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MAGNETIC FLOWS OF ANOSOV TYPE

Norio Gouba

(Received November 2, 1995, revised September 17, 1996)

Abstract. We regard a closed 2-form on a Riemannian manifold as a magnetic
field and define a magnetic flow which is a perturbation of a geodesic flow. A sufficient
condition is given for a magnetic flow to become an Anosov flow.

Introduction. The geodesic flow on the unit tangent bundle of a compact Rie-
mannian manifold with negative sectional curvature is one of typical examples of
Anosov flows. A geodesic curve on a Riemannian manifold may be considered as a
trajectory of a particle subject only to forces of constraint. As a perturbation of a
geodesic curve, we consider a trajectory of a charged particle under the Lorentz force
generated by a magnetic field. The flow defined in terms of the trajectories will be called
a magnetic flow.

If a magnetic field is weak enough, it follows from the structural stability of Anosov
flows that the associated magnetic flow on a compact Riemannian manifold with negative
sectional curvature is an Anosov flow. Concrete examples of magnetic flows of Anosov
type are investigated in [1], [11], [12]. In this paper, we give a sufficient condition for
a magnetic flow to become an Anosov flow. The main theorem is stated as follows:

THEOREM 1. Let (M, g) be a compact Riemannian manifold with negative sectional
curvature, and let x,, (M) be the maximum of the sectional curvature of M. Given a
magnetic field B (a closed 2-form) on M, we let Q: TM—TM be the operator defined by
gy, Qv))=B,(u,v) (u,veT,M,pe M). If

max {rg(u’ (VQ)(W, W)) +g(Q(W)’ ‘Q(W))} < - rZKmax(M) >

u,weS1M
then the magnetic flow ¢@,: S,M—S,M associated with B is of Anosov type.
1. Lorentz forces on Riemannian manifolds. A magnetic field in R is a vector
field B=(b,, b,, b,) satisfying the equation

V-B=
Ox; 0x, 0x;

The Lorentz force generated by the magnetic field B on a moving unit charged particle
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in R? is given by
0 by —b,\ /0,
F=vxB=| —b; 0 by v, |,
b2 _bl O 1)3

where v is the velocity vector. Therefore, we obtain the Newtonian equation of the
particle

v=F=vxB.

We should note that the matrix determined by B is skew-symmetric and that F is
perpendicular to v. Since we have used the vector product v x B, the above discussion
depends on the choice of the orientation of R*. In changing the orientation of R?, we
need to change B into — B in order that the definition of the Lorentz force is indepen-
dent of the orientation of R3. To eliminate this dependency, we usually identify B
with a 2-form

B=bdx, Adx3+b,dx; ndx,+bsdx, ndx, .
Then, the equation V+-B=0 turns out to be equivalent to
ob, 0b, 0b
a,’B=<—1+—2+—3>dx1 Adx, Adx;=0,
0x, 0x, 0x3

where d denotes the exterior differentiation.

In the case of a Riemannian manifold (M, g) of dimension », we consider a closed
2-form on M as a magnetic field on M and will define the Lorentz force on M as
follows. First, we define an operator Q: TM—TM by

9,(, Q(v)) = B,(u, v) ,

where u, ve T,M and p e M. From the definition, it is obvious that Q is skew-symmetric.
Now, we define the Lorentz force on M as

F=Q(v),
where ve TM is the velocity vector of a moving unit-charged particle on M. It is easy

to see that F'is perpendicular to v. We define the Newtonian equation of the particle
on M by

D,
(M — =00,

where D/dt is the covariant derivative along the curve ¢ and ¢ is the velocity vector
field. In particular, if B=0, the equation (1) reduces to the equation of geodesic
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D
—¢=0.
dt
When B has a globally defined vector potential A4, that is to say, when there exists a
1-form A satisfying the equation B=dA, the equation (1) is obtained as the Euler-
Lagrange equation associated with the action integral

g
E ()= J Ly= J {% g(é, &)+ A(é)}dt ,

where c: [a, f]— M is an arbitrary smooth curve on M. Indeed, if ¢, (—e<s<e) is a
one-parameter variation of smooth curves with c¢y=c¢, c(a)=c(®), c,(B)=c(p), then the
first variation formula of E, is given by

d b D

—E(c)|.co=— W, —¢—Q(¢) |dt,

Ll [[o{ 200
where V is the Levi-Civita connection of (M, g) and W=(0/ds)c, |s=0. See [11] for
detailed computation. Therefore, we see that the Euler-Lagrange equation for the
Lagrangian L, is the equation (1). However, it is important that the equation (1) is
well-defined without a globally defined vector potential.

We shall require a condition on 2 which is equivalent to dB=0.

LemMMA 1.1. The condition dB=0 is equivalent to
g(V(X; Y), Z)+g(VY; Z), X)+9((VZ; X), Y)=0
for every triple of vector fields X, Y and Z on M, where (VQ)(X; Y) denotes (VyQ2)(X).
This is a consequence of the well-known identity
dB(X, Y, Z)=g((V)XX; Y), Z)+g(VOXY; Z), X)+g9(V)(Z; X), Y) .

REMARK. We should note that the condition dB=0 is not used essentially in
defining the equation (1). In other words, we can define the equation (1) for a general
2-form. However, we will see that the condition dB=0 plays an important role in the
dynamics under B on Riemannian manifolds.

2. Jacobi fields under magnetic fields. In Section 1, we mentioned the first
variation formula of the action integral E, when there exists a globally defined vector
potential 4 of B. We will derive the second variation formula to find out a suitable
concept of a Jacobi field for the functional E,.

Let ¢ be a solution curve of the equation (1), and let ¢, ,,, (—&<s;, 5,<¢) be a
2-parameter variation of smooth curves with ¢y o)=¢, ¢, 5,)(@) = (@), ¢, .5, (B)=c(B).
Then, we shall compute

2

0
0s,0s,

EA(c(sl,sz)) Lx =5,=0"
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First, we find
0

B D 0 0
—FE (¢, s o= Wi — = Cis0)— 2 =—¢, dt,
3s, 4(Cs,, 2))|sz—0 L g( o1 o1 J6r0 (at ( ,0>>>

where W, =(0/055)¢s, 3 |s, = o- Next,

0? B /D D
—E cs;sz s1=s,=0—" —Ws - ,—'—Q %) |dt
2s.0s, A(Csy, ))I1 2=0 J; g(@sl lls, 0 dtc (c))

d D D o D 0
_J g<Wsla—_—'c(s1,0)_ {Q<_C(S1.0)>}>dt
@ asl a[ at asl at s1=0

g D D 0 D 0
- _\[ g<W2’ ds, ot _C(SI,O)——{Q<_ C(SI’O)>} >dt ’
« Os, 0t 0Ot 0s4 ot 5120

where W, =W, || _o=(0/055)¢(, 53 s, =5, =0- BY standard computation, we get

D D d
=5 Ay G
os, ot ot o

D2
=W Wl +R(é, Wl)é 5
Sl=0

where R is the curvature tensor and W, =(8/0s,)¢, s, |;, =5, = o- Therefore, we have only

to compute
D d D d D 0
—0( e =(-2 )5 oo )+ 5 <
asl{ (at “« "°’>} im0 (asl ><at “« '°’> <6s1 or - ’°’>
- D d D 8
()2 )+ 2 = e
<6s1 >(6t < 1,0)> <6t 25, 1 ,o)>

D
=(VQ)(; W1)+Q<E W1> :

s1=0

s1=0

Therefore, the second variation formula of E, at ¢ is

2

05,05,

EA(C(s1 ,sz))

s1=sz=0

B D2 D
= — g Wz, - Wl +R(é, Wl)é—(VQ)(é; Wl)_Q I W1 dt .
dr? dt

a

We should note that the right-hand side of the second variation formula depends
only on Q. Namely, without a globally defined vector potential of B, the right-hand
side of the above formula is meaningful. Therefore, we may define a Jacobi field under
B along a solution curve of the equation (1) in a way similar to that in the definition
of a Jacobi field along a geodesic.

DerFINITION 2.1, Let ¢ be a solution curve of the equation (1). The Jacobi equa-
tion under B along c is defined by
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D? . s . D

?2) ——J+R(, J)e—(V)(¢; J)—Q{ —J )=0.
dr? di

A solution of the Jacobi equation is called a Jacobi field under B.

It is easy to see that ¢ is a Jacobi field under B along c. Let ¢, (—e<s<e) be a
one-parameter variation of ¢, not necessarily keeping the end points fixed, such that
co=c and ¢, is a solution curve of the equation (1) in fixing s. That is to say,

Bics—9<ics>=0 .
ot Ot ot

Then, the variation vector field

0
w() =% cs(9)

s=0
is a Jacobi field under B along c.

3. Decomposition of Jacobi fields under magnetic fields. Let ¢ be a solution curve
of the equation (1). In this section, we will show that the Jacobi equation (2) is de-

composed into the equations of the tangential component and normal components
of c.

LemMmA 3.1. Let X, Y and Z be smooth vector fields on M. Then
(VB)(X, Y; Z)=y(X, (V)Y ; Z))
where (VB)(X, Y; Z) denotes (VzB)(X, Y).
LEmMMA 3.2. Let X, Y and Z be smooth vector fields on M. Then
9(X, (VY ; Z))= —g(Y, (V)X Z)) .
PrOOF. Since B is a 2-form, we have
(VB)X, Y; Z)=Z{B(X, Y)} —B(V,X, Y)—B(X, V,Y)
=—Z{B(Y, X)}+B(Y,V,X)+B(V,Y, X)
=—(VB(Y,X;Z).
We are done by Lemma 3.1. q.ed.
LemMma 3.3. Let J be a Jacobi field under B along c. Then, g((D/dt)J, ¢) is constant.

ProOOF. By Lemma 3.2, we have

d D D? D D D? D
gl =g, ¢ ) =gl ==, ¢ )+gl =T, ¢ )=gl —T—Q( =), ¢
dt {g<dt c)} g<dt2 c) g(dt dt C> g(ah2 <dt > c>
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=g(—R(&, J)e+(VR)(¢; ), ¢)=g(¢, (VQ)(¢; T)=0
q.e.d.

Let v, =¢(0)/r and r= {g(¢(0), ¢(0))}'/?, and let us choose v,, ..., v, € T,)M so that
{vy, v, ..., v,} isan orthonormal basis in T,,M. We define a vector field V; (i=1, ..., n)
along ¢ as a solution of the differential equation
D
—Vi—=QV)=0, Vi (0)=v;.
dt
In particular, V, =¢/r.

Lemma 3.4. V,,...,V, are orthonormal vector fields along c. In particular,

n

g(é, & =r

PrOOF. By the definition of (V5, ..., V,), we have
d D D
: E{g(Vh Vj)} =Q<Z Vi, Vj>+g(Vis E Vj>=g(Q(Vi)’ Vj)+g(Vi7 Q(Vj))

=g9(Q(V), Vi) —g9Q(V), V;)=0.
q.e.d.

Let J be a Jacobi field under B along c. Let J be expressed as J=)7_, f;V; where
each f; is a smooth function along c. Then,

D n . n
—J=Y fiVi+ X e,
dt i=1 i=1

D

2 n n n n
WAL W (AR DW R AR WAL (ALY

Therefore, we obtain
DY oo of D
Et—znl+ R(é, J)é—(VQ)(¢; J)~Q(EJ>
= 3 Wit 3 J0V)+ X ARG Vi (Vi = (VR V)

DEFINITION 3.5. Let ve TM. A linear endomorphism R, of Tp,yM is defined by
R, (W)= R(v, w)o+(VQ)(w; v) = (VR)(v; W)
where n: TM— M is the canonical projection.

The equation (2) is written as the differential equation of the components f=

(105 S
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Since g(Vy, (VQ)(¢; V;))=0,
RE=g(V1, (V(V}; ¢)

d .
=Et_ {g(Vls Q(Vj))} —g(QV,), Q(Vj))_g(Vp QZ(V,')) ZQél,j
for j=1, ..., n. The first column of the equation (3) is written as
7+ 3 0t § abr=o,
J= J=

where we should note that Q¢, =0. Integrating the above equation, we have

, i D C
Jit Z Qc'l,jfj=g<_~], V1)E—’
i=2 dt

r

where we set g((D/dt)J, ¢)= Ce R. Therefore, we obtain
.1 ) C
“) f1='r—g(Q(C),J)+7‘

DEFINITION 3.6. Let ve TM \(0). A linear endomorphism R, of TyM is defined
by

Ryw)= Ry) +— +0(20), M)

5

= R, wr+(VQ)(w; v) —(VQ)(v; w)+ ( !

9(2(v), w)Q(v) .
g(v, v)

Let pr, be the projection map onto the normal subspace of v in T, M. Let Q, |
and R, , denote pr,Qpr, and pr, R, pr,, respectively. Substituting the equation (4) for
the equation (3), we obtain

. L c .
) fJ.+Qé,J.fJ.+Rc',J_fJ.+’r—ZQ(C)=O )

where we should note that R, =0 for i=1,...,n. Therefore, the equation (2) is
decomposed into the equations of tangential and normal components of c.

For example, let (M, g) be an orientable surface. Then, an arbitrary closed 2-form
on M is expressed as bvol,, where be C*(M) and vol,, is the canonical volume form
determined by g. For ve TM \ (0), let v, denote a unique element in T, M such that
n(v)=n(v,), g(v,, v)=0 and vol,(v,, v)=1. In this case, the equation (3) is
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o (0 —=b)\, (0 —db(¢) ) _
s +<b(c) 0 )f +<0 r2R(c)—r2db(¢,) J=0.

The equations (4) and (5) are
, C
Ji=b()f2+ T
y 2 2 900 2 c
fo+{r*R(c)—r?db(¢,)+b(c)*} f,+—b(c)=0.
’
In particular, if R(p)=ke R and b(p)=be R on M, then the above equation is
, C
Ji=bly+—
. C
o+ (r?k+b2) f,+—b=0.
r

REMARK. In the computation in this section, we did not use the assumption that
B is closed.

4. Matrix differential equations. In this section, we shall study the real mxm
matrix differential equation on R

(6) o)+ A0 Y(H)=0,

where the derivative is taken componentwise and A(¢) is smooth and symmetric on R.
First, let Y,(?) be a solution of the equation (6) with Y,(0)=0 and Y,(0)=1,. The
following lemma is easily shown in the same way as in the proof of the comparison
theorem of Jacobi fields along geodesics.

LemMa 4.1.  Suppose that there exists some a <0 with A(t)<al,, for all te R. Then,
we have

1 .
1Yo(O)x]| = |sinh,/ —at]|

—a
Jfor all unit vectors xe R™ and all te R. Therefore, det Y (1) #0 for all t#0.

Next, we describe a useful method of Green [6]. Suppose that det Y,(¢) #0 for all
t#0. Let t#0. Then Y (¢) is defined as a solution of the equation (6) with Y (t)=0 and

Y (1)= —(¥{)~ () where the dagger denotes the transpose operation.
LeEMMA 4.2. Let 1#0. Then, we have:

1. Y.(?) is a unique solution of the equation (6) with Y, (0)=1,, and Y (t)=0.

2. detY(0)#0 if t#r.
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3. Bothlim_,,  Y,(0) and lim,_, __ Y,(0) exist.

For the sake of simplicity, we make it a rule that co denotes one of + o0 and — o0
as the case may be. We may define Y (¢) as a solution of the equation (6) with Y _(0)=1,
and Y (0)=lim,_ Y,(0).

LEMMA 4.3. For all te R, we have
1. Y (9)=lim_,, Y. (2),
2. detY (6)#0.

Let us set U, (1)=Y_(f)Y2 (7). It is easy to see that U, (7) is a symmetric solution
of the Riccati matrix differential equation

U, (6)+UL(t)+ A(t)=0.

The construction of U (¢) is independent of the position of t=0 in the following sense:
Let Y(z;v,7) be a unique solution of the equation (6) with Y(v;v,1)=1, and
Y(tr;v,7)=0. Then, Y(¢;v)=lim,,, Y(¢t;v,7) exists and we have the identity
Y(t; V)Y~ Yt v)=U, (o).

LEMMA 4.4. Suppose that there exists some <0 with A(f)>al,, for all te R. Then

| (Uoo(l)x5 X) l S\/ _d
Sfor all unit vectors xe R™ and all te R.

LEMMA 4.5. Suppose that there exists some a<0 with A(t)<al,, for all te R. Then

(U+oo(t)x’ x)-<— - T &, (U—oo(t)x’ X)Z\/ —a
for all unit vectors xe R™ and all te R.

COROLLARY 4.6. Suppose that there exists some a<0 with A(t)<al,, for all teR.
Then

Lo 1Y, o(0xll <exp(—+/ —ai), | Y_o(0)x]| = exp(y/ —a?), (120),
2. 1Y, o(@xll Zexp(—+/ —al), [ Y_o(0)x]| <exp(y/ —a1), (1<0),

for all unit vectors xe R™.

5. Magnetic flows on Riemannian manifolds. Let (M, g) be a complete Rie-
mannian manifold. Then, every solution curve of the equation (1) extends to a global
solution curve. The magnetic flow associated with B on M is defined as follows:

DErINITION 5.1, The magnetic flow associated with Bon M is a flow ¢,: TM—TM
defined by

Pv)=¢,1) ,

where c, is a solution curve of the equation (1) with ¢,(0)=ve TM. ¢,(v) is the velocity
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vector of ¢, at time .

LeMMA 5.2. The magnetic flow @, leaves the tangent sphere bundle S,M={ve
TM ; g(v, v)=r?} invariant for all te R.

First, we shall state the difference between the geodesic flow and a magnetic flow.
Let y, be a geodesic with y,(0)=ve TM, and let ¢,: TM—TM be the geodesic flow
¢, (v)=7,(t). Given 1>0, we obtain the identity

m(%) = $,(v) .

This identity is owing to the fact that if y(¢) is a geodesic, then y(4¢) also is a geodesic.
However, this identity no longer holds for a magnetic flow. Indeed, setting c/(¢) = Cya(AD),

EH0) = A, 5(0) = z—j—= v,

D D
R =12, =228, = A(¢D) ,
7 75 ol (¢yy2) =282(&5)

where s= At. Namely, ¢/ is not a solution curve of the equation (1) but a solution curve
of the equation

D
(M —¢=20(¢),

dt

which is the Newtonian equation of a moving-charged particle under AB. Therefore,

we obtain the identity
v
lq’lt <7> = (Ptl(v) .

Next, we shall define a connection map K: T(TM)—TM such that K: T,(TM)—~
T,»yM is linear for all ve TM. Given a vector (e T(TM), let Z,: (—e,e)»>TM be a
smooth curve with the initial condition &. Then, we define

D
K(é) =EI—Z¢ lt=0 € Tn(v)M

where D/dt is the covariant derivative along o, =n(Z;). dn(¢) denotes (d/dt)o, |t= o by
the definition of dr: T(TM)—TM. 1t is obvious that dn(¢) and K(£) depend only on
£. The kernels of dn and K are called the vertical and horizontal subspaces of T,(TM),
respectively. T,(TM) is the direct sum of the horizontal and vertical subspaces. Therefore,
we may identify 7,(TM) with T, ,,M @ T, M by the correspondence

T(TM) 3¢ o (dn(&), K(E) e TyyM ® T, (,)M .
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Let J(c,) denote the 2n-dimensional vector space of Jacobi fields under B along c,, and
let J; be a unique element in J(c,) with J.(0)=dn({) and (D/dt)J(0)=K(¢). In a way
similar to that the case of the geodesic flow, the following lemma is proved.

LemMA 5.3. Let ve TM. Then we have:
1. Amap T(TM)>,—J.€J(c,) is a linear isomorphism of T,(TM) onto J(c,).
2. JLO)=dn(dp[$)) and (D/dt)J (t) = K(dp/&)) for all teR.
3. ¢eT,(TM) lies in T,(S,M) for ve S,M if and only if

9(K(do (&), pv)) =9 (% J(0), éu(t)> =0

for all te R.

We shall define a metric on TM with respect to which the horizontal and vertical
subspaces of T,(TM) are orthogonal. Given &, ne T(TM), we define the metric § by
gv(é’ ’1) =gn(v)(dn(é)a dﬂ(’?)) +gn(v)(K(€)a K(")) .

By Lemma 5.3, it follows that for all te R and all (€ T(TM),

D
Jpw(def&), dp () =9 (JD), J(D) + 4., (?l? Je(0), %k@) :

6. Stable and unstable subspaces. From now on, we will study the magnetic flow
@, restricted to S, M.

Let ¢, be a solution curve of the equation (1) with ¢,(0)=v for all veS,M. In
view of Lemma 5.3, it is useful to study a Jacobi field J under B along c, such that
g((D/di)J, é,)=0. Let J be expressed as J=) [_, f;V;, where V,, ..., V, are orthonormal
vector fields along ¢, defined in Section 3. From the equations (4) and (5), we find

R . ) o
f1=—r—g(9(cv)a-])=—‘229c'lu,j j» fJ'+Qév~J-fJ-+Ré.,,J_f_L=O,
j=

since C=g((D/di)J, ¢,)=0. We shall study the real (n— 1) x (n— 1)-matrix differential
equation along c,
®) X+Q, X+R; X=0.

Let X be a solution of the equation (8), and let us set Y as

t

1
Y=exp(0, )X, Gu,L(I)=—2—J Q145 .

0

Substituting this for the equation (8), we have
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0 = X+ QC.U,J.X+ ﬁ‘th_X
. ~ 1 1
=exp(—0,,) { Y+exp(0,,,) (Rév,_l_ Y Ve, QL+ s Qg.,,l@'.,,J.) exp(—40,,.) Y} .

LemMma 6.1. Let ve TM \(0). Then

Ql.,,(w=Q'Q), (w)— 9(Q(v), pr,(w))Q(v) .

g(v, v)

ProOOF. It is enough to prove the identity for w perpendicular to v. First,

Q,,,(w)=pr, Q(w) =Q(w) — g(v, Qw)o .

1
9(v, v)
Since Q is skew-symmetric, we obtain

Q1.Q,,(w)=pr, 2"(Q,,,(w)

1
=(Q'Q), . (w)— ) g(v, QW) (v)
1
=(Q'Q),, . (w)— 9(Q(v), w)(v) .
9(v, v)

q.e.d.

DEFINITION 6.2. Let ve TM \(0). A linear endomorphism K, of TonyM is
defined by

R(w)= ﬁv(w)—% (VO)w; v) +~} ata- 4(2(0), W)2A)

49(v, v)

= R(v, wo +% (VO)(w; 0) = (V)(v; w)+ —}1— Q'Q(w)+ 9(Q(v), w)Q(v) .

4g(v, v)
The following result is important.

LEMMA 6.3. K, is a symmetric matrix in T, yM for all ve TM \(0) if and only if
dB=0.

ProoF. Suppose that dB=0.

g(u, %(m)(w; 0~ (VOo; w)) =%g(u,(m)(w; )+ 400, (V)3 W)

1
= = 9, (VQ)(w; 1) —g(w, (V)(v; u))
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=g<w, %(VQ)(u; 0) = (VO)(; u)) ,

where we have used Lemma 1.1 in the second equality. This implies that K, is symmetric.
It is easy to prove the converse. q.e.d.

Thus, Yis a solution of the real (n — 1) x (n— 1)-matrix differential equation along c,
(9) Y+ exp(ev,L)kc'u,L eXp( - HU,J_) Y=0 s

where I?c-w 1 denotes pr,, kc.u pr;,. Conversely, if Y is a solution of the equation (9), then
X=exp(—40,,,)Y is a solution of the equation (8). Therefore, we have only to study the
equation (9).
Let (M, g) be compact from now on. We define
K. (M,r)=max  max 9Ky, 1 (w), W) .
’ veS,M weTrnwmMwlo  g(w, w)

If Koy (M, 7)<0, that is to say, if K, , is negative definite for all ve S,M, then one
may apply the results obtained in Section 4 to the equation (9) along c,. Let %, ., %, .,
and %, ., be the matrices along ¢, which correspond to Y,, Y, and U, in Section 4,
respectively. First, by Lemma 4.2, the following lemma is obtained.

LEMMA 6.4. Suppose that K, | is negative definite for all ve S,M. Let t+#0. Then
for all ve S, M and all £€ T (S, M), there exists a unique vector & € T,(S,M) such that

pr,(dn(,)) = pry(dn(£)) and dn(dp.(E.)) =0.
Proor. Let J,=Y7_, f;;V:. Then let us set f, as

t n
Jer= “J < Z Qc’lv,j t,j>ds s foo=exp(—0, )%, .f:.0).
T \Jj=2
¢, is uniquely determined as the element of T,(S,M) which corresponds to Y /_, f,.V;€
J(c,). q.e.d.
By Lemma 4.3 and Corollary 4.6, the following lemma is proved.

LEMMA 6.5. Suppose that I?,,, | Is negative definite for all ve S,M. Then for all
veS,M and all £€ T,(S,M), there exists a unique vector & € T,(S,M) such that

E,=lm¢, .

T 00

ProoF. Let J,=)[_, f:;V;. Then let us set f,, as

t n
So1= _J < 'Zz Qc'lu,jfoo,j>ds s So,o=exp(=0, )¥, . f:1(0).
j=

2]
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By Corollary 4.6, it is shown that f, , is well-defined. Indeed, as 7— + o0,

+ n
J <Zz Q. oo.j>d5
0 i=

—1
STz . L 2 0@, Q0 1 Ol < + oo
— Dmax, L » wedt

< f < Z 194, |> eXP(— { — Ropan, 1 (M. 1} V25)] 1 (O)

0

¢, is uniquely determined as the element of T,(S,M) which corresponds to Y 7_, f,,;V;€
J(c,). g.e.d.

DEFINITION 6.6. Let K, | be negative definite for all ve S,M. Then
ES(U)E {ie To(SrM)7 6+co =£} })
E'(v)={eT(S,M); ¢ =&} .
E*(v) and E*(v) are respectively called the stable and unstable subspaces determined by v.

For example, let e E*(v). Let J,=Y7_, f:;V;. Then there exists some xe R"™!
such that

+ o0 n
Jea =J. < ‘Zz Qc'lv,jfg,j>ds s Jei=exp(—=0, ), X .
t i=

From this, we have the following lemma.

LEmMMmA 6.7. Suppose that I?,,, | is negative definite for all ve S,M. Then for all
veS,M,
1. dim E*(v)=dim E*(v)=n—1,
2. ES(v)n E*(v)={0},
3. E()@E")3<,,
where &,=(d/dt)p,(v) | 1o and E NOE {EeT(S,M); E=ak,, aeR}. Therefore,
T(S,M)=E°(v) ® E*(v) ® E*(v) .

Lemma 6.8. If I?,,, | is negative definite for all ve S,M, then (M, g) is a Riemannian
manifold with negative sectional curvature.

Proor. Let we T, M such that w_Lv. Then,

9(Q), w)* .

1
g(R(U, W)U, W) < —-g(U, (VQ)(W, W)) _Zg(Q(W)s Q(W)) - 4g(U U)

If g(v, (VQ)(w; w))<O0, then g(—v, (VQ)(w; w))>0. Therefore, g(R(v, w)v, w) <0.
q.e.d.

7. Magnetic flows of Anosov type. In this section, we will give a sufficient con-
dition for the magnetic flow ¢,: S,M—S,M associated with B to become an Anosov
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flow.
First, we recall the definition of Anosov flows.

DerFNITION 7.1.  Lety, be a complete C*-flow on a compact Riemannian manifold
(N, )) of dimension n>3. The flow is said to be of Anosov type if the following
conditions are satisfied:

1. The vector field V defined by the flow never vanishes on N.
2. For all pe N, the tangent space T,N splits into a direct sum as follows:

T,N=E°(p)® E(p)® E*(p) ,

where E°(p) is generated by V(p), and there exist positive constants a, 8, y such that
(a) for any e E%(p)

lay N, <aliElexp(—=ys)  for =0,
ladp (N, =BlIEN ,exp(—yt)  for <0,
(b) for any &e E*(p)
lay (N, <ellllexp(yr)  for <0,
ldy (N, = BlEl,exp(ye)  for ¢>0.

3. Y, leaves E°=J, .y E%(p), E°= .y E*(p) and E*=|J, y E"(p) invariant re-
spectively for all e R.
4. E°, ESand E* are C°-subbundles in TN.

REMARK. The third and fourth conditions of Definition 7.1 are proved by the
first and second conditions. See [2], [10] for details. Therefore, we have only to show
that a given flow satisfies the first and second conditions of Definition 7.1 in order
to prove that the flow is of Anosov type.

Now, we state the main result.

THEOREM 7.2. Let (M, g) be a compact Riemannian manifold of dimension n>2.
If I?,,, | is negative definite for all ve S,M, then the magnetic flow ¢,: S,M—S,M associated
with B is of Anosov type.

It is obvious that the magnetic flow ¢,: S,M—S,M satisfies the first condition.
Under the assumption that K, | is negative definite for all ve S,M, we shall prove that
the second condition is satisfied. Let p(M, r) denote { — K ., . (M, r)}/? for the sake of
simplicity.

LEMMA 7.3. There exists some a,(M, r)>0 such that
1. for all £€ E5(v)

g(Je(0), D) <oy (M, r) exp(—2y(M, r)1)g(dn(&), dn(S))  (¢20),
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2. for all £e E*(v)
gUILD), (1) <oy (M, r) exp(2y(M, r)n)g(dn(&), dn(&))  (1<0).
PrOOF. Let £€ E%(v), and let J,=)[_, f:;V;. From Corollary 4.6, we have
I fe, L (DIl <exp(—y(M, D) fz, L O)] ,

=D ax {g@0w), 20} exp(— (M, DO fo O]
(M, r) wesiM

| fe1 (D)<

for t>0. Let us set

(=1%  ax 9(Qw), Qw))> 1 .

o (M, r)=1+ M. 1) e
Then,
9D, J(0) <oy (M, r) exp(—2y(M, 1)1)| £z, 1(0)]2
<o, (M, r)exp(—2y(M, r)t)g(dn(£), dn(¢))

which implies the first inequality. The second inequality is proved in the same way.
q.e.d.

We define

~ i . ]2 W), w
Kmin _L(M, r) = min min g(_v,J__()_l<o .
, veS,M weTrw)M,wly g(w’ W)

Let 8(M, r) denote {— K., (M, r)}*/2. From Lemma 4.4,
| (%, (D)%, x)| <O(M, )
on ¢, for all unit vectors xe R"~! and all ve S,M. Since %, ,,(¢) is symmetric,
1%, (Dx|| < 6(M, 1)

on ¢, for all unit vectors xe R"~! and all ve S,M. Therefore, we obtain the following
result:

LemMA 7.4. There exists some o,(M,r)>0 such that
1. for all £€ E(v)

D D
g (Z J0), a Jg(t)> <ay(M, r)exp(—2y(M, r)ng(d@n(&), dn($))  (120),

2. for all £e€ E¥(v)

g(% 7). %Jga)) <oy(M, 1) exp@y(M, Dg(dn(), dn(@)  (1<0).
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PrOOF. Let € E*(v) @ E*(v), and let J,=)_| f;,V;. First,
D

= J= Z <f§,+ 2 9l 1> Zz <f‘="i+ 2‘1 Qé"’jfé’j) e

dt i=1
since (1/r)g((D/dt) g, ¢)=fer+Y. 5=, QL jfe;=0. Then,

( I, k(t)) p (fg,ifgl Qév,jfg,,->

n 2
S; { (f.»;.+ ) Qc.,;fé,j) +2(9§'v,1f<,1)2}

dt

<N1Qe,,1 €XD(— 04, )%, 00f, 1OV + 41y, 0%, o f L OV +2621 2 (R4,1)
i=2

- v,_l.)@u,

2 n
2% Y, (@7

<{ max g(Q(w), Q(w))+46(M, r) }ll% oS 1(0)1 +2f2, max g(Q(w), Aw))

weS1M weSI1M

{3 max g(Q(w), Q(w))+45(M, r)z} (1), J«D)) .

weSi1M

Therefore, if a,(M, r) is defined by

ax(M, )= {3 max g(Q(W), Q(w)) +46(M, r)z}dl(M .
We are done by Lemma 7.3. q.e.d.

LEMMA 7.5. There exists some o(M, r)>0 such that
1. for all £€ ES(v)

G(dp (&), dp (&) <M, 1) exp(—2y(M, NG, &) (t=0),
2. for all £€ E*(v)
g(do (&), dp &) <M, r)*exp(2y(M, r)DF(&, &)  (t<0).
ProoOF. Let £€ E%(v). By Lemma 7.3 and 7.4, we find
§(dp (&), dp (&) <(ay(M, ) +a,(M, 1)) exp(—2y(M, r)D)g(dn(&), dn(£))
< (al(M’ 7’) + aZ(M9 7')) CXp( - 2y(Ma r)t)g(f, é)

for t>0. Let us set a(M, r)={o;(M, r)+a,(M, r)}**>1. Then, the first inequality is
obtained. The second inequality is proved in the same way. q.e.d.

LEMMA 7.6. There exists some B(M, r)>0 such that for all &€ E*(v) ® E*(v)
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g(pr (dr(£)), pr(dn(&)) = PM, *G(&, &) .
Proor. Setting =0 in Lemmas 7.3 and 7.4, we have
g(¢, &) <M, r)*g(dn(¢), dn(£)) .
From the proof of Lemma 7.3,
g(dn(&), dn(£)) <oy (M, r)g(pr,(dn(£)), pr,(dn(£))) -

Then set f(M, r)=1/a(M, r)**<1. q.e.d.

COROLLARY 7.7. 1. For all £€ E*(v)

§(do (&), dp (&)= B(M, 1)* exp(—2p(M, 1))F(E, &) (1<0).
2. For all £E€ E*(v)
§(dp (£), do (&)= B(M, r)* exp(2y(M, DG, &) (120).
PrROOF. Let &€ ES(v), and let J,=)7_, f;,V;. By Lemma 4.6,
§(dpd&), dp &) = g(J 1), (1))

> [lexp(—0,, )%, + 0 fe,1(0)]?
Zexp(—2y(M, r)g(pr,(dn(£)), pr(dn(S)))

for t<0. By Lemma 7.6, the first inequality is obtained. The second inequality is proved
in the same way. q.e.d.

By Lemma 7.5 and 7.7, the magnetic flow ¢,: S,M—S,M satisfies the second
condition of Definition 7.1. Therefore, the proof of Theorem 7.2 is completed.

COROLLARY 7.8. Let (M, g) be a compact Riemannian manifold with negative
sectional curvature of dimension n>2, and let x,,,,(M) denote the maximum of sectional
curvature of M. If

max {rg(u, (VQ)(w; w))+g(Q(w), Qqw))} < — r2k (M) ,

uweS1M
then the magnetic flow @,: S,M—S,M associated with B is of Anosov type.

COROLLARY 7.9. Let (M, g) be a compact orientable surface with constant curvature
x, and let B=bvoly (beR). If r*k+b?<0, then the magnetic flow ¢,: S,M—S,M
associated with B is of Anosov type.

CoOrROLLARY 7.10. Let (M,g) be a compact Kihler manifold with constant

holomorphic sectional curvature k. Let B, denote the Kihler form, and let B=bB,, (b€ R).
If r2k+ b2 <0, then the magnetic flow ¢,: S,M—S,M associated with B is of Anosov type.



[1]
[2]

£31]
[4]
[5]
(6]
71
[8]

[91]
[10]

[11]
(121

MAGNETIC FLOWS OF ANOSOV TYPE 183

REFERENCES

T. ApacHi, Kdhler magnetic flows for a manifold of constant holomorphic sectional curvature, Tokyo
J. Math. 18 (1995), 473-483.

V. 1. ARNOLD AND A. AVEz, Problems ergodiques de la mecanique classique, Ganthier-Villars, Paris,
1967.

J. CuHEEGER AND D. G. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland, 1975.

A. CoMTET, On the Landau levels on the hyperbolic plane, Ann. Phys. 173 (1987), 185-209.

P. EBERLEIN, When is a geodesic flow of Anosov type? 1. J. Differential Geom. 8 (1973), 437-463.

L. W. Green, A theorem of E. Hopf, Michigan Math. J. 5 (1958), 31-34.

E. Horr, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 47-51.

S. KopayasHi aND K. Nomizu, Foundations of Differential Geometry, Vol. 2, John Wiley and Sons,
New York, 1969.

J. MILNOR, Morse Theory, Ann. of Math. Study 51, Princeton Univ. Press, 1962.

T. Niwa, N. OTsuk1 AND T. MiYAHARA, Ergodic problems of classical mechanics, Seminar on Probabili-
ty 30 (1969) (in Japanese).

T. SUNADA AND P. W. Sy, Geometry of magnetic fields, preprint (1993).

T. SuNADA, Magnetic flows on a Riemannian surface, Proc. of KAIST Math. Workshop 8 (1993),
Analysis and Geometry, 93-108.

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF TOKYO

3-8-1
JAPAN

KoMABA, MEGURO-KU, TOKYO 153








