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Abstract. We study a class of curves which includes the hyperelliptic curves and
the Fermat curves of prime degree. We compute their Hasse-Witt matrix when the curves
are denned over an algebraically closed field of positive characteristic. In particular, we
get a formula for the Hasse-Witt invariant of the Fermat curves at each prime not equal
to the degree. These invariants depend only on residue degrees.

We show that there are infinitely many Fermat curves for which there exists a set
of primes p with positive density such that the geometric fibre at p of the Fermat Jacobian
is not isogenous to a power of a supersingular elliptic curve, but the Hasse-Witt invariant
at p is equal to zero.

1. Introduction. Let C be a non-singular projective curve of genus g >0, defined
over an algebraically closed field k of characteristic /?>0. Hasse and Witt [Ha34]>
[Ha-Wi36] determined the maximum number, r(C), of cyclic unramified independent
extensions of degree p of the function field k(C\ This number is called the Hasse-Witt
invariant of the curve.

Serre [Se58] characterized the Hasse-Witt invariant by means of the action of the
absolute Frobenius F* on the first cohomology group of the curve:

r(C) = dimFp H\C, Θ)F* = dimk Im(F*)9 .

The curve C is said to be ordinary if r(C) = g. When g= 1, it is said to be supersingular

if r(C) = 0.
The computation of this invariant for elliptic curves is well known. Manin [Ma62]

computed the Hasse-Witt invariant for hyperelliptic curves by means of the matrix of
the Cartier operator acting on an explicit basis of regular differentials. The structure
of the /^-divisible groups arising from Fermat curves over finite fields of characteristic
p was studied by Yui in [Yu80]; arithmetical invariants for Fermat curves and Fermat
varieties were also consider in [Yu86] and Toki [To88]. In this paper we compute the
Hasse-Witt invariant for curves of a special family, which includes, as particular cases,
the hyperelliptic curves and the Fermat curves. We use for it the absolute Frobenius
operator acting on an explicit basis of repartitions. The advantage of using the absolute
Frobenius instead of the Cartier operator will be apparent when we compute the matrix
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of the iterated operators.
I would like to end this introduction by expressing my gratitude to Professor

Pilar Bayer for her constant help and encouragement.

2. General facts. Let A be an abelian variety over k of dimension g. We write

r(A):=dimFpH
1(A, (9)F* = dimfeIm(F*)β.

We have that r(A) = dimFp Pic0(Λ)|>] is the/?-rank of A (cf. [Mu70]). If A is the jacobian
of the curve C, then r(C) = r(A). Given abelian varieties A, B defined over k, we have

r(A x B) = r(A) + r(B). If A is isogenous to a product of abelian varieties ΠΓ=ι ^*> we

have r(A) = Σ™=ιr(Ai) due to the fact that r(A) is invariant under isogenies.
We recall that a repartition of the curve C is a family r = {rx}xeC such that rxek(C)

and for almost all X E € we have rxe&x. We identify the elements of Hl(C, (9) with
classes of repartitions as in [Se58], where r = 0 in //X(C, 0) if and only if there exists
a function h on C such that h — rxe(9x for all xe C.

Given a repartition r = {r^J^c and a regular differential ω e H°(C, Ω1), we consider
Serre's pairing defined by <r, ω> = X xeC res rxω. For each morphism of curves π: C2-»Cl5

we denote by π*:^Γ1(C1, $)->//1(C2, 0) the homomorphism given by π*(r)y = rπ ( 3 ; )oπ
for all yeC2. It commutes with the absolute Frobenius Fgί9 F£2 and satisfies
<π*(r), π*(ω)> = degπ<r, ω>, where degπ denotes the degree of π.

3. A family of curves. Let / be a prime and k an algebraically closed field of
characteristic not equal to /. Let C' be the projective curve in P2 associated to the affine
curve defined by the equation

Yl = F ( X ) ,

where F(X)ek[X] is a separable polynomial of degree n. Let us note that for 1 = 2 and
n > 2 we obtain all the hyperelliptic curves defined over k. If F(X) = X1 +1, we obtain
the Fermat curves over k with prime degree /.

Let us suppose that F(X) = an]\n

i^l(X-xί\ with xiΦxj if iφj. If \n-l\<\, the
curve C is non-singular. Fermat curves are examples. Otherwise, C has a singularity
at infinity, given by (0, 1, 0) or (1, 0, 0), depending on whether / + l < w o r / > n + l .

Let π: C-»C" be the normalization of the curve C' and ψ: C'-^P1 the morphism
defined by

x/z i f z ^ O
.

oo otherwise .

The composite φ = ψ°π: C-^P1 is a cyclic covering of degree /, unramified outside
(x l5 ...,*„, oo}. Let Pi = φ-1(χi)9 \<ί<n and ̂  = φ~1({oo}). The set ̂  is {P^} or
(P^, . . . , P^}, depending on whether or not φ is ramified at oo. We note that if n = Q
(mod /), then C is isomorphic to the non-singular projective curve determined by the
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equation Yl = XnF(l/X+xn) where X"F(l/X+xn) is a separable polynomial of degree

H— 1. It is easily seen that φ is unramified at infinity if and only if « = 0(mod/). In this
case the genus of C is equal to (« — 2)(/— 1)/2; otherwise, g = (n— !)(/— 1)/2.

We still denote by X, Y the functions π*(X), π*(7), respectively. We define the set

ί- I)//]},

where [ ] denotes the integer part. We note that %£f = g and consider the differentials

3.1. PROPOSITION. The set of differentials {ω^ }^ j)e^/0rra a basis of H°(C, Ω1).

For each ( i , j ) e 5 f , let us consider the repartition defined by

Yl/Xs if
ltj x Q otherwise .

Let us denote by J the set of points of C such that X=Q. Thus,

a f{βι,. . ,βι} if F(0)^0

1 {P}, where Pe (P1? . . . , Pj otherwise ,

for some points Qt. Notice that, given a regular differential ω and a function h regular

outside ^u^ (for instance h— Yl/Xj), we have ]ΓPe^resP/zω = — Σ<2e<2res<2^ω

3.2. PROPOSITION. PFe have that

Λ .,
0 otherwise .

In particular, {rij}(ij}e^ is a basis of Hl(C, (9).

PROOF. Without loss of generality, we may assume that F(0)^0, since otherwise
C is isomorphic to the curve determined by the equation Yl = F(X+a\ where F(a)
We have to consider the following cases separately:

( i ) (iJ) = (i'JΎ < ru?ωu> = ̂ pe^,resί/Ar/AΓ=-/, since if «^0(mod/) then
ordPoo X= — /, while ordp^ X= — 1 if n = 0 (mod /).

(ii) i = ί ' , j ¥ = j ' ' . The proof is obvious in this case.
(iii) j<f: (riJ,ωi,j,y=-ΣQe2rQsQYί-ί'dX/Xj-j' + 1=0, since for all βeJ we

have that ordβ Yi"i'dXIXi~r^l>Q.
(iv) 7>/, /</': <rίj? ωίv> = 0, since ordp Y^'dX/X^ '^^O for all
(v) y>/, />/': Given two natural numbers s, m we have

dm Ys/dXm = Rm,s(X) Ys/F(X)m ,

where Rm,s(x)εk[x']. Since A^is a uniformizer at all βe J, we have
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due to the fact that the sum of all /-th roots of an element in k is zero. Π

4. The Hasse-Witt matrix. From now on, k denotes a field of characteristic p > 0.
For each / such that !</</—!, let us write7 ί: = [(m— I)//]. We will say that a value
i is effective if y^ > 0; this is equivalent to saying that a repartition ritj with the first index
equal to / does exist. Let us note that if «^0(mod/), then ji = [m//], while if n = 0
(mod/) then ji = ni/l—l. Let ^=(w/j J ) be the matrix of the absolute Frobenius F*
acting on H^(C, (9), relative to the basis {^,j}(ij)e^. That is,

rp.= V w 'VV, .rι,J— LJ wι,j rι ,f '
(i'J')e^

P^is called the Hasse-Witt matrix for C. These equations are equivalent to the existence,
for each (ij)e^, of a function htj, determined up to an additive constant and regular
outside & such that at each point of & it has a pole with the same polar part as

Given /, seZ, with 1 </</— 1, the divisor of the function Y^X8 is

Λ / ^ ni—ls ^
t Σ pm-s—Σ Q--Σ P.

Thus, for 5 <0, the function 7V^S has poles only in », while for ,y>0, Yl/Xs has poles
only in Ά if s>j\, and in & and J if s<j\.

Given a rational /-integer a, we denote by <α> the least natural number such that

4.1. PROPOSITION. Given a natural number ί such that \<i<l— 1, we denote by
Ft(X) the polynomial F(X)[pί/l] = Σ"^] b^mXm. The Hasse-Witt matrix W=(w}'f)for C
is given by

0 otherwise.

PROOF. Let us write

h(X9 Y)\ = (Yί/Xj)p-

where the w/V" are as above. Since Yip= r^^r<^>, we have
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h(X, Y) = FAX) γ<p*>/χJp - £ w/y Yl'IXr .
(i'J')ey

The terms 7<P%TS, for 1 <s<j<pi> = [(«</?/> -I)//], cancel themselves out, and the
function h(X9 Y) can be expressed as the sum of two functions hij9 gij9 where the first
one (which contains the monomials Y<pl>/X5

9 for s<0>) is regular outside ,̂ and the
second one (which contains the monomials Y<pί>/Xs, for s>j<pi>) is regular outside Ά.
Hence, hitj has at each point of & the same polar part as h(X9 Y) and is regular outside
^ thus,

rfj- Σ

D

Let 7= {/e7V| 1 </</—!, 7^0} be the set of effective indices. For each pair (i, Γ)e

7x7, we denote by W\' the matrix (w j 7 '), where 1 <j<ji9 1 </<7V

4.2. PROPOSITION. The relation rank W= £(. <pί>)6/ x 7 rank

PROOF. Let I={iί< - - < im} and let us put the elements of £f in the lexicographic

order. Then,

'W\]

w= [

Taking into account the previous proposition, the submatrices W\* such that /k

are zero. Since </?//> = </?/*> implies /J = /fc, the proposition follows. Π

Given an integer m > 0, let

(w(m);/), the matrix of (F*)m acting on H\C9 (9\ relative to the basis {ritj}9

Fitm(X) : =

^/'(m) : = (w(m)|/), for (i, i')e/ x /, with 1 <7<7\., 1 </<7V

The following proposition can be proved along the same lines as the previous ones.

4.3. PROPOSITION. The entries of the matrix W(m) are

0 otherwise .

The relation rank W(m) = Σ(ί,<pmί>}eIXIrank W^\m) holds.

Let us note that, if F(X) is a polynomial defined over FpS, then the matrices W(m)
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have their entries in FpS and W(sm)=W(s)m. In this case, the Hasse-Witt invariant
coincides with the sum of the multiplicities of the non-zero roots of the characteristic

polynomial of the matrix W(s).

4.4. PROPOSITION. If pφ 1 (mod/), then C is non-ordinary.

PROOF. Without loss of generality, we may suppose that «^0(mod/). The sub-
matrix W :pi>, with 0', <pi»e/x/, has exactly^ columns and7<pί> rows. We have that

rank W= £ rank W^ < Σ Minf;,, ;<,£>} .

It remains only to show that there exists an index ι'0 such that jio <j<pioy since, in this

case, we have

Let r = </?> and iQ'. = [llr}. It is obvious that 2<r<l— 1, 1</0</-1. We will show
that /o satisfies the above mentioned condition. Indeed, we have that

= [npi/ϊ] -n\_pi\Γ\ .

It is easily seen that y<pί> = [w'r//]— «[>///] . Thus, we get

Λ, = l>o/Π , J\Pio> = l>o>VΠ - /ι[rι0//] = [/ιι0r//] .

If / ι>r+l, then m0r-«/0 = m'0(r— l)>(r+ l)/0(r— l)>r/0 + (r- !)>/; and hence
r> then

D

In the case of an elliptic curve defined over Q, the density of the set of primes of
good ordinary reduction is 1/2 or 1, depending on whether or not the curve has complex
multiplication. We note that if the polynomial F(X) belongs to β[JΓ|, then the set of
primes of good ordinary reduction has a natural density less than or equal to !/(/— 1).
Thus, for any ε > 0, we note the existence of non-singular projective curves defined over
β such that the set of primes of good ordinary reduction has density less than ε.

5. Hasse-Witt matrices for the Fermat curves. Let us denote by Q the Fermat
curve over β, defined as the projective closure of the affine curve Yl = Xl+\, where /
is an odd prime. Let Q(μt) be the field of the /-th roots of unity. Let us choose a prime
pΦl and let / be its residue degree in β(μ/). Let G : = (Z/IZ)* and let H be the subgroup
of G of order /. The curve Cl has good reduction at/? and we denote rp(Q) its Hasse-Witt

invariant. The Hasse-Witt matrix W of the reduced curve C, over Fp has its entries in
Fp. Hence, W(nϊ)=Wm for m> 1.
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Let us recall that the genus of Cl is # = (/-2)(/-l)/2. According to the previous

section, we take £f = {(iJ)\2<i<l—\, l<j<ji = i—l}. Given an integer m>0, let

q.(nϊ): = [/7W///] , Fitm(X) : = (Xl+ l)qi(m), q(f) : = (pf- I )// .

Then, q,(f) = q(f)i9 for 2</</-l .

5.1. PROPOSITION. ( i ) The matrix W(πί) = (wί'f(m)) is given by

qt(m)

\jpm-f}
0 otherwise.

(ii) The matrix W(f) is diagonal and its eigenvalues are

<*»-(:£)•
(iii) Cz w ordinary at p if and only iff= 1 .

(iv) 7/7 w even, then rp(C,) = 0.

PROOF. Consider F ί fWW = Σ^)(«'2»>)jr'^'")-β>. If l(qi(m)-s)=jpm-j'9 then

jpm =f (mod I); hence for each j corresponding to an index / we have a single/. If,

moreover, we have /' = </?m/ >>/ < *' andy/?m — / > 0, then the coefficient of the monomial
with exponent jpm—jf is

qi(m)-s

If pf= 1 (mod/), then /' = </?//> = / and, for each 7 corresponding to a given /, we have

that / =j. Thus, the matrix of (F*)/ is diagonal and has eigenvalues

\q(f}j)'

If p φ 1 (mod /), we have already proved that Cl is non-ordinary at /?. If p = 1

(mod/), then J^is diagonal and all its eigenvalues are different from zero mod/?, since

/ runs from 2 to /— 1. Thus, Cl is ordinary at p.
I f / is even, let m=f/2. We have pm= - 1 (mod/), /' = </?m/> = /-/. For each 7

corresponding to a given /, the associated/ is/ = /— 7, since 7"^ —/(mod/). lfj<i then

/>/', therefore we have that ^(m) is the zero matrix and rp(Cz) = 0. Π

5.2. EXAMPLE: THE HASSE-WITT INVARIANT r11(C7). We will compute rn(C7) in

two different ways. In the first, we will calculate the matrix W\ this will allow us to

obtain the invariant by means of the characteristic polynomial of W. In the second

way, using the fact that 1 1 3 = 1 (mod 7), we will compute the number of non-zero

eigenvalues of (̂3). As we will see, this second method is much shorter; we will develop
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TABLE 1.

'" J

1 1

5 1

2

2 1

2

3

6 1

2

3

4

3 1

2

3

4

5

/

4

4

1

4

1

5

4

1

5

2

4

1

5

2

6

t*-/)// -//

— 0

i ( 4 ) = 4

> (0-
— 0

(
-. \6U
3/

— 0

i ( 7 ) = 7

/ 7 \
3 1 = 2

W
/ 7 \

4 (4J= 2

6 ( 7 ) = 7

— 0

3 ί9)^W
— 0

/ 9 \6 Ur7
\ υ /

— 0

it in the remaining proposition of this section.

(a) The indices (ij) of Sf in the lexicographic order are: (2, 1), (3, 1), (3, 2), (4, 1),
(4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4), (6, 1), (6, 2), (6, 3), (6,4), (6, 5). Since l(qi-s) =
j\ 1 — /, we have/ = 4j (mod 7). Hence, the possibly non-zero entries of W are computed
in Table 1 .

Thus, det(H^-ΓId)= -Γ9(Γ3 + 2)2 and the Hasse-Witt invariant is 6.

(b) The matrix W(S) is diagonal; its eigenvalues are

l90j

Thus, λ f j^0(modll) if and only if r11((190ι)!) = ϋ1ι((190/)!) + ϋιι((190(ι-7))0. Since
the valuation of n\ at a prime/? is vp(n\) = Σm > 0 [«//?m], we get that t;n((190r)!) equals
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18, 37, 55, 75, 93, 102 for r= 1, 2, 3, 4, 5, 6, respectively. It is easy to check that the
number of non-zero eigenvalues is 6, corresponding to the indices: (3, 1), (3, 2), (5, 1),
(5, 4), (6, 2), (6, 4).

Let us denote &" = {(j'J)eN* xN* |y+/</}. The mapping (ij)*-*(i—jj) is a
bijection of ίf onto Sf'.

5.3. PROPOSITION. ( i )

(ii) rp(Ct) agrees with the cardinality of the set

Λ( = {(J'J)e#"\«J'h>, <y/*»e^', for all heH} .

(iii) If two primes p.p'^l have the same residue degree f in Q(μt), then rp(Cl) =

(iv) ^(CJsOίmod/).

PROOF. From the computation of the eigenvalues of the matrix W(f), we deduce
that

We have [(pf — l)i/(pkl)] = Q if k>f— 1 and, given two positive real numbers α, b, then
]. Thus,

^

For !</</- 1 and 1 <k<f- 1, the condition

holds. Indeed, we have that

Γ(/>/-i)' "LΠ>/"Ί. <^" > « Ί_ΓΓ^"Ί , (^"^-ol
L ipk J~LL / J / ipkΓllΓ\+ ^ J '

Since <i>/~ i t>/7 fc-/sO(mod/) and l<ί</-l, one has (ipf~kypk-i>0. Hence,

Γ^-DiΊ = Γ^-Π + ROX-y-QΊ = Γi^-'l

and the first part of the statement is proved.
Let us prove (ii). For each (ij)e^ we have that
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Ή^The condition \_psj/l~\ + \_ps(i—j)ll~\ = \_psill~\ for \<s<f—\ is equivalent to

Notice that this condition holds for s=f, since pf= 1 (mod/). Due to the fact that the
class of p in G is a generator of order / of //, the statement (ii) of the proposition is
proved. Since H is the only subgroup of G of order /, (iii) follows immediately. If
(j'J)eJ(, then «//?>, <77z»e^ for each h e//. This shows that rp(C,) is multiple of/.

D

6. Questions of densities. The natural density of the set of primes p such that
Cι has good ordinary reduction at p in the set of all prime integers is !/(/—!). It is
known that J(Cι/Fp) is isogenous to a power of a supersingular elliptic curve if and
only if / is even (cf. [Sh-Ka79 Prop. 3.10]). Thus, i f/- 1 =2km, with m odd, the natural
density of the set of primes p such that J(Cι/Fp) is isogenous to a power of a supersingular
elliptic curve is

-p..,,., '
/ — I 2* 2

where φ denotes the Euler function. Table 2 in the appendix displays a large quantity
of primes / for which the set of primes p with good reduction, such that rp(Cl) = 0 and
J(Cι/Fp) is not isogenous to a power of a supersingular elliptic curve, has positive
density. At the end of this section we will prove the existence of infinitely many primes
/ which satisfy this condition.

From now on, K denotes the field Q or Fp9 K is a fixed algebraic closure of K and
ζeKisa. primitive /-th root of unity. For 2 <k<l— 1, let Clfk be the normalization over
K of the projective plane curve

Let φk: Cl-^Clk be the morphism given by u = xl, v = xyl~kzk~ί, w = zl. We denote
by σk:Cl-+Cl the automorphism defined by (x, y, z)ι— >(x£fc, yζ, z), which has no fixed
points and is of order /. We have that φk = φk° σk and the curve CZjk is isomorphic to
the quotient curve of Cl with respect to the action of the group of order / generated
by σk. Let πk : C^Clk be the corresponding projection which is not ramified. Note that
πk is defined on any extension of K which contains the /-th roots of unity.

For each of these values of k, we denote by rp(Cu) the Hasse-Witt invariant of

Qfc when K=Fp. The Jacobian /(C,) is ^-isogenous to flU^ί^.fc) (cf [Sc84]). Thus,
we obtain that
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( i ) rp(Cl) = Σi:1

2rp(CIfk).
(ii) Hl(Cl9β)*@l

k=
l

2H\Cltk,Θ).
In particular, we have that rp(Cl) = 0 if and only if rp(Cltk) = 0 for 2<k<l- 1. We shall

prove in the proposition below that, moreover, H\Cl9 @)=®l

k~=1

2πk*(Hl(Cl^ 0)). We

shall make use of this last result to computer rp(C/)k).

Let us consider the set

The condition <mfc> > <m> is equivalent to <jn(k— 1)> + <m> = (mky. Thus, if we denote

by ̂  the image of ̂ k in 5 '̂ by the mapping (i,j)*->(i—jj), we have

The group G acts on [1, /- 1] x [1, /- 1] by ra(y): = (<>H>, <ra/>). Thus, ^k =

{m(k,l)ey\meG}, ^k={m(k-\,\)e^'\meG}. Notice that if (resp. &») is the

disjoint union of the sets ̂ k (resp. &£), since these sets are the equivalence classes defined

by the relation (ij)~(ijr) if and only if there exists an meG such that ( i , j ) = m(i',jf).

6.1. PROPOSITION, ( i ) The set {rij}(ij)eyk is a basis of the K-vector space

πf(tf '(Cw, β>)) In particular, H\Clt 0)= 0 & nί(H\ClJk, &)).
( ϋ ) rp(Cl<k) = *{0", 7) ε 5? | A(y', 7) e ̂ ', /or α// A ε H} .
(iiϊ) If ίwo prime Pip' φl have the same residue degree f in Q(μι), then rp(Clk) =

(iv) r^d^

PROOF. Let us consider (i). The set £fk has (/— l)/2 elements, since «rafc>, <m» e 5̂

if and only if « — m^>, <— ra»<£5^. By the Hurwitz formula, we get that the genus of
Cltk is (/— l)/2. The functions γ<mk>iχ<m> are invariant under σk. Thus, they are functions

on Cljk. We have that πk(P^)= =πk(Pl

<X)). Thus, the repartitions {/<mfc>5<m>}, for

«wA:>, <w»e^, belong to πJJ
t(//1(C/tk, 0)). Since they are linearly independent and

dimπk*(//1(C/,k, 0))<(/-l)/2, the statement is proved.

If K=Fp, the subspace πί(H*(Cltk, (9)) of H \Cl9 0) is invariant under the absolute

Frobenius F<*, because πk*o/^ !

I k = /^Ioπk*, and the rest of proposition can be proved

along the same line of reasoning as that used in Proposition 5.3. Π

The proposition above makes it clear that the properties (iii) and (iv) stated in

Proposition 5.3 are consequences of their being satisfied on each of the sub varieties
/(Clik) over Fp.

Next we will show the existence of isomorphy relations among some of these

jacobian subvarieties. Let Γ, S :<<?-+<</' be the maps defined by
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S and T are bijective maps. Given meG and (ij)e^ we have that m(ij)e^ if and
only if mT(i,j)e^, and if and only if mS(ίJ)e^. Hence, S and T map equivalence
classes into equivalence classes. Thus T(^k) = ̂ ljky and S(&k) = &'<k/(k-1)>9 since

7χik,l) = (/-lJ-fc)andS(fc,l) = fc
the two mappings are involutions on the indices of the curves, and (S°T)3(k) = k.
Namely, S and T acting on the set of indices k generate the dihedral group D3 and

6.2. PROPOSITION. Given Me/)3, the curves C ί k and C/M(/C) are Q-ίsomorphίc,

hence they have the same Hasse-Wίtt invariant at any prime p φ L

PROOF. Let us introduce the involutions λ, μ: Q->Q defined by

λ(x, y9z):=(y,x,-z), μ(x, y,z): = (z, y, x) .

We have that σ^ί/ky°λ = λ°σk9 σ^ί-^y0 μ = μ°σk. It follows that λ (resp. μ) induces

an isomorphism between C / < 1 / f c > and Cltk (resp. C^ .̂̂  and C/tk). D

In general, each set of subindices Sk has an orbit, under the action of the group
Z)3, formed by six sets:

These sets are different, except in the following cases:
(a) For /=3, k can only take the value 2, and the six sets are the same.
(b) The orbit of ̂  has three elements if and only if ke {2, (/+ l)/2, /- 1} and
(c) The orbit of ̂  has two elements if and only if 7= 1 (mod 3) and A: is a solution

of Γ2-Γ+lΞΞθ(mod7).

Notice that if/? is a prime of residue degree /= 3, then rp(Ct)> 6, since the subgroup
{p,/?2, 1} of (Z//Z)* always satisfies </7> + </72> + 1 =7 and the six pairs ((/^"X </?j»

for/,7= 1, 2, 3 andy/y, belong to £f'.

6.3. PROPOSITION. Leί 7^3, 7. If p¥=l is a prime of residue degree /=(/— 1)/2,

PROOF. The elements of the subgroup // of (Z/7Z)* generated by a prime /? of
residue degree /=(/— 1)/2 are the quadratic residues mod 7. Since rp(Cj k) Ξ 0 (mod /)
and Cltk has genus /, we have that Cu is ordinary at p or rp(C/fk) = 0. Thus, we only
need to prove that Cu is non-ordinary at p for all /c, 2<k<l— 1.

We consider the following cases:
(a) 7/3 and —2 is a quadratic residue (mod 7). Let k be the index corresponding

to an ordinary curve. Since 7— 2 is a quadratic residue, the inequality

holds. This condition forces — 2(k— l)= 1 (mod7); hence fc = (/+l)/2. This is a con-
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tradiction because this curve is isomorphic to the curves corresponding to k = 2, I— 1.

(b) IΦΊ and —3 is a quadratic residue (mod/). Let k be the index corresponding
to an ordinary curve. Since /— 3 is a quadratic residue, we have <(/— 3)(fc — 1)> + /— 3 < /.
Thus k = 1 /3 (mod /) or k = 2/3 (mod /). The curve CZjfc has the same invariant as the curve

corresponding to k/(k — 1), and we have k = — 1 /2 (mod /) or k = — 2 (mod /); these values
are different from the previous ones if /^5, 7. The case /=5 does not have to be

considered, since —3 is not a quadratic residue (mod 5).

(c) -1 is a quadratic residue (mod/). The result is obvious, since / is even.

(d) —2, —3 and —1 are not quadratic residues (mod/). These conditions imply
that 2 and 3 are quadratic residues. Let t = k— 1 be a value such that the curve cor-

responding to k = t+\ is ordinary. We show that t is a quadratic residue. Let m be
the minimum non-quadratic positive residue; then /—m is a quadratic residue and

< — w/> + < — m></. Thus < — mty<m and consequently —mi and t are quadratic

residues.
Since 1/2 is a quadratic residue, for k = 2 the curve is non-ordinary, because

((/+1)/2)(1, 1) does not belong to £f'. Due to the fact that -3 and -1 are not qua-

dratic residues, we have that lφ 1 (mod 3). Thus, each subindex k of an ordinary curve
yields six different subindices of ordinary curves, since we have excluded the cases /=3,

ke{2, (/+l)/2, /—1} and /^I(mod3). For each value of /, the values obtained
are the following t, <-(/+!)//>, <_i/(i+,)>, <!//>, <_(,+ i)>? <_,/(,+ !)>. Let

α be the minimum value of t such that the curve is ordinary. Since — (α+l)/α is a
quadratic residue, we have

/ -|

Oί ~Γ 1 \ / VΛ I 1. \ -

α > + ( ) < / .

Thus, /- (α + 1) + < - (α + l)/α> < /, that is, < - (α + l)/α> < α + 1 . This result contradicts

either the fact that α is the minimum ordinary value or that < — (α-h l)/α>^α. Π

6.4. COROLLARY. #7> 1 1 and 1= 3 (mod 4) then the density of the set of primes p

such that rp(Ct) = 0 and J(Ct/Fp) is not isogenous to a power of a supersίngular elliptic

curve is greater than or equal to (I— \)~1φ((l— l)/2).

7. Appendix.

7.1. NOTATION.

/, 2</<500, prime,
(5, density of the set of primes p such that rp(Ct) = 0 and ./(CyF^) is

not isogenous to a power of a supersingular elliptic curve.
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TABLE 2.

/ δ

3 0

5 0

7 0

11 2/5

13 0

17 0

19 1/3

23 5/11

29 3/14

31 4/15

37 1/6

41 1/10

43 3/7

47 11/23

53 3/13

59 14/29

61 1/5

67 5/11

71 12/35

/ δ

73 0

79 6/13

83 20/41

89 0

97 0

101 6/25

103 8/17

107 26/53

109 1/6

113 3/56

127 8/21

131 6/13

137 2/17

139 11/23

149 9/37

151 2/5

157 3/13

163 4/9

167 41/83

/ δ

173 21/86

179 44/89

181 8/45

191 9/19

193 0

197 3/14

199 5/11

211 2/5

223 18/37

227 56/113

229 9/38

233 7/58

239 8/17

241 1/30

251 12/25

257 0

263 65/131

269 33/134

271 61/135

/ δ

277 11/46

281 3/35

283 23/47

293 18/73

307 8/17

311 15/31

313 3/26

317 39/158

331 79/165

337 0

347 86/173

349 7/29

353 5/176

359 89/179

367 30/61

373 15/62

379 29/63

383 95/191

389 24/97

/ δ

397 5/22

401 1/20

409 2/17

419 104/209

421 23/105

431 21/43

433 1/24

439 36/73

443 110/221

449 0

457 9/76

461 11/46

463 106/231

467 116/233

479 119/239

487 13/27

491 117/245

499 41/83
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