) e N( p, 2)γ . q.e.d.

Thus we have proved the following.

THEOREM 5.8. There is a one-to-one correspondence between the set of pairs (</>,/)

given in Theorem 4.12 and the set of triples (S, </>0,/o) satisfying the condition (5.1).

REMARK. By Asoh [1, §9-§l 1], we can show that there exist infinitely many smooth
SO0(p, 2)-actions on Sp + 1 which are topologically mutually distinct. In fact, we can
construct a smooth SO0(p, 2)-action on Sp+1 which has just 2m open orbits for each
positive integer m.

6. Concluding remark. We can prove the following result by an argument similar
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to that in [3].

THEOREM. Suppose p^.3. Then, there is a one-to-one correspondence between the
set of smooth SOQ(p,\)-actions on Sp whose restricted SO(p)-action is the standard
orthogonal action and the set of pairs (</>,/) satisfying the conditions (i) to (iv) in §3 of
[3], where φ is a smooth one-parameter group on S1 and f: 51^P1(/?) is a smooth

function.
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