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MAGNETIC FLOWS OF ANOSOV TYPE

NORIO GOUDA
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Abstract. We regard a closed 2-form on a Riemannian manifold as a magnetic
field and define a magnetic flow which is a perturbation of a geodesic flow. A sufficient
condition is given for a magnetic flow to become an Anosov flow.

Introduction. The geodesic flow on the unit tangent bundle of a compact Rie-
mannian manifold with negative sectional curvature is one of typical examples of
Anosov flows. A geodesic curve on a Riemannian manifold may be considered as a
trajectory of a particle subject only to forces of constraint. As a perturbation of a
geodesic curve, we consider a trajectory of a charged particle under the Lorentz force
generated by a magnetic field. The flow defined in terms of the trajectories will be called
a magnetic flow.

If a magnetic field is weak enough, it follows from the structural stability of Anosov
flows that the associated magnetic flow on a compact Riemannian manifold with negative
sectional curvature is an Anosov flow. Concrete examples of magnetic flows of Anosov
type are investigated in [1], [11], [12]. In this paper, we give a sufficient condition for
a magnetic flow to become an Anosov flow. The main theorem is stated as follows:

THEOREM 1 . Let (M, g) be a compact Riemannian manifold with negative sectional
curvature, and let κmax(M ) be the maximum of the sectional curvature of M. Given a

magnetic field B (a closed 2-form) on M, we let Ω : TM^TM be the operator defined by

9p(u, Ω(υ)) = Bp(u, υ) (u, v e TpM, p e M). //

max {rg(u, (VΩ)(w w)) + g(Ω(w\ Ω(w))} < - r 2κmax(M) ,
u,weSιM

then the magnetic flow φt : SrM-+SrM associated with B is of Anosov type.

1. Lorentz forces on Riemannian manifolds. A magnetic field in /?3 is a vector
field B = (bl9 b2, 63) satisfying the equation

.
dxi dx2 dx$

The Lorentz force generated by the magnetic field B on a moving unit charged particle
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in R3 is given by

/ 0 b3

F=vxB=[ -b3 0 b1 )( t>2 ) ,

\ b2 -b, 0

where v is the velocity vector. Therefore, we obtain the Newtonian equation of the

particle

v = F=vxB.

We should note that the matrix determined by B is skew-symmetric and that F is
perpendicular to v. Since we have used the vector product υxB, the above discussion
depends on the choice of the orientation of R3. In changing the orientation of /?3, we
need to change B into — B in order that the definition of the Lorentz force is indepen-
dent of the orientation of R3. To eliminate this dependency, we usually identify B
with a 2-form

b3dx1 /\dx2

Then, the equation V B = Q turns out to be equivalent to

db2 5_,
dB =

dxί dx2

where d denotes the exterior differentiation.
In the case of a Riemannian manifold (M, g) of dimension «, we consider a closed

2-form on M as a magnetic field on M and will define the Lorentz force on M as
follows. First, we define an operator Ω: TM^TM by

where u9ve TpM and peM. From the definition, it is obvious that Ω is skew-symmetric.
Now, we define the Lorentz force on M as

F=Ω(v),

where v e TM is the velocity vector of a moving unit-charged particle on M. It is easy
to see that F is perpendicular to v. We define the Newtonian equation of the particle
on M by

(1) ^-c = Ω(c)9dt

where D/dt is the covariant derivative along the curve c and c is the velocity vector
field. In particular, if B = Q, the equation (1) reduces to the equation of geodesic
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T'-'dt

When B has a globally defined vector potential A, that is to say, when there exists a
1-form A satisfying the equation B = dA, the equation (1) is obtained as the Euler-
Lagrange equation associated with the action integral

= L
f ' f 1

=\ l —
Ja (. ̂

where c: [α, β]->M is an arbitrary smooth curve on M. Indeed, if cs ( — s<s<έ) is a
one-parameter variation of smooth curves with c0 = c, cs(α) = c(α), cs(j8) = c(β), then the
first variation formula of EA is given by

SS=Q
ds Jα \ dt

where V is the Levi-Civita connection of (M,g) and W=(djds)cs\s = Q. See [11] for
detailed computation. Therefore, we see that the Euler-Lagrange equation for the
Lagrangian LA is the equation (1). However, it is important that the equation (1) is
well-defined without a globally defined vector potential.

We shall require a condition on Ω which is equivalent to dB = Q.

LEMMA 1.1. The condition dB = 0 is equivalent to

g((VΩ)(X Γ), Z) + 0((Vί2)(F; Z), X) + g((VΩ)(Z; X\ 7) = 0

for every triple of vector fields X, Y and Z on M, where (VΩ)(X; Y) denotes (VYΩ)(X).

This is a consequence of the well-known identity

dB(X, Y, Z) = 0((Vfl)(AT; F), Z) + 0((Vβ)(Γ; Z), X) + g((VΩ)(Z Z), 7) .

REMARK. We should note that the condition dB=Q is not used essentially in
defining the equation (1). In other words, we can define the equation (1) for a general
2-form. However, we will see that the condition dB = 0 plays an important role in the
dynamics under B on Riemannian manifolds.

2. Jacobi fields under magnetic fields. In Section 1, we mentioned the first
variation formula of the action integral EA when there exists a globally defined vector
potential A of B. We will derive the second variation formula to find out a suitable
concept of a Jacobi field for the functional EA.

Let c be a solution curve of the equation (1), and let c(Sl,S2) ( — ε<j l 5 s2<ε) be a
2-parameter variation of smooth curves with c(00) = c, c(Sl?S2)(α) = c(α), c(SίfS2)(β)==c(β).
Then, we shall compute

dsίds2
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First, we find

d

ds*

where WSί = ( d / d s 2 ) c ( S l 9 S 2 ) \ S 2 S S θ . Next,

ds^ί

dt
si =0

s ι = 0 .

where W2=WSi SlSSθ = ( B / d s 2 ) c ( S ί t S 2 ) \ S ι = S 2 S S θ . By standard computation, we get

ΛΊ dt dt s ι = 0

where 7^ is the curvature tensor and Wί=(d/dsί)c(SitS2) |Sl=S2 = 0. Therefore, we have only
to compute

D

D \( d
Ω — c(s, 0, +Ω

(D

ι,0)

L(sι,0)
sι=0

Therefore, the second variation formula of £κ at c is

D

Ίti

We should note that the right-hand side of the second variation formula depends
only on Ω. Namely, without a globally defined vector potential of B, the right-hand
side of the above formula is meaningful. Therefore, we may define a Jacobi field under
B along a solution curve of the equation (1) in a way similar to that in the definition

of a Jacobi field along a geodesic.

DEFINITION 2.1. Let c be a solution curve of the equation (1). The Jacobi equa-
tion under B along c is defined by
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(2) , ,
at \dt

A solution of the Jacobi equation is called a Jacobi field under B.

It is easy to see that c is a Jacobi field under B along c. Let cs ( — ε<s<ε) be a
one-parameter variation of c, not necessarily keeping the end points fixed, such that
c0 = c and cs is a solution curve of the equation (1) in fixing s. That is to say,

Then, the variation vector field

is a Jacobi field under B along c.

3. Decomposition of Jacobi fields under magnetic fields. Let c be a solution curve
of the equation (1). In this section, we will show that the Jacobi equation (2) is de-
composed into the equations of the tangential component and normal components
of c.

LEMMA 3.1. Let X, Y and Z be smooth vector fields on M. Then

(V£)(T, Ύ\ Z) = g(X, (VΩ)(7; Z))

where (VB}(X, 7; Z) denotes (VZB)(X, Y).

LEMMA 3.2. Let X, Y and Z be smooth vector fields on M. Then

g(X, (VΩ)(Y; Z))= -g(Y, (VΩ)(X; Z)).

PROOF. Since B is a 2-form, we have

(VB)(X, Y ; Z ) = Z{B(X, Y)}~B(VZX, Y)-B(X,VZY)

= -Z{B( Y, X)} + B( Y, VZX) + B(VZ Y, X)

= -(VB)(Y,X;Z).

We are done by Lemma 3.1. q.e.d.

LEMMA 3.3. Let J be a Jacobi field under B along c. Then, g((D/dt)J, c) is constant.

PROOF. By Lemma 3.2, we have

P-jλ\,g(^Ljλ+g(^j,^ί},7, ' l l u \ τ , 7 ' I ^ I Ί, ' T . I

(D r D Λ (D* r ΛD \ \} + g[ —J, —c } = g( —TJ-Ω\ —/ , c
J \dt dt J \dt2 \dt J J
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= g( - R(c, J)c + (V0)(c 7), c) = g(c, (VO)(c /)) = 0

q.e.d.

Let υ1 = c(ϋ)jr and r={g(c(0), c(0))}1/2, and let us choose v2,...,vne Tc(0)M so that
{υl9 v29 ...9 vn} is an orthonormal basis in TC(0]M. We define a vector field F£ (z = 1, . . . , n)
along c as a solution of the differential equation

^-^-0(^ = 0, ^(0) = ̂ .α/

In particular, Fx = c/r.

LEMMA 3.4. Vί9...9Vn are orthonormal vector fields along c. In particular,
g(c,c) = r2.

PROOF. By the definition of (Vl9 . . . , Vn)9 we have

q.e.d.

Let / be a Jacobi field under B along c. Let / be expressed as /=£"= l f\Yi where
each ft is a smooth function along c. Then,

-ΓTJ= Σ fιVt + 2 Σ fiΩ(Vi)+ Σ fι
at i=ι i = ι i = ι

Therefore, we obtain

^—J+ R(c, J)c-(VΩ)(c;J)-Ω(—J
dt2 \ 7

= Σ fιVi + Σ /ίβ(P/) + Σ fi{R(c, KJc + ίVΩXKί; c)-(VΩ)(c; ^)} .

DEFINITION 3.5. Let veTM. A linear endomorphism .R,, of Tπ(v}M is defined by

^(w) = 7 (̂t;, w)t? + (VΩ)(w t?) - (VΩ)(t; w)

where π: ΓM->M is the canonical projection.

The equation (2) is written as the differential equation of the components /=
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(3)

Since

<UΩ(FJ.))-6r(F1,Ω
2(F,.)) = Ω .̂

Ui

for 7= 1, . . . ,«. The first column of the equation (3) is written as
n n

7=2 ^ J j=2

where we should note that Ω^tl = 0. Integrating the above equation, we have

-j,y^-
7=2 \dt ) r

where we set g((D/dt)J, c) = CeR. Therefore, we obtain

(4) Λ^ΩCc),/)^.
γ γ

DEFINITION 3.6. Let v e TM \(0). A linear endomorphism Rv of Tπ(υ)M is defined
by

Rv(w) = Rv(w) + g(Ω(v), w)Ω(v)

= R(v, w)v + (VΩ)(w v) - (VΩ)(ι? w) + —!— g(Ω(υ), w)Ω(v).
g(υ, υ)

Let pry be the projection map onto the normal subspace of v in Tπ(v)M. Let Ω^

and RΌιL denote pr^Ωpr^ and prv Rv prυ, respectively. Substituting the equation (4) for

the equation (3), we obtain

C
(5) Λ + ΩcUA + £<U/L + -y °(̂ ) = ° '

where we should note that Rl

όl=0 for f =!,...,«. Therefore, the equation (2) is

decomposed into the equations of tangential and normal components of c.

For example, let (M, g) be an orientable surface. Then, an arbitrary closed 2-form

on M is expressed as bvolM where Z>eC°°(M) and volM is the canonical volume form

determined by g. For v e 7"M\(0), let v± denote a unique element in Tπ(υ^M such that

π(t ) = TφjJ, g(v±, v) = 0 and volM(f±, v) = l. In this case, the equation (3) is



172 N. GOUDA

.ft(c) 0

The equations (4) and (5) are

/=o.

C

r

In particular, if R(p) = κeR and Z>O) = b e /? on M, then the above equation is

= 0.

REMARK. In the computation in this section, we did not use the assumption that
B is closed.

4. Matrix differential equations. In this section, we shall study the real m x m
matrix differential equation on R

(6) Ϋ(t) + A(t)Y(t) = Q ,

where the derivative is taken componentwise and A(t) is smooth and symmetric on R.
First, let Y0(t) be a solution of the equation (6) with Y0(ty = Q and 70(0) = /w. The
following lemma is easily shown in the same way as in the proof of the comparison
theorem of Jacobi fields along geodesies.

LEMMA 4. 1 . Suppose that there exists some a<0 with A(t) < alm for all t e R. Then,
we have

1
— at\

— a

for all unit vectors xεRm and all teR. Therefore, det Y0(t)^0for all

Next, we describe a useful method of Green [6]. Suppose that det Y0(t)^0 for all
t^O. Let τ 7^0. Then Yτ(t) is defined as a solution of the equation (6) with Fτ(τ) = 0 and

Ϋτ(τ)= — (T^)"1^) where the dagger denotes the transpose operation.

LEMMA 4.2. Let τ/0. Then, we have:
1. Yτ(f) is a unique solution of the equation (6) with 7τ(0) =
2. d

and Yτ(τ) =
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3. Both limτ^ + ̂  ft(0) and limτ^ _ ̂  fτ(0) exist.

For the sake of simplicity, we make it a rule that oo denotes one of + oo and — oo

as the case may be. We may define Y^t) as a solution of the equation (6) with 7^(0) = Im

LEMMA 4.3. For all teR, we have

1. yβ)(
2. det

Let us set Um(t) = Ϋao(f)Y^ί(f). It is easy to see that U^(t) is a symmetric solution
of the Riccati matrix differential equation

1/00(0+ tf£(0 + Λ(0 = 0.

The construction of U^(f) is independent of the position of / = 0 in the following sense:
Let Y(f9v, τ) be a unique solution of the equation (6) with 7(v;v, τ) = /m and
Γ(τ;v, τ) = 0. Then, Γ(ί; . v) = limτ_> 0 0 Γ(ί; v, τ) exists and we have the identity

LEMMA 4.4. Suppose that there exists some a < 0 vwf A ,4(0 > <5/m for all t e /?.

zϊ vectors xeRm and all teR.

LEMMA 4.5. Suppose that there exists some a<0 with A(t)<almfor all teR. Then

for all unit vectors xeRm and all teR.

COROLLARY 4.6. Suppose that there exists some 0<0 with A(i)<alm for all teR.
Then

2. || r+00(0
/or all unit vectors xeRm.

5. Magnetic flows on Riemannian manifolds. Let (M, g) be a complete Rie-
mannian manifold. Then, every solution curve of the equation (1) extends to a global
solution curve. The magnetic flow associated with B on M is defined as follows:

DEFINITION 5.1. The magnetic flow associated with B on M is a flow φt : ΓM— > TM
defined by

where cv is a solution curve of the equation (1) with cυ(ϋ) = v e TM. φt(υ) is the velocity
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vector of cv at time t.

LEMMA 5.2. The magnetic flow φt leaves the tangent sphere bundle SrM={vε
TM; g(v, v) = r2} invariant for all teR.

First, we shall state the difference between the geodesic flow and a magnetic flow.
Let γv be a geodesic with ^(0) = v e TM, and let φt : ΓM-> TM be the geodesic flow
φt(v) = yv(t). Given /l>0, we obtain the identity

This identity is owing to the fact that if y(t) is a geodesic, then y(λt) also is a geodesic.
However, this identity no longer holds for a magnetic flow. Indeed, setting c* (t) = cv/λ(λt),

v

7

dt v ds VIΛ

where s = λt. Namely, c» is not a solution curve of the equation (1) but a solution curve

of the equation

(7) —c = λΩ(c),
dt

which is the Newtonian equation of a moving-charged particle under λB. Therefore,
we obtain the identity

Next, we shall define a connection map#: T(TM)-*TM such that K:
Tπ(υ)M is linear for all ve TM. Given a vector ζeTv(TM), let Zξ:(-ε, s)^TM be a
smooth curve with the initial condition ξ. Then, we define

where Djdt is the covariant derivative along σξ — n(Z^. dπ(ξ) denotes (d/dί)σξ\t=0 by
the definition of dπ: T(TM)-*TM. It is obvious that dπ(ξ) and K(ξ) depend only on
ξ. The kernels of dπ and K are called the vertical and horizontal subspaces of TV(TM),
respectively. TV(TM) is the direct sum of the horizontal and vertical subspaces. Therefore,
we may identify TV(TM) with Tπ(v)M® Tπ(v]M by the correspondence

Tυ(TM) a ξ <-» (dπ(ξ\ K(ξ)) e Tπ(v)M® Tπ(v}M .
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Let J(cv) denote the 2/2-dimensional vector space of Jacobi fields under B along cυ, and
let Jξ be a unique element in J(cv) with Jξ(0) — dπ(ξ) and (Djdf)Jξ(ϋ) = K(ξ). In a way
similar to that the case of the geodesic flow, the following lemma is proved.

LEMMA 5.3. Let veTM. Then we have:
1. A map Tv(TM)3ξ-^JξeJ(cv) is a linear isomorphism of TV(TM) onto J(cv).
2. Jξ(t) = dπ(dφt(ξ)) and (D/dt)Jξ(t) = K(dφt(ξ)) for all t eR.
3. ξe TV(TM) lies in Tv(SrM} for v e SrM if and only if

forallteR.

g(K(dφt(ξ))9 φt(v)) = g[ Jξ(t\ cv(t) ) = 0

We shall define a metric on TM with respect to which the horizontal and vertical
subspaces of Tυ(TM) are orthogonal. Given ξ, ηeTv(TM), we define the metric g by

g0(ξ, η) = gπ(V)(dκ(ξ)9 dπ(η)) + gπ(v)(K(ξ), K(η)) .

By Lemma 5.3, it follows that for all /e/? and all ξeTv(TM),

6. Stable and unstable subspaces. From now on, we will study the magnetic flow
φt restricted to SrM.

Let cυ be a solution curve of the equation (1) with cv(Q) = v for all veSrM. In
view of Lemma 5.3, it is useful to study a Jacobi field / under B along cυ such that
g((Djdi)J, cυ) = 0. Let / be expressed as /= ̂ "= 1 ft Vi , where Fl5 . . . , Vn are orthonormal
vector fields along cv defined in Section 3. From the equations (4) and (5), we find

A=-g(Ω(cΌ)9J)=-Σ Ω}vjfj9 Λ + 0̂ .1/1 + ̂ .ι/ι = 0,
r j=2

since C=g((D/dt)J9cv) = 0. We shall study the real (n— 1) x (n— l)-matrix differential
equation along cv

(8)

Let X be a solution of the equation (8), and let us set Y as

Y=

Substituting this for the equation (8), we have

ap(θv>JX , θVtJL(i) = -J- f Ωsvt±ds .
^ Jo
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= exp( - Θ9J Ϋ + exp(βΓil) %vι± - (V^)^ + fl^ί^ exp( - 0,. ±) F

LEMMA 6.1. Lβίt? e ΓM \(0). Then

), pr,(w))Q(ι>) .v v
g(υ, v)

PROOF. It is enough to prove the identity for w perpendicular to v. First,

Oϋfl(w) = prl,0(w) = 0(w) -- - — -g(υ, Q(w))ι> .
Q(v> v)

Since Ω is skew-symmetric, we obtain

l—g(Ω(v)9 w)O(ι ) .

q.e.d.

DEFINITION 6.2. Let ι;eΓM\(0). A linear endomorphism Kv of Γπ(t;)M is

defined by

flf(0(ι;), w)O(t ),
2 4 4gf(t;, t?)

= R(v, w)v + — (VO)(w v) - (VΩ)(v w) + — Ω fί2(w) + - 0(O(t>), w)O(t ) .
2 4 4gf(t;,t?)

The following result is important.

LEMMA 6.3. Kv is a symmetric matrix in Tn(v)M for all υe ΓM\(0) if and only if

dB = Q.

PROOF. Suppose that dB = Q.

g(u, (VQ)(w; ι;)-(VQ)(ι>; w)" = l^,(Vί2)(w; ι;)) + ̂ (ι;, (VO)(ιι; w))

= - ^ (V0)(w; ι;))-flf(w, (VO)(t;; ιι))
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where we have used Lemma 1 . 1 in the second equality. This implies that KΌ is symmetric.
It is easy to prove the converse. q.e.d.

Thus, Γis a solution of the real (n — 1) x (n — l)-matrix differential equation along cv

(9) Ϋ + exp(0,f .A. JL exp( - θυ.J Y = 0 ,

where K£υtL denotes pr^A^pr^. Conversely, if Y is a solution of the equation (9), then
X=exp( — θ v _ L ) Y i s a solution of the equation (8). Therefore, we have only to study the
equation (9).

Let (M, g) be compact from now on. We define

max
veSrM weTπ{v)M,wJLv 0(w, W)

If Kmax>±(M, r)<0, that is to say, if KΌtL is negative definite for all veSrM, then one
may apply the results obtained in Section 4 to the equation (9) along cv. Let <&υ >t, &Vί00

and %j00 be the matrices along cυ which correspond to Fτ, 7^ and U^ in Section 4,
respectively. First, by Lemma 4.2, the following lemma is obtained.

LEMMA 6.4. Suppose that Kv L is negative definite for all veSrM. Let τ/0. Then
for all v e SrM and all ξ e Tv(SrM), there exists a unique vector ξτ E Tv(SrM) such that

and

PROOF. Let Jξ = X"= 1 fξtiVt . Then let us set fτ as

Λi = - ίϊ Σ θL/τj)ώ ' Λ± = exp(-βI,fι)^fτ/ίfι(0) -
Jτ \J=2 /

<^τ is uniquely determined as the element of Tv(SrM) which corresponds to Σ?=ι /t,f^ie

/(O. q.e.d.

By Lemma 4.3 and Corollary 4.6, the following lemma is proved.

LEMMA 6.5. Suppose that Kυ>JL is negative definite for all veSrM. Then for all

vεSrM and all ξe Tυ(SrM), there exists a unique vector ξ^e Tv(SrM} such that

PROOF. Let Jξ = Σn

i=1 fξ ,ί KI . Then let us set /„ as

/co.i = - Γ ί Σ O^j/c
J o o \ 7 = 2
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By Corollary 4.6, it is shown that f^Λ is well-defined. Indeed, as τ-> + oo,

f + C Ύ ^ ^ l r \ι f + 0 Ύ ^ , 1 Λ , < ~ , M l /
Σ Ω/ j/oo / * ̂  Σ I β/ j I exp(- {-Kmax L(M, r)}ιy

Jo \J = 2 ' / Jo \J = 2 " /

< < * "",„ . Λ . ι / 2 m_ax {0(β(Hθ, flίw))}1/2!!/^^)!! < +00 .

is uniquely determined as the element of Tv(SrM) which corresponds to Σ"i = 1 /oo^F^ e

- q e d.

DEFINITION 6.6. Let K0t± be negative definite for all veSrM. Then

Es(v) and ^"(t;) are respectively called the stable and unstable subspaces determined by v.

For example, let ξeEs(v). Let ^ = Σ"=ιΛ«^ί Then there exists some *£Rn~l

such that

From this, we have the following lemma.

LEMMA 6.7. Suppose that KVtL is negative definite for all vεSrM. Then for all

1 . dim Es(υ) = dim Eu(v) = n-l,
2. Es(v)nE«(v) = {0},

3. E'(ύ)®Eu(v)φξΌ9

where ξυ = (d/dt)φt(υ)\t = 0 and E°(v) = {ξε Tv(SrM) ξ = aξv, αe/?}. Therefore,

Tv(SrM} = E°(υ) Θ Es(v) ® E\v) .

LEMMA 6.8. If Kυ L is negative definite for all veSrM, then (M, g) is a Riemannian
manifold with negative sectional curvature.

PROOF. Let we Tπ(v)M such that w_Lι>. Then,

g(R(υ9 w)ϋ, w)< -g(υ, (VO)(w; w))- — gf(fi(w), O(w))— — - -flf(O(ι?), w)2 .
4 4gf(r, r)

If gf(t;, (Vί2)(w w)) < 0, then g( - v, (VΩ)(w w)) > 0. Therefore, g(R(υ, w)r, w) < 0.
q.e.d.

7. Magnetic flows of Anosov type. In this section, we will give a sufficient con-
dition for the magnetic flow φt: SrM-+SrM associated with B to become an Anosov
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flow.
First, we recall the definition of Anosov flows.

DEFINITION 7.1. Let ψt be a complete C°°-flow on a compact Riemannian manifold

(ΛΓ<5 )) of dimension n>3. The flow is said to be of Anosov type if the following
conditions are satisfied:
1 . The vector field V defined by the flow never vanishes on N.
2. For all p e N, the tangent space TpN splits into a direct sum as follows:

TpN=E°(p)®Es(p)®E"(p),

where E°(p) is generated by V(p), and there exist positive constants α, /?, y such that

(a) for any ξ e £s(;?)

H^ίOllp^αllίllpexpί-yO for r>0,

\\dψt(ξ)\\p>β\\ξ\\pexp(-yt) for r<0,

(b) for any ξeEu(p)

\\dφt(ξ)\\p <α||ί||pexp(7θ for

for

3. ψt leaves ^(J^V), ^^UpeN^ίP) and Eu=\JpeNEn(p) invariant re-
spectively for all ί E R.

4. E°, Es and Eu are C°-subbundles in TN.

REMARK. The third and fourth conditions of Definition 7.1 are proved by the

first and second conditions. See [2], [10] for details. Therefore, we have only to show
that a given flow satisfies the first and second conditions of Definition 7.1 in order

to prove that the flow is of Anosov type.

Now, we state the main result.

THEOREM 7.2. Let (M,g) be a compact Riemannian manifold of dimension n>2.
IfKυL is negative definite for all v e SrM, then the magnetic flow φt : SrM-+SrM associated

with B is of Anosov type.

It is obvious that the magnetic flow φt: SrM^>SrM satisfies the first condition.
Under the assumption that KVt± is negative definite for all v e SrM, we shall prove that
the second condition is satisfied. Let y(M, r) denote { — £max>1(M, r)}1/2 for the sake of

simplicity.

LEMMA 7.3. There exists some α^M, r)>0 such that

1. for all ξeEs(v)

g(Jξ(t\ Jξ(t})<x,(M, r)exp(-2y(M, r)t)g(dπ(ξ), dπ(ξ)) (t>0) ,
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2. forallξeEu(υ)

g(Jξ(t\ Jξ(t))<^(M, r)exp(2y(M, r)t)g(dπ(ξ), Λι(ξ))

PROOF. Let ξeEs(v)9 and let J$ = Σ"=ι Λ.ί^ From Corollary 4.6, we have

||/^(OII <exp(-y(M,

γ(M9 r) we

for />0. Let us set

max

αι(M, r)= 1 + / ~ . max g(Ω(w),
, r)z weSiM

Then,

(̂0, ̂ (0)<«i(M, r)exp(-2y(M,

<ai(M, r)exp(-27(M, r)t)g(dπ(ξ), dπ(ξ))

which implies the first inequality. The second inequality is proved in the same way.
q.e.d.

We define

£min,,(M,r)=min min ^>^ <0 .
t;eSrM weTn(v)M,w±v ^f(W, W)

Let δ(M, r) denote {-^min,±(M, r)}1/2. From Lemma 4.4,

on cy for all unit vectors xe/?""1 and all veSrM. Since ^500(0 is symmetric,

on cv for all unit vectors xe/?""1 and all vεSrM. Therefore, we obtain the following
result:

LEMMA 7.4. There exists some α2(M, r)>0 such that
1. forallξeEs(v)

, r)exp(-2r(M, r)ί)g(dπ(ξ), dπ(ξ))
at at

2. for all ξεEu(v)

) r)exp(2y(M'
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PROOF. Let ξ e E\v) Θ E"(υ), and let Jζ = £ "i= t /{ >f Vt . First,

f^= Σ (/w+ Σ QL/wW Σ (Λ,+ Σ QLy
<# i = ι \ .7=1 / i = 2 \ j=ι

since (l/r)g((D/dt)Jξ, cΓ)=/ί.ι+Σ"=2flL/ws° Then'

D \ n ί n 2

_y{(0,-yί(θ)= Σ (/«.«+ Σ ^j/WΛ / i = 2 \ j=ι

^Σ
i = 2

— 2

1 8 1

?! Σ WLi)

max

max

Therefore, if α2(M, r) is defined by

α2(M, r) = \ 3 max 0(Ω(w), Ω(w)) + 4δ(M, r)2 >α^M, r)

We are done by Lemma 7.3.

LEMMA 7.5. There exists some α(M, r)>0 Λ WC/Z

1. for allξeEs(υ)

g(dφt(ξ\ dφt(ξX*(M9 r)2exp(-2r(M, r)ί)g(ξ,

2. for allξeEu(v)

max

q.e.d.

PROOF. Let £e£s(u). By Lemma 7.3 and 7.4, we find

flf(^t«), rfφtίί)) < («ι(M, r) + α2(M, r)) exp( - 2y(M, r)t)g(dn(ξ\

<(αι(M, r) + α2(M, r)) exp( - 2y(M, r)0flf(ί, ί)

for />0. Let us set α(M, r) = {ai(M, r) + α2(M, r)}1/2>l. Then, the first inequality is

obtained. The second inequality is proved in the same way. q.e.d.

LEMMA 7.6. There exists some β(M9 r) > 0 such that for all ξ e Es(v) ® Eu(v)
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g(pτΰ(dπ(ξy), prv(dπ(ξ)))>β(M, r)2g(ξ, ξ) .

PROOF. Setting t = 0 in Lemmas 7.3 and 7.4, we have

From the proof of Lemma 7.3,

g(dπ(ξl dπ(ξ))^«ι(M, r)g(pτv(dπ(ξ))9 pr0(dπ(

Then set β(M, r)= l/α(M, r)3/2< 1. q.e.d.

COROLLARY 7.7. 1 . For all ξ e Es(v)

g(dφt(ξ), dφt(ξ))>β(M, r)2exp(-2y(M, r)t)g(ξ,

2. For all ξeEu(v)

g(dφt(ξ), dφt(ξ))>β(M, r)2exp(2y(M, r)t)g(ξ, ί

PROOF. Let ξ e Es(υ), and let Jξ = ΣΊ=l fξti ^ . By Lemma 4.6,

>exp(-2y(M, r)t)g(pτυ(dπ(ξ))9 pr0(dπ

for ί <0. By Lemma 7.6, the first inequality is obtained. The second inequality is proved
in the same way. q.e.d.

By Lemma 7.5 and 7.7, the magnetic flow φt\SrM^SrM satisfies the second
condition of Definition 7.1. Therefore, the proof of Theorem 7.2 is completed.

COROLLARY 7.8. Let (M, g) be a compact Rίemannian manifold with negative

sectional curvature of dimension n>2, and let κmax(M) denote the maximum of sectional
curvature of M. If

max [rg(u, (VQ)(w; w)) + 0(β(w), O(w))} < -r2κmax(M) ,
M,weSιM

then the magnetic flow φt: SrM-^SrM associated with B is of Anosov type.

COROLLARY 7.9. Let (M, g) be a compact orientable surface with constant curvature
K, and let B = bvo\M (beR). If r2κ + b2<0, then the magnetic flow φt\SrM^SrM

associated with B is of Anosov type.

COROLLARY 7.10. Let (M,g) be a compact Kάhler manifold with constant
holomorphic sectional curvature K. Let BM denote the Kάhler form, and let B = bBM (beR).

I f r 2 κ + b2<0, then the magnetic flow φt\ SrM-+SrM associated with B is of Anosov type.
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