# MINIMAL HYPERSURFACES OF UNIT SPHERE 

Huafei Sun and Koichi Ogiue

(Received March 4, 1996, revised July 8, 1996)


#### Abstract

In this paper, a pinching theorem for minimal hypersurfaces in a unit sphere is given and Peng-Terng's Theorem is improved.


Let $S^{n+1}$ be an $(n+1)$-dimensional unit sphere and $M$ a closed minimally immersed hypersurface in $S^{n+1}$. $S$ denotes the square of the length of the second fundamental form of $M$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ (cf. [1]). Chern-do Carmo-Kobayashi [2] and Lawson [3] independently proved that the Clifford tori are the only minimal hypersurfaces with $S \equiv n$. In [2] Chern conjectured that for minimal hypersurfaces in the unit sphere $S^{n+1}$ with constant scalar curvature, the values $S$ are discrete. On this conjecture, Peng and Terng [5] made a breakthrough, and proved:

Theorem A. Let $M$ be an n-dimensional closed minimally immersed hypersurface in $S^{n+1}$ with constant scalar curvature. Then there exists a constant $\varepsilon(n)$ such that if $n \leq S \leq n+\varepsilon(n)$, then $S \equiv n$ so that $M$ is a Clifford torus.

It is natural to consider the problem without assuming that the scalar curvature is constant. For $n \leq 5$, Peng and Terng [4] proved:

Theorem B. Let $M$ be an n-dimensional closed minimally immersed hypersurface in $S^{n+1}, n \leq 5$. Then there exists a constant $\varepsilon(n)=(6-1.13 n) /(5+\sqrt{17})$ such that if $n \leq S \leq n+\varepsilon(n)$, then $S \equiv n$ so that $M$ is a Clifford torus.

In this paper, we remove Peng-Terng's assumption $n \leq 5$ and improve Theorem B. Our result is:

Theorem. Let $M$ be an n-dimensional closed minimally immersed hypersurface in $S^{n+1}$. Then there exists a constant $\varepsilon(n)=2 n^{2}(n+4) /\left[3(n+2)^{2}\right]$ such that if $n \leq S \leq n+\varepsilon(n)$, then $S \equiv n$ so that $M$ is a Clifford torus.

It is clear that our Theorem is better than Theorem B and this $\varepsilon(n)$ is the same as that in Cheng [6].

The authors would like to express their thanks to the referee for valuable suggestions.

1. Fundamental Formulas. We use the same notation and terminologies as in [4], [5] unless otherwise stated.

Let $S^{n+1}$ be an $(n+1)$-dimensional unit sphere and $M$ a closed minimally immersed hypersurface in $S^{n+1}$. $\left\{e_{1}, \ldots, e_{n}, e_{n+1}\right\}$ is an orthonormal frame field on $S^{n+1}$, $\left\{e_{1}, \ldots, e_{n}\right\}$ is tangent to $M$, and let $\left\{\omega_{1}, \ldots, \omega_{n+1}\right\}$ be the dual frame field. We use of the following convention on the range of the indices:

$$
A, B, \ldots=1, \ldots, n+1 ; i, j, \ldots=1, \ldots, n
$$

Then the structure equations of $S^{n+1}$ are given by

$$
\begin{aligned}
& d \omega_{A}=-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \\
& d \omega_{A B}=-\sum_{C} \omega_{A C} \wedge \omega_{C B}+\frac{1}{2} \sum_{C D} K_{A B C D} \omega_{C} \wedge \omega_{D}, \\
& K_{A B C D}=\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C} .
\end{aligned}
$$

Restricting these forms to $M$, we get

$$
\begin{aligned}
& \omega_{n+1}=0, \quad \omega_{n+1 i}=\sum_{j} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i}, \\
& d \omega_{i}=-\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0, \\
& d \omega_{i j}=-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\frac{1}{2} \sum_{k l} R_{i j k l} \omega_{k} \wedge \omega_{l},
\end{aligned}
$$

where

$$
R_{i j k l}=K_{i j k l}+h_{i k} h_{j l}-h_{i l} h_{j k}
$$

We call $h=\sum_{i j} h_{i j} \omega_{i} \omega_{j}$ and $H=(1 / n) \sum_{i} h_{i i}$ the second fundamental form and the mean curvature of the immersion, respectively. If $H \equiv 0$, then $M$ is said to be minimal. Denote by $S=\sum_{i j} h_{i j}^{2}$ the square of the length of $h$. For a minimal hypersurface $M$ in $S^{n+1}$, we have

$$
S=n(n-1)-R,
$$

where $R$ is the scalar curvature of $M$. It is clear that $S$ is constant if and only if so is $R$. Define $h_{i j k}, h_{i j k l}$ and $h_{i j k l n}$ respectively by

$$
\begin{aligned}
& \sum_{i j k} h_{i j k} \omega_{k}=d h_{i j}-\sum_{m} h_{m j} \omega_{m i}-\sum_{m} h_{i m} \omega_{m j}, \\
& \sum_{l} h_{i j k l} \omega_{l}=d h_{i j k}-\sum_{m} h_{m j k} \omega_{m i}-\sum_{m} h_{i m k} \omega_{m j}-\sum_{m} h_{i j m} \omega_{m k}, \\
& \sum_{m} h_{i j k l m} \omega_{m}=d h_{i j k l}-\sum_{m} h_{m j k l} \omega_{m i}-\sum_{m} h_{i m k l} \omega_{m j}-\sum_{m} h_{i j m l} \omega_{m k}-\sum_{m} h_{i j k m} \omega_{m l} .
\end{aligned}
$$

Here

$$
\begin{aligned}
& h_{i j k}=h_{i k j}, \\
& h_{i j k l}-h_{i j k}=\sum_{m} h_{m j} R_{m i k l}+\sum_{m} h_{i m} R_{m j k l},
\end{aligned}
$$

and

$$
h_{i j k l n}-h_{i j k n l}=\sum_{m} h_{m j k} R_{m i l n}+\sum_{m} h_{i m k} R_{m j l n}+\sum_{m} h_{i j m} R_{m k l n}
$$

We can choose a local frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ such that

$$
h_{i j}=h_{i i} \delta_{i j} .
$$

From now on, we assume that $M$ is minimal. By calculation we have (cf. [4], [5])

$$
\begin{gather*}
\Delta h_{i j}=(n-S) h_{i j},  \tag{1.1}\\
\int_{M}|\nabla h|^{2}=\int_{M} S(S-n),  \tag{1.2}\\
\int_{M} \sum_{i j k l} h_{i j k l}^{2}=\int_{M}\left[(S-2 n-3)|\nabla h|^{2}+3(A-2 B)+\frac{3}{2}|\nabla S|^{2}\right], \tag{1.3}
\end{gather*}
$$

where

$$
\begin{gather*}
A=\sum_{i j k} h_{i j k}^{2} h_{i i}^{2}, \quad B=\sum_{i j k} h_{i j k}^{2} h_{i i} h_{j j} . \\
\sum_{i j k l} h_{i j k l}^{2} \geq \sum_{i} h_{i i i i}^{2}+3 \sum_{i \neq j} h_{i j i j}^{2} . \tag{1.4}
\end{gather*}
$$

Set

$$
g_{3}=\sum_{i j k} h_{i j} h_{j k} h_{k i}, \quad g_{4}=\sum_{i j k l} h_{i j} h_{j k} h_{k l} h_{l i} .
$$

Then

$$
\begin{gather*}
\int_{M}(A-2 B)=\int_{M}\left(S g_{4}-g_{3}^{2}-S^{2}-\frac{1}{4}|\nabla S|^{2}\right) .  \tag{1.5}\\
\int_{M}|\nabla S|^{2}=2 \int_{M}\left[S^{2}(S-n)-S|\nabla h|^{2}\right] . \tag{1.6}
\end{gather*}
$$

2. Proof of the Theorem. In order to prove our Theorem, we need the following:

Lemma. Let $M$ be an n-dimensional closed minimally immersed hypersurface in $S^{n+1}$. If $S \geq n$, then we have

$$
\sum_{i j k l} h_{i j k l}^{2} \geq \frac{3(n+2)}{n(n+4)} S(S-n)^{2}-\frac{3}{n} S^{2}(S-n)+3\left(S g_{4}-g_{3}^{2}-S^{2}\right)
$$

Proof. Since $M$ is minimal, we have $\sum_{i} h_{i i}=0$ and

$$
\sum_{i j} h_{i i j j} h_{j j}=0 .
$$

From (1.1) we get $\Delta h_{i i}=(n-S) h_{i i}$ and

$$
\sum_{i j} h_{i i j j} h_{i i}=S(n-S) .
$$

Let $f_{i j}=h_{i j i j}$. We consider $f=\sum_{i} f_{i i}^{2}+3 \sum_{i \neq j} f_{i j}^{2}+6 \sum_{i j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}$ as a function of $f_{i j}$. Solve the following problem for the conditional extremum:

$$
\begin{equation*}
F=\sum_{i} f_{i i}^{2}+3 \sum_{i \neq j} f_{i j}^{2}+6 \sum_{i j}\left(h_{i j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}+\lambda\left(\sum_{i j} f_{i j} h_{i i}-S(n-S)\right)+\mu \sum_{i j} f_{i j} h_{i j}, \tag{2.1}
\end{equation*}
$$

where $\lambda$ and $\mu$ are the Lagrange multipliers. It is clear that the critical point of $F$ is the minimum point of $f$. Taking derivatives of $F$ with respect to $f_{i j}$, we get

$$
\begin{gather*}
F_{f_{i i}}=2 f_{i i}+\lambda h_{i i}+\mu h_{i i}=0, \quad i=j,  \tag{2.2}\\
F_{f_{i j}}=6 f_{i j}+6\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right)+\lambda h_{i i}+\mu h_{j j}=0, \quad i \neq j, \tag{2.3}
\end{gather*}
$$

and they satisfy

$$
\begin{equation*}
\sum_{i j} h_{j j} f_{i j}=0, \quad \sum_{i j} h_{i i} f_{i j}=S(n-S), \quad \sum_{i} h_{i i}^{2}=S, \quad \sum_{i}=h_{i i}=0 . \tag{2.4}
\end{equation*}
$$

From (2.2) and (2.3) we get

$$
\begin{gather*}
\sum_{i} f_{i i} F_{f_{i i}}=2 \sum_{i} f_{i i}^{2}+(\lambda+\mu) \sum_{i} f_{i i} h_{i i}=0,  \tag{2.5}\\
\sum_{i \neq j} f_{i j} F_{f_{i j}}=6 \sum_{i \neq j} f_{i j}^{2}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}+\lambda \sum_{i \neq j} f_{i j} h_{i i}+\mu \sum_{i \neq j} f_{i j} h_{j j}=0,  \tag{2.6}\\
\sum_{i \neq j} h_{i i} F_{f_{i j}}=6 \sum_{i \neq j} h_{i i} f_{i j}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{i i}+\lambda \sum_{i \neq j} h_{i i}^{2}+\mu \sum_{i \neq j} h_{i i} h_{j j}=0,  \tag{2.7}\\
\sum_{i \neq j} h_{j j} F_{f_{i j}}=6 \sum_{i \neq j} h_{j j} f_{i j}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{j j}+\lambda \sum_{i \neq j} h_{i i} h_{j j}+\mu \sum_{i \neq j} h_{j j}^{2}=0,  \tag{2.8}\\
\sum_{i} h_{i i} F_{f_{i i}}=2 \sum_{i} h_{i i} f_{i i}+\lambda \sum_{i} h_{i i}^{2}+\mu \sum_{i} h_{i i}^{2}=0 . \tag{2.9}
\end{gather*}
$$

From (2.5) and (2.6) we get

$$
\begin{aligned}
2\left(\sum_{i} f_{i i}^{2}+3 \sum_{i \neq j} f_{i j}^{2}\right. & \left.+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}\right) \\
& -6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}+\lambda \sum_{i j} h_{i i} f_{i j}+\mu \sum_{i j} f_{i j} h_{j j}=0
\end{aligned}
$$

and so, in view of (2.4),

$$
\begin{align*}
\sum_{i} f_{i i}^{2} & +3 \sum_{i \neq j} f_{i j}^{2}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}  \tag{2.10}\\
& =3 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}-\frac{1}{2} \lambda \sum_{i j} h_{i i} f_{i j} \\
& =3 \sum_{i \neq j}\left(h_{i j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}+\frac{\lambda}{2} S(S-n) .
\end{align*}
$$

Using (2.4), from (2.8) and (2.9) we get

$$
\begin{equation*}
-4 \sum_{i} h_{i i} f_{i i}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{j j}+n \mu S=0, \tag{2.11}
\end{equation*}
$$

and from (2.7), (2.9) we get

$$
\begin{equation*}
-4 \sum_{i} h_{i i} f_{i i}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{i i}+n \lambda S+6 S(n-S)=0 . \tag{2.12}
\end{equation*}
$$

Notice that $S \geq n$. Thus by (2.11) and (2.12) we obtain

$$
n(\mu-\lambda) S=6 S(n-S)+12 S^{2},
$$

that is,

$$
\begin{equation*}
\mu-\lambda=\frac{6}{n}(n-S)+\frac{12}{n} S . \tag{2.13}
\end{equation*}
$$

On the other hand, $(2.11)+(2.12)+4 \times(2.9)$ shows

$$
4(\lambda+\mu) S+n(\lambda+\mu) S+6 S(n-S)=-6 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{j j}-6 \sum_{i \neq j}\left(h_{i j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{i i}=0,
$$

that is,

$$
\begin{equation*}
\lambda+\mu=\frac{6}{4+n}(S-n) . \tag{2.14}
\end{equation*}
$$

Combining (2.13) with (2.14), we get

$$
\begin{equation*}
\lambda=\frac{6(n+2)}{n(n+4)}(S-n)-\frac{6}{n} S . \tag{2.15}
\end{equation*}
$$

(2.10) and (2.15) show that

$$
\begin{aligned}
\sum_{i} f_{i i}^{2} & +3 \sum_{i \neq j} f_{i j}^{2}+6 \sum_{i \neq j}\left(h_{j j}^{2} h_{j j}-h_{i i}^{2} h_{j j}\right) f_{i j} \\
& =\frac{3(n+2)}{n(n+4)} S(S-n)^{2}-\frac{3}{n} S^{2}(S-n)+3 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) f_{i j}
\end{aligned}
$$

and so,

$$
\begin{align*}
\sum_{i} h_{i i i i}^{2}+3 \sum_{i \neq j} h_{i j i j}^{2} & \geq \frac{3(n+2)}{n(n+4)} S(S-n)^{2}-\frac{3}{n} S^{2}(S-n)-3 \sum_{i \neq j}\left(h_{j j}^{2} h_{i i}-h_{i i}^{2} h_{j j}\right) h_{i j i j}  \tag{2.16}\\
& =\frac{3(n+2)}{n(n+4)} S(S-n)^{2}-\frac{3}{n} S^{2}(S-n)+3\left(S g_{4}-g_{3}^{2}-S^{2}\right)
\end{align*}
$$

Combining (1.4) with (2.16), we get the Lemma.
Proof of the Theorem. Using (1.3) and the Lemma we get

$$
\begin{align*}
& \int_{M}\left[(S-2 n-3)|\nabla h|^{2}+3(A-2 B)+\frac{3}{2}|\nabla S|^{2}\right]  \tag{2.17}\\
& \quad \geq \int_{M}\left[\frac{3(n+2)}{n(n+4)} S(S-n)^{2}-\frac{3}{n} S^{2}(S-n)+3\left(S g_{4}-g_{3}^{2}-S^{2}\right)\right] .
\end{align*}
$$

Noting (1.5), from (2.17) we obtain

$$
\begin{aligned}
& \int_{M}\left[(S-2 n-3)|\nabla h|^{2}+3(A-2 B)+\frac{3}{2}|\nabla S|^{2}\right] \\
& \quad \geq \int_{M}\left[\frac{3(n+2)}{n(n+4)} S(S-n)^{2}-\frac{3}{n} S^{2}(S-n)+3(A-2 B)+\frac{3}{4}|\nabla S|^{2}\right],
\end{aligned}
$$

namely,
(2.18) $\int_{M}\left[(S-2 n-3)|\nabla h|^{2}-\frac{3(n+2)}{n(n+4)} S(S-n)^{2}+\frac{3}{n} S^{2}(S-n)+\frac{3}{4}|\nabla S|^{2}\right] \geq 0$.

Substituting (1.6) into (2.18), we get

$$
\begin{aligned}
\int_{M}\left[(S-2 n-3)|\nabla h|^{2}-\frac{3(n+2)}{n(n+4)}\right. & S(S-n)^{2}+\frac{3}{n} S^{2}(S-n) \\
& \left.+\frac{3}{2} S^{2}(S-n)-\frac{3}{2} S|\nabla h|^{2}\right] \geq 0,
\end{aligned}
$$

that is,
(2.19)

$$
\int_{M}\left[\left(-\frac{1}{2} S-2 n-3\right)|\nabla h|^{2}+\frac{3(n+2)^{2}}{2 n(n+4)} S^{2}(S-n)+\frac{3(n+2)}{n+4} S(S-n)\right] \geq 0 .
$$

Now, we assume that $n \leq S \leq n+\varepsilon$. Then using (1.2) we get

$$
\begin{equation*}
\int_{M} S^{2}(S-n) \leq(n+\varepsilon) \int_{M} S(S-n)=(n+\varepsilon) \int_{M}|\nabla h|^{2} \tag{2.20}
\end{equation*}
$$

By (2.20), (2.19) yields

$$
\begin{equation*}
\int_{M}\left[-\frac{1}{2} S-\frac{1}{2} n+\frac{3(n+2)^{2}}{2 n(n+4)} \varepsilon\right]|\nabla h|^{2} \geq 0 \tag{2.21}
\end{equation*}
$$

Taking $\varepsilon=2 n^{2}(n+4) /\left[3(n+2)^{2}\right]$ in (2.21), we get

$$
\int_{M}\left(-\frac{1}{2} S+\frac{1}{2} n\right)|\nabla h|^{2} \geq 0 .
$$

Since $S \geq n$, we see that $S \equiv n$ so that $M$ is a Clifford torus. This completes the proof of the Theorem.

## References

[1] J. Simons, Minimal varieried in a Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
[2] S. S. Chern, M. do Carmo and S. Kobayashi, Functional analysis and related fields, Springer, Berlin, Heidelberg, New York, 1970.
[3] H. B. Lawson, Local rigidity theorem for minimal hypersurfaces, Ann. of Math. 89 (1969), 187-197.
[4] C. K. Peng and C. L. Terng, The scalar curvature of minimal hypersurfaces in sphere, Math. Ann. 266 (1983), 105-113.
[5] C. K. Peng and C. L. Terng, Minimal hypersurfaces of sphere with constant scalar curvature, Ann. of Math. Studies 103 (1983), 177-198.
[6] Q. M. Cheng, The rigidity of Clifford torus $S^{1}(1 / \sqrt{n}) \times S^{n-1}(\sqrt{(n-1) / n})$, Comment. Math. Helvetici 71 (1996), 60-69.

## Department of Mathematics

Tokyo Metropolitan University
Hachioji, Tokyo, 192-03
Japan

